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Abstract

Deterministic fluid models are developed to provide simple first-order performance descrip-

tions for multi-server queues with abandonment under heavy loads. Motivated by telephone call

centers, the focus is on multi-server queues with a large number of servers and non-exponential

service-time and time-to-abandon distributions. The first fluid model serves as an approxi-

mation for the G/GI/s + GI queueing model, which has a general stationary arrival process

with arrival rate λ, independent and identically distributed (IID) service times with a general

distribution, s servers and IID abandon times with a general distribution. The fluid model

is useful in the overloaded regime, where λ > s, which is often realistic because only a small

amount of abandonment can keep the system stable. Numerical experiments, using simulation

for M/GI/s + GI models and exact numerical algorithms for M/M/s + M models, show that

the fluid model provides useful approximations for steady-state performance measures when

the system is heavily loaded. The fluid model accurately shows that steady-state performance

depends strongly upon the time-to-abandon distribution beyond its mean, but not upon the

service-time distribution beyond its mean.

The second fluid model is a discrete-time fluid model, which serves as an approximation for

the Gt(n)/GI/s + GI queueing model, having a state-dependent and time-dependent arrival

process. The discrete-time framework is exploited to prove that properly scaled queueing

processes in the queueing model converge to fluid functions as s → ∞. The discrete-time

framework is also convenient for calculating the time-dependent fluid performance descriptions.

Subject classifications: Queues, approximations: multi-server queues with abandonment. Queues,

multichannel: approximation of non-Markovian multichannel queues with customer abandon-

ment.

Area of Review: Stochastic Models.

Keywords: queues, multi-server queues, queues with customer abandonment, multi-server

queues with customer abandonment, call centers, contact centers, deterministic fluid models,

fluid limits, law of large numbers.





1. Introduction

Motivated by applications to telephone call centers and more general customer contact

centers (with contact also made by other means, such as fax and email), there recently has been

great interest in multi-server queues with a large number of servers and customer abandonment,

e.g., see Gans et al. (2002), Garnett et al. (2002) and Mandelbaum and Zeltyn (2004). We

believe that anyone interested in the behavior of these models should know about Figure

1 below. As we will explain in Section 3, Figure 1 depicts the steady-state behavior of a

natural deterministic fluid model of a multi-server queue with abandonment under a heavy

load, in particular, the general G/GI/s + GI model. Figure 1 tells a remarkably simple story

about performance, which is remarkably accurate under heavy loads (where the arrival rate

exceeds the maximum possible service rate). In Figure 1, a major role is played by the general

cumulative distribution functions (cdf’s) of a service time, G, and of an abandon time, F .

Even though the model being described is a deterministic fluid model, these stochastic model

elements appear prominently. We start by explaining why systems with such heavy loads might

be worth considering.

Most call centers can be classified into two types: (i) revenue-generating, and (ii) service-

oriented. The revenue-generating call centers typically perform sales functions. For example,

they may take customer orders, and have the opportunity to sell customers more goods. In

contrast, the service-oriented call centers typically provide customer service, and generate

only minimal revenue. For example, they may provide technical support. In both cases, the

call centers are managed to meet service level requirements, but, naturally, there tends to be

somewhat lower standards in the service-oriented call centers (with the exception of emergency-

response centers, such as those answering 911 calls). Indeed, it is now common to outsource

service-oriented call centers. Then the outsourcing contract contains a service-level agreement

(SLA). The typical SLA contains performance targets such as (i) having less than 5% customer

abandonment, and (ii) meeting a specified service level, i.e., answering x% of all calls that are

eventually served within y seconds; common numbers are x = 80% and y = 30 seconds. With

service-oriented call centers, and especially with outsourcing, there are penalties if the SLA is

not met, but there tends to be little incentive to provide a much higher quality of service than

stipulated in the SLA. In contrast, in revenue-generating call centers it may be worthwhile to

aim to answer almost all calls immediately upon arrival, as discussed in Whitt (1999a).

With service-oriented call centers, it is often possible for a call-center operator to meet the
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Figure 1: The steady-state distribution of fluid content in the G/GI/s + GI fluid model
with mean service time 1, arrival rate ρ > 1, service-time distribution G and abandon-time
distribution F . Time increases to the left. The value at time t is the density of the fluid that
has been in the system for length t, i.e., the remaining portion of the fluid that arrived t time
units in the past. Fluid that does not abandon waits in queue until time w, after which it
enters service. Entering fluid exits before time w by abandonment, and after time w by service
completion. The corresponding queueing approximations are obtained by multiplying the fluid
content by s.
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SLA in a very efficient way. Given that the service representatives (or agents) do not need

to be located near the callers, the call centers can be very large and handle calls from wide

areas. Given that the call centers are very large, the SLA often can be met in the overloaded

regime. The overloaded regime is very efficient, because the service representatives tend to

be constantly busy. If that condition is considered too demanding, then the call center can

be operated with each agent busy 95% of the time (or any other target percentage). Then

the total number of agents is increased to compensate for the planned agent idle time. In the

overloaded regime, all working agents can be busy effectively all the time.

What may not be so apparent is that it may be possible to meet the SLA in the overloaded

regime. A key to accomplishing that goal is customer abandonment. Even a small level of

customer abandonment can compensate for a slight excess in the arrival rate over the maximum

possible service rate. To illustrate, we give an example. Our example is a standard multi-server

queue with abandonments. However, we recognize that most call centers serve multiple classes

of calls, using multiple classes of agents with different skills. Nevertheless, in our example here,

and throughout this paper, we only consider the basic call-center model with a single class of

calls handled by a single group of agents. Understanding the basic call-center model is a first

step to understanding the more complicated multi-class models.

So, here is our example: Suppose that there are s = 100 agents (servers) each working

at rate µ = 1 (with time measured in units of mean call holding times). Then we might

have an arrival rate of λ = 102. Necessarily, with those parameters, there must be at least

(2/102)×100 = 1.96% abandonment, because the long-run rate in must equal the long-run rate

out, by service or abandonment. Surprisingly perhaps, it turns out that the actual performance

in that scenario may not be that bad. The actual level of abandonment will of course be higher

than 1.96% because of stochastic fluctuations, but it need not be too high. It might be about

5%, while 80% of all served calls are answered within 30 seconds. Indeed, that is exactly what

is predicted by the classical Erlang A model, the purely Markovian M/M/s + M model, with

Poisson arrival process, exponential service times, s servers and exponential abandon times

(the final +M), when the mean service time and mean abandon time are both 5 minutes. As

shown in Table 1 of Whitt (2005a), for that model with those parameters, exactly (within

a small difference) 80% of served calls are answered within 30 seconds and 5% of the calls

abandon.

