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Abstract 

It is well known that the M/G/1 busy-period density can be characterized by the Kendall functional equation for its 
Laplace transform. The Kendall functional equation can be solved iteratively to obtain transform values to use in 
numerical inversion algorithms. However, we show that the busy-period density can also be numerically inverted 
directly, without iterating a functional equation, exploiting a contour integral representation due to Cox and Smith 
(1961). The contour integral representation was originally proposed as a basis for asymptotic approximations. We derive 
heavy-traffic expansions for the aysmptotic parameters appearing there. We also use the integral representation to derive 
explicit series representations of the busy-period density for serval service-time distributions. In addition, we discuss 
related contour integral representations for the probability of emptiness, which is directly related to the waiting-time 
distribution with the LIFO discipline. The asymptotics and the numerical inversion reveal the striking difference between 
the waiting-time distributions for the FIFO and LIFO disciplines. 

Keywords. Busy period; Probability of emptiness; M/G/1 queue; Laplace transforms; Numerical transform inversion; 
Last-in-first-out service discipline 

1, Introduction 

Consider the standard M/G/1 queue with service 
rate 1 and arrival rate p < 1. Let the serice-time 
distribution have a density g(t) and let f f ( s ) -  

oo 

So e-S'g(t) dt be its Laplace transform, where s is 
complex with Re(s) > 0. Similarly, let b(t) be the 

* Corresponding author. 

density of the busy period and let b(s) = 
oo 

So e-S tb( t )d t  be its Laplace transform. It is well 
known that b(t) is characterized by the Kendal l  

func t ional  equation for b(s), i.e., 

b(s) = ~(s + p - pb(s)); (1) 

e.g. see [13, Eq. (5.137), p. 212; 6, Eq. (28)]. 
Unfortunately, explicit representations for the 

transform b(s) are unavailable, except for special 
cases such as the M/M/1 model [3]. However, as 
discussed in [5], for any s (complex or real), the 
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Laplace transform b(s) can easily be calculated 
from (I) by iteration, with upper and lower bounds 
on the cumulative distribution function (cdf) hold- 
ing when we start with b(s) on the right replaced by 
0 and 1. Hence, we can numerically calculate the 
values of the density b(t) by numerically inverting 
b(s), using iteration to obtain the required trans- 
form values. 

Here we observe that it is also possible to obtain 
a direct contour integral representation for b(t), so 
that we can calculate b(t) for any t by directly 
numerit'ally inverting a Laplace transform without 
performing any extra transform iteration. The direct 
representation is obtained from the series repres- 
entation 

b(t) = ~. e-Pt(pt)ngn+l(t)/(n + 1)!, (2) 
n=0 

where g,(t) is the density of the sum of n i.i.d, service 
times; see [13, p. 226]. This series representation is 
often called the Takhcs series representation for the 
M/G/1 busy-period density, evidently due to its 
appearance in [18; 19, Eq. (34)], but it was obtained 
independently by Cox and Smith [10, Eq. (48), p. 
155]. Both proofs involve a special case of the 
ballot theorem, which was latter discussed exten- 
sively by Tak~tcs [21]. (The series representation (2) 
is associated with the two-dimensional Takhcs 
functional equation for the joint distribution of the 
length of a busy period and the number of cus- 
tomers served in that busy period.) 

We will show in Section 2 that we obtain from (2) 
the inversion (or contour integral) representation 

b(t) = (pt)-  l q~- l ( exp(_  pt(1 _ ~(s))), (3) 

where ~ - 1  is the Laplace transform inversion op- 
erator, i.e., the Bromwich contour integral 

1 I a+im 
f ( t )  ==- ~ -  1 (f(s))(t) = ~ i  j .  _ ioo e s ' f ( s )  ds, (4) 

with the contour being a vertical line s = a such 
that f (s)  has no singularities on or to the right of it. 
Algorithms to calculate f ( t )  from f (s)  via (4) are 
described in [4]. We note that here b(t) is a density 
instead of a cdf or complementary cdf, and so is not 
bounded by 1. Hence, we do not have such a simple 
bound on the aliasing error in [4], but nevertheless 

the inversion is easily done. The possibility of con- 
structing a contour integral representation for b(t) 
is noted by Cox and Smith [10, p. 156], but they do 
not discuss numerical inversion. 

Note that the argument of ~ - ~  in (3) contains 
the variable t. Thus, the argument of L,a- ~ in (3) is 
not the Laplace transform of the function ptb(t), 
t > 0. Nevertheless, for each fixed t, we can calcu- 
late b(t) by doing an inversion. 

