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Abstract

To estimate the premium an investor should expect from extended hedge fund lockups, Derman
et al. (2009) proposed a three-state discrete-time Markov Chain to model the state of a hedge
fund, allowing the state to change randomly among the states “good,” “sick” and “dead” every
year. The lockup premium measures the consequence of being stuck with a sick fund. To be
more realistic, we propose an alternative three-state continuous-time Markov Chain model,
which allows state changes continuously in time. We develop new techniques for parameter
fitting, exploiting nonlinear programming. We fit the parameters indirectly to readily available
hedge fund performance measures: the persistence factor, the death rate and the variance of
annual returns, estimated from TASS hedge fund data.
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Abstract

A lockup period for investment in a hedge-fund is a time period after making the investment

during which an investor cannot freely redeem his investment. Since longer lockup periods have

recently been imposed, it is important to estimate the premium an investor should expect from

extended lockups. In Derman et al. (2009) we proposed a parsimonious three-state discrete-

time Markov Chain (DTMC) to model the state of a hedge fund, allowing the state to change

randomly among the states “good,” “sick” and “dead” every year. According to the lockup

condition, the investment can be immediately redeemed from a dead fund (when it ceases to

operate), to the extent possible. The lockup premium measures the consequence of being stuck

with a sick fund. We fit the DTMC model parameters indirectly to readily available hedge

fund performance measures, in particular to the persistence factor, the death rate and the

variance of annual returns, estimated from TASS hedge fund data. We then showed how the

DTMC model can be applied to estimate the lockup premium. In this paper, we propose an

alternative three-state absorbing continuous-time Markov Chain (CTMC) model, which allows

state changes continuously in time instead of yearly. The CTMC model is more realistic and

flexible, but requires new techniques for parameter fitting. We employ nonlinear programming

to solve the new calibration equations. We show that the more realistic CTMC model is a

viable alternative to the previous DTMC model.

1. Introduction

A lockup period for investment in a hedge-fund is a time period after making the investment

during which an investor cannot freely redeem his investment. Hedge funds often require a

lockup period in order to invest in illiquid assets (Aragon, 2007). The importance of investment

liquidity was highlighted by the recent financial crisis of 2007-2009 (Golts and Kritzman, 2010).

In recent years, the required lockup period has increased. Boyle et al. (2010) found that

in the Hedge Fund Reearch database, the average lockup period for funds with the lockup
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condition is one year and the range of the lockup period is from one to four years. Ang and

Bollen (2009) also pointed out that typical lockup period is one to three years. These suggest

that the extended lockups have been more popular recently. The emergence of extended hedge

fund lockups continues during the recent financial crisis; Kazemi (2010) reported that during

the recent financial crisis, hedge funds with long lockup period could aviod selling their assets

at distressed prices. Also, Ben-David et al. (2010) found that hedge funds with short lockup

period is more liekly to face selloffs casued by redemptions.

We thus wish to estimate the premium from extended hedge fund lockup. In doing so,

we take the point of view of a manager of a fund of funds, who has to choose between two

investments in similar funds in the same strategy category. Thus, we define the premium for

extended hedge fund lockup as the annual fixed rate of return that compensates the difference

of expected returns in two hedge-fund investments, with and without the extended lockup

condition; see §3. This definition accounts for the lost gains due to the inability to rebalance

the investment portfolio in hedge funds, but not for other lost investment opportunities, so

this is a conservative estimate of the lockup premium. Investors can separately consider the

cost of other lost investment opportunities. We believe that the lockup premium calculated

here may be helpful for investors to see whether the shareholder restrictions caused by the

extended lockup condition in hedge funds can be offset by the additional returns from the

illiquid investment.

Since hedge funds are not required to report their returns by regulatory authorities, data

on returns of hedge funds are relatively limited, compared to data for other securities. Thus,

despite of the importance of extended hedge fund lockups, there has been limited research on

the lockup premium for hedge fund investment; see §2.

1.1. The Initial Discrete-Time Model

In Derman et al. (2009) (hereafter, DPW09) we proposed a parsimonious discrete-time Markov

chain (DTMC) model that can be calibrated to observable performance measures from hedge

fund returns: the persistence factor, the death rate, and volatility (as measured by the variance

or standard deviation of annual returns). We fit the model to hedge-fund return data from

the Tremont Advisory Shareholder Services (TASS) database, using data from 2001-2005. We

then applied the fitted DTMC model to calculate the lockup premium.

The DTMC model in DPW09 is similar in spirit to previous DTMC models used in finance,

such as the DTMC model of yearly bond credit rating migration given on pp. 626-627 of Hull
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(2003). In bond credit rating, there are easily identified states, namely, the different credit

ratings, ranging from AAA to CCC and default. With these well-specified states, the transition

probabilities are easy to estimate from the observed proportions of changes in historical data.

The DTMC model for hedge funds in DPW09 is less straightforward. As with bond ratings,

the DTMC was used to model the “state” of the hedge fund, but the state is not so easy to

define. However, the rules for hedge fund lockup suggest a simple framework: In DPW09,

three states were postulated: good, sick, and dead. In a good state, the fund has above-

average performance, so an investor wants to keep his investment in the fund. In a sick state,

the fund shows below-average performance, so an investor in this fund would want to redeem

his investment and reinvest in another hedge fund in a good state, if allowed. In a dead state,

the investor suffers a low return due to poor performance, and the fund becomes extinct.

However, in a dead state, the lockup condition becomes invalid and the investor receives the

remaining balance from the dead fund. In a dead state, the investor can immediately invest

in another fund, which we take to be in the good state. (The model can incorporate partial

redemption of the investment from a dead fund by assigning an appropriate return value for a

dead state.)

From the perspective of the lockup premium, the critical state is the sick state. There is

no extra lockup penalty associated with a good fund or a dead fund, but there is with a sick

fund. With the nominal one-year lockup, we assume that an investor will reinvest in a good

fund every year, if the current fund is not judged to be in a good state. In contrast with an

extended lockup period, the investor will not be able to reinvest when the fund is judged to

be in a sick state. The investor must keep his investment in the sick fund. Meanwhile, the

state of the sick fund will evolve in an uncertain manner. it may continue to produce mediocre

returns and be judged sick, it may get worse and “die,” or it may recover and become a good

fund. The DTMC model was used to capture the likelihood of the different alternatives.