The example just considered is only slightly overloaded, because the traffic intensity is only

ρ ≡ λ/sµ = 1.02. But the traffic intensity in call centers can easily be higher. When oper-
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ating call centers are not managed well, they can become more heavily loaded. For example,

absenteeism may make the traffic intensity much higher. Thus we want to understand the

behavior of multi-server queues with abandonments in the overloaded regime. That led us

in Whitt (2005b) to develop and evaluate fluid and diffusion approximations for the purely

Markovian M/M/s/r + M model based on many-server heavy-traffic stochastic-process limits

in the efficiency-driven ED limiting regime (using terminology from Garnett et al. (2002)).

(These are special cases of limits established by Mandelbaum and Pats (1995.) The ED limit-

ing regime is characterized by having s → ∞ and λ → ∞, while holding ρ fixed with ρ > 1.

As we should expect, the performance of the fluid approximation tends to improve as s and

ρ increase. Whitt (2005b) shows that the fluid approximation for the M/M/s/r + M model

is a very crude approximation when s = 100 and ρ = 1.02, but that it is a remarkably good

approximation when s = 100 and ρ = 1.10.

Our goal is to extend Whitt (2005b) by establishing corresponding results for the more

general G/GI/s+GI queueing model, which has a general stationary arrival process (the first

G), independent and identically distributed (IID) service times with a general distribution (the

first GI), s homogeneous servers working in parallel, unlimited waiting space and IID times

for waiting customers to abandon if they have not yet begun service, again with a general

distribution (the final +GI). We are especially interested in the impact upon performance

caused by non-exponential service-time and abandon-time distributions, because statistical

analysis of telephone-holding-time data and abandon-time data has shown that the probability

distributions of both the service times and abandon times often are not nearly exponential;

see Bolotin (1994) and Brown et al. (2002).

Since the general G/GI/s + GI model is much more challenging than the Markovian

M/M/s/r+M model, it should come as no surprise that we are only partially successful in our

attempt to extend Whitt (2005b). We do develop the desired deterministic fluid approximation

for the G/GI/s + GI model, but we have not yet justified it by establishing the supporting

many-server heavy-traffic limit (corresponding to a functional law of large numbers). And we

do not even propose a refined stochastic approximation, paralleling the diffusion approximation

for the M/M/s/r + M model, let alone establish the refined many-server heavy-traffic limit,

justifying that refinement.

However, we do develop the deterministic fluid approximation, and we show that it pro-

vides useful insights, many of which are captured by Figure 1, as we will explain. Moreover,

we conjecture that the fluid approximation can be justified by a many-server heavy-traffic

4



limit theorem, under the same assumptions as for Theorem 2.2 in Whitt (2005b). In fact,

we also provide strong theoretical support for the deterministic fluid approximation by es-

tablishing such a many-server heavy-traffic limit for a related discrete-time model. Since the

discrete-time model can be made arbitrarily close to the continuous-time model, we regard our

limit theorem as providing the desired theoretical justification, from an applied engineering

perspective. Nevertheless, it would be nice to prove the continuous-time theorem.

The work here is closely related to previous work on infinite-server queues, especially heavy-

traffic limits for these models; see Duffield and Whitt (1997), Glynn and Whitt (1991) and

Krichagina and Puhalskii (1997). In relation to these papers, our main contribution here is to

focus on customer abandonments. These papers illustrate stronger mathematical results we

hope to obtain for our model.

Organization of the rest of this paper. Here is how the rest of this paper is organized:

In Section 2 we develop the deterministic fluid approximation for the G/GI/s + GI queueing

model with large s. In Section 3 we determine its steady-state behavior. We prove that the

fluid model has a unique steady-state distribution, and fully characterize that steady-state

distribution (depicted in Figure 1 for the interesting overloaded case).

In Sections 4 and 5 we present numerical examples to show that the G/GI/s + GI fluid

model provides useful results. We compare the fluid approximation to exact results for

M/GI/s+GI queueing models obtained from computer simulations and numerical algorithms.

In Section 4 we consider overloaded M/GI/s + GI queueing models with non-exponential

service-time and time-to-abandon distributions, investigating the impact of these distribu-

tions. We show that steady-state performance is significantly affected by the time-to-abandon

distribution beyond its mean but not by the service-time distribution beyond its mean. In

Section 5 we consider more examples, showing how the approximation performs as a function

of the load.

In Section 6 we establish the many-server heavy-traffic limit, with convergence to a deter-

ministic fluid process, for a family of discrete-time Gt(n)/GI/s + GI queueing models. These

models are more general than the G/GI/s + GI queueing models in Section 2, because they

have arrival processes that are both time-dependent and state-dependent. From the theoret-

ical perspective, a major innovation in our analysis is to approach the convergence problem

in discrete time. By working in discrete time, the proof becomes a relatively elementary re-

cursive application of the weak law of large numbers (WLLN). The discrete-time framework
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is also convenient for computation of the approximating fluid performance measures. Just as

the proof can be done recursively, so can the discrete-time computations, making it easy to

compute time-dependent generalizations of Figure 1.

In Section 7 we briefly discuss steady-state solutions for G(n)/GI/s + GI fluid models,

which have state-dependent, but not-time-dependent, input. When the arrival rate is state-

dependent, we can easily have multiple steady-state regimes for the fluid model.

2. The G/GI/s+GI Fluid Model

In this section we develop the G/GI/s + GI fluid model. We start with the associated

G/GI/s + GI queueing model.

The G/GI/s+GI queueing model. The G/GI/s+GI queueing model is a general multi-

server queue with customer abandonment. Customers arrive according to a general stationary

arrival process (the initial G) with arrival rate λ. Each arriving customer enters service im-

mediately upon arrival if there is a server available. If the servers are all busy, the arriving

customer waits in queue. Customers are served in order of their arrival by the first available

server. Waiting customers may also elect to abandon. We assume that each customer has a

random abandon time, after which he will abandon if he has not yet begun service. Once ser-

vice starts, the customer remains until service is provided. There are no retrials; abandoning

customers leave without affecting future arrivals.

The two GI ′s in the notation mean that the service times and abandon times come from

two independent sequences of independent and identically distributed (IID) random variables,

which are independent of the arrival process. In many applications, such as telephone call

centers, customers cannot see the queue (the case of invisible queues), and thus do not know

the experience of other customers, so that it is natural to assume that abandon times are IID.