Cox and Smith emphasize the importance of 
contour integral representations such as (3) for do- 
ing asymptotics. In particular, they apply saddle- 
point methods as in [16, p. 121] to establish the 
asymptotic behavior for the busy-period density 
tail, i.e., they show that 

b(t) ~ ~ ( 7 ~ t 3 )  - l/2e-t/t as t ~ ~ ,  (5) 

where f ( t )  ,,, g(t) means that f ( t ) /g( t )  ~ 1 as t ~ m. 
The asymptotics for b(t) in (5) easily extend to the 
associated complementary cdf and many other 
M/G/1 quantities via integral (or stationary-excess) 
representations; see [6, Theorems 2-4]. The para- 
meter r in (5) is the relaxation time, which describes 
the time required for the basic queueing processes 
to approach steady state. Here in Section 3 we 
develop heavy-traffic expansions for the relaxation 
time z and the asymptotic constant at appearing in 
(5), paralleling our treatment of the GI/G/1 wait.- 
ing-time tail probabilities in [2]. As before, we see 
what aspects of the service-time distribution the 
relaxation time and asymptotic constant primarily 
depend upon. 

In Section 2 we derive the inversion formula (3). 
In Section 3 we present the heavy-traffic expansions 
for the tail asymptotics in (5). In Section 4 we use 
formula (3) to derive explicit results in special cases. 
In Section 5 we discuss a representation related to 
(3) for the probability of emptiness due to Bene] 
[8]. There we also recall the remarkable fact due to 
Takhcs E20] that the M/G/1 waiting-time cdf with 
the last-in-first-out (LIFO) discipline can be ex- 
pressed directly in terms of the M/G/1 emptiness 
probability function. Hence, we can calculate the 
M/G/1 LIFO waiting-time cdf directly via numer- 
ical transform inversion and we can establish 
asymptotics. The M/G/1 LIFO waiting-time distri- 
bution has asymptotics just like (5). Indeed, the 
associated asymptotic decay rate z-  ~ is the same as 
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for the busy-period density in (5). The asymptotic 
decay rate is smaller for LIFO than for FIFO. Also, 
with LIFO there is the t-3/2 factor instead of the 
pure exponential asymptotics typically holding 
with F IFO [2]. We illustrate with a numerical 
example comparing the F IFO and LIFO M/G/1 
waiting-time cdf's (for a service-time distribution 
with a non-rational Laplace transform). 

2. Derivation of formula (3) 

Note that we can rewrite (2) as 

b(t) = h(t, pt), 

where 

(6) 

h(t, x) = x-1(1 - e-~) f ( t , x )  

and 

(7) 

f ( t , x ) = ( 1 - e - X )  -1 ~ e-Xx"y,(t)/n!, t >~O. 
n = l  

(8)  

For each x > 0, f ( t ,  x) as a function of t is a prob- 
ability density function, in particular, the condi- 
tional density of a compound Poisson distribution 
given that there is at least one Poisson event. Its 
Laplace transform is 

f ( s , x ) -  e - ~ t f ( t , x )d t=(1  - e - ~ )  -1 

X [ e  - x ( l  -#(s))  __ e-X]. (9) 

Hence, we can directly calculate b(t) by calculating 
f ( t ,  x) by numerically inverting f(s ,  x) in (9) and 
then using (6) and (7). 

We can simplify the transform expression by 
eliminating the constant. This corresponds to 
adding an atom at 0 to both sides. In particular, 

f ( t , x )  + e-X(1 - e-X) -16(0 

= (I - e-X) - i ~ -  1(e-X(1 -~(~)), (I0) 

where 6(0 is the delta function representing an 
atom at O. If we restrict attention to strictly positive 
t, then the atom does not appear. Combining (6), (7) 
and (I0), we obtain (3). 

We have performed numerical calculations with 
(3) and found that the results agree with those 
obtained by the method of [5]. 

