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Abstract
We establish a central-limit-theorem (CLT) version of the periodic Little’s law (PLL)
in discrete time, which complements the sample-path and stationary versions of the
PLL we recently established, motivated by data analysis of a hospital emergency
department. Our new CLT version of the PLL extends previous CLT versions of LL.
As with the LL, the CLT version of the PLL is useful for statistical applications.

Keywords Little’s law · L = λW · Periodic queues · Central limit theorem ·
Emergency departments · Weak convergence in (�1)d
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1 Introduction

Little’s law (L = λW ) states that under weak conditions, the long-run average number
of customers in a system (L) is equal to the long-run average arrival rate (λ) multi-
plied by the long-run customer-average sojourn time in the system (W ). Little’s law
(LL) provides an important consistency check, like double-entry bookkeeping. Such
consistency checks are often regarded as trivial, because they are quite intuitive, but it
has been suggested that the 1494 book by Luca Pacioli [24], which contains the first
codified account of double-entry bookkeeping, might be the most influential work in
the history of capitalism; see [14,17]. It evidently took Philip M. Morse to realize that
it would be good to have a proof of LL; see the endnote by John Little [21].

After the seminal paper by Little [19], LL has been further studied, notably by
Stidham [25], and is frequently used as a fundamental tool in queuing theory; see
[7,20,26,27] for general review. In [9,10,29], Glynn andWhitt established a functional

B Xiaopei Zhang
xz2363@columbia.edu

Ward Whitt
ww2040@columbia.edu

1 Industrial Engineering and Operations Research Department, Columbia University, New York, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-018-9588-8&domain=pdf
http://orcid.org/0000-0002-9494-8112


16 Queueing Systems (2019) 91:15–47

central-limit-theorem (FCLT) version of LL by exploiting the continuous mapping
theorem, and, as a corollary, a CLT version of LL, by applying a projection. In [11],
they derived a CLT version directly, without exploiting FCLTs. The CLT version of
LL provides the convergence rate in the sample-path version of LL and has important
statistical applications, as discussed in [12,16].

In [31], we established a sample-path periodic Little’s law (PLL) in discrete time,
extending the sample-path version of LL, and a stationary PLL, extending the time-
varying Little’s law (TVLL) in [3,8], which refines the LL in another direction. In
doing so, we were motivated by our statistical analysis of patient arrival and departure
data from the emergency department (ED) of an Israeli hospital, using 25 weeks of
data from the data repository associated with the study by Armony et al. [2]. Based
on our data analysis in [30], we concluded that stochastic models of that ED should
be periodic with the week serving as the relevant period.

In the present paper, we establish aCLTversion of the PLL in discrete time.With the
periodic structure, it is natural to think about the relation between the direct estimator
of the occupancy level, obtained by directly averaging over periods, and the indirect
estimator based on the arrival process and length of stay (LoS) via the PLL. The main
story of this paper is that given a joint CLT for the CLT-scaled arrival process and
LoS, the CLT-scaled indirect estimator also converges, but we need more conditions
to ensure that the CLT-scaled direct estimator has the same limit.We give both a simple
practical version, assuming bounded arrivals and LoS distributions, and amore general
versionwithout the boundedness restriction, but involvingmore complexmathematics.
We also provide reasonable sufficient conditions such that the two estimators are
asymptotically equivalent.

For the PLL in [31], just as for the TVLL in [3,8], the relation requires considering
the entire LoS distribution function instead of just the mean LoS. The proof of the
main theorem here is still by the continuous mapping theorem, but the analysis here
for the general case with unbounded distributions is nonstandard. In particular, in
order to directly exploit the continuous mapping theorem, we use the Banach space
�1, which includes all the absolutely summable sequences. While the Banach space
�1 is standard within functional analysis, it is not standard within probability theory.
Nevertheless, there is substantial literature for us to draw upon, for example [1,18,22].
We specialize the general weak convergence theory to this specific space �1 and give
a sufficient condition for weak convergence in this space. We also specialize the CLT
for i.i.d. random elements in general Banach spaces to �1, which may be useful to find
new conditions for the CLT version of PLL as well as in other contexts.

This paper as organized as follows: In Sect. 2, we review the sample-path PLL from
[31]. In Sect. 3, we state the new CLT versions of the PLL and then we discuss the
statistical applications. In Sect. 4, we establish sufficient conditions for the general
CLTversion of the PLL. In Sect. 5, we discuss theweak convergence theory for random
elements of (�1)

d . Finally, in Sect. 6, we provide the longer proofs.

2 Review of the periodic Little’s law

In this section, we review the sample-path PLL from [31]. We use the notation intro-
duced there. We consider discrete time points indexed by the nonnegative integers
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k. Since multiple events can happen at each time, we need to carefully specify the
order of events. We assume that all arrivals at each time occur before any departures.
Moreover, we count the number of customers in the system (patients in the ED) at
each time after the arrivals but before the departures. Thus, each arrival can spend time
j in the system for any j ≥ 0. We discuss other orders of events in §2.7 of [31].
We start with a single sequence, X ≡ {Xi, j : i ≥ 0; j ≥ 0}, with Xi, j denoting the

number of arrivals at time i that leave the system at time i + j . We also could have
customers at the beginning, but, without loss of generality, we can view them as a part
of the arrivals at time 0. We derive all the other quantities in terms of this sequence.
In particular, with ≡ denoting equality by definition, let

Yi, j ≡
∞∑

s= j

Xi,s, the number of arrivals at time i with LoS

greater or equal to j, j ≥ 0,

Ai ≡ Yi,0 =
∞∑

s=0

Xi,s, the total number of arrivals at time i,

Qi ≡
i∑

j=0

Yi− j, j =
i∑

j=0

Ai− j
Yi− j, j

Ai− j
, the number in system at time i, and

Di ≡
i∑

j=0

Xi− j, j = Qi − Qi+1 + Ai+1, the number of departures at time i, i ≥ 0.

In the third line, we understand 0/0 ≡ 0, so that we properly treat times with 0 arrivals.
We do not directly make any periodic assumptions, but with the periodicity in mind,

we consider the following averages over n periods:

λ̄k(n) ≡ 1

n

n∑

m=1

Ak+(m−1)d , δ̄k(n) ≡ 1

n

n∑

m=1

Dk+(m−1)d ,

Q̄k(n) ≡ 1

n

n∑

m=1

Qk+(m−1)d = 1

n

n∑

m=1

⎛

⎝
k+(m−1)d∑

j=0

Yk+(m−1)d− j, j

⎞

⎠ ,

Ȳk, j (n) ≡ 1

n

n∑

m=1

Yk+(m−1)d, j , j ≥ 0,

F̄c
k, j (n) ≡ Ȳk, j (n)

λ̄k(n)
=

∑n
m=1 Yk+(m−1)d, j∑n
m=1 Ak+(m−1)d

, j ≥ 0, and

W̄k(n) ≡
∞∑

j=0

F̄c
k, j (n), all for 0 ≤ k ≤ d − 1, (1)

where d is a positive integer. (The final formula in (1) is the expression for the mean,
but it differs from the conventional formula by having the sum start at 0 instead of
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1. That occurs because of our convention about the order of events, implying that an
arrival can depart in the same period, in which case the time spent in the system is
counted as 1.)

Clearly, λ̄k(n) and δ̄k(n) are the average arrival and departure rates, respectively,
at time k within a period, averaged over n periods; we think of it applying to all the
time periods (m − 1)d + k for 0 ≤ k ≤ d − 1 and m ≥ 1. Similarly, Q̄k(n) is
the average number of customers in the system at time k, within a period, averaged
over n periods, while Ȳk, j (n) is the average number of customers that arrive at time k
that have a LoS greater or equal to j . Thus, F̄c

k, j (n) is the empirical complementary
cumulative distribution function (ccdf), which is the natural estimator of the LoS ccdf
of an arrival in time period k. Finally, W̄k(n) is the sample mean LoS of customers that
arrive at time k within a period, averaged over n periods. We write n as a parameter to
indicate that the estimator is computed by averaging over n periodic cycles. We will
let n → ∞.

Wemake the following three assumptions, which parallel or extend the assumptions
used in the ordinary Little’s law. We assume that

(A1) λ̄k(n) → λk, w.p.1 as n → ∞, 0 ≤ k ≤ d − 1,

(A2) F̄c
k, j (n) → Fc

k, j , w.p.1 as n → ∞, 0 ≤ k ≤ d − 1, j ≥ 0, and

(A3) W̄k(n) → Wk ≡
∞∑

j=0

Fc
k, j w.p.1 as n → ∞, 0 ≤ k ≤ d − 1, (2)

where the limits are deterministic and finite.
Paralleling the assumptions in the LL [25], assumptions (A1) and (A3) state that

the average arrival rates and LoS converge, but for each k because of the extension
to the periodic case. Assumption (A2) has no counterpart in the LL; it requires that
the empirical ccdfs converge. Lemma 1 in [31] shows that if the three assumptions
in (2) hold, then the limits hold for all k ≥ 0, with the limit functions being periodic
with period d. We extend these periodic functions to the entire real line, including the
negative time indices.

To focus on the indirect estimator, we also add another estimator. It has a more
complex form to account for the fact that in practice we only have data going forward
in time. In particular, let

L̄k(n) ≡
k∑

i=0

λ̄i (n)

∞∑

l=0

F̄c
i,k−i+ld(n)+

d−1∑

i=k+1

λ̄i (n)

∞∑

l=1

F̄c
i,k−i+ld(n), 0 ≤ k ≤ d−1,

(3)
where λ̄i (n) and F̄c

i, j (n) are defined in (1).
The following combines Theorems 1 and 2 and Corollary 2 of [31].

Theorem 2.1 (sample-path PLL from [31]) If the three assumptions (A1), (A2) and
(A3) in (2) hold, then (Q̄k(n), δ̄k(n), L̄k(n)) defined in (1) and (3) converges w.p.1 in
R
3 as n → ∞ to a limit that we denote by (Lk, δk, Lk). Moreover,
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Lk =
∞∑

j=0

λk− j F
c
k− j, j < ∞ and

δk =
∞∑

j=0

λk− j fk− j, j ≡
∞∑

j=0

λk− j

(
Fc
k− j, j − Fc

k− j, j+1

)
(4)

for 0 ≤ k ≤ d − 1, where λk and Fc
k, j are the periodic limits in (A1) and (A2)

extended to all integers, negative as well as positive, while fk, j ≡ Fc
k, j − Fc

k, j+1 is
the LoS probability mass function.

The fact that the first and third terms of the limit (Lk, δk, Lk) coincide in Theo-
rem 2.1 implies that, without extra conditions, the direct and indirect estimators are
consistent. In this paper, we develop the CLT version, showing that the stochastic limit
of the CLT-scaled versions is the same random variable under stronger conditions. As
in [9], this can be understood by recognizing that there is an important link between the
associated cumulative processes, which lies behind the relation between the averages
in LL; see §2.6 of [31].

3 Central-limit-theorem version of the PLL

We now establish the CLT versions of the PLL, paralleling the CLT versions in
[9–11,29]. We look for the relationship between the CLT-scaled arrival rates, LoS
distributions and occupancy level in the periodic setting, so we now require stronger
assumptions than for the sample-path PLL in Theorem 2.1, but we obtain a rate of
convergence for the sample-path PLL.Wewill show that linking the indirect estimator
of occupancy level with the arrival rates and LoS distributions is straightforward by
the continuous mapping theorem; however, stronger conditions are needed to ensure
that the CLT-scaled direct estimator converges to the same limit.