Given that service times and abandon times come from independent IID sequences, their

stochastic behavior is determined by the distribution of single times. Let S and T denote

a generic service time and abandon time, respectively. Let G and F be the service-time

and abandon-time cdf’s, which we assume have probability density functions (pdf’s) g and f ,

respectively, i.e,,

G(x) ≡ P (S ≤ x) =
∫ x

0
g(u) du and F (x) ≡ P (T ≤ x) =

∫ x

0
f(u) du for x ≥ 0 . (2.1)

We assume that the pdf’s g and f are strictly positive on the positive halfline. Let Gc and

F c denote the associated complementary cdf’s (ccdf’s), defined by Gc(x) ≡ 1 − G(x) and
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F c(x) ≡ 1− F (x). We assume that the mean service time is 1, so we have

ES =
∫ ∞

0
xg(x) dx =

∫ ∞

0
Gc(x) dx = 1 . (2.2)

That choice is without loss of generality, because we are free to choose the measuring units for

time. We elect to measure time in units of mean service times.

A sequence of queueing models. We now start to develop the fluid approximation. Even

though we do not establish a stochastic-process limit in this section, it is helpful to formulate

the conjectured limit, in order to better understand how the fluid approximation is related

to the queueing model. To do so, we consider a sequence of queueing systems indexed by s,

where s → ∞. (For background, it may be helpful to review Theorem 2.2 of Whitt (2005a),

which establishes the corresponding (more elementary) result for the M/M/s/r +M queueing

model.)

Let the associated family of arrival processes be defined by simple scaling, i.e.,

As(t) = A(λst), t ≥ 0 , (2.3)

for a fixed initial rate-1 arrival process A ≡ {A(t) : t ≥ 0}, where λs is the arrival rate is model

s. To justify the stochastic-process limit, we assume that A satisfies a functional weak law of

large numbers (FWLLN), i.e.,
{

A(nt)
n

: t ≥ 0
}
⇒ {t : t ≥ 0} as n →∞ in D , (2.4)

where D ≡ D([0,∞),R) is the usual function space endowed with one of the Skorohod topolo-

gies and ⇒ denotes convergence in distribution; e.g., see Whitt (2002).

We now introduce stochastic processes to describe the system content. Let B
′
s(t, y) be the

number of customers in service at time t that have been in service for time less than or equal

to y, and let Q
′
s(t, y) be the number of customers in queue at time t that have been in queue

for time less than or equal to y, for y > 0. Then form the scaled processes

Bs(t, y) ≡ B
′
s(t, y)
s

and Qs(t, y) ≡ Q
′
s(t, y)
s

(2.5)

for t ≥ 0 and y ≥ 0. In (2.5) we are scaling the vertical spatial dimension, but not the horizontal

time dimension (thinking of Figure 1). This scaling is the same as for fluid approximations in

infinite-server queues; e.g., see Duffield and Whitt (1997), Glynn and Whitt (1991), Krichagina

and Puhalskii (1997) and Chapter 10 of Whitt (2002).
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We now want to consider the many-server heavy-traffic limiting regime in which s → ∞
and λs → ∞. Since the mean service time is 1, the traffic intensity in model s is ρs = λs/s.

We thus let s →∞, assuming that

λs = sρ and ρs = ρ for all s , (2.6)

for some initial fixed ρ and s →∞.

Formulation of the stochastic-process fluid limit requires some care. One approach is to

exploit the function space D2 ≡ D([0,∞)× [0,∞),R) with a two-dimensional parameter space

and an appropriate generalization of one of the standard Skorohod topologies, as in Neuhaus

(1971) and Straf (1971). Even when the limit is a continuous function, some care is needed

because the sample paths of the converging processes are not continuous. Convergence of a

sequence in D2 with this topology reduces to uniform convergence over compact sets (u.o.c.)

when the limit is a continuous function; the extra complexity is to achieve proper measurability.

For more on stochastic processes with two-dimensional parameters, see Sections 1.10-1.15 of

Csörgő and Révész (1981) and Krichagina and Puhalskii (1997). Convergence in D2 to a

continuous limit implies pointwise convergence for all argument pairs (t, y).

A proper formulation of the stochastic-process limit requires a careful specification of the

initial conditions. Because of the generality of the G/GI/s + GI queueing model, the initial

conditions can lead to complications. It should suffice to assume appropriate convergence of

the initial conditions. A special case is starting out empty. We will simply state our conjecture

for that special case, with the understanding that the result should extend, with appropriate

qualifications. We will also conjecture a stochastic refinement.

Conjecture 2.1. (stochastic-process fluid limit and stochastic refinement) Consider a se-

quence of initially empty G/GI/s + GI models satisfying the assumptions above, including

(2.1)–(2.6). Then

{(Bs(t, y), Qs(t, y)) : t ≥ 0, y ≥ 0} ⇒ {(B(t, y), Q(t, y)) : t ≥ 0, y ≥ 0}

{√s [(Bs(t, y), Qs(t, y))− (B(t, y), Q(t, y))] : t ≥ 0, y ≥ 0}

⇒ {[B(t, y),Q(t, y)] : t ≥ 0, y ≥ 0} in D2 ×D2 , (2.7)

where D2 is the function space specified above, D2×D2 is the associated product space, B and

Q are continuous deterministic functions of (t, y) specified below, with B(0, y) = Q(0, y) = 0

for all y > 0, and [B,Q] ≡ {[B(t, y),Q(t, y)] : t ≥ 0, y ≥ 0} is a random element of D2 ×D2.
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The deterministic functions B(t, y) and Q(t, y) serve as the direct fluid approximation for

the scaled stochastic processes Bs(t, y) and Qs(t, y) in (2.5). From (2.5), we unscale to get the

final fluid approximation for the queueing model:

B
′
s(t, y) ≈ sB(t, y) and Q

′
s(t, y) ≈ sQ(t, y) . (2.8)

There also is a refined approximation stemming from the stochastic refinement, e.g.,

Q
′
s(t, y) ≈ sQ(t, y) +

√
sQ(t, y) . (2.9)

The conjectured stochastic limit [B,Q] should be related to the limit processes described in

Theorems 2 and 3 of Krichagina and Puhalskii (1997), which in turn are related to the Kiefer

process; see Csörgő and Révész (1981).