3. Heavy-traffic expansions for the asymptotic para- 
meters 

Cox and Smith [10] establish the asymptotic 
relation (5) using saddle-point methods; see [16, p. 
121 and Eq. (49), p. 156]. They show that the 
asymptotic decay rate (reciprocal of the relaxation 
time) is 

~- '  = p + ~ - p ~ ( - ~ ) ,  ( l l )  

where ~ is the unique real number u to the left of all 
singularities of the moment generating function 
g ( - s )  (assumed to exist) such that 

~ ' ( - u )  = - p - '  (12) 

Then 

= [2p3(~ , , (  _ ( ) ]  - 1/2 ( 1 3 )  

It is interesting to compare the root ~ of (12) and 
the decay rate z -  1 in (11) with the asymptotic decay 
rate q of the steady-state waiting-time complement- 
ary cdf, which is discussed in [2]. The asymptotic 
decay rate r/ is the root of the equation 
~( -u )  = 1 + p- lu ,  from which we see that z -1 < 

< q. The heavy-traffic expansions give good 
quantitative estimates. It turns out that r /=  
O(1 - p), while ~- 1 = O((1 - p)2) as p --* 1. 

To obtain the heavy-traffic expansions for z-  
and ~t-l, we proceed as in [2], and consider the 
power series representation for ~(s) involving mo- 
ments and expand r -1 and 5 -1 in powers of 
(I - p). We obtain 

z-  1 (1 - -  p ) 2  
+-~22) (I + ( I  - p ) ( l  - ~ )  

+ (1 - p ) 2 [ 1  - ~ ( 2  - 9 ~ )  _ ~,]) 

+ O((1 - p)S), (14) 

and 

- 1  = x / 2 ( 1  + c ~ ) ( 1  - 3 ( 1  - p ) ( 1  - ~))) 

+ 0 ( ( 1  - p)2), (15) 
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where mk is the kth service-time moment (with 
m ,  = 1), 

2 m3 m4 
c~ = m 2 - - 1 ,  ¢=~J~rn-----v, 7- -  12m 3. (16) 

We now illustrate the asymptotic approximation 
(5) with (11)-(13) and the associated heavy-traffic 
approximation using (14)-(16) by comparing them 
to the exact values (computed from both (3) and 
[2, 3]) for the case of a gamma service-time distri- 
bution with shape parameter ½, i.e., 

y(t) = (2rtt)-1/2e-'/2, O(s) = (1 + 2s)-1/2. (17) 

The first four moments of this service-time distribu- 
tion are 1, 3, 15 and 105. Let p = 0.75. In this case, 
the exact asymptotic parameters are z - 1 =  
0.011777 and ct = 0.6996, while the heavy-traffic 
approximations from (14) and (5) are ¢ - 1 =  
0.011764 and ~ = 0.6928. The numerical results for 
the density function itself are given in Table 1. 

As in the M/M/1 case, which was studied by 
Abate and Whitt [3], the asymptotics do not pro- 
duce good approximations until relatively large 
times. On the other hand, the heavy-traffic approxi- 
mations tend to match the true asymptotics quite 
well when p is not too small. 

We conclude this section by noting that (5) does not 
hold with a long-tail service-time distribution. Then 
(12) does not have a solution. De Meyer and Teugels 
[11] establish the tail behavior of the busy-period 
cdf B(t) in this case. Let G(t) be the service-time 

cdf. They show that 1 - B ( t ) , , , ( 1 - p )  - " + °  
t -eL(t)  as t ~ c~ for a slowly varying function L(t) 
and c ~> 1 if and only if 1 - G(t) ~ t -eL(t)  as t ~ oo. 
In the case of non-integer c, their argument yields 
the corresponding result for the densities as well. 
Related results for FIFO waiting times are dis- 
cussed in [1]. 

4. Other consequences 

In this section we mention other consequences of 
(3). We start by giving an alternative expression to 
(3), namely, 

bit)  = t - ' ~ - ' I - O ' I s )  e x p ( - p t ( 1  - O(s)))). (18)  

Formula (18) can be obtained by considering the 
conditional busy-period density b(t, O) given that 
the first customer has service time 0. Cox and Smith 
[10] established the representation 

0e-  ot 
b(t, O) - L~' - l (exp(-s0  + ptO(s))). (19) 

t 

To get (18) from (19), we uncondition, writing 

b(t) = f :  b(t, O)g(O)dO. (20) 

Combining (19) and (20) and changing the order of 
integration yields (18). 