Of course, the state (“health”) of a hedge fund cannot be directly observed, but symptoms

are observed, notably the stream of returns. In DPW the state was estimated by the level of

relative returns. Two thresholds were postulated: U and L, with U > L. A fund is judged

to be in a good state if the relative returns are above U , in a sick state if the relative returns

are in the interval (L,U), and in a dead state if the relative returns fall below L. Assuming

that the three-state DTMC only can have one-step (one-year) transitions to a neighboring

state, the DTMC has three parameters; the three transition probabilities PG,S , PS,G and

PS,D. Since the true state is not observable, an indirect procedure was used to estimate the
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transition probabilities. To fit the parameters in the DTMC model based on the TASS hedge

fund data, three important hedge-fund performance measures were used: the performance

persistence factor, the death rate and the standard deviation of annual returns. The transition

probabilities were determined by solving a system of equations.

In DPW09 we relied heavily on the persistence of hedge fund returns. A persistence level

γ means that “for every 1 percentage point earned above the average in the current year, we

expect to earn γ percentage points above the average in the next year.” We acknowledge that

the existence of persistence in hedge funds is controversial, but we found strong evidence based

on the TASS hedge fund data. In DPW09 we estimated the persistence by doing a regression

analysis on the hedge fund return data from the TASS database. Zero persistence is contained

in the 95% confidence intervals for only three of the eleven hedge fund startegy categories; see

Table 1 of DPW09. (The quality of the TASS data remains a concern, however.)

Given the fitted DTMC model, the lockup premium was then calculated as the compensa-

tion for the restricted rebalancing opportunities from a sick state fund to a good state during

the lockup period. Specifically, the calculation is done by comparing the expected return of

the same hedge fund with and without the extended lockup condition. The lockup premium is

the annual fixed rate of return that compensates the difference of expected returns in the two

hedge-fund investments, with and without the extended lockup condition.

1.2. The Proposed Continuous-Time Model

Unfortunately, the DTMC model with yearly transitions has the limitation that the state of a

hedge fund can only change once per year. Since transition was restricted to neighboring states,

it requires at least two years for a fund to transition from good to sick and then sick to dead.

In reality, the fortune of hedge funds can change much more rapidly. Thus we are motivated

to consider alternative models that allow the hedge fund state to change continuously in time.

For that purpose, in this paper we propose to model the state of the hedge fund as an

absorbing continuous-time Markov chain (CTMC) or, more specifically, an absorbing birth-

and-death process. With the CTMC model, there are again three parameters, but now the

parameters are the instantaneous transition rates to neighboring states: There are death rates

µG and µS for transitioning from good to sick and from sick to dead, respectively. And there

is a birth rate λS for transitioning from sick to good. The fund ceases to exist in a dead state,

so the dead state is an absorbing state.

With the CTMCmodel, we still assume that the fund generates returns in discrete time. We
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use discrete time because the returns are reported infrequently. We assume that the investor

will be able to redeem his investment from a dead fund at these reporting times, whenever the

fund becomes dead. Thus, from the investor’s perspective, there are only two relevant states at

these reporting times: good and sick. Thus, the successive states at the return times becomes

a two-state ergodic DTMC, whose transition probabilities are determined by the transient

probabilities of the CTMC. We thus need to use the transient transition probabilities of the

absorbing CTMC in order to determine the one-step transition probabilities of the ergodic

DTMC. Given the ergodic DTMC, we can calculate the lockup premium, much as before; see

§3.
Allowing state changes continuously in time is more realistic and allows greater flexibility

in the model fitting. However, new calibration methods are needed. We use the same measures

of hedge fund performance. Just as in DPW09 and Derman et al. (2010), we rely heavily on the

persistence of hedge fund returns. It turns out that we can again fit the three model parameters

(now the three transition rates of the CTMC) to the persistence, the death probability and

the annual return volatility. However, the fitting becomes more complicated. We are no longer

able to obtain closed-form expressions for the parameters (the transition rates of the CTMC,

as opposed to the transition probabilities of the DTMC in DPW09). Instead, we exploit

nonlinear programming and an iterative algorithm to carry out the fitting. However, once this

algorithm has been developed, we are able to fit the parameters as easily and rapidly as before.

Moreover, the flexibility provided by the CTMC allows us to fit to a wider range of parameters.

For example, with the previous DTMC model, the death rate had to be less than 0.06; with

the CTMC model, it can be as high as 0.13.

Overall, we show that the more realistic and flexible CTMC model is also a viable alter-

native to estimate the premium for extended lockup of hedge funds. The estimated lockup

premium is thus presumably more accurate. However, in our numerical experiments we found

that the computed lockup premium as a function of hedge fund performance measures does not

differ greatly from the premium estimated by the DTMC model. We thus regard this paper

as confirming that the previous more rudimentary DTMC model yields a reasonable approxi-

mation. Both highly stylized approaches seem appropriate given the quality of the data. The

methods here may also be useful to guide the development of more sophisticated methods in

the future with more refined data.
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1.3. The Rest of the Paper

The rest of the paper is organized as follows: We start in §2 by giving a literature review.

Then in §3 we carefully define the lockup premium. The new Markov chain models are then

defined in §4. In §5 we develop our new algorithms for fitting the parameters. We indicate

how to calculate the lockup premium in §6. In §7 we perform sensitivity analysis, showing

how the model parameters and the lockup premium depend on basic hedge fund performance

measures. Finally, in §8 we draw conclusions.

2. Literature Review

We will be brief in our literature review, because an extensive review was given in DPW09.

We will emphasize recent contributions since DPW09.

First, it is good to put the definition of lockup premium in perspective with the broader

literature on liquidity. Clearly, an investor under the lockup condition naturally should require

compensation or additional return from his investment in hedge funds for limited rebalancing

activities during the lockup period, which we define as the lockup premium. Our definition of

the lockup premium corresponds to the liquidity premium in the asset pricing literature; see

Longstaff (1995), Longstaff (2001), and Browne et al. (2003). As stated in §1 of this paper

and the above papers, the calculation of the premium can be done by comparing the expected

returns in the two investments, with and without the liquidity condition. This approach of the

liquidity premium calculation is also relevant for accounting regulation (FAS No. 157, “Fair

Value Measurements”) to discount illiquidity in a portfolio (Ang and Bollen, 2009).

Similar to DPW09, Ang and Bollen (2009) propose a variant of a binomial lattice model

to calculate the lockup premium as a function of the lockup period and notice period. They

estimate a two-year lockup with a three-month notice period is approximately 1%, which is also

similar to our result. However, while their model allows a time-dependent default probability,

their model assumes independence of increment returns. We think that independent increments

may not hold, especially for an illiquid investment like a hedge fund. Our view is supported by

Jagannathan et al. (2006), Koh et al. (2003), Agarwal and Naik (2000), Edwards and Caglayan

(2001), and DPW09, who all provide support the existence of persistence in hedge-fund returns

in various ways. See, the discussion and the references in DPW09 and Derman et al. (2010)

for the details. Recent studies like Boyson et al. (2010) which study downside correlations in

hedge funds also support our view.
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There also are a few purely empirical studies, without employing stochastic models. First,

Aragon (2007) empirically compares the performance of hedge funds with and without the

one-year lockup condition. The average difference between returns of the hedge funds with

and without the lockup condition is estimated by 4 to 7% in Aragon (2007). However, his

study does not differentiate various lockup periods in the data and regards all different lockup

periods as one year. Thus the estimated lockup premium is not a function of the lockup period.