One simple and practical case, where we assume that both the number of arrivals
at each time and the LoS of each arrival are bounded and the limits are Gaussian, is
provided first in Sect. 3.2. It applies to the ED in [30] and evidently to most practical
cases. Then, twomore complicated sufficient conditions are stated in Sect. 4. The CLT
versions of PLL also have statistical applications, as in [12,16], which we discuss in
Sect. 3.4.

3.1 More notation and definitions

In this section, we assume the LoSs are bounded by J , i.e., Xi, j = 0 for j ≥ J and
all i . All the vectors are understood to be column vectors.

For 0 ≤ k ≤ d − 1, let

F̄c
k (n) ≡ (F̄c

k,0(n), F̄c
k,1(n), . . . , F̄c

k,J−1(n)) ∈ R
J ,

Fc
k ≡ (Fc

k,0, F
c
k,1, . . . , F

c
k,J−1) ∈ R

J . (5)
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Let the law-of-large-numbers-scaled (LLN-scaled) averages be

λ̄(n) ≡ (λ̄0(n), λ̄1(n), . . . , λ̄d−1(n)) ∈ R
d ,

δ̄(n) ≡ (δ̄0(n), δ̄1(n), . . . , δ̄d−1(n)) ∈ R
d ,

F̄
c
(n) ≡ (F̄c

0 (n)T , F̄c
1 (n)T , . . . , F̄c

d−1(n)T ) ∈ R
d×J ,

W̄(n) ≡ (W̄0(n), W̄1(n), . . . , W̄d−1(n)) ∈ R
d ,

Q̄(n) ≡ (Q̄0(n), Q̄1(n), . . . , Q̄d−1(n)) ∈ R
d ,

L̄(n) ≡ (L̄0(n), L̄1(n), . . . , L̄d−1(n)) ∈ R
d , (6)

and the CLT-scaled averages be

λ̂(n) ≡ √
n(λ̄(n) − λ) ∈ R

d ,

δ̂(n) ≡ √
n(δ̄(n) − δ) ∈ R

d ,

F̂
c
(n) ≡ √

n(F̄
c
(n) − Fc) ∈ R

d×J ,

Ŵ(n) ≡ √
n(W̄(n) − W) ∈ R

d ,

Q̂(n) ≡ √
n( Q̄(n) − L) ∈ R

d ,

L̂(n) ≡ √
n(L̄(n) − L) ∈ R

d , (7)

where the deterministic centering constants are

λ ≡ (λ0, λ1, . . . , λd−1) ∈ R
d ,

δ ≡ (δ0, δ1, . . . , δd−1) ∈ R
d ,

Fc ≡ ((Fc
0 )T , (Fc

1 )T , . . . , (Fc
d−1)

T ) ∈ R
d×J ,

W ≡ (W0,W1, . . . ,Wd−1) ∈ R
d ,

L ≡ (L0, L1, . . . , Ld−1) ∈ R
d . (8)

Again, all the above constant vectors and matrices in (8) can be extended as periodic
functions with period d, but for convenience, throughout this paper we use the modulo
function, [x] = x mod d, to treat k beyond 0 ≤ k ≤ d − 1.

3.2 A practical version for applications

We now state our first CLT version of the PLL. Because it is a special case of the more
general one stated later, the proof is not given separately. The statement is proved after
we introduce Theorem 3.2, Proposition 3.1 and the two corollaries right after them.
Let ⇒ denote convergence in distribution.

Theorem 3.1 (practical CLT version of the PLL) If the following conditions hold:

(E1) (λ̂(n), F̂
c
(n)) ⇒ (Λ,Γ ) in R

d × R
d×J as n → ∞,
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(E2) the number of arrivals in a single discrete time period is bounded, and

(E3) Wk =
J−1∑

j=0

Fc
k, j and Lk =

J−1∑

j=0

λ[k− j]Fc
[k− j], j for 0 ≤ k ≤ d − 1, (9)

for (λ̂(n), F̂
c
(n)) in (7) and (Wk, Lk) in (8), where the limit (Λ,Γ ) in (E1) is a

zero-mean Gaussian random vector, then

(
λ̂(n), δ̂(n), F̂

c
(n), Q̂(n), L̂(n), Ŵ(n)

)

⇒ (Λ,Δ,Γ ,Υ ,Υ ,Ω) in R
2d × R

d×J × R
3d , (10)

where Ω = (Ω0,Ω1, . . . ,Ωd−1), Υ = (Υ0, Υ1, . . . , Υd−1) and Δ = (Δ0,Δ1,

. . . , Δd−1) are given by

Ωk =
J−1∑

j=0

Γk, j , Υk =
J−1∑

j=0

λ[k− j]Γ[k− j], j +
J−1∑

j=0

Λ[k− j]Fc
[k− j], j and

Δk = Υ[k] − Υ[k+1] + Λ[k+1] for 0 ≤ k ≤ d − 1, (11)

and (Λ,Δ,Γ ,Υ ,Υ ,Ω) is also jointly zero-mean Gaussian distributed.

Theorem 3.1 implies that given the joint convergence of the CLT-scaled arrival and
LoS processes (λ̂(n), F̂

c
(n)) in (E1), with the associated regularity conditions, we

get the associated convergence for the CLT-scaled direct estimate of occupancy Q̂(n)

as well as the indirect estimate L̂(n), jointly with the other processes. We get the
consistency requirement in (E3) from the PLL in Theorem 2.1.

3.3 The general version

In this section, we introduce the more general CLT version of the PLL, where we
allow both the number of arrivals and the LoS distributions to be unbounded. Thus, it
involves countably-infinite-dimensional spaces. We show that the connection among
the CLT-scaled indirect estimator of occupancy level L̂(n), the arrival rates λ̂(n) and
the LoS distributions F̂

c
(n) can be established using the continuousmapping theorem.

More conditions are needed to ensure that the CLT-scaled direct estimator Q̂(n) has
the same limit as L̂(n).

Let Rd be the d-dimensional real space with the usual topology; let R∞ be the
space of sequences x = (x0, x1, . . .) of real numbers with the topology determined by
the convergence of all finite-dimensional projections (which is induced by the metric
in Example 1.2 of [5]); let �1 ⊆ R

∞ be the subspace ofR∞ which contains sequences
with finite absolute sums; and let �∞ ⊆ R

∞ be the subspace of R∞ which contains
sequences with bounded values, i.e.,
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�1 ≡
{
x = (x0, x1, . . .) ∈ R

∞ : ||x||1 ≡
∞∑

i=0

|xi | < ∞
}

,

�∞ ≡
{
x = (x0, x1, . . .) ∈ R

∞ : ||x||∞ ≡ sup
i

|xi | < ∞
}

. (12)

We equip �1 and �∞ with the norms || · ||1 and || · ||∞ as above, under which both are
Banach spaces. (We remark that �1 ⊆ �∞ and the dual space of �1 is �∞.) Then, we
can define (�1)

d as the d-fold product space of �1 with the norm equal to the maximum
of the �1-norms of each component; i.e., if y ≡ ( y0, y1, . . . , yd−1) ∈ (�1)

d , where
yi ≡ (yi,0, yi,1, . . .) ∈ �1, then || y||1,d = maxi=0,...,d−1{|| yi ||1}, and we use the
topology induced by this norm; see Sect. 5 for more discussion of this space.

All the quantities related to LoS distributions are now in those infinite-dimensional
spaces. To be specific,

F̄c
k (n) ≡ (F̄c

k,0(n), F̄c
k,1(n), F̄c

k,2(n), . . .) ∈ �1, 0 ≤ k ≤ d − 1,

Fc
k ≡ (Fc

k,0, F
c
k,1, F

c
k,2, . . .) ∈ R

∞, 0 ≤ k ≤ d − 1,

F̄
c
(n) ≡ (F̄c

0 (n), F̄c
1 (n), . . . , F̄c

d−1(n)) ∈ (�1)
d ,

F̂
c
(n) ≡ √

n(F̄
c
(n) − Fc) ∈ (R∞)d . (13)

Other quantities are still the same as we defined in (7) and (8).
We also define the LLN-scaled and CLT-scaled difference between the direct and

indirect occupancy estimators as

R̄(n) ≡ L̄(n) − Q̄(n) ∈ R
d ,

R̂(n) ≡ L̂(n) − Q̂(n) ∈ R
d . (14)

Just as in [9], the continuous mapping theorem plays a key role in the proof of
the theorem. Hence, we start by introducing the key mappings and show that they are
continuous.

For 0 ≤ k ≤ d − 1, let x ∈ R
d and y ∈ (�1)

d and define hk : Rd × (�1)
d → R as

hk(x, y) =
∞∑

j=0

x[k− j]y[k− j], j , (15)

where, again, [k] = k mod d is the modulo function. As a critical condition, in the
following lemma we show two functions that will be used as mapping functions are
continuous. The proof can be found in Sect. 6.1.

Lemma 3.1 For a given constant z ∈ (�1)
d , let fz : Rd × R

d × (�1)
d → R

d and
g : (�1)

d → R
d be defined by

fz(x(1), x(2), y) ≡ ( fz,0(x(1), x(2), y), fz,1(x(1), x(2), y), . . . , fz,d−1(x(1), x(2), y)),
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g( y) ≡
⎛

⎝
∞∑

j=0

y0, j ,
∞∑

j=0

y1, j , . . . ,
∞∑

j=0

yd−1, j

⎞

⎠ , (16)

where fz,k : Rd × R
d × (�1)

d → R is defined as

fz,k(x(1), x(2), y) ≡ hk(x(1), y) + hk(x(2), z), 0 ≤ k ≤ d − 1,

with hk defined in (15). The functions fz(x(1), x(2), y) and g( y) in (16) are continuous.

The following is a counterexample to show the two functions above are not con-
tinuous if we replace �1 by R

∞. Let 0 = (0, 0, . . . , 0) be the zero vector in proper
spaces depending on the context.

Example 3.1 (discontinuity of f and g when y ∈ (R∞)d ) It suffices to see that
g0( y0) ≡ ∑∞

j=0 y0, j from R
∞ → R is not continuous in general. Let y(i)

0, j ≡ I{i= j}
for all i, j ≥ 0, so that y(i)

0 ≡ (y(i)
0,0, y

(i)
0,1, . . .) are all 0 except the i th com-

ponent. Under the metric of R
∞ as in Example 1.2 of [5], i.e., ρ(x(1), x(2)) =∑∞

i=1 min(1, |x (1)
i − x (2)

i |)/2i , where x( j) = (x1, x2, . . .), j = 1, 2, y(i)
0 → 0 as

i → ∞, however lim
i→∞ g0( y

(i)
0 ) = 1 �= 0 = g0(0).

We now state our general CLT version of the PLL with the indirect estimator of the
occupancy level. The proof appears in Sect. 6.1.