It is interesting that (3) is obtained from (18) 
by removing -O' (s )  inside L,e -1 and adding p-1 

Table 1 
A comparison of the exact and approximate formulas for the busy-period density 
in the case of the gamma service-time distribution in (17) 

Time Exact Asymptotic Heavy traffic (5), (14), (15) 

0.3 0.540550 1.7 1.7 
0.5 0.355860 0.78 0.78 
1.0 0.180100 0.27 0.27 
2.0 0.078626 0.096 0.095 
5.0 0.021867 0.024 0.023 

10.0 0.007573 0.0078 0.0078 
20.0 0.002423 0.00246 0.00244 
40.0 0.000683 0.000689 0.000682 
60.0 0.000294 0.000296 0.000294 
80.0 0.000151 0.000152 0.000151 
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outside. To relate (3) to (18), note that if h(t) = 
&a- l(e~0~)), then 

t h ( t ) = S t ' - ~ (  d ) 
- dss e ' ° ~  = ~ -  l ( - O ' ( s ) e ' ° ~ ) "  

(21) 

In the case of an exponential service-time distri- 
bution, 0(s) = (1 + s)- 1, so that (18) becomes 

b(t) = t -15a- l ( (1  + s)-Zexp(-pts/(1 + s)). (22) 

We can recognize that the function to be inverted in 
(22) belongs to the family of "Bessel" density func- 
tions 

f~,k(t) = (t/c)k/Zexp(-(c + t))l~(2x/a), t ~> 0, (23) 

with transforms 

f,k(s) = (1 + s) -tk+ 1)exp(-cs/(1 + s)); (24) 

see [12, Eqs. (3.11) and (3.12), p. 438; 7, p. 148]. 
Hence, 

b(t) = t - l f ,  t.,(t), t >~0, (25) 

agreeing with the known result, e.g., [3, Eq. (2.8); 10, 
p. 148]. 

We now show that it is possible to derive explicit 
expressions in other cases. First suppose that the 
service-time density is gamma with shape parameter 
½ as in (17). Then, using transform pairs (5.66) on 
p. 255 and (1.27) on p. 210 of [15] and the shift rule 
(as exponential damping), we obtain 

b(t) = g(t)e -p' u x / ~ e - " ~ m l l ( 2 x / ~ ) d u .  

For small t, we can use the relation 

x/@ll(2x/y) = ~ y"l(n - 1)In!, 

(26) 

(27) 
n = l  

and integrate term by term to get 

b(t) = g(t)e - ' t  ~ (x/2pt3/2)"- 1F((n + 1)/2) (28) 
,=,  (n-- 1)mr 

Next consider the Erlang (E2) service-time distri- 
bution with 

g(t) = 4te -z', 0(s) = (1 + (s/2)) -z. (29) 

From (3), we obtain the representation 

b(t) =g(t)e -p' ~ (4pt3)"-I/n!(2n- 1)!. (30) 
n = l  

Finally, consider the uniform service-time distri- 
bution on [0, 2] with transform 0(s) = (1 - e-2~)/ 
2s. From (3), we obtain 

e - a t  
b(t) - t x / ~  Ix(tx/~O) 

Lt /2 j [  l~n 

+ e -or n~l ~ (tx/ZP(1 - [2n/t])) "-I 

x I,_l(tx//2p(1 - [2n/t]). (31) 

Formula (31) has only a few terms for small t. For 
example, 

_ e - ° t  

b(t) tv/~ p l ~ ( t v / ~ ) ,  0 ~< t < 2, 02)  

and 

e - pt 
b ( t )  = I , 

e - p t  

lo(tx/2p(1 - [2/0) ,  2 < t < 4. (33) 
2 

5. The probability of emptiness and the LIFO CDF 

A representation similar to (3) for the probability 
of emptiness was derived by Bene§ [8, Eq. (47), 
p. 155]; see also [9, Eq. (21), p. 25; 24, Eq. (1), 
p. 443]. Let Poo(t) be the probability of having an 
empty system at time t given that is started out 
empty at time 0. Bench's result is 

Poo(t) = t - ILP- l ( s -2exp ( -p t (1  - 0(s)))). (34) 

Just as with the busy-period density, the Laplace 
oo 

transform Poo(S) = So e-~'Poo(t) dt can be obtained 
by iteratively solving a functional equation, either 
via the busy-period density as in (2) or directly as in 
(37) of [6]. Given that Poo(t) is so closely related to 
b(t) (see [6, Eqs. (36) and (37)], having (34) as well as 
(3) should not be be considered surprising. Interest- 
ingly, on pp. 27-30 of [9] Bene§ gives a proof of (34) 
exploiting the ballot theorem. 
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We also note that a result similar to (34) holds for 
the complementary cdf of the busy period in the 
GI/M/1 queue because of duality; see [21, Eq. (77), 
pp. 123], namely, 

BC(t) = t - l ~ - l { s - 2 e x p ( - t ( 1  - ~(s)))}, (35) 

where a(t) is the pdf of the interarrival time with 
- 1  mean p 

It is significant that the LIFO waiting-time com- 
plementary cdf 1 - WL(t) is just 

1 - WL(t) = Poo(t) -- (1 -- p). (36) 

We note that the conditional cdf given that the 
server is busy, WL(t) /p,  coincides with the server- 
occupancy cdf Ho in (23) of [6]. Formula (36) is 
easy to verify from standard expressions in the 
literature, e.g., [14, Eq. (3.24), p. 119], but the speci- 
fic form does not seem well known. The basic LIFO 
result is due to Vaulot [22] (see also [23, 17]), but 
formula (36) itself is due to Takfics [20, Eq. (78), 
p. 500]. 