De Roon et al. (2009) also estimate the lockup premium empirically where an investor has a

portfolio of stocks, bonds, and hedge funds. They estimate the three-month lockup costs the

investor 4.11% annually. However, just as Aragon (2007), they did not calculate the lockup

premium for other lockup periods than three months.

3. Definition of the Lockup Premium

In this section, we carefully define the premium for extended hedge-fund lockups that we will

use with our new Markov chain models. Since the hedge fund returns in the database are

reported monthly at most, it is reasonable to consider a discrete process. We thus consider a

discrete-time return stochastic process B ≡ {Bi : i = 1, 2, 3, ...}. Each time period i in the

process represents an updating time for the returns. We can study the model with different

updating time period Tu for updates, if we wish. For example, Tu = 0.25 implies quarterly

updating of the process B, while Tu = 0.5 represents semi-annual updating of returns. We

assume that the number of updates in a year, k ≡ 1/Tu, is always an integer, which usually is

the case in practice. While Tu = 1 in the DTMC model, 1/Tu can be any integer in the CTMC

model.

We let Bi represent a continuously compounded (random) rate of return for the ith updating

period, by which we mean that eBi is the (random) value at the end of ith updating period

(i ·Tu year) of one dollar invested in this investment at the beginning of i−1th updating period

((i − 1) · Tu year). (Notice that Bi depends on Tu in this definition. For example, Bi is an

annually-updated return process when Tu = 1, whereas Bi is a semi-annually updated return

process when Tu = 0.5.)

Consequently, the (random) total value at the end of n years of one dollar invested in this

investment at the beginning of the first year, Vn,Tu , is the (n · k)-fold product

Vn,Tu = e
∑n·k

i=1
Bi , (3.1)

where k is the number of updating (reporting) periods per year and n is the number of years.
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We let rn be the deterministic value for which

enrn = E[Vn,Tu ] (3.2)

for Vn,Tu in (3.1); i.e., we let rn be the constant rate of return, with continuous compounding,

that yields the same expected value E[Vn] over n years. We call rn simply the rate of return

of this investment. What we have done follows common practice. We have “backed out” the

rate of return rn from the expected cash value E[Vn]. By (3.1) and (3.2), rn can be expressed

directly as

rn =
logE[Vn]

n
=

1

n
log
(

E

[

e(
∑n·k

i=1
Bi)
])

, (3.3)

where we use the natural logarithm (base e).

Now consider two different investment opportunities in hedge funds with the same strategy,

but one with a conventional 1-year lockup and the other with an n-year lockup condition. Let

B1 be the return stochastic processes with the 1-year lockup condition; let B2 be the return

stochastic processes with the n-year lockup condition. Let the n-year lockup premium pn be

pn ≡ r1n − r2n, (3.4)

where rin is the rate of return of Bi, defined as in (3.3), over an n-year horizon.

Instead of working with Bi directly, we focus on relative return rates for each fund strategy.

To do so, we let αi ≡ E[Bi], the mean return rate for a particular hedge fund strategy within

updating period of return i. This quantity is estimated by the mean of Bi over all funds within

that strategy. Then the (random) relative return rate is

Ri ≡ Bi − E[Bi] ≡ Bi − αi. (3.5)

Combining equations (3.1) and (3.5), we see that the (random) total value at the end of year

n from investor j is

V j
n,Tu

=
n·k
∏

i=1

e(αi+Ri) = e(
∑n·k

i=1
αi)e(

∑n·k
i=1

R
j
i ). (3.6)

and the difference between the expected total returns is

E[V 1
n,Tu

]− E[V 2
n,Tu

] = e(
∑n·k

i=1
αi)
(

E

[

e(
∑n·k

i=1
R1

i )
]

− E

[

e(
∑n·k

i=1
R2

i )
])

. (3.7)

Hence, the premium in (3.4) becomes

pn ≡ r1n,Tu
− r2n,Tu

=
1

n

[

log
(

E

[

e(
∑n·k

i=1
R1

i )
])

− log
(

E

[

e(
∑n·k

i=1
R2

i )
])]

, (3.8)

which is independent of the average rates αi. We need a model that describe the behavior of

Rj
i in (3.8).
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4. The New Markov Chain Models

In this section, we propose a model that uses an absorbing CTMC to model the evolution of

the fund state in time and an ergodic DTMC to model the state of the fund at the updating

times (when returns are reported). (Since there is a positive probability of transition from

good to sick in finite time and a positive probability of transition from sick to dead in finite

time, the absorbing CTMC would eventually end up in the dead state with probability 1

(over an infinitely long horizon), whereas the ergodic DTMC has a proper limiting steady-

state distribution.) In the CTMC model, a fund changes its state in continuous time, but

the investment updates take place in discrete time. This leads us to an ergodic DTMC for

investment update that is based on the CTMC; see Ross (2003) for background on both kinds

of Markov chains.

4.1. The Transition Matrix of the Absorbing CTMC

Just as in DPW09, our CTMC has three states for a hedge fund: good, sick and dead. Now

we assume that transitions among these states occur according to a CTMC, specifically a

birth-and-death process.

In the DTMC model in DPW09, a hedge fund in a good state cannot reach a dead state

until two years. In contrast, with the CTMC model, a fund can be in a dead within one year.

There is a cost, however: for the CTMC model, we are unable to fit the model parameters

simply by explicitly solving three equations in three unknowns. Instead, we develop an algo-

rithm to carry out the model fitting numerically. With our algorithm, the parameter fitting

for the CTMC model is not substantially harder than for the DTMC model.