Theorem 3.2 (CLT version of the PLL with indirect estimator) If the following con-
ditions hold:

(C1) (λ̂(n), F̂
c
(n)) ⇒ (Λ,Γ ) in R

d × (�1)
d as n → ∞,

(C2) W = g(Fc) and L = fFc(0,λ, 0), (17)

for (λ̂(n), F̂
c
(n)) in (7) and (λ, Fc,W , L) in (8), using Lemma 3.1, then

((
λ̄(n), F̄

c
(n), L̄(n), W̄(n)

)
,
(
λ̂(n), F̂

c
(n), L̂(n), Ŵ(n)

))

⇒ ((
λ, Fc, L,W

)
,
(
Λ,Γ ,Υ ,Ω

))

in (Rd × (�1)
d × R

2d) × (Rd × (�1)
d × R

2d), (18)

where Ω = g(Γ ) and Υ = fFc(λ,Λ,Γ ); in particular,

Ωk =
∞∑

j=0

Γk, j , Υk =
∞∑

j=0

λ[k− j]Γ[k− j], j +
∞∑

j=0

Λ[k− j]Fc[k− j], j . (19)

Note that condition (C1) requires that the random elements actually belong to the
specified space. Also the limit for the first five elements in (18) yields a weak LLN,
consistent with the PLL.
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Just as in the ordinary Little’s law and the PLL, it is interesting to consider when
we can add the direct estimator of occupancy level Q̂(n) into the joint convergence.
Clearly, if we can show that R̂(n) defined in (14) goes to 0 in distribution, then Q̂(n)

converges to the same limit as L̂(n) in distribution as n → ∞ and can be added into the
joint convergence in (18) by applying Theorem 3.1 of [5]. For clarity, we summarize
that observation in the following proposition.

Proposition 3.1 If, in addition to conditions (C1) and (C2), we have R̂(n) ⇒ 0, then

((
λ̄(n), δ̄(n), F̄c

(n), Q̄(n), L̄(n), W̄(n)
)
,
(
λ̂(n), δ̂(n), F̂

c
(n), Q̂(n), L̂(n), Ŵ(n), R̂(n)

))

⇒ ((
λ, δ, Fc, L, L,W

)
,
(
Λ, Δ, Γ , Υ ,Υ , Ω, 0

))

in (R2d × (�1)
d × R

3d ) × (R2d × (�1)
d × R

4d ), (20)

where δ is in (8), Δ = (Δ0,Δ1, . . . , Δd−1) is given by

Δk = Υ[k] − Υ[k+1] + Λ[k+1] for 0 ≤ k ≤ d − 1 (21)

and all the other variables have the same meaning as in Theorem 3.2.

The proof is given together with Lemma 3.1 and Theorem 3.2 in Sect. 6.1.
The following two corollaries show that boundedness is a simple yet practical

condition such that R̂(n) ⇒ 0, so that Theorem 3.1 is covered by Theorem 3.2 and
Proposition 3.1 as a special case. The proofs are in Sects. 6.2 and 6.3, respectively.

Corollary 3.1 (Gaussian limits) If, in addition to the conditions of Theorem 3.2,
(Λ,Γ ) has a zero-mean Gaussian distribution with covariance and cross-covariance
Cov(Λ,Λ) = ΣΛ, Cov(Γk, Γl) = ΣΓ :k,l and Cov(Λ, Γk) = ΣΛ,Γ :k , 0 ≤ k, l ≤
d − 1, then (Ω,Υ ) also has a zero-mean Gaussian distribution with

Cov(Ω,Ω)k,l =
∞∑

i=1

∞∑

j=1

Σ
Γ :k,l
i, j ,

Cov(Υ , Υ )k,l =
∞∑

i=0

∞∑

j=0

λ[k−i]λ[l− j]ΣΓ :[k−i],[l− j]
i+1, j+1 +

∞∑

i=0

∞∑

j=0

λ[k−i]Fc[l− j], jΣ
Λ,Γ :[k− j]
[l− j]+1,i+1

+
∞∑

i=0

∞∑

j=0

Fc[k−i],iλ[l− j]ΣΛ,Γ :[l− j]
[k−i]+1, j+1 +

∞∑

i=0

∞∑

j=0

Fc[k−i],i Fc[l− j], jΣΛ[k−i]+1,[l− j]+1,

Cov(Ω, Υ )k,l =
∞∑

i=1

∞∑

j=0

λ[l− j]ΣΓ :k,[l− j]
i, j+1 +

∞∑

i=1

∞∑

j=0

Fc[l− j], jΣ
Λ,Γ :k
[l− j]+1,i . (22)

Corollary 3.2 (Bounded LoS) Suppose that the number of arrivals in a discrete time
period and the LoS are bounded (by J ). Then, condition (C1) reduces to convergence
in Rd × (RJ )d for some finite J . If, in addition, conditions (C1) and (C2) hold, then
R̂(n) ⇒ 0, so that the joint convergence (20) in Proposition 3.1 holds.

If we do not want to strengthen the conditions with boundedness, two other reason-
able sufficient conditions are given in Sect. 4 such that R̂(n) ⇒ 0 and a full version
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of the CLT-PLL can be achieved with both CLS-scaled direct and indirect estimators
of occupancy level in the joint convergence as in Proposition 3.1. But before we go
to that, we make a remark that connects the CLT-PLL to the ordinary CLT version
of LL which is studied in [11]. We also give potential statistical applications of our
theorems.

Remark 3.1 (Connection to the ordinary CLT version of LL in [11]) When d = 1,
Theorem 3.2 reduces to an ordinary CLT version of LL, which can be compared to
the earlier one in [11]. Specifically, when d = 1, we have Υ = fFc(λ,Λ,Γ ) =
λΩ + WΛ. All the discussion in [11] is in continuous time, but it is not difficult to
translate everything into discrete time. To avoid notation conflicts and make things
clear, we add tildes on all the variables in [11]. Λ is the limit of the time-averaged
arrival rate, so it corresponds to the second term of (1.2) in [11], i.e., Λ = −λ̃3/2Ũ . Ω
is the limit of customer-averaged LoS, so in the notation of [11], assuming Theorem
1 of [11] holds, we should write

t̃1/2

⎛

⎝
∑Ñ (t̃)

k=1 W̃k

Ñ (t̃)
− w̃

⎞

⎠ = t̃

Ñ (t̃)
t̃−1/2

⎛

⎝
Ñ (t̃)∑

k=1

W̃k − Ñ (t̃)w̃

⎞

⎠

= t̃

Ñ (t̃)
t̃−1/2

⎛

⎝
Ñ (t̃)∑

k=1

W̃k − λ̃t̃w̃ + λ̃t̃w̃ − Ñ (t̃)w̃

⎞

⎠

= t̃

Ñ (t̃)

⎛

⎝t̃−1/2

⎛

⎝
Ñ (t̃)∑

k=1

W̃k − λ̃t̃w̃

⎞

⎠ − t̃−1/2w̃(Ñ (t̃) − λ̃t̃)

⎞

⎠

⇒ λ̃−1(λ̃1/2(W̃ − w̃Ũ ) + w̃λ̃3/2Ũ ) = Ω,

so that λ̃1/2W̃ = λ̃Ω+λ̃1/2w̃Ũ−w̃λ̃3/2Ũ . Finally,Υ as the limit of L̂(n) corresponds
to the sixth term in (1.2) of [11], and if we further have R̂(n) ⇒ 0, then Υ as the limit
of Q̂(n) is the time-averaged occupancy level of the system which corresponds to the
eighth term in (1.2) of [11]. Both the sixth and the eighth terms have the common limit

λ̃1/2(W̃ − w̃Ũ ) = λ̃Ω + λ̃1/2w̃Ũ − w̃λ̃3/2Ũ − λ̃1/2w̃Ũ

= λ̃Ω − w̃λ̃3/2Ũ = λ̃Ω + w̃Λ.

Note that λ̃ and w̃, being the arrival rate and mean LoS, correspond to λ and W ,
respectively, in our notation, so the terms in the two theorems match perfectly.

In the notation of [11], our Theorem 3.2 in the case d = 1 actually states that if

t̃−1/2
(
Ñ (t̃) − λ̃t̃,

Ñ (t̃)∑

k=1

W̃k − Ñ (t̃)w̃

)
⇒ (Λ,Ω),

and Theorem 2(f) of [11] (which is exactly (C1)) holds, then we have the joint con-
vergence of the second, sixth and eighth terms in (1.2) of [11].

123



26 Queueing Systems (2019) 91:15–47

Unlike Theorem 1 of [11], Theorem 3.2 and Proposition 3.1 do not require station-
arity. That is explained by the extra convergence R̂(n) ⇒ 0, which corresponds to
Theorem 2(f) of [11]. That extra convergence in [11] is implied by the stationarity.
Inspired by that observation, we will obtain a similar (stronger) sufficient condition
for R̂(n) ⇒ 0 involving stationarity in Theorem 4.2.

3.4 Statistical applications

The CLT versions of the PLL have statistical applications. First, Theorem 3.2 sup-
ports using the indirect estimator of the occupancy level via the PLL. Moreover,
confidence areas for the occupancy-level estimators can be constructed. In particular,
if Theorem 3.1 or Corollary 3.1 holds, then we know that we can have confi-
dence ellipsoids for L. To be specific, L̂(n) ⇒ Υ ∼ N (0,ΣΥ ) in R

d , where
ΣΥ , the covariance matrix of Υ , is determined by (22). Then, when n is large,
n(L − L̄(n))T (ΣΥ )−1(L − L̄(n)) has approximately a standard normal distribution.
Let qα be such that P(|N (0, 1)| ≤ qα) = 1 − α, where 0 ≤ α < 1. Then

{
x ∈ R

d : n(x − L̄(n))T (ΣΥ )−1(x − L̄(n)) ≤ qα

}
, (23)

which is an ellipsoid centered at L̄(n), is a confidence ellipsoid for L with approximate
confidence level 1 − α. By (19) and (22), the more negatively related Λ and Γ are,
the more asymptotically efficient the indirect estimator of the number of customers in
the system becomes. However, unlike the case for the ordinary LL discussed in [12],
there are many covariance terms in (22) even if we only consider the variance of Υ k

for a given k, so it is not straightforward to compare the asymptotic efficiency of the
estimator when we change the other two elements in the PLL.

Secondly, Theorem 3.1 as well as the two further sufficient conditions we will
introduce soon in Sect. 4 tell us when the indirect estimator L̄(n) and the natural direct
estimator Q̄(n) for the number of customers in the system have the same asymptotic
efficiency; i.e., L̂(n) and Q̂(n) converge to the same random variable. Then, the
confidence area analysis above in (23) also holds for Q̄(n).

To apply (23), we need to estimate ΣΥ . The expression is complicated, but
we will soon establish a useful sufficient condition. In particular, under the con-
ditions of Theorem 4.1, we can estimate ΣΥ by (25) using λ̄k(n) to estimate λk ,
(n − 1)−1 ∑n

m=1(Am − λ̄(n))(Am − λ̄(n))T to estimate ΣΛ and the empirical distri-
butions to estimate Fk, j and Fc

k, j .

4 Sufficient conditions for the CLT version of the PLL

In this section, we provide convenient sufficient conditions for the two conditions in
Theorem 3.2 and R̂(n) ⇒ 0 to be satisfied, so that we have Proposition 3.1 and the
joint convergence in (20).
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The first sufficient condition is independence. To state it, for n = 0, 1, 2, . . ., let
An be the vector of arrivals at the d times within period n, i.e.,

An = (A0+nd , A1+nd , . . . , Ad−1+nd) ∈ R
d . (24)

For vectors, let > mean strict order for all components.