The Corresponding fluid model. We now develop the G/GI/s + GI fluid model. The

adjective “G/GI/s + GI” is somewhat of a misnomer, because s and the G arrival process

no longer appear in the fluid model, but we use the adjective because we are thinking of the

application to the original queueing model. The resulting deterministic fluid approximation

has three model elements: (ρ,G, F ). Consistent with familiar fluid approximations for single-

server queues, the fluid approximation depends upon the arrival process As only through its

rate λs, and λs is replaced by ρ because of the scaling. The number of servers, s, disappears

because we scale by s. Given extensive experience with fluid models associated with single-

server queues, we might think that the service-time cdf G and the time-to-abandon cdf F could

be replaced by their mean values. That is not so.

In the fluid model, if ρ < 1, then the input rate of fluid is less than the maximum possible

service rate of fluid, which is 1, and we speak of the model as being underloaded. On the other

hand, if ρ > 1, then the input rate of fluid is greater than the maximum possible service rate

of fluid, and we speak of the model as being overloaded. These correspond to the QD and

ED limiting regimes, respectively. The QED limiting regime occurs when ρ = 1 (and further

conditions are satisfied). We call the case ρ = 1 the balanced case.

As a consequence of the spatial scaling, individual customers shrink down into “quanta”

of fluid, but the length of time each customer (or quantum of fluid) spends in the system

is unchanged because there is no time scaling. If the fluid queue contains content Q, then

that corresponds to a queue content of Qs in the associated queueing model with s servers,

each working at rate 1. However, the length of time that the fluid spends in the system is
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unchanged. For example, if a quantity of fluid enters service at time 0, then a proportion G(t)

of that fluid will have been served by time t, while the remaining proportion Gc(t) will remain

in service, having been in service for time t. The original IID assumption for the service times

leads us to treat the different quanta of fluid as independent. Formally, we apply the law of

large numbers to deduce that a proportion G(t) of the customers starting service at time 0 will

complete service by time t. Similarly, if a quantity of fluid enters the queue at time 0, then a

proportion F (t) of that fluid will have abandoned by time t, while the remaining proportion

F c(t) will remain in queue, provided that it does not move into service.

We now describe how the fluid model evolves. The deterministic functions B(t, y) and

Q(t, y) appearing as limits in Conjecture 2.1 fully describe the state of the fluid system: For

each t ≥ 0 and y > 0, B(t, y) is the amount of fluid in service at time t that has been in service

for time less than or equal to y, while Q(t, y) is the amount of fluid in queue at time t that has

been in queue for time less than or equal to y. We assume that these functions are integrable

with densities b and q; i.e.,

B(t, y) =
∫ y

0
b(t, y) dy and Q(t, y) =

∫ y

0
q(t, y) dy . (2.10)

Let B(t) ≡ B(t,∞) be the total fluid content in service at time t and let Q(t) ≡ Q(t,∞) be

the total fluid content in queue at time t.

First, as indicated above, input of fluid occurs at constant rate ρ. To describe service and

abandonment, we work with the hazard (or failure) rates of the service-time and abandon-time

distributions, which are well defined because of assumption (2.1). (Here we use the assumption

that the pdf’s are strictly positive.) These hazard-rate functions are defined as usual by

hs(x) ≡ g(x)
Gc(x)

and ha(x) ≡ f(x)
F c(x)

for x ≥ 0 . (2.11)

Clearly, hs(x) is the conditional rate of service for a customer that has been in service for a

length of time x, conditional on that customer not having been served previously. Similarly,

ha(x) is the conditional rate of abandonment for a customer that has been in queue for a length

of time x, conditional on that customer not having abandoned previously.

The total service rate (actually performed) at time t is

σ(t) ≡
∫ ∞

0
b(t, x)hs(x) dx, t ≥ 0, (2.12)

for hs in (2.11), while the total abandonment rate at time t is

α(t) ≡
∫ ∞

0
q(t, x)ha(x) dx, t ≥ 0, (2.13)
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for ha in (2.11).

Fluid in service that is not served remains in service, leading to the first fundamental

evolution equation

b(t + u, x + u) = b(t, x)
Gc(x + u)

Gc(x)
for all x ≥ 0, t ≥ 0 and u > 0 . (2.14)

Similarly, fluid waiting in queue that does not abandon, and does not move into service, remains

in queue, leading to the second fundamental evolution equation

q(t + u, x + u) = q(t, x)
F c(x + u)

F c(x)
for all x ≥ 0, t ≥ 0 and u > 0 , (2.15)

provided that the content has not moved into service.

If the queue is not empty, fluid moves into service at time t at rate σ(t) to exactly match

the rate of service completion. Fluid moves into service from the front of the queue (the fluid

that has been waiting the longest), while new input joins the end of the queue. Thus, at time

t, there will be a queue boundary w(t) such that

q(t, x) = 0 for all x > w(t) ; (2.16)

otherwise the queue content evolves as described in (2.15). In the transient regime, as time

evolves the boundary w(t) will evolve as well.

We also have new input at the specified rate ρ. Since that new input goes at the end of

the queue whenever the queue is nonempty, we have

q(t, 0) = ρ for all t such that w(t) > 0 (if Q(t) > 0) . (2.17)

On the other hand, if the queue is empty and the servers are not all busy, then instead we have

b(t, 0) = ρ if B(t) < 1 . (2.18)

Finally, there is the case in which the queue is empty but the servers are all busy:

b(t, 0) = σ(t) ∧ ρ and q(t, 0) = ρ− (σ(t) ∧ ρ) if B(t) = 1 and Q(t) = 0 , (2.19)

where x ∧ y ≡ min {x, y}.
It remains to determine whether or not the specification above uniquely determines well-

defined deterministic functions B and Q with the properties above; we conjecture that it does.

It also remains to do so for appropriate initial conditions.
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Conjecture 2.2. (existence and uniqueness for the deterministic fluid process) Under the

assumptions above, there exists a unique pair of continuous functions B(t, y) and Q(t, y) sat-

isfying the description in (2.10)–(2.19) above and B(0, y) = Q(0, y) = 0 for all y > 0.

Given that the deterministic fluid process is indeed well defined, it also remains to develop

an algorithm to compute the functions B(t, y) and Q(t, y) for various initial conditions. We

will establish such an algorithm and make partial progress toward proving both Conjectures

2.1 and 2.2 by establishing discrete-time analogs of these conjectures in Section 6.

3. Steady State of the Fluid Model

In this section we describe the steady-state behavior of the fluid model just developed. Since

the original G/GI/s + GI queueing model is well known to possess a unique steady-state

distribution under minor regularity conditions, it is natural to expect that the same is true

for our G/GI/s + GI fluid model, and we show that is the case (without requiring to assume

either Conjecture 2.1 or Conjecture 2.2). The following theorem establishes the existence of

a unique steady state for the fluid model, and describes the steady-state fluid content. We

will describe it in terms of the vector of elements (q, b, σ, α,Q, B), defined as above, except we

delete the argument t. In steady-state, the values are independent of t.