In our proposed CTMC model we replace the three-state absorbing DTMC in DPW09 by a

two-state absorbing CTMC. The states now are G (Good) and S (Sick); we do not directly use

the state D (Dead) here, but we will be able to account for it. As usual, we specify the CTMC

by specifying its infinitesimal transition rate matrix Q. That means we specify the birth and

death rates. Let µG be the death rate in G, the rate of transition down to state S from state

G. Let λS be the birth rate in state S, the rate of transition up to state G from state S. Let

µS be the death rate in state S, implicitly the rate of transition down to state D from state

S. (The fund may leave state S to go to state D, but gets absorbed in D. We do not need to

include the state D in our transition rate matrix.) Here is the infinitesimal transition matrix,
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with the parameters above:

Q =
G
S

(

−µG µG

λS −(λS + µS)

)

. (4.9)

We now want to derive the time-dependent transition probability matrix P (t) for this

CTMC. It is well-known that P (t) is the solution to the matrix ordinary differential equation

P (t)′ = P (t)Q, P (0) = I , (4.10)

where I is the identity matrix, so that P (t) is the matrix exponential P (t) = etQ. If we

diagonalize Q so that Q = UDU−1, where D is a diagonal matrix and UU−1 = I, then we

can write P (t) = UetDU−1; see §4.8 and the appendix of Karlin and Taylor (1975). Since D

is a diagonal matrix, the ith diagonal element of etD is related to the corresponding diagonal

element of D, i.e., (etD)i,i = eDi,it for t > 0. Let Λ(t) be a diagonal matrix of the form

Λ(t) =
G
S

(

eηGt 0
0 eηSt

)

, (4.11)

with the two parameters ηG and ηS being the eigenvalues of the matrix Q, while the columns

of U are the associated right eigenvectors. The resulting formula for P (t) is

P (t) = UΛ(t)U−1 . (4.12)

The characterization (4.12) implies that Pi,j(t) = Ai,je
η1t+Bi,je

η2t for t ≥ 0 and all state pairs

(i, j), where η1 and η2 are the eigenvalues of Q and Ai,j and Bi,j are appropriate constants.

Since P (0) = I, we necessarily have Ai,i + Bi,i = 1 for i = 1, 2 and Ai,j + Bi,j = 0 for i 6= j.

If 0 > η1 > η2, then asymptotically Pi,j(t) ∼ Ai,je
−η1t as t → ∞, which means that the ratio

approaches 1. As a consequence, necessarily Ai,j > 0 for all state pairs (i, j); Bi,j = −Ai,j for

i 6= j.

As usual, we find the eigenvalues of Q by finding the determinant of ηI −Q. The charac-

teristic polynomial as a function of the variable η is the quadratic equation

(η + λS + µS)(η + µG)− λSµG = 0 , (4.13)

which has two strictly negative roots, as required for the formula in (4.11) to yield bonafide

probabilities. In particular, solving the quadratic equation, we obtain

η =
−(λS + µS + µG)±

√

(λS + µS + µG)2 − 4µSµG

2
. (4.14)

Since the term inside the square root can be rewritten as (µG − µS)
2 + λ2

S + 2µGλS + 2λSµS ,

it is nonnegative. The first term clearly dominates the square root in absolute value. So we

indeed have two negative roots.
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Now we find eigenvectors corresponding to the eigenvalues in (4.14). Given eigenvalues,

the eigenvectors form the null space of (Q − ηI), i.e., a matrix U such that (Q − ηI)U = 0.

We arrange eigenvalues ηG, ηS as η matrix:

η =

(

ηG
ηS

)

=





−(λS+µS+µG)−
√

(λS+µS+µG)2−4µSµG

2
−(λS+µS+µG)+

√
(λS+µS+µG)2−4µSµG

2



 . (4.15)

Such an eigenvector matrix U, where the columns of U are eigenvectors of Q, can be easily

found by algebraic manipulation or by a symbolic calculation package such as Mathematica.

One such eigenvalue matrix is

U =

(

(λS+µS−µG)−
√

(λS+µS+µG)2−4µSµG

2λS

(λS+µS−µG)+
√

(λS+µS+µG)2−4µSµG

2λS

1 1

)

. (4.16)

Its inverse matrix is then

U−1 =







− λS√
(λS+µS+µG)2−4µSµG

λS+µS−µG+
√

(λS+µS+µG)2−4µSµG

2
√

(λS+µS+µG)2−4µSµG

λS√
(λS+µS+µG)2−4µSµG

−λS−µS+µG+
√

(λS+µS+µG)2−4µSµG

2
√

(λS+µS+µG)2−4µSµG






. (4.17)

Thus, we now have derived the components of P (t) in (4.12). We have derived P (t) as a

nonlinear function of µG, λS and µS from (4.15)-(4.17).

4.2. The Associated Ergodic DTMC

We are now ready to specify the evolution of the hedge fund at successive updating times. We

will characterize these transitions by an ergodic two-state DTMC, whose transition probabil-

ities are obtained from the time-dependent transition probabilities of the absorbing CTMC

developed above.

Since a dead fund is replaced immediately by a good fund at the updating time, we make

an ergodic two-state DTMC with transition matrix

P =
G
S

(

1− PG,S(Tu) PG,S(Tu)
1− PS,S(Tu) PS,S(Tu)

)

. (4.18)

We construct P in (4.18) by letting PG,S = PG,S(Tu) and PS,S = PS,S(Tu) and then making

the DTMC ergodic by letting the row sums be 1. This procedure is tantamount to inserting an

instantaneous transition from state D to G at time Tu, which is the time of a single transition

in the DTMC. This transition probabilities are used to model the process Rj
i in (3.8).

As usual, the steady-state vector for this DTMC is obtained by solving the equation π = πP

for a probability vector π ≡ (πG, πS). In this simple 2 × 2 case, we can give the steady-state

probability vector π explicitly as

π ≡ (πG, πS) =

(

1− PS,S(Tu)

1− PS,S(Tu) + PG,S(Tu)
,

PG,S(Tu)

1− PS,S(Tu) + PG,S(Tu)

)

. (4.19)
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5. Parameter Fitting in the CTMC Model

Just as we fit the three parameters p ≡ PG,G, q ≡ PS,G and r ≡ PS,S in the DTMC transition

matrix to performance measures estimated from the TASS data in DPW09, here instead we

fit the three parameters λS , µS , and µG in the CTMC transition rate matrix (4.9) to the three

hedge-fund performance measures.

5.1. The Persistence and Death Fitting Equations

The first performance measure for model fitting is the persistence factor of relative returns.

As indicated in the introduction, a persistence level γ means that for every 1 percentage point

earned above the average in the current year, we expect to earn γ percentage points above the

average in the next year. We define a time period Tp to measure the persistence factor. For

example, Tp = 1 implies that the persistence factor is measured with annual relative returns

whereas Tp = 0.5 means that it is measured with semi-annual relative returns. Papers on

persistence of hedge-fund returns use different measurement times ranging from one quarter

to three years (See, §4 of DPW09 for the details). Thus, allowing variable Tp could be useful

if one has different view on measurement time for persistence.

The time periods Tu and Tp can be different in our model, while they were both 1 in the

DTMC model.