Theorem 4.1 (Independent case) If the following conditions hold:

(I1) {An}, n = 0, 1, 2, . . ., are i.i.d. with EA0 = λ > 0 and Var(A0) = ΣΛ,
(I2) the LoS is mutually independent and independent of the arrival process, having

a cdf that depends only on the discrete time period k, and
(I3) the LoS distribution satisfies Fc

k, j ∼ O( j−(3+δ)) for all k and some δ > 0,

then conditions (C1), (C2) and R̂(n) ⇒ 0 are satisfied, so that the joint convergence in
(20) holds. Further, (Λ,Γ ) has a zero-mean Gaussian distribution inRd × (�1)

d with
Λ ∼ N (0,ΣΛ), Cov(Γk, j , Γk,s) = λk Fk, j Fc

k,s for 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ s,
andΛ,Γ 0,Γ 1, . . . ,Γ d−1 are independent. As a special case of Corollary 3.1, (Ω,Υ )

also has a zero-mean Gaussian distribution with, for 1 ≤ k ≤ l ≤ d − 1,

Cov(Ω,Ω)k,l =
{

λk
∑∞

i=0
∑∞

j=0 Fk,min{i, j}Fc
k,max{i, j}, for k = l,

0, for k �= l,

Cov(Υ ,Υ )k,l =
k∑

s=0

λ3s

( ∞∑

m=0

∞∑

n=0

Fs,min{k−s+md,l−s+nd}Fc
s,max{k−s+md,l−s+nd}

)

+
l∑

s=k+1

λ3s

( ∞∑

m=1

∞∑

n=0

Fs,min{k−s+md,l−s+nd}Fc
s,max{k−s+md,l−s+nd}

)

+
d−1∑

s=l+1

λ3s

( ∞∑

m=1

∞∑

n=1

Fs,min{k−s+md,l−s+nd}Fc
s,max{k−s+md,l−s+nd}

)

+
d−1∑

i=0

d−1∑

j=0

ck,i ck, jΣ
Λ
i, j ,

Cov(Ω,Υ )k,l =
∞∑

i=1

∞∑

m=0

λ2k Fk,min{i,l−k+md}Fc
k,max{i,l−k+md}, (25)

where

ck, j =
{∑∞

m=0 F
c
j,k− j+md for 0 ≤ j ≤ k,

∑∞
m=1 F

c
j,k− j+md for k + 1 ≤ j ≤ d − 1.

The proofs can be found in Sect. 6.4.

Remark 4.1 (necessity of condition (I3)) In condition (I3), we assume a 3 + δ rate
of decay of the tail distribution of the LoS, which is stronger than an ordinary CLT
requires. However, this is needed in the proof, as can be seen in (63). More generally,
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it remains to determine whether condition (I3) is necessary, i.e., if it can be replaced
by a 2 + δ rate of decay.

It is significant that Theorem 4.1 can be applied to the MT /GIt/∞ queueing model
we built for the ED patient flow analysis in [30], which had mutually independent
Gaussian daily totals for the arrivals, but dependence among the hourly arrivals within
each day. However, we conjecture that more data would show dependence among the
daily totals as well. Moreover, we want to treat queueing models that are not infinite-
server models. For infinite-server models, each LoS (sojourn time) coincides with the
service time, but that is not the case for other service systems. Hence, we next show
that Theorem 3.2 and Proposition 3.1 can be applied to more general queueing models
by replacing the iid conditions with stationarity plus appropriate mixing, as in Chapter
4 of [5].

We start with the framework used in §3 of [31], where we consider the composite
arrival+service input process stochastic process Y ≡ {Yn : n ∈ N} with

Yn ≡ {Ynd+k, j : 0 ≤ k ≤ d − 1; j ≥ 0}. (26)

For simplicity, we assume the LoS distributions are bounded, i.e., Yk, j = 0, j ≥ J ,
for some constant J > 0. Then each Yn becomes a finite-dimensional vector and we
can regard Yn as a d × J random matrix

Yn =

⎛

⎜⎜⎜⎝

Ynd+0,0 Ynd+0,1 . . . Ynd+0,J−1
Ynd+1,0 Ynd+1,1 . . . Ynd+1,J−1

...
...

...
...

Ynd+d−1,0 Ynd+d−1,1 . . . Ynd+d−1,J−1

⎞

⎟⎟⎟⎠ ∈ R
d×J . (27)

We will start by assuming {Yn : n ∈ N} is a stationary process. By adding a suitable
mixing condition, we can show that it satisfies a multivariate CLT, then we exploit the
relationship between {Yn : n ∈ N} and (λ̂(n), F̂

c
(n)) and show that (C1) and (C2)

hold. Finally, we show that R̂(n) ⇒ 0 so that Theorem 3.2 and Proposition 3.1 hold.
Before we state the theorem, we make a few definitions. For convenience, we

directly use {Yn, n ∈ N} in (26) as the example. We say the process {Yn, n ∈ N} is
strictly stationary if

(Y0,Y1, . . . ,Ym)
d= (Y0+n,Y1+n, . . . ,Ym+n), for all m ≥ 0 and n ≥ 0,

(28)

where
d= means equal in distribution. For m ≤ n, let Fn

m ≡ σ(Ym,Ym+1, . . . ,Yn)

be the sigma-algebra generated by the family of random variables, where we allow
n = ∞. We say {Yn, n ∈ N} is strongly mixing (or α-mixing) if α(n) → 0, where

α(n) ≡ sup
m∈N,A∈Fm

0 ,B∈F∞
m+n

|P(A ∩ B) − P(A)P(B)| (29)

is called the strong mixing coefficient, following Theorem 18.5.3 of [15] and Theorem
0 of [6].
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Now we have the following theorem, whose proof is provided in Sect. 6.5.

Theorem 4.2 (Stationary+bounded case) If the following conditions hold:

(S1) the composite process {Yn, n ∈ N} in (26) is strictly stationary and strongly
mixing,

(S2) EA0 = λ > 0 and there exists some δ > 0 such that E||A0||2+δ∞ < ∞ and∑∞
n=1 α(n)δ/(2+δ) < ∞, and

(S3) the LoS distributions are bounded (by J ),

for Yn in (26) and A0 in (24), then conditions (C1), (C2) and R̂(n) ⇒ 0 are satisfied,
so that we have the joint convergence in (20). Furthermore, (Λ,Γ ) has a zero-mean
Gaussian distribution in Rd × (RJ )d , so that Corollary 3.1 is also satisfied.

We remark that there is a large literature on the CLT under weak dependence so that
many generalizations of Theorem 4.2 are possible. For example, in Chapter 4 of [5]
CLTs under mixing conditions in §19 are reduced to CLTs for martingale-difference
sequences in §18.

Finally, other than the two conditions we discussed in this section, there could be
many other sufficient conditions such that Proposition 3.1 holds.

5 Weak convergence of random elements of (	1)
d

In this section, we provide background on the weak convergence of random elements
of (�1)

d . We used this space so that we could apply the continuous mapping theo-
rem to prove Theorem 3.2. In particular, condition (C1) in Theorem 3.2 requires the
convergence F̂

c
(n) ⇒ Γ in the space (�1)

d .
Within functional analysis, (�1)d is quite standard, as it is just a finite product space

associated with the well-known Banach space �1. However, neither �1 nor (�1)
d are

standard in weak convergence theory, especially in applications on queueing systems.
In fact, we know of no previous use in queueing theory. Of course, we have the well-
established general and powerful weak convergence theory in general metric spaces,
such as [5], but we would like to specialize the general theory to the space (�1)

d . In
addition, there is a substantial literature on Banach spaces and weak convergence in
Banach spaces, [1,18,22]. We will draw on this developed theory.

Wewill give a practical criterion for checking weak convergence in the space (�1)
d .

The criterion is not used directly in our main theorem, but we hope it helps readers
better understand the meaning of weak convergence in (�1)

d and could be useful in
future research. We will also discuss the established CLT for Banach-space random
variables and specialize it to the space �1, which, by giving this special case, helps to
understand when we can have such convergence as in (C1) and Gaussian limits as in
Corollary 3.1.

5.1 A criterion for weak convergence in (	1)
d

The �1 space is a well-defined separable Banach space. As a special case of a general
metric space, the weak convergence of probability distributions on it is well defined,
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just as in general metric spaces; see [5]. For more on random variables in Banach
spaces and convergence of those random variables, see [1,18]. Here, we briefly state
some definitions and results about Banach spaces and probability measures defined
on them, which can be found in [18,22]. Then, we exploit the general results in the
special case of (�1)

d . Throughout this paper, we always use B∗ to represent the dual
space of the Banach space B.

The (�1)
d space is the product (in some literature called the direct sum and denoted

as �1 ⊕ �1 ⊕ . . . ⊕ �1) of �1 spaces. We refer to [22] for general Banach spaces. Since
�1 is a separable Banach space, (�1)d is also a separable Banach space with the norm
|| · ||1,d we defined earlier in Sect. 3.1. The dual of a product of Banach spaces is the
product of the corresponding duals. Because (�1)

∗ = �∞, the dual of (�1)
d is (�∞)d .

We want to have a good sufficient condition for weak convergence in (�1)
d . For that

purpose, let U (n) ≡ (U (n)
0 , . . . ,U (n)

d−1) ∈ (�1)
d , where U (n)

k ≡ (U (n)
k, j : j ≥ 0) ∈ �1,

and similarly for a prospective limitU . A result from [18] states that {U (n)} converges
weakly toU as soon as h(U (n)) convergesweakly (as a sequence of real-valued random
variables) to h(U) for every h in a weakly dense subset of ((�1)

d)∗ = (�∞)d , and
{U (n)} is tight; i.e., for each ε > 0, there exists a compact set K ⊆ (�1)

d such that
P(U (n) ∈ K ) ≥ 1 − ε for all n. Now we transform the above conditions into more
explicit ones in the case of (�1)

d .
For n ≥ 1, denote

On ≡ { y ∈ (R∞)d : yk, j = 0, 0 ≤ k ≤ d − 1, j ≥ n − 1};

then, O = ∪∞
n=1On is the subset of (�∞)d with only finite many nonzero components.

Lemma 5.1 The subset O of (�∞)d containing elements with only finitely many
nonzero components is a weakly dense subset of (�∞)d .

Proof It suffices to show that, for any y ∈ (�∞)d , there exists a sequence { y(i)} ⊆ O
which weakly converges to y. Let

y(i)
k, j =

{
yk, j , if j < i,

0, otherwise,
(30)

for all 0 ≤ k ≤ d − 1 and i ≥ 1. Then, y(i) ∈ O . Now we show that it weakly
converges to y.

Note that ((�∞)d)∗ = (�∞,s)
d , where �∞,s ≡ {x = (x0, x1, . . .) ∈ R

∞ :∑∞
i=0 xi < ∞} is the set of all summable (but not necessarily absolutely summable)

sequences. For any x ∈ ((�∞)d)∗ = (�∞,s)
d ,

x( y(i)) =
d−1∑

k=0

∞∑

j=0

xk, j y
(i)
k, j =

d−1∑

k=0

i−1∑

j=0

xk, j yk, j →
d−1∑

k=0

∞∑

j=0

xk, j yk, j = x( y) as i → ∞, (31)

which indicates y(i) weakly converges to y; hence, O is weakly dense in (�∞)d . ��
Next, we describe the compact sets in (�1)

d .
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Lemma 5.2 (Compact sets in (�1)
d .) A set K ⊆ (�1)

d is compact if and only if K is
bounded and closed, and, for each ε > 0, there exists Jε such that, for all y ∈ K,∑d−1

k=0
∑∞

j=Jε |yk, j | < ε.