To describe the steady-state fluid content in the overloaded regime, we use the stationary-

excess cdf associated with the abandon-time cdf F , defined by

Fe(t) ≡ 1
ma

∫ t

0
F c(u) du , (3.1)

where ma is the mean abandon time, assuming that ma < ∞. (The integral representation

holds even if ma = ∞.)

Theorem 3.1. (steady state of the G/GI/s + GI fluid model) The G/GI/s + GI fluid model

specified above with model data (ρ,G, F ) has a unique steady state described by the vector

(b, q, σ, α, Q,B), whose character depends on whether ρ ≤ 1 or ρ > 1.

(a) (underloaded and balanced cases: ρ ≤ 1)

If ρ ≤ 1, then

σ = B = ρ, α = Q = 0, and b(x) = ρGc(x), x ≥ 0 . (3.2)

(b) (overloaded case: ρ > 1)
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If ρ > 1, then

σ = 1 α = ρ− 1, Q > 0, B = 1 , (3.3)

b(x) = Gc(x), x ≥ 0 , (3.4)

q(x) = ρF c(x), 0 ≤ x ≤ w and q(x) = 0, x > w , (3.5)

where w is the solution of the equation

F (w) =
α

ρ
=

α

1 + α
. (3.6)

The total queue content is

Q =
∫ w

0
q(x) dx = ρ

∫ w

0
F c(x) dx = ρmaFe(w) , (3.7)

where Fe is the stationary-excess cdf associated with F defined in (3.1).

Proof. We must have the rate into service equal the rate of service completion, which implies

that b(0) = σ. Then the basic evolution equation (2.14) implies that b(x) = σGc(x) for x ≥ 0,

which, by integrating implies in general that B = σ. Since the total input rate must equal the

total output rate, we must also have ρ = σ + α. Since we must have Q = 0 when B < 1 and

we must have B = 1 when Q > 0, we must have α = 0 when ρ < 1 and we must have σ = 1

when ρ > 1. That leaves the balanced case in which ρ = 1.

In the balanced case, since the total input rate must equal the total output rate, if α > 0,

then σ = B < 1, which would imply that Q = 0, which would imply that α = 0, a contradiction.

Hence, we must have α = 0 and σ = 1 in the balanced case, which yields B = 1 and Q = 0.

It remains to describe the queue content in the overloaded regime. We have determined

that σ = 1 and α = ρ− 1 in the overloaded regime. At the same time, the abandonment rate

when Q > 0 is

α =
∫ w

0
q(x)ha(x) dx =

∫ w

0
q(0)F c(x)

f(x)
F c(x)

dx =
∫ w

0
ρF c(x)

f(x)
F c(x)

dx

=
∫ w

0
ρf(x) dx = ρF (w) = (1 + α)F (w) , (3.8)

implying formula (3.6). Alternatively, we can find two expressions for the flow into service,

obtaining

1 = σ = b(0) = q(w) = ρF c(w) , (3.9)

which also leads to (3.6).
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Figure 1 in Section 1 shows the overloaded steady-state regime established in Theorem 3.1.

We now present the corresponding figure for the somewhat less interesting underloaded regime:

Figure 2. Since the servers are not all utilized in the underloaded regime, the fluid model in

the underloaded regime corresponds to a fluid model for an infinite-server queue; see Duffield

and Whitt (1997) and Krichagina and Puhalskii (1997). As in Duffield and Whitt (1997), we

here emphasize the importance of the customer ages, i.e., the length of time that they have

been in the system.

Implications. The fluid model and its steady-state distribution depend on the triple (ρ,G, F ).

Important insight into the G/GI/s + GI queueing model is gained simply by looking at what

features of the original model appear in the fluid model. Nothing at all is lost from the service

times and abandon times. Because of the IID (GI) assumptions in the original G/GI/s + GI

model, the service times and abandon times are fully specified by the cdf’s G and F , and these

cdf’s appear as an integral part of the G/GI/s + GI fluid model. That is very different from

most single-server fluid models, where the distributions appear only through their mean val-

ues. The fluid model we introduce here is significant in large part because the full service-time

distribution G and the full abandon-time distribution F play important roles.

In stark contrast, however, the number of servers, s, and a description of the (possibly

complex) stochastic behavior of the arrival process do not appear at all. The arrival process

and the number of servers only affect the overall rates. The number of servers, s, does not

appear, because we scale by s, measuring only relative to s. As we said above, the arrival rate

is relative to the maximum possible total service rate, which we have stipulated is 1 in the

fluid model. The arrival process only appears via the scaled arrival rate ρ, so almost all of any

detailed description of the arrival process plays no role.

This phenomenon is not hard to understand: When we consider very large s, there tends

to be a separation of time scales. As s increases, arrivals and service completions occur more

and more rapidly (in a fast time scale), while the experience of individual customers (as

characterized by their abandon times and service times) remains unchanged (in a slow time

scale). See Sections 2.4.2, 9.8, 10.3 and 10.4 of Whitt (2002) for further discussion about

separation of time scales.

Especially interesting is the steady state in the overloaded regime. Unlike the standard

single-server model, the overloaded G/GI/s + GI fluid model provides a useful approximation

for steady-state behavior of a multi-server queue with abandonments. When the number of
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Underloaded Equilibrium

in service

in queue  

(empty)
Gc(t)

time  t0t

ρ

ρ

Figure 2: The steady-state distribution of fluid content in the G/GI/s + GI fluid model with
service rate 1, arrival rate ρ ≤ 1, service-time distribution G and abandon-time distribution
F . The value at time t is the density of the fluid that has been in the system for length t, i.e.,
the remaining portion of the fluid that arrived t time units in the past. Since the system is
underloaded, the queue is empty, and all new input goes immediately into service. The density
at 0 is the arrival rate ρ. The rate of service completion is σ = b(0) = ρ.
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servers is large, a stable solution can be obtained with ρ > 1, because a small amount of

abandonment can compensate for the excess arrival rate. Indeed, this regime exhibits the

ultimate efficiency: The servers are all working at full 100% utilization, and yet no customer

waits more than w. In steady state, all customers who are served wait exactly w before starting

service. In a call center in the overloaded regime, it is possible to meet a target service level

without sacrificing utilization: Instead of answering 80% of all calls within 20 seconds, we can

answer 100% within 20 seconds, by making w be just below 20 seconds.