Since the exponential terms in (34) and (3) 
coincide, the asymptotics for Poo(t) and b(t) are 
closely related. Indeed, Poo(t) has the same asymp- 
totic decay rate z-~ in (11). In particular, 

Poo(t) - (1 - p) ~ to(rot3) - U2e-t/~ as t --* 0% (37) 

where 

to = p ~ / ( 2 ;  (38) 

is the root of(12) and 0t is the busy-period asymp- 
totic constant in (13). 

As in the case for b(t), (37) does not hold with 
a long-tail service-time distribution. Asmussen and 
Teugels [7] establish the tail behavior in this case. 
They show that 

Poo(t) -- (1 - p) ~ p(1 - p)~-~(c -- 1)- 

x t -~c -1 )L( t )  as t ~ o o  (39) 

for a slowly varying function L(t)  and c > 1 if and' 
only if the service-time cdf has the tail behavior 
1 - G(t) ,,, t -~L( t )  as t --* oo. 

We can also derive the asymptotics for 1 - Wr(t)  
by recognizing that the steady-state L IFO wait 
coincides with the busy period generated by the 
stationary excess of a service-time distribution. 
Then we see that the asymptotics for 1 - WL(t) is 

more closely related to the asymptotics for the 
busy-period complementary cdf 1 -  B(t) rather 
than for the density b(t). Since the asymptotic con- 
stant for 1 - B(t) is 0~z instead of ~ in (5), we can 
think of the asymptotic constant co in (38) as 
to = (~z)(p/z~2). We also obtain the heavy-traffic 
expansion for to. It is 

to = ~ / - - ~  (1 -½(1 - p ) ( 1  - 3)) 

+ 0((1 - p)2) (40) 

as p --* 1 for r in (11) and ~ in (16). 
However, we know that the asymptotics do not 

provide very good approximations, because we 
have already examined the M/M/1 special case in 
considerable detail; see [3, pp. 167, 168]. Note that 
the LIFO asymptotics here with the t-3/2 term is 
quite different from the F IFO waiting-time asymp- 
totics considered in [2]. Also note that the asymp- 
totics here for Poo(t) yields asymptotics for the 
M/G/1 workload moment cdfs Hi(t)  for 0 ~<j ~< 4 
by Theorem 2 of [6]. 

We conclude by doing a numerical example. We 
compare the M/G/1 steady-state waiting-time tail 
probabilities with the F IFO and LIFO disciplines. 
For  both disciplines, we apply the Euler algorithm 
in [4]. For  F IFO we use the Pollaczek-Khintchine 
transform, while for L IFO we use (34) and (36). We 
consider the service-time Laplace transform 

(1 + 2r(s))e - '~) (41) 

where 

r(s) = ½(x/1 + 12s - 1). (42) 

This is a generalized inverse Gaussian distribution, 
normalized to have mean 1. The density is 

g(t) = ~ e x p ( - ( ( t -  3)2/12t)), t > 0. (43) 

The first three moments are 1, 3 and 27. The wait- 
ing-time results are given in Table 2. 

To interpret Table 2, recall that the probability 
that the server is busy is p with both disciplines. 
Moreover, the mean waiting time is 

Ew = f f  P ( W  > t )d t  = P(C~2(1 - +p)1)=4'5 
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Table 2 
A comparison of the steady-state waiting-time 
tail probabilities in the M/G/1 queue with 
LIFO and FIFO disciplines 

P(W > t) 
Time 

t LIFO FIFO 

0.0 0.750 0.750 
0.5 0.478 0.653 
1.0 0.366 0.580 
5.0 0.158 0.291 

10.0 0.097 0.144 
20.0 0.0532 0.0408 
40.0 0.02455 0.00400 
80.0 0.00853 0.00005 

160.0 0.00182 0.00000 

for both disciplines. However, consistent with intu- 
ition, with LIFO longer waits are more likely. With 
numerical transform inversion, we can easily quan- 
tify this effect. 
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