Proof If K ⊆ (�1)
d is compact, then K must be closed and bounded. Further, it is

well known that a subset in a metric space is compact if and only if it is complete and
totally bounded (see, for example, Theorem 45.1 of [23]). Totally boundedmeans that,
for any ε > 0 given, we can find a finite set of { y(i)}Ni=1 ⊆ K such that K is covered
by the N ε-balls centered at those points. Because the set is finite, we can find Jε large
enough such that

∑d−1
k=0

∑∞
j=Jε |y(i)

k, j | < ε for all y(i) ∈ K . Then, for any y ∈ K , we

can find y(i) such that || y − y(i)||1,d < ε, so

d−1∑

k=0

∞∑

j=Jε

|yk, j | ≤
d−1∑

k=0

∞∑

j=Jε

|yk, j − y(i)
k, j | +

d−1∑

k=0

∞∑

j=Jε

|y(i)
k, j |

≤
d−1∑

k=0

∞∑

j=0

|yk, j − y(i)
k, j | +

d−1∑

k=0

∞∑

j=Jε

|y(i)
k, j |

≤ d|| y − y(i)||1,d +
d−1∑

k=0

∞∑

j=Jε

|y(i)
k, j | ≤ dε + ε. (32)

Conversely, assuming K ⊆ (�1)
d is bounded and closed and for each ε > 0,

there exists Jε such that, for all y ∈ K ,
∑d−1

k=0
∑∞

j=Jε |yk, j | < ε. Since (�1)
d is a

Banach space and K is closed, K is a complete subset. Assume K is bounded by
C/d, i.e., || y||1,d ≤ C/d for all y ∈ K . For any ε > 0 fixed, let Jε be as above. Let
K0 ≡ {x ∈ (RJε )d : ||x||1 ≤ C}, which is bounded, and thus totally bounded since it
has finite dimension. So there exists a finite set {x(i)}Ni=1 ⊆ (RJε )d such that the ε-balls
centered at those points cover K0. Assume { y(i)}Ni=1 ⊆ (�1)

d are the corresponding

points of {x(i)}Ni=1 when we naturally embed (RJε )d into (�1)
d , i.e., y(i)

k, j = x (i)
k, j for

j ≤ Jε and 0 otherwise. For any y ∈ K , let x be the natural projection of y on (RJε )d .
Notice that ||x||1 ≤ d|| y||1,d ≤ C , which means x ∈ K0, so there is x(i) such that
||x − x(i)||1 ≤ ε. Then,

|| y − y(i)||1,d ≤
d−1∑

k=0

Jε−1∑

j=0

|yk, j − y(i)
k, j | +

d−1∑

k=0

∞∑

j=Jε

|yk, j − y(i)
k, j |

≤ ||x − x(i)||1 +
d−1∑

k=0

∞∑

j=Jε

|yk, j |

≤ ε + ε, (33)

which implies that K is covered by the finite number of ε-balls in (�1)
d centered at

{ y(i)}Ni=1. So K is totally bounded, thus compact. ��

123



32 Queueing Systems (2019) 91:15–47

Now we can give an easy-to-check sufficient condition for weak convergence of
random elements in (�1)

d , which can be used to establish (C1) when applying Theo-
rem 3.2. For any m,C > 0, let

Km,C ≡
⎧
⎨

⎩x ∈ (�1)
d : ||x ||1,d ≤ C,

d−1∑

k=0

∞∑

j=mn

|xk, j | < n−1 for all n ≥ 1

⎫
⎬

⎭ , (34)

which is obviously a compact set by Lemma 5.2.

Theorem 5.1 (Criterion for convergence of random elements of (�1)
d) Convergence

in distribution U (n) ⇒ U in (�1)
d as n → ∞ holds if

(i) for all ε > 0, there exist m, C and a corresponding Km,C such that

P(U (n) ∈ Km,C ) > 1 − ε, (35)

and
(ii) for all J , 0 ≤ J < ∞,

(U (n)
k, j : 0 ≤ k ≤ d − 1; 0 ≤ j ≤ J )

⇒ (Uk, j : 0 ≤ k ≤ d − 1; 0 ≤ j ≤ J ) in R
d J . (36)

Condition (i i) holds if and only if
(iii) for all J , 0 ≤ J < ∞, and for all sets of real number {ak, j : 1 ≤ k ≤ d − 1, 0 ≤

j ≤ J },
d−1∑

k=0

J∑

J=0

ak, jU
(n)
k, j ⇒

d−1∑

k=0

J∑

j=0

ak, jUk, j . (37)

Proof Condition (i) ensures that {U (n)} is tight. Condition (ii) is equivalent to condition
(iii) by the familiar Cramer-Wold device; see p. 382 of [4]. Condition (iii) means
y(U (n)) → y(U) in distribution for all y ∈ O , which by Lemma 5.1 is a weakly
dense set in ((�1)

d)∗. So condition (i) with condition (iii) ensures U (n) ⇒ U in (�1)
d .

��

5.2 Central limit theorem for i.i.d. 	1-valued random variables

In this section, we specialize the CLT in general Banach spaces for i.i.d. random
elements to �1. First, we emphasize that, even for i.i.d. random elements, the classical
CLT does not hold in all Banach spaces, but only for some “good” Banach spaces.
Fortunately, �1 is such a “good” Banach space. To make this clear, we do a quick
review; more related theory can be found in [1,18].

Wefirst introduce two concepts: cotype of aBanach space and pre-Gaussian random
variables. A separable Banach space B with norm || · || is said to be of cotype q if
there is a constant Cq such that, for all finite sequences xi ∈ B,
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(
∑

i

||xi ||q
)1/q

≤ Cq ||
∑

i

εi xi ||, (38)

where {εi } is a Rademacher sequence, i.e., i.i.d. random variables with P(εi = 1) =
P(εi = − 1) = 1/2. It is known that �1 is of cotype 2; see page 274 in Section 9.2 of
[18].

We say that a random variable U in a Banach space B has a Gaussian distribution
if, for every h in the dual space B∗, h(U) has a one-dimensional Gaussian distribution.
A random variable U in B, with Eh(U) = 0 and Eh2(U) < ∞ for every h in B∗
(i.e., weakly centered and square integrable), is pre-Gaussian if its covariance is also
the covariance of a Gaussian Borel probability measure on B. A weakly centered and
square-integrable random variableU = (U0,U1, . . .) in �1 is pre-Gaussian if and only
if ∞∑

k=0

(E|Uk |2)1/2 < ∞; (39)

see page 261 of [18].

Theorem 5.2 (CLT for Banach-space random variables from [18], Theorem 10.7) IfU
is pre-Gaussian with values in a separable cotype-2 Banach space, thenU satisfies the
CLT, i.e., n−1/2 ∑n

i=1 U
(i), whereU (i) are i.i.d. copies ofU , converges in distribution,

where the limit is Gaussian.

We remark that the limit distribution must have a Gaussian distribution because if
U satisfies the CLT in B, then h(U) satisfies the ordinary CLT with a Gaussian limit
for h ∈ B∗. If we include (39), then we get the following corollary.

Corollary 5.1 (CLT for �1-valued random variables) If U = (U0,U1, . . .) ∈ �1 is
pre-Gaussian, then U satisfies the CLT. The limit has a Gaussian distribution with the
same covariance structure as U .

Wenowdiscuss how this background theory is relevant here.Wewill be considering
a discrete random variable Y taking values in the nonnegative integers. Let Fc

j ≡
P(Y ≥ j) for k = 0, 1, . . . be the ccdf of Y and Fj ≡ 1 − Fc

j . Let Y
(i) be i.i.d.

random variables each distributed as Y , and let

U (i)
j ≡ I{Y (i)≥ j} − Fc

j .

Then, U (i) are i.i.d. random variables in �1 distributed as U with Eh(U) = 0 for all
h ∈ �∞ (i.e., for all h ∈ (�1)

∗). We want U to be pre-Gaussian, so we require that
(39) holds, i.e.,

∞∑

k=0

(
E(I{Y (1)≥ j} − Fc

j )
2
)1/2 =

∞∑

k=0

(
Fj F

c
j

)1/2
< ∞. (40)
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Hence, a sufficient condition for (40) is

Fc
j ∼ O

(
j−(2+ε)

)
for some ε > 0, (41)

which is actually implied by condition (I3) in Theorem 4.1. Condition (41) is also
sufficient for Eh(U) = 0 and Eh2(U) < ∞ for every h in �∞. Hence, U is pre-
Gaussian.

6 Proofs

We now provide the postponed proofs of Lemma 3.1, Theorem 3.2, Proposition 3.1,
Corollaries 3.1 and 3.2, Theorems 4.1 and 4.2.

6.1 Proof of Lemma 3.1, Theorem 3.2 and Proposition 3.1

Proof of Lemma 3.1 To prove fz(x(1), x(2), y) is continuous from R
d ×R

d × (�1)
d to

R
d , it suffices to show that fz,k(x(1), x(2), y) is continuous fromR

d ×R
d ×(�1)

d toR,
where x(i) = (x (i)

0 , x (i)
1 , . . . , x (i)

d−1) ∈ R
d for i = 1, 2, and y = ( y0, y1, . . . , yd−1) ∈

(�1)
d are variables, and z = (z0, z1, . . . , zd−1) ∈ (�1)

d is a constant. Further, it
suffices to show that hk(x, y) is continuous from R

d × (�1)
d to R, where x =

(x0, x1, . . . , xd−1) ∈ R
d . For convenience, we use the maximum norm in R

d , i.e.,
||x||∞ ≡ max

0≤k≤d−1
|xk |, which is an equivalent norm to the usual Euclidean distance,

and for the spaces R
d × R

d × (�1)
d and R

d × (�1)
d , we use the metric induced

by the norm ||(x(1), x(2), y)||Rd×Rd×(�1)d
≡ ||x(1)||∞ + ||x(2)||∞ + || y||1,d and

||(x, y)||Rd×(�1)d
≡ ||x||∞+|| y||1,d , respectively. Because the notation of the infinity

norm is the same in Rd and �∞, this should not cause confusion.
First we observe that hk can be written as an inner product of two projection

functions:
hk(x, y) = Π1

k(x) · Π2
k( y), (42)

where

Π1
k(x) ≡ (xk, xk−1, . . . , x0, xd−1, xd−2, . . . , x0, xd−1, xd−2, . . .) and

Π2
k( y) ≡ (yk,0, yk−1,1, . . . , y0,k, yd−1,k+1, yd−2,k+1, . . . , y0,k+d , yd−1,k+d+1, . . .).

(43)

Note that ||Π1
k(x)||∞ = ||x||∞ < ∞, and ||Π2

k( y)||1 ≤ ∑d−1
k=0 || yk ||1 < ∞. So

obviously Π1
k(x) is continuous from (Rd , || · ||∞) to (�∞, || · ||∞) and Π2

k( y) is
continuous from ((�1)

d , || · ||1,d) to (�1, || · ||1). We also have that Π1
k(x) − Π1

k(x̃) =
Π1

k(x − x̃) and Π2
k( y) − Π2

k( ỹ) = Π2
k( y − ỹ) for x, x̃ ∈ R

d and y, ỹ ∈ (�1)
d . For

any δ > 0 and (x, y) fixed, choose (x̃, ỹ) such that
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||(x, y) − (x̃, ỹ)||Rd×(�1)d
= ||x − x̃||∞ +

d−1∑

k=0

|| yk − ỹk ||1 < δ.