The fluid model provides important insights into the way performance in the G/GI/s+GI

queueing model depends upon the two component distributions: the service-time distribution

G and the abandon-time distribution F . We summarize these insights in the following corollary.

Corollary 3.1. (dependence of performance on model elements) The steady-state of the G/GI/s+

GI fluid model established in Theorem 3.1 has the following properties:

(i) The performance descriptions ρ, α, σ and B depend upon the two cdf’s G and F only

through their means.

(ii) The performance descriptions w, Q and q depend upon the cdf G only through its mean,

but upon the cdf F beyond its mean.

(iii) The performance description b depends upon the cdf F only through its mean (via ρ),

but upon the cdf G beyond its mean.

Corollary is consistent with the numerical experiments in Whitt (2005a), supporting the

approximation for the M/GI/s/r + GI queueing model developed there. Additional insight is

contained in Mandelbaum and Zeltyn (2004).

The boundary point w in equation (3.6) represents the waiting time for all served fluid.

Let W be the average waiting time for all fluid. Clearly, W satisfies

W =
w

1 + α
+

α

1 + α

∫ w

0
xf(x) dx . (3.10)

It is not difficult to see that W and Q are related by the classical relation L = λW . Given

Mandelbaum and Zeltyn (2004), it is also interesting to see how W is related to the steady-state

probability of abandonment, P (ab) = α/(1 + α). Just as in Mandelbaum and Zeltyn (2004),

we provide support for an approximately linear relation, but we show that exact linearity only

holds in the exponential case. We say that f is asymptotically equivalent to g as x →∞, and

write f(x) ∼ g(x) as x →∞, if f(x)/g(x) → 1 as x →∞.
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Corollary 3.2. (relations for the overall average waiting time in the fluid model) In the over-

loaded regime in the setting of Theorem 3.1,

Q = ρW (3.11)

for Q in (3.7), W in (3.10) and ρ = 1 + α. Moreover,

P (ab) =
α

1 + α
=

W

ma

F (w)
Fe(w)

∼ Wha(0) as ρ ↓ 1 . (3.12)

Since F = Fe if and only if F is exponential, we have

P (ab) =
W

ma
for all ρ > 1 (3.13)

if and only if F is exponential.

Proof. Using integration by parts in the second integral in (3.10), we obtain (3.11) for Q

defined in (3.7). From (3.11) and (3.7), we obtain

W =
∫ w

0
F c(t) dt = maFe(w) = maF (w)

Fe(w)
F (w)

= maP (ab)
Fe(w)
F (w)

. (3.14)

Solving for P (ab) gives the two equalities in (3.12). Using Taylor series expansions, we get

Fe(w) = fe(0)w + o(w) and F (w) = f(0)w + o(w) as w ↓ 0 , (3.15)

where o(w)/w → 0 as w → 0. Hence F (w)/Fe(w) → f(0)/fe(0) as w ↓ 0. By (3.6), w ↓ 0

as ρ ↓ 1. Finally, we have F (t) = Fe(t) if and only if F is an exponential distribution. As ρ

varies from 1 to ∞, P (ab) = α/(1 + α) varies from 0 to 1, which in turn yields all possible w

as solutions of equation (3.7).

We have observed that the service-time cdf G has negligible impact on the steady-state

behavior of the G/GI/s + GI fluid model. In contrast, the service-time cdf G can have a

significant impact on the transient behavior of the G/GI/s + GI fluid model. As shown

in (2.12), the instantaneous service rate σ(t) depends on both the density b(t, x) and the

service-time hazard function hs(x). It is only in steady-state that we obtain the steady-state

behavior σ = B. However, if the service-time distribution is exponential, then the hazard

rate is constant. Then σ(t) = B(t) for all density functions b(t, x). That is not true for other

service-time distributions.
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4. Numerical Examples with Non-Exponential Distributions

In this section we start examining how the steady-state description of the G/GI/s+GI fluid

model works as an approximation for the steady-state performance of queueing models in the

overloaded regime, when the input rate is greater than the maximum possible service rate. As

before, we will assume that the mean service time is always 1. We will consider M/GI/s+GI

queueing models, which have a Poisson arrival process and non-exponential service-time and

time-to-abandon distributions. We have two main objectives here: (i) verify that the fluid

approximation is sufficiently accurate and (ii) verify that the structural conclusions in Corollary

3.1 provide insight for overloaded queueing models.

We consider two different non-exponential probability distributions with mean 1: the Er-

lang E2 distribution, which has squared coefficient of variation (SCV, variance divided by the

square of its mean) c2 = 0.5 and the lognormal LN(1, 4) distributions with SCV c2 = 4. An E2

distribution has a single parameter, the mean, which we have fixed at 1. A lognormal distri-

bution is fully characterized by its mean and variance; we use LN(m, v) to denote a lognormal

distribution with mean m and variance v. An Erlang distribution is less variable than an

exponential distribution with the same mean, while a lognormal distribution with SCV c2 = 4

is more variable than an exponential distribution with the same mean (by various measures,

one being the SCV).

We let each of these two non-exponential distributions play the role of the service-time

distribution and the time-to-abandon distribution, in all possible combinations, so that there

are four cases in all. We focus on the overloaded regime, letting ρ = 1.2. Since we are thinking

of a large number of servers, such as s ≥ 100, we let s = 100, but to see how the approximation

performs with a smaller number of servers, we also consider the case s = 20. In both cases we

let ρ = 1.2, so that the approximating fluid model is the same for the corresponding models

(when they have the same distributions F and G). For the simulations, we actually consider

systems with a finite waiting room, but we let the waiting room be so large that it does not

affect the result. In particular there is waiting space for 200 additional customers. (We verify

that the waiting room has no effect by also considering the case of 300.)

We display simulation results for s = 100 and s = 20 in Tables 1 and 2. All simulation

experiments are based on ten independent replications of runs each having five million arrivals.

The independent replications make it possible to reliably estimate confidence intervals using

the t-statistic. For all simulation estimates, we show the half-width of 95% confidence intervals.
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To define the performance measures we examine, let Ss be the event that a typical cus-

tomer eventually will be served, as a function of the number of servers s; let As be the event

that a typical customer abandons before starting service; let Ws be the steady-state waiting

time (before beginning service or abandoning, whichever happens first) for a typical customer

(conditional on the arrival not being blocked); let Ns be the steady-state number of customers

in the system at an arbitrary time; and let Qs ≡ max{0, Ns − s} be the steady-state queue

length at an arbitrary time. We estimate, the mean, the variance and the SCV of both Qs and

(Ws|Ss, the conditional waiting time, given that the customer is served.