We let YG, YS , and YD represent the annual relative returns that an investor makes at each

updating time from a good, sick, and dead fund, respectively. As before, we will take these as

given parameters, based on the data, but we will also discuss how to get reasonable estimates

of these values below.

We now proceed toward parameter fitting for this new model. We first define an equation

that fits observed persistence within a specific strategy. As in DPW09, we allow different

persistence factors in the states G and S. Paralleling (6.5)-(6.6) in DPW09, we obtain the new

equations

γG · YG = PG,G(Tp) · YG + PG,S(Tp) · YS + {1− PG,G(Tp)− PG,S(Tp)}YD (5.20)

and

γS · YS = PS,G(Tp) · YG + PS,S(Tp) · YS + {1− PS,G(Tp)− PS,S(Tp)}YD . (5.21)

Both sides of the equations above represent expected relative returns, starting with a good or

sick state. Both exploit the definition of persistence.

12



Next, paralleling equation (6.4) in DPW09, we also have an equation based on the proba-

bility of the fund ceasing to exist (dying) within a specified time. Specifically, we introduce an

equation giving the probability of death within the time period Td, where Td may differ from

Tu and Tp; i.e.,

δ ≡ δ(Td) = πG{1− PG,G(Td)− PG,S(Td)}+ πS{1− PS,G(Td)− PS,S(Td)} . (5.22)

Notice that the new model is more flexible because the three times Tu, Tp, and Td can be

different.

With equation (5.22), we can derive the survival probability from the CTMC model, which

is closely related to the death probability. At time t, the survival probability of a fund is defined

as

S(t) = PG,G(t) + PG,S(t) for t ≥ 0. (5.23)

Figure 1 displays the survival probabilities for the CTMC model with δ = 0.03, 0.06 and 0.09

(and other parameter values from Table 1 below). The survival probability for δ = 0.09 is

possible only in the CTMC model, since for the DTMC model, r becomes negative when

δ ≈ 0.07. As we see from Figure 1, median fund life is less than 10 years for δ = 0.09. Since

this median hedge fund life is within the range of Rouah (2006) and Park (2007), it should be

worth considering δ = 0.09. We could not do this before in DPW09.
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Figure 1: Survival probability curves for the CTMC model with δ = 0.03, 0.06, and 0.09 with
Tu = Tp = Td = 1. The parameters values µG, λS , µS , YG, YS , YD, and σ are from Table 1.

5.2. Solving the Three Equations in Three Unknowns

We now show how to solve the three equations (5.20), (5.21) and (5.22) for the three unknowns

µG, µS and λS . Unfortunately, we have been unable to obtain explicit solutions for the desired

parameters as we did in DPW09. Hence, we develop an effective numerical algorithm.
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Suppose that we start with a candidate initial parameter triple (µG, λS , µS). Given that

parameter triple and the specified time t, we calculate the transition probabilities PG,G(t),

PG,S(t), PS,G(t), and PS,S(t) in (4.12)–(4.14) by calculating the eigenvalues and eigenvectors

of the infinitesimal matrix Q in (4.9). Afterwards we calculate the steady-state probability

vector π ≡ (πG, πS) in (4.19) of the two-state DTMC in (4.18). We then calculate the right-

hand sides of the three equations (5.20)–(5.22). Our goal is to have three bonafide equations,

where the two sides of the equations are equal, but in the iteration we will not achieve that.

Based on the errors we see, we update the parameter triple (µG, λS , µS) and repeat until the

errors in the three equations (5.20)–(5.22) are negligible. Notice that Tu, Tu, and Tp are all

constant so does not add any complexity to the system of equations.

Since we are confronted with a three-dimensional iteration, we do not want to proceed in

a haphazard way. Hence, we apply nonlinear programming to do this iteration. The idea is

to find parameter triple (λS , µS , µG) minimizing errors between the right-hand and left-hand

sides of equations (5.20), (5.21) and (5.22). To formulate a minimization problem, we define

three error functions ǫ1, ǫ2 and ǫ3 as a function of parameter triple (λS , µS , µG) as follows:

ǫ1 ≡ ǫ1(λS , µS , µG) = δ(Tu)− πG{1− PG,G(Td)− PG,S(Td)} − πS{1− PS,G(Td)− PS,S(Td)},

ǫ2 ≡ ǫ2(λS , µS , µG) = γG · YG − PG,G(Tp) · YG − PG,S(Tp) · YS − {1− PG,G(Tp)− PG,S(Tp)}YD,

ǫ3 ≡ ǫ3(λS , µS , µG) = γS · YS − PS,G(Tp) · YG − PS,S(Tp) · YS − {1− PS,G(Tp)− PS,S(Tp)}YD.
(5.24)

Our objective, then, is to find λS , µS and µG such that ǫ1(λS , µS , µG) = ǫ2(λS , µS , µG) =

ǫ3(λS , µS , µG) = 0. To obtain values of ǫ1, ǫ2, and ǫ3 for a given parameter triple of λS , µS

and µG, we have to calculate PG,G(T ), PG,S(T ), PS,G(T ), which are elements of P (t) matrix

in (4.12). As indicated above, this involves finding eigenvalues and eigenvectors of Q matrix

in (4.9). From (4.14), we derived eigenvalues as a function of λS , µS and µG. Given the

eigenvalues, the eigenvectors can be calculated as in (4.16), but also in other ways. Since Q is

only a 2 × 2 matrix, calculation of the eigenvectors for given eigenvalues can be done easily.

One way is to use the Schur decomposition algorithm, as in Anderson et al. (1999), which is

implemented in MATLAB as the eig function. Then Λ(t) can be calculated easily from (4.11),

so we can easily compute the U and Λ matrices numerically. The final step is to compute

PG,G(t), PG,S(t) and PS,G(t) from P (t) = UΛ(t)U−1.

We can obtain the desired parameter triple (λS , µS , µG) by solving the following constrained
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minimization problem:

min
λS ,µS ,µG

max{|ǫ1|, |ǫ2|, |ǫ3|}

s. t.

ǫ1 = δ(Tu)− πG(1− PG,G(Tu)− PG,S(Tu))− πS{(1− PS,G(Tu)− PS,S(Tu)},

ǫ2 = γG · YG − PG,G(Tp) · YG − PG,S(Tp) · YS − {1− PG,G(Tp)− PG,S(Tp)}YD,

ǫ3 = γS · YS − PS,G(Tp) · YG − PS,S(Tp) · YS − {1− PS,G(Tp)− PS,S(Tp)}YD

λS , µS , µG ≥ 0

(5.25)

With (5.25), we regard λS , µS and µG as the variables. Since the transition probabilities

PG,G(t), PG,S(t) and PS,G(t) are functions of the BD rates λS , µS and µG through the eigen-

value and eigenvector calculation, we must regard (5.25) as a nonlinear programming (NLP)

problem, for which it is natural to apply an iterative procedure. However, since we only have

three variables, we are able to solve the NLP (5.25) easily. One effective way is to use Sequen-

tial Quadratic Programming (SQP), as in Schittkowski (1986). With SQP, at each iteration,

an approximation is made of the Hessian of the Lagrangian function using a quasi-Newton up-

dating method. That is then used to generate a QP subproblem whose solution is used to form

a search direction for a line search procedure. This algorithm is implemented in MATLAB via

the functions fminsearch and fmincon. Both functions solve (5.25) within seconds.