Then

|hk(x, y) − hk(x̃, ỹ)| = |Π1
k(x) · Π2

k( y) − Π1
k(x̃) · Π2

k( ỹ)|
≤ |Π1

k(x) · Π2
k( y) − Π1

k(x) · Π2
k( ỹ)| + |Π1

k(x) · Π2
k( ỹ) − Π1

k(x̃) · Π2
k( ỹ)|

≤ ||Π1
k(x)||∞||Π2

k( y − ỹ)||1 + ||Π1
k(x − x̃)||∞||Π2

k( ỹ)||1

≤ ||x||∞δ + δ

d−1∑

k=0

|| ỹk ||1 ≤ ||x||∞δ + δ

d−1∑

k=0

(|| yk ||1 + || yk − ỹk ||1)

≤ ||x||∞δ + δ

d−1∑

k=0

|| yk ||1 + δ2 → 0 as δ → 0. (44)

Given that each function fz,k is continuous from (Rd×R
d×(�1)

d , ||·||Rd×Rd×(�1)d
)

to (R, | · |), we can conclude that fz is continuous from (Rd × R
d × (�1)

d , || ·
||Rd×Rd×(�1)d

) to (Rd , || · ||∞). Finally, note that we can write g( y) = f0(e, 0, y),
where e = (1, 1, . . . , 1) ∈ R

d , so that g is also continuous from ((�1)
d , || · ||1,d) to

(Rd , || · ||∞) and the lemma is proved. ��

Proof of Theorem 3.2 Condition (C1) implies that F̂
c
(n) ∈ (�1)

d as well as Fc ∈
(�1)

d , which indicates that the limiting distributions all have finite means.
Moreover, (C1) implies that

(λ̄(n), F̄
c
(n)) ⇒ (λ, Fc) in R

d × (�1)
d . (45)

Note that W̄(n) = g(F̄
c
(n)) and W = g(Fc), so, by the continuous mapping

theorem,
(λ̄(n), W̄(n), F̄

c
(n)) ⇒ (λ,W , Fc) in R

2d × (�1)
d . (46)

By the definition of L̄(n) in (6) and (3), L̄(n) is a function of (λ̄(n), F̄
c
(n)),

i.e., L̄(n) = f0(λ̄(n), 0, F̄
c
(n)), where f is defined in (16). By Lemma 3.1, f is a

continuous function, hence

(λ̄(n), W̄(n), L̄(n), F̄
c
(n)) ⇒ (λ,W , L, Fc) in R

3d × (�1)
d . (47)

For the CLT-scaled terms, notice that Ŵ(n) = g(F̂
c
(n)), so, by the continuous

mapping theorem,

(λ̂(n), Ŵ(n), F̂
c
(n)) ⇒ (Λ,Ω,Γ ) in R

2d × (�1)
d , (48)

where Ω = g(Γ ).
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Combining (47) and (48), by Theorem 3.9 of [5] we have

(λ̄(n), W̄(n), L̄(n), λ̂(n), Ŵ(n), F̄
c
(n), F̂

c
(n))

⇒ (λ,W , L,Λ,Ω, Fc,Γ ) in R
5d × (�1)

2d . (49)

Now we turn to L̂(n). Note that, for k = 0, 1, . . . , d − 1, we can write the kth

component of L̂(n) as

√
n(L̄k(n) − Lk) = √

n

⎛

⎝
∞∑

j=0

λ̄[k− j](n)F̄c
[k− j], j (n) −

∞∑

j=0

λ[k− j]Fc
[k− j], j

⎞

⎠

= √
n

∞∑

j=0

(
λ̄[k− j](n)F̄c

[k− j], j (n) − λ̄[k− j](n)Fc
[k− j], j

+ λ̄[k− j](n)Fc
[k− j], j − λ[k− j]Fc

[k− j], j
)

= hk
(
λ̄(n), F̂

c
(n)

)
+ hk

(
λ̂(n), F̂

c
)

= fFc,k(λ̄(n), λ̂(n), F̂
c
(n)), (50)

so

L̂(n) = fFc
(
λ̄(n), λ̂(n), F̂

c
(n)

)
. (51)

By Lemma 3.1, fFc is a continuous function. In addition, Γ ∈ (�1)
d w.p.1, so we

can apply the continuous mapping theorem again to get

(λ̄(n), W̄(n), L̄(n), λ̂(n), Ŵ(n), L̂(n), F̄
c
(n), F̂

c
(n))

⇒ (λ,W , L,Λ,Ω,Υ , Fc,Γ ) in R
6d × (�1)

2d , (52)

where Υ = fFc(λ,Λ,Γ ), which is what we want in (18). ��
Proof of Proposition 3.1 If R̂(n) ⇒ 0, then both R̄(n) = L̄(n) − Q̄(n) → 0 and
L̂(n) − Q̂(n) → 0 in probability. By applying Theorem 3.1 of [5], based on (52), we
have

(λ̄(n), W̄(n), Q̄(n), L̄(n), λ̂(n), Ŵ(n), Q̂(n), L̂(n), F̄
c
(n), F̂

c
(n), R̂(n))

⇒ (λ,W , L, L,Λ,Ω,Υ ,Υ , Fc,Γ , 0)

in R
9d × (�1)

2d . (53)

Now consider the departure processes δ̄(n) and δ̂(n). Note that

δ̄k(n) = 1

n

n∑

m=1

Dk+(m−1)d = 1

n

n∑

m=1

(Qk+(m−1)d − Qk+1+(m−1)d + Ak+1+(m−1)d)
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=
⎧
⎨

⎩
Q̄k(n) − Q̄k+1(n) + λ̄k+1(n), 0 ≤ k < d − 1,

Q̄d−1(n) − Q̄0(n + 1) + λ̄0(n + 1) + 1

n
Q0 − 1

n
A0, k = d − 1,

(54)

and

δ̂k(n) =
⎧
⎨

⎩

√
n(Q̄k(n) − Q̄k+1(n) + λ̄k+1(n) − Lk + Lk+1 − λk+1)√
n(Q̄d−1(n) − Q̄0(n + 1) + λ̄0(n + 1) − Lk + Lk+1 − λk+1 + 1

n
Q0 − 1

n
A0)

=
⎧
⎨

⎩

Q̂k(n) − Q̂k+1 + λ̂k+1(n), 0 ≤ k < d − 1,

Q̂d−1(n) − Q̂0 + λ̂0(n) + 1√
n
Q0 − 1√

n
A0, k = d − 1.

(55)

Once again, by the continuous mapping theorem, we get the joint convergence (20) in
Proposition 3.1, where δ is given by (8) and Δk = Υ[k] − Υ[k+1] + Λ[k+1], 0 ≤ k ≤
d − 1. ��

6.2 Proof of Corollary 3.1

To make the proof clear, we first establish two lemmas.

Lemma 6.1 Assume Xn ∼ N (μn, σ
2
n ), n = 1, 2, . . ., and Xn → X almost surely as

n → ∞. Then, X ∼ N (μ, σ 2), where μ = lim
n→∞ μn, σ 2 = lim

n→∞ σ 2
n and Xn → X in

L2 as n → ∞.

Proof Let φXn (t) = Eeit Xn = exp(iμnt − 2−1σ 2
n t

2) be the characteristic function of
Xn . Since Xn → X almost surely, by the dominated convergence theorem, we know
that lim

n→∞Eeit Xn = Eeit X for each t . So we must have lim
n→∞ μi = μ, lim

n→∞ σ 2
i = σ 2

for some μ and σ ≥ 0. (Note that we cannot have lim
n→∞ μn = ∞ or lim

n→∞ σ 2
n = ∞,

which would contradict Lévy’s continuity theorem.) Then, we know that Eeit X =
exp(iμt − 2−1σ 2t2), which shows that X ∼ N (μ, σ 2).

Note that lim
n→∞ μn = μ and lim

n→∞ σ 2
n = σ 2 also imply that sup

n
EX4

n = sup
n

(μ4
n +

6μ2
nσ

2
n + 3σ 4

n ) < ∞. So {X2
n} is uniformly integrable. Hence, Xn → X in L2 as

n → ∞. ��
Lemma 6.2 Assume N ∈ �1 is a zero-mean normally distributed random variable,
where Cov(N, N) = ΣN , and a, b ∈ �0 are constants. Let X ≡ ∑∞

i=1 ai Ni = aT ·N
and Y ≡ ∑∞

i=1 bi Ni = bT · N , then (X ,Y ) is jointly zero-mean normally distributed
with

Cov(X , X) = Var(X) =
∞∑

i=1

∞∑

j=1

aia jΣ
N
i, j < ∞,
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Cov(Y ,Y ) = Var(Y ) =
∞∑

i=1

∞∑

j=1

bib jΣ
N
i, j < ∞ and

Cov(X ,Y ) = E(XY ) =
∞∑

i=1

∞∑

j=1

aib jΣ
N
i, j < ∞.

Proof By the definition of the normal distribution in �1 space, X and Y are normally
distributed random variables on R. We only need to show that they are also jointly
normally distributed; i.e., for any given α, β ∈ R, αX + βY is a zero-mean normally
distributed random variable.

Denote Xn = ∑n
i=1 ai Ni and Yn = ∑n

i=1 bi Ni . Since X and Y are well defined
almost surely, we know that αXn + βYn → αX + βY almost surely. Note that
αXn + βYn is normally distributed with mean zero and variance

∑n
i=1

∑n
j=1(αai +

βbi )(αa j +βb j )Σ
N
i, j . We can apply Lemma 6.1 and know that αX +βY has a normal

distribution with mean zero and variance
∑∞

i=1
∑∞

j=1(αai + βbi )(αa j + βb j )Σ
N
i, j .