We primarily consider five steady-state performance measures in the queueing models:

the steady-state probability a customer abandons, P (As), the mean steady-state number in

queue, E[Qs], the mean steady-state number in the system, E[Ns], the steady-state probability

of experiencing no delay (entering service immediately upon arrival), P (Ws = 0), and the

expected conditional steady-state waiting time given that a customer is served, E[Ws|Ss].

These performance measures are approximated by the fluid-model performance measures in

the obvious way:

P (As) ≈ α

ρ
=

α

1 + α
,

E[Qs] ≈ sQ,

E[Ns] ≈ s(1 + Q),

P (Ws = 0) ≈ 0,

E[Ws|Ss] ≈ w , (4.1)

where α, Q and w are defined in terms of the fluid model elements ρ and F according to

equations (3.3), (3.6) and (3.7). We use binary search to solve the equation for w in (3.6).

Given w, we calculate Q by numerically integrating the integral in (3.7). Both numerical steps

are elementary (done with matlab). We apply the relations E[Qs] = λsE[Ws] and

E[Ws] = P (Ss)E[Ws|Ss] + P (As)E[Ws|As] (4.2)

to calculate the approximation for E[Ws|As]. The fluid approximations for the variances

V ar(Qs) and V ar(Ws|Ss) and the associated SCV’s are of course 0. It is convenient to look

at the SCV’s because they quantify the level of variability independent of scale (the mean).

From Tables 1 and 2, we see that the fluid approximation is remarkably accurate in these

heavily loaded scenarios, with the quality of the approximations improving as s increases. The
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M/GI/100/200 + GI model with λ = 120 and E[T ] = 1.0
E2 time-to-abandon cdf LN(1, 4) time-to-abandon cdf
service cdf service cdf

Perf. Meas. E2 LN(1, 4) approx. E2 LN(1, 4) approx.
P (As) 0.16653 0.16683 0.16667 0.1678 0.1696 0.16667

±0.00035 ±0.00060 – ±0.00023 ±0.00054 –
E[Qs] 40.25 39.56 41.11 14.51 14.52 14.63

±0.057 ±0.097 – ±0.018 ±0.043 –
V ar(Qs) 139.6 221.6 0.00 61.1 81.5 0.00

±0.69 ±1.09 – ±0.18 ±0.30 –
SCV (Qs) 0.086 0.142 0.00 0.290 0.387 0.000

E[Ns] 140.3 139.5 141.11 114.4 114.2 114.6
±0.057 ±1.22 – ±0.019 ±0.47 –

P (Ws = 0) 0.00046 0.0068 0.00000 0.032 0.065 0.000
±0.00006 ±0.00035 – ±0.00037 ±0.00077 –

E[Ws|Ss] 0.353 0.343 0.365 0.126 0.125 0.131
±0.00051 ±0.00094 – ±0.00017 ±0.00040 –

V ar(Ws|Ss) 0.0097 0.0176 0.0000 0.0046 0.0066 0.0000
±0.000058 ±0.000087 – ±0.000014 ±0.000027 –

SCV (Ws|Ss) 0.078 0.149 0.000 0.290 0.422 0.000
E[Ws|As] 0.247 0.261 0.231 0.095 0.103 0.077

±0.00025 ±0.00041 – ±0.00008 ±0.00014 –

Table 1: A comparison of the fluid approximations with simulation estimates of steady-state
performance measures in M/GI/100/200 + GI models under heavy load, specifically for λ =
120. The mean time to abandon is E[T ] = 1. The two distributions Erlang (E2) with c2 = 1/2
and lognormal LN(1,4) with c2 = 4 are used in all four combinations. The half-width of the
95% confidence interval is given for each simulation estimate.
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M/GI/20/200 + GI model with λ = 24 and E[T ] = 1.0
E2 time-to-abandon cdf LN(1, 4) time-to-abandon cdf
service cdf service cdf

Perf. Meas. E2 LN(1, 4) approx. E2 LN(1, 4) approx.
P (As) 0.1747 0.1838 0.16667 0.1914 0.1993 0.16667

±0.00031 ±0.00034 – ±0.00022 ±0.00044 –
E[Qs] 7.7 7.6 8.2 3.15 3.26 2.93

±0.013 ±0.013 – ±0.0036 ±0.0081 –
V ar(Qs) 25.2 33.3 0.00 9.6 12.0 0.00

±0.04 ±0.07 – ±0.10 ±0.037 –
SCV (Qs) 0.425 0.577 0.00 0.967 1.13 0.000

E[Ns] 27.5 27.2 28.2 22.56 22.48 22.93
±0.015 ±0.15 – ±0.0052 ±0.0092 –

P (Ws = 0) 0.068 0.126 0.00000 0.210 0.254 0.000
±0.0004 ±0.0007 – ±0.00047 ±0.00064 –

E[Ws|Ss] 0.322 0.307 0.365 0.129 0.130 0.131
±0.0005 ±0.0005 – ±0.00016 ±0.00035 –

V ar(Ws|Ss) 0.042 0.061 0.0000 0.0166 0.0227 0.0000
±0.00006 ±0.00013 – ±0.000025 ±0.00010 –

SCV (Ws|Ss) 0.405 0.647 0.000 1.00 1.34 0.000
E[Ws|As] 0.309 0.351 0.231 0.139 0.159 0.077

±0.0003 ±0.0004 – ±0.00008 ±0.00022 –

Table 2: A comparison of the fluid approximations with simulation estimates of steady-state
performance measures in M/GI/20/200+GI models under heavy load, specifically for λ = 24.
The mean time to abandon is E[T ] = 1. The two distributions Erlang (E2) with c2 = 1/2 and
lognormal (LN(1,4) with c2 = 4 are used in all four combinations. (Everything is the same
as in Table 1 except the number of servers and the arrival rate have been divided by 5.) The
half-width of the 95% confidence interval is given for each simulation estimate.
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numerical results indicate that conclusions (i) and (ii) of Corollary 3.1 apply to the queue-

ing models. For example, the abandonment probability P (As) is quite near the fluid value

0.166667 in all cases. Note that the mean queue length, E[Qs] and the conditional mean wait-

ing times, E[Ws|Ss] and E[Ws|As], depend strongly upon the time-to-abandon distribution,

but not upon the service-time distribution. (All the service-time and time-to-abandon distri-

butions have mean 1.) This property of the fluid model accurately describes the steady-state

behavior of these queueing systems. The weakest approximations are for the quantities that

are approximated by 0, such as P (W = 0) and the SCV’s.