5.3. The Variance and the Return of a Good Fund

So far, we have assumed that the three returns YG, YS and YD in the three states can be

specified in advance. We can specify one of these, which we take to be YG, by exploiting an

equation for the variance of the relative annual returns in steady state. Since we are focusing

on the relative returns, the variance σ2 coincides with the second moment.

To express the steady state variance σ2, we need the steady-state probabilities. Given that

πG and πS are the stationary probabilities for the transition matrix in (4.18), the stationary

probability that the fund dies at the end of Tu years when it starts alive is

π′

D = πG [−PG,G(Tu)− PG,S(Tu)] + πS [1− PS,G(Tu)− PS,S(Tu)] (5.26)

We then also define π′

G and π′

S accordingly, using (4.19):

π′

G = πG · PG,G(Tu) + πS · PS,G(Tu)

π′

S = πG · PG,S(Tu) + πS · PS,S(Tu)
(5.27)

where (πG, πS) is defined in (4.19).
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We obtain an expression for the steady-state variance of returns by supposing that the

returns in good, sick and dead states are the deterministic values YG, YS and YD, respectively.

Thus, the variance satisfies the equation

σ2 = π′

G · Y 2
G + π′

S · Y 2
S + π′

D · Y 2
D , (5.28)

where π′ is defined in (5.26) and (5.27).

We applied equation (5.28) to determine YG for given YS ≡ −1.5σ and YD ≡ −2.0σ, just

as DPW09. To do so, we simply iterate on the two parameters YG and σ2, using a simple

bisection search. As in Figure 7 of DPW09, we found that there is a nearly linear positive

relation between YG and σ2 for given YS and YD. Thus, we are able to easily achieve any

desired σ, such as σ ≈ 0.1, by iterating YG.

While we can use judgement to specify the values YS and YD, to obtain the returns YS and

YD in the sick and dead states for simplicity, as we have more reliable and accurate hedge-fund

returns, we note that we can calso lassify relative returns by introducing two thresholds U and

L. We can classify the fund as good, sick or dead if the relative return falls in the interval

[U,∞), (L,U) or (−∞, L], respectively. With this classification, we can let YS and YD be the

average retuns in the sick and dead intervals. The fitting algorithm provides an estimate of

the parameters µG, µS , λS and YG as a function of the time parameters Tp, Tu and Td, the

persistence parameters γG and γS , the death parameter δ and the relative return parameters

YS and YD. As we will illustrate, this provides an opportunity to do sensitivity analysis.

5.4. Application of the Algorithm

Below are parameter values obtained using the NLP in (5.25) and iterating YG values. In the

following table, ǫ records the maximum absolute value of errors in equations (5.20), (5.21)

and (5.22), obtained where we elected to terminate the algorithm. We let Tp = Tu = 1 for

simplicity but these may have any values, depending on the time measure from the data.

Table 1: Parameter values for the CTMC model as a function of δ with YS = −0.15, YD =
−0.20, σ = 0.1, γG = γS = 0.5, Tp = Tu = Td = 1

δ µG λS µS YG YS YD σ ǫ

0.00 0.2133 0.4798 0.0000 0.0667 -0.15 -0.20 0.1000 2.2626× 10−7

0.03 0.2191 0.5533 0.1250 0.0684 -0.15 -0.20 0.1000 2.8191× 10−7

0.06 0.2262 0.7025 0.3495 0.0699 -0.15 -0.20 0.1000 3.1488× 10−7

0.09 0.2386 1.0980 0.8726 0.0713 -0.15 -0.20 0.1000 5.3025× 10−6
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Unlike the DTMC model, where the parameter r becomes negative if δ exceeds 0.07 for

the base-case parameter values, for the CTMC we can fit the model to δ up to around 0.13.

When δ ≈ 0.13, we observe that the CTMC lockup premium becomes nearly 0.

6. The Lockup Premium Calculation

Once we have fit all the parameters, we can calculate the lockup premium. Denote the initial

state of a fund by S0. For a benchmark case (no extended lockup), at the end of each updating

time (Tu), investor can redeem his money from sick fund and reinvest the money in the good

fund. Thus all funds starts with a good state each time. In this case, the fund’s annual return

up to n year is

E

[

e
∑n·k

i=1
R1

i |S0 = G
]

=
[

P (Tu)G,G · eYG + P (Tu)G,S · eYS + P (Tu)G,D · eYD
]n·k

. (6.29)

Now we consider a fund in n-year lockup case. The fund’s expected return up to n year if

the fund is under n-year lockup is

E

[

e
∑n·k

i=1
R2

i |S0 = G
]

. (6.30)

Calculation of (6.30) is not immediate as (6.29) but this can be done by a recursion. Recall

that the transition probability in the CTMC model, P (t), is obtained in (4.18). Define

m(t, s) ≡ E

[

e
∑t

i=1
R2

i |S0 = G,St = s
]

· P (t)G,s, (6.31)

where P (t) defined in (4.12) represents the probability of reaching St from G at time t.

Conditioning on the state of a fund at time t, (6.31) is obtained from the following recursion

formulas:

m(t, G) = P (Tu)G,G · eYG ·m(t− 1, G) + P (Tu)S,G · eYG ·m(t− 1, S)

m(t, S) = P (Tu)G,S · eYS ·m(t− 1, G) + P (Tu)S,S · eYS ·m(t− 1, S) and

m(t,D) = (1− P (Tu)G,G − P (Tu)G,S)e
YD ·m(t− 1, G)

+(1− P (Tu)S,G − P (Tu)S,S)e
YD ·m(t− 1, S), (6.32)

where m(1, G) = P (Tu)G,G · eYG , m(1, S) = P (Tu)G,S · eYS and m(1, D) = (1 − P (Tu)G,G −
P (Tu)G,S)e

YD . Notice that if a fund becomes dead before year n, it starts with a good state.