So (X ,Y ) is jointly normally distributed.
Now we derive E(XY ). By Lemma 6.1, we know that Xn → X and Yn → Y

in L2 as well, so XnYn → XY in L1 and we have E(XY ) = lim
n→∞E(XnYn) =

lim
n→∞

∑n
i=1

∑n
j=1 aib jΣ

N
i, j = ∑∞

i=1
∑∞

j=1 aib jΣ
N
i, j < ∞. Because X and Y are

zero-mean normally distributed, we have Cov(X ,Y ) = E(XY ), where Cov(X , X)

and Cov(Y ,Y ) are special cases with X = Y . ��
Proof of Corollary 3.1 Lemma 6.2 can be easily generalized to N ∈ (�1)

d with only
some tedious steps. Since Γ ∈ (�1)

d almost surely,Ω = g(Γ ) andΥ = fFc(λ,Λ,Γ )

are well defined a.s. In addition, with the Gaussian assumption, we may apply the
generalized version of Lemma 6.2 and know that (Ω,Υ ) has a zero-mean jointly
normal distribution with each element being well defined a.s. and in L2, where

(Cov(Ω,Ω))k,l = Cov

⎛

⎝
∞∑

j=0

Γk, j ,

∞∑

j=0

Γl, j

⎞

⎠ =
∞∑

i=1

∞∑

j=1

Σ
Γ :k,l
i, j ,

(Cov(Υ ,Υ ))k,l = Cov( fFc,k(λ,Λ,Γ ), fFc,l(λ,Λ,Γ ))

= Cov

⎛

⎝
∞∑

j=0

λ[k− j]Γ[k− j], j +
∞∑

j=0

Fc
[k− j], jΛ[k− j],

∞∑

j=0

λ[l− j]Γ[l− j], j

+
∞∑

j=0

Fc
[l− j], jΛ[l− j]

⎞

⎠

=
∞∑

i=0

∞∑

j=0

λ[k−i]λ[l− j]ΣΓ :[k−i],[l− j]
i+1, j+1

+
∞∑

i=0

∞∑

j=0

λ[k−i]Fc
[l− j], jΣ

Λ,Γ :[k− j]
[l− j]+1,i+1
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+
∞∑

i=0

∞∑

j=0

Fc
[k−i],iλ[l− j]ΣΛ,Γ :[l− j]

[k−i]+1, j+1

+
∞∑

i=0

∑

j=0

Fc
[k−i],i F

c
[l− j], jΣ

Λ[k−i]+1,[l− j]+1,

(Cov(Ω,Υ ))k,l = Cov

⎛

⎝
∞∑

j=0

Γk, j ,

∞∑

j=0

λ[l− j]Γ[l− j], j +
∞∑

j=0

Fc
[l− j, j]Λ[l− j]

⎞

⎠

=
∞∑

i=1

∞∑

j=0

λ[l− j]ΣΓ :k,[l− j]
i+1, j+1 +

∞∑

i=1

∞∑

j=0

Fc
[l− j], jΣ

Λ,Γ :k
[l− j]+1,i+1.

��

6.3 Proof of Corollary 3.2

If the LoS is bounded by J , then F̄c
k, j (n) = 0 for all 0 ≤ k ≤ d−1 and n when j > J .

So, if we have (C1), then Fc
k, j = 0 must hold for all k and j > J and F̂

c
(n) ∈ (�1)

d

w.p. 1. Hence, Γk, j = 0 for all k and j > J , and Γ ∈ (�1)
d w.p. 1.

To see that R̂(n) ⇒ 0 holds, by (7), R̂(n) = L̂(n) − Q̂(n) = √
n(L̄(n) − Q̄(n)),

so it suffices to show that
√
nE(n) → 0, where E(n) ≡ ||L̄(n)− Q̄(n)||1. We take M

such that (M − 1)d < J ≤ Md. When n > M , because Yk, j = 0 for j > Md ≥ J ,
we have

√
nE(n) = √

n
1

n

n∑

m=1

d∑

j=1

∞∑

s=(n−m)d

Yd− j+(m−1)d, j+s

= n−1/2
n∑

m=n−M+1

d∑

j=1

Md∑

s=(n−m)d

Yd− j+(m−1)d, j+s

≤
d∑

j=1

n−1/2
n∑

m=n−M+1

MdAd− j+(m−1)d ≤ n−1/2d2M2C → 0 as n → ∞,

(56)

where C is the upper bound for the number of arrivals within a discrete time period.
This establishes R̂(n) ⇒ 0. ��

6.4 Proof of Theorem 4.1

To prove Theorem 4.1, we need a lemma to establish (C1).

Lemma 6.3 Suppose Wk, k = 0, 1, . . . , d − 1, are nonnegative integer-valued ran-
dom variables with Fc

k, j ≡ 1 − Fk, j ≡ P(Wk ≥ j) ∼ O( j−(3+δ)), j ≥ 0, for some
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δ > 0. W (i)
k are i.i.d. samples of Wk. Denote I (i)

k ≡ (I
W (i)

k ≥0
, I

W (i)
k ≥1

, . . .), Fc
k ≡

(Fc
k,0, F

c
k,1, . . .), and X (i)

k ≡ I (i)
k − Fc

k . Assume Y (i) are i.i.d. nonnegative integer-

valued random variables in R
d with EY (i) = μY ≡ (μY ,0, μY ,1, . . . , μY ,d−1) > 0

and Var(Y (i)) = ΣY , where all the W (i)
k and Y ( j) are independent for k =

0, 1, . . . , d − 1, and i, j ≥ 1. Let

S(n) ≡ (S0(n), S1(n), . . . , Sd−1(n)) ≡
n∑

i=1

Y (i)

and

G(n) ≡ (G0(n), G1(n), . . . , Gd−1(n)) ≡
⎛

⎝
S0(n)∑

i=1

X(i)
0 ,

S1(n)∑

i=1

X(i)
1 , . . . ,

Sd−1(n)∑

i=1

X(i)
d−1

⎞

⎠ .

We claim that

n−1/2(S(n) − nμY , G(n)) ⇒ (Λ,Γ ) in R
d × (�1)

d , (57)

where Γ = (Γ 0,Γ 1, . . . ,Γ d−1) and (Λ,Γ ) has a zero-mean Gaussian distribution
inRd×(�1)

d withΛ ∼ N (0,ΣY ), Cov(Γk, j , Γk,s) = μY ,k Fk, j Fc
k,s for 0 ≤ k ≤ d−1

and 0 ≤ j ≤ s, and Λ,Γ 0,Γ 1, . . . ,Γ d−1 are independent.

Proof The classical multivariate CLT implies that

n−1/2(S(n) − nμY ) ⇒ Λ ∼ N (0,ΣY ). (58)

Let Zk ∈ �1, for 0 ≤ k ≤ d − 1, be zero-mean Gaussian-distributed random variables
with Cov(Zk, j , Zk,l) = Fk, j Fc

k,l . By Theorem 1.1 of [13],

(Sk(n))−1/2
Sk (n)∑

i=1

X(i)
k ⇒ Zk in �1 for 0 ≤ k ≤ d − 1, (59)

and then after applying Slutsky’s theorem we have

n−1/2
Sk (n)∑

i=1

X(i)
k ⇒ Γ k = μ

1/2
Y ,kZk in �1 for 0 ≤ k ≤ d − 1, (60)

so thatΓ k has a zero-meanGaussian distributionwithCov(Γk, j , Γk,s) = μY ,k Fk, j Fc
k,s

for j ≤ s. Unfortunately, we cannot get the joint convergence directly since they are
not independent of each other; however, we can use independent copies of Y (i) as a
bridge to prove it.
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Assume that {Ỹ (i)} are i.i.d. copies of Y (i) and are also independent of other vari-
ables. Let

S̃(n) ≡ (S̃0(n), S̃1(n), . . . , S̃d−1(n)) ≡
n∑

i=1

Ỹ
(i)

.

Because n−1/2(S(n) − nμY ) is independent of n−1/2G̃0(n) ≡ n−1/2 ∑S̃0(n)
i=1 X(i)

0 , we
can apply Theorem 11.4.4 of [28] to obtain

n−1/2(S(n) − nμY , G̃0(n)) ⇒ (Λ,Γ 0) in R
d × �1, (61)

where we can make Λ be independent of Γ 0. For what we want, we need to show that
n−1/2||G0(n) − G̃0(n)||1 → 0 in probability as n → ∞ and then apply Theorem 3.1
from [5]. For any ε > 0,

P(n−1/2||G0(n) − G̃0(n)||1 > ε) = P

⎛

⎝

∣∣∣∣∣∣

∣∣∣∣∣∣

S0(n)∑

i=1

X(i)
0 −

S̃0(n)∑

i=1

X(i)
0

∣∣∣∣∣∣

∣∣∣∣∣∣
1

> n1/2ε

⎞

⎠

≤ P

⎛

⎝

∣∣∣∣∣∣

∣∣∣∣∣∣

S0(n)∑

i=1

X(i)
0 −

S̃0(n)∑

i=1

X(i)
0

∣∣∣∣∣∣

∣∣∣∣∣∣
1

> n1/2ε, |S0(n) − S̃0(n)| ≤ n3/4

⎞

⎠

+ P
(
|S0(n) − S̃0(n)| > n3/4

)

≤ 2P

(
max

I=1,2,...,�n3/4�

∣∣∣∣∣

∣∣∣∣∣

I∑

i=1

X(i)
0

∣∣∣∣∣

∣∣∣∣∣
1

> n1/2ε

)
+ P(|S0(n) − S̃0(n)| > n3/4)

= 2P

⎛

⎝ max
I=1,2,...,�n3/4�

∞∑

j=0

∣∣∣∣∣

I∑

i=1

X (i)
0, j

∣∣∣∣∣ > n1/2ε

⎞

⎠ + P
(
|S0(n) − S̃0(n)| > n3/4

)

≤ 2P

⎛

⎝
∞∑

j=0

max
I=1,2,...,�n3/4�

∣∣∣∣∣

I∑

i=1

X (i)
0, j

∣∣∣∣∣ > n1/2ε

⎞

⎠ + P
(
|S0(n) − S̃0(n)| > n3/4

)
.

(62)

For the first part, let δ1 ≤ δ/2 and C ≡ (
∑∞

j=0 j−(1+δ1))−1 be constants; note that

Var(X (i)
0, j ) = F0, j Fc

0, j , so

P

⎛

⎝
∞∑

j=0

max
I=1,2,...,�n3/4�

∣∣∣∣∣

I∑

i=1

X (i)
0, j

∣∣∣∣∣ > n1/2ε

⎞

⎠

≤
∞∑

j=0

P

(
max

I=1,2,...,�n3/4�

∣∣∣∣∣

I∑

i=1

X (i)
0, j

∣∣∣∣∣ > Cn1/2ε j−(1+δ1)

)
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≤ 3
∞∑

j=0

max
I=1,2,...,�n3/4�

P

(∣∣∣∣∣

I∑

i=1

X (i)
0, j

∣∣∣∣∣ > Cn1/2ε j−(1+δ1)/3

)

≤ 27
∞∑

j=0

max
I=1,2,...,�n3/4�

Var
(∑I

i=1 X
(i)
0, j

)

C2nε2 j−(2+2δ1)

≤ 27
∞∑

j=0

C−2n−1ε−2 j2+2δ1�n3/4�F0, j Fc
0, j

≤ 27C−2ε−2n−1�n3/4�
∞∑

j=0

j2+2δ1Fc
0, j → 0 as n → ∞, (63)

because, as a consequence of Fc
k, j ∼ O( j−(3+δ)),

∑∞
j=0 j2+2δ1Fc

0, j �= ∞, and the
second and third inequalities follow from Etemadi’s inequality (see page 256 of [5])
and Chebyshev’s inequality, respectively.

As for the second part, again using Chebyshev’s inequality, we have

P(|S0(n) − S̃0(n)| > n3/4) ≤ Var(S0(n) − S̃0(n))

n3/2
≤ 2nΣY

1,1

n3/2
→ 0 as n → ∞.

(64)
So (62) goes to 0 as n → ∞, hence

n−1/2(S(n) − nμY , G0(n)) ⇒ (Λ,Γ 0) in R
d × �1. (65)

Using the same argument (making new i.i.d. copies ofY (i)), we can addG1(n), G2(n),

. . . , Gd−1(n) one by one and in the end get (57). ��
Proof of Theorem 4.1 Take λ = E(A0+(m−1)d , A1+(m−1)d , . . . , Ad−1+(m−1)d) and Fc

to be the complementary distribution functions of the LoS. LetW and L be as in (C2),
in which case W is the vector of mean LoS for a period.