Furthermore, the new good fund is now under 1-year lockup instead of n-year. Because of this,
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care must be taken for a sample path once a fund becomes dead. We finally have

E

[

e
∑n·k

i=1
R2

i |S0 = G
]

= m(n · k,G) +m(n · k, S)

+
n·k
∑

t=1

m(t,D)
(

P (Tu)G,Ge
YG + P (Tu)G,Se

YS
)n·k−t

. (6.33)

Finally, the premium is calculated from (3.8) given that S0 = G. The definition of the

benchmark case is flexible.

7. Sensitivity Analysis for the New Markov Chain Model

In this section we do sensitivity analysis on the three performance measures, γ (γG, γS), δ and

σ, respectively. We also analyze the impact of time periods used to estimate the performance

measures, i.e., the updating time (Tu), the time used to compute the persistence factor (Tp),

and the time period for computing the probability of death (Td) on the lockup premium.

7.1. How the Lockup Premium Depends on γ (γG, γS), δ and σ

We first study how much the lockup premium depends on the death probability δ. Then,

we see how much the premium depends on the model parameters γ(γG, γS) and σ. When

changing one performance measure in the sensitivity analsis, we fix all other measures just as

the benchmark case with δ = 0.03 in Table 1.

Table 1 shows the model parameters for δ = 0, 0.03, 0.06, and 0.09 and Figure 2 shows

the lockup premium for different δ values. The figures suggest that as the death probability δ

increases, the n-year lockup premium decreases. Notice that the CTMC model can incorporate

the probability of death being 0.09 which is not possible in the DTMC model.

Table 2 shows the model parameters for γ = 0.4, 0.5, and 0.6 and Figure 3 (a) shows the

lockup premium for γ = 0.4, 0.5, and 0.6. We observe that as the persistence factor γ increases,

the n-year lockup premium increases.

Table 2: Parameter value sets for γ ranging from 0.3 to 0.6

γ δ µG λS µS YG YS YD
0.3 0.03 0.3750 0.9646 0.1184 0.0659 -0.15 -0.20
0.4 0.03 0.2868 0.7315 0.1210 0.0670 -0.15 -0.20
0.5 0.03 0.2204 0.5531 0.1240 0.0690 -0.15 -0.20
0.6 0.03 0.1642 0.4142 0.1317 0.0704 -0.15 -0.20
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Figure 2: The lockup premium for the CTMC model for δ = 0, 0.03, 0.06, and 0.09. The
parameter values come from Tables 2.

We next consider two separate persistence factors, γG and γS . The parameter values are

given in Table 3 and the sensitivity of the lockup premium with respect to γG and γS is shown

in Figure 3 (b) . As γG increases and γS decreases, the fund in the state G tends to be in the

same state while the fund in the S state tends to be in other states than the state S in the

next time period. Since there is less chance of being in the state S, it is observed that the

lockup premium decreases.

Table 3: Parameter value sets for γG and γS

γG γS δ µG λS µS YG YS YD
0.4 0.6 0.03 0.2238 0.4430 0.1041 0.0585 -0.15 -0.20
0.5 0.5 0.03 0.2204 0.5531 0.1240 0.0690 -0.15 -0.20
0.6 0.4 0.03 0.1962 0.6807 0.1612 0.0768 -0.15 -0.20

We lastly check the sensitivity of the lockup premium with respect to σ. Our TASS database

analysis estimates σ of annual returns for each year is lower than 0.20 in most cases. We here

highlight the sensitivity of the lockup premium for σ = 0.05, 0.10, and 0.15 with γ = 0.5. Table

4 provides the parameter value sets and Figure 4 shows the corresponding lockup premiums.

We see that the premium increases in σ.

7.2. How the lockup premium depends on Tu, Tp, and Td.

The CTMCmodel is flexible in calibration such that the three key-performance measures can be

estimated in different time periods. Since the three measures can be estimated independently,

allowing different time period for each measure could be helpful to an investor who has different
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(a) For γ = 0.3, 0.4, 0.5, 0.6
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Figure 3: The lockup premium for the CTMC model (a) for γ = 0.3, 0.4, 0.5 and 0.6 for other
parameter values in Tables 2 and (b) for γG 6= γS for other parameter values in Table 3.

Table 4: Parameter value sets for σ = 0.05, 0.10, 0.15

σ δ µG λS µS YG YS = −1.5σ YD = −2.0σ

0.05 0.03 0.8434 0.3721 0.5025 0.0342 -0.075 -0.10
0.10 0.03 0.8434 0.3721 0.5025 0.0684 -0.150 -0.20
0.15 0.03 0.8434 0.3721 0.5025 0.1026 -0.225 -0.30
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Figure 4: The lockup premium for σ = 0.05, 0.10, and 0.15.

views in these estimation-time periods. In this section, we investigate how the lockup premium

in the CTMC model depends on the three measurement times Tu, Tp, and Td.

We first study how much the lockup premium depends on the updating period Tu. As Tu

decreases, an investor can rebalance his portfolio of hedge funds more frequently. For a fixed

lockup period, as Tu decreases, the investor has more updating frequencies in a year, which is
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restricted by the lockup condition. Thus if all the other parameter values are the same, the

lockup premium may increase as Tu decreases. However, at the same time, the investor more

frequently rebalances a fund in the state D with a fund in the state G, which may decrease the

lockup premium. In Figure 5, we numerically calculate the lockup premium up to six years

for Tu = 0.25, 0.5, and 1 year. Parameter values are shown in Table 5. In order to compare

the lockup premium for different Tu, we adjust annual relative return rates under good, sick,

and dead states from ith to i + 1th updating time by multiplying Tu, i.e., TuYG, TuYS , and

TuYD. We then fit such parameters to the standard deviation of return for Tu, i.e., σ
√
Tu. The

figure shows that as the rebalance period increases, the lockup premium decreases. Thus it

can be said that the investor requires more compensation for the lockup condition when there

are more rebalancing opportunities that are missed because of the lockup period.

Table 5: Parameter value sets for Tu = 0.25, 0.5, and 1

Tu µG λS µS YG YS ≡ −1.5Tuσ
√
Tu YD ≡ −2.0Tuσ

√
Tu σ

√
Tu

0.25 0.5900 0.1084 0.0376 0.1068 -0.038 -0.05 0.0500
0.5 0.4358 0.2758 0.0531 0.0893 -0.075 -0.10 0.0708
1 0.2191 0.5533 0.1250 0.0684 -0.150 -0.20 0.1000

We also investigate the impact of Tp on the lockup premium. As Tp decreases, the persis-

tence factor is observed in a shorter period. If the persistence factors are the same for different

Tp, the impact of the persistence factor becomes higher with shorter Tp than with the longer

one. Figure 6 shows that the lockup premium is increasing as Tp decreases, if γ remains the

same for each Tp. Table 6 shows the parameter values.