We can use Lemma 6.3 to establish (C1) by letting Y (i) be the Ai and W (i)
k be

the LoS of the i th customer that arrived at discrete time period k + (m − 1)d for all
m = 1, 2, . . .. (So EW (i)

k = Wk and σ 2
W ,k ≡ Var(W (i)

k ) < ∞.) The conclusion of
Lemma 6.3 is exactly (C1).

Then, we need to establish R̂(n) ⇒ 0. Note that (I1) and (I2) imply that the
SLLN holds, i.e., equation (2) holds, so that we have Theorem 2.1. Since R̂(n) =
L̂(n) − Q̂(n) = n1/2(L̄(n) − Q̄(n)), it suffices to show that, for each 0 ≤ k ≤ d − 1,
n1/2(L̄k(n) − Q̄k(n)) → 0 in probability as n → ∞.

From the proof of Theorem 2.1 in [31], we know that

L̄k(n) − Q̄k(n) = n−1
n∑

m=1

d∑

j=1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d .
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So, for any ε > 0,

P(n1/2(L̄k(n) − Q̄k(n)) > ε)

= P

⎛

⎝n−1/2
n∑

m=1

d∑

j=1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > ε

⎞

⎠

≤
d∑

j=1

P

(
n∑

m=1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

)

≤
d∑

j=1

⎛

⎝P

⎛

⎝
n−�n1/4�∑

m=1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠

+P

⎛

⎝
n∑

m=n−�n1/4�+1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠

⎞

⎠ . (66)

Then we only need to prove that each of the two probabilities goes to zero as n → ∞.
For the first part, we have

P

⎛

⎝
n−�n1/4�∑

m=1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠

≤ P

⎛

⎝
n−�n1/4�∑

m=1

∞∑

s=�n1/4�+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠

≤ P

⎛

⎝
n∑

m=1

∞∑

s=�n1/4�+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠

≤
∑n

m=1
∑∞

s=�n1/4�+1 EYd− j+(m−1)d, j+k+(s−1)d

n1/2d−1ε

≤ n1/2dε−1
∞∑

s=�n1/4�+1

λd− j F
c
d− j, j+k+(s−1)d

≤ n1/2dλd− jε
−1

∞∑

s=�n1/4�+1

Fc
d−J ,s ≤ n1/2Cdλd− jε

−1
∫ ∞

�n1/4�
s−(3+δ)ds

= n1/2Cdλd− j (2 + δ)−1ε−1�n1/4�−(2+δ) → 0 as n → ∞. (67)

For the second part, let Sk(n) = ∑n
m=1 Ak+(m−1)d . Then,

P

⎛

⎝
n∑

m=n−�n1/4�+1

∞∑

s=n−m+1

Yd− j+(m−1)d, j+k+(s−1)d > n1/2d−1ε

⎞

⎠
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≤ P

⎛

⎝
n∑

m=n−�n1/4�+1

∞∑

s=0

Yd− j+(m−1)d,s > n1/2d−1ε

⎞

⎠

= P

⎛

⎝
Sd− j (�n1/4�)∑

i=1

W (i)
d− j > n1/2d−1ε

⎞

⎠

≤
Var

(∑Sd− j (�n1/4�)
i=1 W (i)

d− j

)
+

(
E

(∑Sd− j (�n1/4�)
i=1 W (i)

d− j

))2

nd−2ε2

= n−1d2ε−2(�n1/4�ΣΛ
d− j+1,d− j+1Wd− j

+ �n1/4�λd− jσ
2
W ,d− j + �n1/4�2λ2d− jW

2
d− j )

→ 0 as n → ∞. (68)

Hence, we have proved that n1/2(L̄k(n) − Q̄k(n)) → 0 in probability as n →
∞, i.e., R̂(n) ⇒ 0. Since we have established all three conditions in Theorem 3.2
and Proposition 3.1, their conclusions follow. As a special case of Corollary 3.1, the
covariance matrix of (Ω,Υ ) has the same form as in (22), with ΣΛ:k,l = 0 for k �= l,
ΣΛ,Γ :k = 0 for all k and Σ

Γ :k,k
i+1, j+1 = λk Fk,i Fc

k, j for 0 ≤ i ≤ j . ��

6.5 Proof of Theorem 4.2

Aswe discussed before Theorem 4.2, wewill first apply a CLT for stationary processes
with mixing conditions to {Yn : n ∈ N} (Step 1). Such type of CLT was established
by Ibragimov; see Theorem 18.5.3 in [15] or Theorem 0 in [6]. We apply it in Rd J by
utilizing the Cramér-Wold device; see Theorem 29.4 in [4]. Then, in Step 2, we show
that (C1) holds. Finally, in Step 3, we show R̂(n) ⇒ 0 to complete the proof.
Step 1:Firstly, by the definition ofYi, j and Ai ,weobserve thatE||A0||2+δ∞ < ∞ in (S2)
implies that E|Yk+nd, j |2+δ < ∞ for all n ≥ 0, 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ J − 1.

Let Fc
k, j ≡ EYk, j

EYk,0
= EYk, j

λk
for 0 ≤ k ≤ d − 1 and 0 ≤ j ≤ J − 1, where

λ = (λ0, λ1, . . . , λd−1) is in (S2). Now the F we defined in (8) can also be reduced
to finite-dimensional space Rd×J , i.e.,

Fc =

⎛

⎜⎜⎜⎝

F0,0 F0,1 . . . F0,J−1
F1,0 F1,1 . . . F1,J−1
...

...
...

...

Fd−1,0 Fd−1,1 . . . Fd−1,J−1

⎞

⎟⎟⎟⎠ . (69)

We want to show that {Yn : n ∈ N} satisfies a CLT. By the Cramér-Wold device, we
only need to show that

∑d−1
k=0

∑J−1
j=0 θk, j Yk+nd, j satisfies the corresponding CLT for

each θ = (θk, j )d×J ∈ R
d×J . Let
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{
Zn(θ) ≡

d−1∑

k=0

J−1∑

j=0

θk, j (Yk+nd, j − λk F
c
k, j ), n ∈ N

}
(70)

be the centralized strictly stationary process.We need to show that it satisfies Theorem
0 in [6], i.e., for some δ > 0,E|Zn(θ)|2+δ < ∞ and

∑∞
n=1 αZθ

(n)δ/(2+δ) < ∞, where
αZθ

(n) is the strong mixing coefficient for {Zn} introduced in (29). We take the δ as
in (S2). Note that

E|Zn(�θ)|2+δ = E

∣∣∣∣
d−1∑

k=0

J−1∑

j=0

θk, j (Yk+nd, j − λk F
c
k, j )

∣∣∣∣
2+δ

≤
d−1∑

k=0

J−1∑

j=0

|θk, j |2+δ
E|Yk+nd, j − λk F

c
k, j |2+δ

≤
d−1∑

k=0

J−1∑

j=0

|θk, j |2+δ((E|Yk+nd, j |2+δ)1/(2+δ) + λk F
c
k, j )

2+δ < ∞, (71)

where the first inequality uses the linearity of expectation and the second is by
Minkowski’s inequality. Since Zn(θ) is a linear combination of the elements of Yn ,
the corresponding sigma-algebra generated by it is smaller than the one generated by
Yn , so that by the definition of strong mixing coefficient we know that αZθ

(n) ≤ α(n).
Hence, given

∑∞
n=1 α(n)δ/(2+δ) < ∞ as in (S2), we have

∑∞
n=1 αZθ

(n)δ/(2+δ) < ∞.
By Theorem 0 in [6], we know that σ 2

θ = EZ0(θ)2 + 2
∑∞

i=1 E(Z0(θ)Zi (θ)) exists,

with the sum being absolutely convergent, and n−1/2 ∑n−1
i=0 Zi (θ) ⇒ N (0, σ 2

θ ). Let

Ŷ(n) ≡ √
n(Ȳ(n) − diag(λ)Fc) ≡ √

n

(
1

n

n−1∑

i=0

Y i − diag(λ)Fc

)
, (72)

where diag(λ) ∈ R
d×d is the diagonal matrix with λ on the diagonal. By the Cramér-

Wold device, we know that

Ŷ(n) ⇒ ψ ≡

⎛

⎜⎜⎜⎝

ψ0,0 ψ0,1 . . . ψ0,J−1
ψ1,0 ψ1,1 . . . ψ1,J−1

...
...

...
...

ψd−1,0 ψd−1,1 . . . ψd−1,J−1

⎞

⎟⎟⎟⎠ as n → ∞, (73)

where ψ is Gaussian distributed with mean 0 and covariance

Cov(ψk, j , ψl,s) = E((Yk, j − λk, F
c
k, j )(Yl,s − λl F

c
l,s))

+2
∞∑

i=1

E((yk, j − λk F
c
k, j )(Yl+id, j − λl F

c
l,s)). (74)
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Step 2:We now show that (73) implies that condition (C1) holds. Actually, it suffices
to show that (λ̂(n), F̂

c
(n)) is actually a continuous function of Ŷ(n). It is trivial to

see that λ̂(n) = Ŷ(n)e1, where e1 = (1, 0, 0, . . . , 0)T ∈ R
J is a continuous map

from R
d×J to R

d . For F̂
c
(n) = √

n(F̄
c
(n) − Fc), note that this is, by (S3), a finite-

dimensional matrix, so it suffices to show that each element of it is a continuous
function of Ŷ(n). To see this, observe that

F̂c
k, j (n) = √

n(F̄c
k, j (n) − Fc

k, j ) = √
n

(
Ȳk, j (n)

Ȳk,0(n)
− Fc

k, j

)

= √
n
(Ȳk, j (n) − λk Fc

k, j ) − Fc
k, j (Ȳk,0(n) − λk)

Ȳk,0(n)

= Ŷk, j (n) − Fc
k, j Ŷk,0(n)

Ȳk,0(n)
. (75)

In addition, (73) implies that Ȳk,0(n) → λk in probability, so by the continuous
mapping theorem, Slutsky’s theorem and the Cramér-Wold device, we know that

(λ̂(n), F̂
c
(n)) ⇒ (Λ,Γ ) in R

d × R
d×J , (76)

where Λ = (ψ0,0, ψ1,0, . . . , ψd−1,0) and Γk, j = ψk, j − Fc
k, jψk,0

λk
, 0 ≤ k ≤ d − 1,

0 ≤ j ≤ J − 1.
Step 3: Finally, since the LoSs are bounded, we only need to show R̂(n) ⇒ 0 to estab-
lish Theorem 3.2 and Proposition 3.1.Moreover, if (Λ,Γ ) has a Gaussian distribution,
Theorem 3.1 holds as well.

Analogously to the proof of Corollary 3.2, it suffices to show that
√
nE(n) → 0 in

probability. To see this, for any ε > 0, take the sameM as in the proof of Corollary 3.2,
and, based on (56), we have

P(
√
nE(n) > ε) ≤ P

(
n−1/2Md

d∑

j=1

n∑

m=n−M+1

Ad− j+(m−1)d > ε

)

≤ P

(
n−1/2Md2

n∑

m=n−M+1

||A(m−1)||∞ > ε

)

≤ M2d2E||A0||∞
εn1/2

→ 0 as n → ∞, (77)

where in the last inequality we apply Markov inequality and exploit the stationarity of
{An}. So we know R̂(n) ⇒ 0 and, together with Step 2, we have proved the theorem.

��
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