Table 6: Parameter value sets for Tp = 0.25, 0.5, and 1

Tp µG λS µS YG YS ≡ −1.5Tuσ YD ≡ −2.0Tuσ

0.25 0.8163 2.0287 0.1103 0.0156 -0.15 -0.20
0.5 0.4182 1.0431 0.1148 0.0322 -0.15 -0.20
1 0.2191 0.5533 0.1250 0.0667 -0.15 -0.20

Lastly, we investigate how the lockup premium depends on Td. If the death probability

δ is the same for different Td, the annual death probability with smaller Td tends to produce

more funds in state D for given time period. Figure 7 suggests that the lockup premium is

increasing as Td increases, just as the premium increases as δ increases for fixed Td. Table 7

shows the parameter values.
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Table 7: Parameter value sets for Td = 0.25, 0.5, and 1

Td µG λS µS YG YS ≡ −1.5Tuσ YD ≡ −2.0Tuσ

0.25 0.2744 3.5967 3.3273 0.0726 -0.15 -0.20
0.5 0.2262 0.7022 0.3491 0.0699 -0.15 -0.20
1 0.2191 0.5533 0.1250 0.0684 -0.15 -0.20
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Figure 5: The lockup premium for Tu = 0.25, 0.5 and 1 years.
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Figure 6: The lockup premium for Tp = 0.25, 0.5 and 1 years.

7.3. Comparison of the CTMC and the DTMC Models

In this section, we compare the lockup premium in the CTMC model (Figure 2) to the one in

the DTMC model (Figure 8 (a) of DPW09).

First, we observe that the lockup premiums in the DTMC model and the CTMC model

have similar values. However, we also observe that the lockup premium in the CTMC model

is slightly larger than for the DTMC model under the same performance measures and lockup

period.
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Figure 7: The lockup premium for Td = 0.25, 0.5 and 1 years.

We compare the transition probabilities in the DTMC and CTMC models under the same

performance measures and measurement times (benchmark case) in order to understand this

difference. We see that the transition probabilities from the state G to G in both models

are almost the same (0.850 in the DTMC model, 0, 846 in the CTMC model) and so are the

transition probabilities from G to S. The probabilities from S to G are also similar (0.358

in the DTMC model and 0.365 in the CTMC model). However, the difference in transition

probabilities from S to S (0.493 in the DTMC model and 0.543 in the CTMC model) is

relatively bigger than the differences in other probabilities. Thus, a fund in the state S is more

likely to stay in S in the next time period in the CTMC model than in the DTMC model,

which makes the lockup premium slightly bigger in the CTMC model.

The transition probability from the state S to the state D in the DTMC model (0.132) is

bigger than that (0.092) in the CTMC model. Recall that once a fund decomes dead in the

state D, the lockup condition is not valid any more and the fund is replaced with a fund in

the state G, decreasing the lockup premium. This can also increase the lockup premium in the

CTMC model.

Comparing the three equations (5.20)-(5.22) that are used to parameter fitting in the CTMC

model to (6.4)-(6.6) in DPW09 in the DTMC model, we see that the difference is additional

terms in (5.20) and (5.22) that incorporate the transition from G to D in one time period.

As a result of these additional terms, the transition probability from S to S is larger and the

transition probability from S to D is smaller in the CTMC model than in the DTMC model.

We thus conclude that while the lockup premium in the CTMC model increaes only slightly

by allowing the transition from G to D in one year, which is caused by allowing the transition

from the state G to the state D within one time period.

23



8. Conclusion

In this paper, we have developed new Markov chain models to calculate the premium from

extended hedge-fund lockups. As in our previous paper DPW09, we use a highly stylized

three-state model to represent the state of a hedge fund, using the states “good,” “sick” and

“dead.” Since investors can redeem their investment (or part of it) and reinvest if the fund

dies, the important state for extended hedge fund lockup is the sick state.

We define the lockup premium as a compensation to the investor for the opportunity cost

of restricted re-balancing activities; see §3. In order to calculate the lockup premium, we

compare two identical hedge funds with and without extended lockups. The premium is the

fixed annual rate of return that makes the expected returns of the two funds the same.

The new CTMC model for the state of a hedge fund allows the fund state to change

continuously in time. The previous DTMC model in DPW09 required transitions from good

to dead to take at least two years. With the new CTMC model, that restriction is removed.

The CTMC model also provides increased flexibility in modeling and performance-measure

estimation. First, the CTMC model allows flexible performance measure estimation, e.g.,

semi-annually or quarterly from the data. Second, the CTMC model allows wider ranges of

acceptable performance measures than the DTMC model does.

In §4 we gave an explicit representation of the ergodic two-state DTMC model based on the

three CTMC model parameters µG, µS and λS . In order to calibrate these three parameters,

in §5 we developed a nonlinear programming algorithm, which can be easily solved numerically

with MATLAB. In order to calibrate the standard deviation of returns, σ, we used an efficient

iterative search algorithm. Thus we succeeded in developing an efficient algorithm to carry

out the model fitting. The model fitting yields the parameters µG, µS , λS and YG plus

the premium for extended lockup as a function of the time parameters Tp, Tu and Td, the

persistence parameters γG and γS , the death parameter δ and the relative return parameters

YS and YD, where the parameters γG, γS , δ, YS and YD can be estimated from historical

data, as we illustrated by applying the TASS data. We then can compute the premium for

extended lockup as a function of the number n of years of extended lockup and again the time

parameters Tp, Tu and Td, the persistence parameters γG and γS , the death parameter δ and

the relative return parameters YS and YD.

We then conducted sensitivity analysis to show how the premium for extended lockup

depends on the variables. The sensitivity analysis quantifies how the lockup premium increases
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as a function of the persistence factor γ and the standard deviation σ, but decreases as a

function of the death probability δ. We also have examined how the lockup premium depends

on different values of measurement times, Tu, Tp and Td. We conclude that the impact of three

performance measures - δ, γ and σ - have a significant impact on the lockup premium just as

we saw for the DTMC models in DPW09. Also, we conclude that while the impact of Tp are

relatively smaller on the lockup premium, the impact of Tu and Td can be significant.

The numerical values of the lockup premium with the new Markov chain models are very

similar to those for the previous DTMC model. We thus conclude that the more rudimentary

DTMC model does not suffer greatly from its restriction to yearly updating. A slight increase

in the lockup premium in the new model can be caused by allowing the transition from good

to sick within one year.

Our approach here may also be useful to study extended lockup premiums for other invest-

ment opportunities that have the good-sick-dead structure treated here; e.g., private equity

funds, where limited partners are expected to maintain their interest in the fund until it is

unwound, typically over a ten-year life.
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