5. Numerical Examples with Different Loads

We now consider additional numerical examples, focusing more on the quality of the ap-

proximation when the queueing system is less heavily loaded, but we are only consider the

overloaded case with ρ > 1.

Now we often consider exponential distributions. In the special case of an exponential

time-to-abandon distribution, it is easy to solve for the fluid parameters w and Q explicitly.

Letting ma denote the mean abandon time, the formulas are

w = ma loge(1 + α) and Q = maα . (5.1)

Like Figure 1, these simple approximations for the overloaded M/M/s + M model provide

useful quick approximations. Even if they are not incredibly accurate, they provide useful

reference points to think about call-center performance.

We now compare the fluid approximations to the exact values in the M/M/s+GI queueing

models. As before, the mean service time is always 1. For the purely Markovian M/M/s + M

model, we use the exact numerical algorithm in Whitt (2005a). For M/M/s + GI queueing

models with non-exponential abandon-time distributions, we use simulations, just as in Section

4 above.

The results of our numerical comparisons are given in Table 3. The first rows display

comparisons between the fluid approximation in (4.1) and computer simulations for non-

exponential abandon-time distributions. The two non-exponential abandon-time distributions

we consider here are E2(m) and LN(m, v), where m denotes the mean and v denotes the

variance..

We should emphasize that our experiments involve realistic scenarios that might actually

occur in call centers meeting their SLA’s. The M/M/s+GI examples all have s = 100 servers
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and arrival rate λ = 102, yielding ρ = 1.02 instead of ρ = 1.20 in Section 4.

In Table 3 we also look at examples with larger s and/or greater overload (a larger value

of ρ. In particular, we also consider M/M/s + M examples with (s = 100, and λ = 110),

and (s = 1000 and λ = 1020). When we do, we see that the fluid model looks more

impressive. The lower rows in Table 3 compare the fluid approximation in (4.1) to exact

numerical results for the Markovian M/M/s + M queueing model, where the exponential

time-to-abandon distribution with mean m is denoted by M(m).

As shown in Whitt (2005a), the abandon-time distribution beyond its mean has a significant

impact upon performance, so that in general the M/M/s+GI model is not well approximated

by the Markovian M/M/s+M model with an exponential time-to-abandon distribution having

the same mean as the given cdf F . Indeed, that is clearly shown in Table 3. In most cases

involving the non-exponential time-to-abandon distributions, the fluid approximation for the

M/M/s + GI performance is superior to the exact M/M/s + M results for the corresponding

model having exponential abandon times with the same mean as F .

The lognormal LN(4, 4) example is particularly striking: The simulated mean queue length

and conditional mean wait are EQs = 118.1 and E[Ws|Ss] = 1.15, but the corresponding

results for exponential abandon-time distribution with the same mean 4 are EQs ≈ 14.8

and E[Ws|Ss] ≈ 0.145. The actual values are about eight times the values predicted by the

M/M/s + M model with an M(4) abandon-time distribution. In contrast, the corresponding

fluid approximations are EQs ≈ 137.4 and E[Ws|Ss] ≈ 1.35, an error of only about 17%.

Consistent with intuition, Table 3 shows that the quality of the fluid approximation im-

proves as s increases and as the ρ increases. The congestion increases as the mean time to

abandon, ma, increases and as the excess arrival rate, α, increases. Consider s = 100 with an

exponential abandon-time distribution: Table 3 shows that the fluid approximation performs

badly when the arrival rate is relatively low, λ = 102, and the mean time to abandon is rela-

tively low, ma = 0.1. On the other hand, the fluid approximation performs spectacularly well

when the arrival rate is relatively high, λ = 110, and the mean time to abandon is relatively

large, ma = 10.0.

6. The Discrete-Time Fluid Limit

In this section we establish a stochastic-process fluid limit in discrete time, which supports

the fluid approximation in Section 2. The mathematics is greatly simplified by working in

discrete time. In discrete time, the proof is relatively transparent because it can be recursive.
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M/M/s/ + GI model with different abandon-time cdf’s
case P (As) E[Qs] E[Ws|Ss]

s = 100, λs = 102 sim. approx. sim. approx. sim. approx.
E2(0.25) 0.0530 0.0196 3.07 2.69 0.0284 0.0265

±0.00029 – ±0.014 – ±0.00012 –
E2(1) 0.0378 0.0196 11.8 10.9 0.113 0.106

±0.00032 – ±0.075 – ±0.00072 –
E2(4) 0.0236 0.0196 41.6 43.0 0.407 0.425

±0.00036 – ±0.44 – ±0.0042 –
LN(1, 1) 0.0376 0.0196 11.4 12.9 0.109 0.127

±0.00032 – ±0.071 – ±0.00067 –
LN(4, 4) 0.0206 0.0196 118.1 137.4 1.15 1.35

±0.00029 – ±0.75 – ±0.0073 –
LN(4, 64) 0.0349 0.0196 14.9 14.0 0.145 0.131

±0.00030 – ±0.095 – ±0.00091 –
s = 100, λ = 102 exact approx. exact approx. exact approx.

M(0.1) 0.0713 0.0196 0.73 0.20 0.0062 0.0020
M(0.25) 0.0637 0.0196 1.62 0.50 0.0148 0.0049

M(1) 0.0499 0.0196 5.09 2.0 0.0490 0.0198
M(4) 0.0363 0.0196 14.8 8.0 0.1455 0.0792

M(10) 0.0292 0.0196 29.7 20.0 0.292 0.1980
M(100) 0.0200 0.0196 204.5 200.0 2.020 1.9802

s = 100, λ = 110 exact approx. exact approx. exact approx.
M(0.1) 0.1189 0.0909 1.31 0.20 0.0106 0.0095

M(0.25) 0.1112 0.0909 3.06 0.50 0.0268 0.0238
M(1) 0.0992 0.0909 10.9 10.0 0.1007 0.0953
M(4) 0.0919 0.0909 40.4 40.0 0.3811 0.3812

M(10) 0.0909 0.0909 100.0 100.0 0.9485 0.9531
s = 1000, λ = 1020 exact approx. exact approx. exact approx.

M(0.1) 0.0316 0.0196 3.22 2.00 0.0031 0.0020
M(0.25) 0.0290 0.0196 7.40 5.00 0.0071 0.0049

M(1) 0.0246 0.0196 25.1 20.0 0.0246 0.0198
M(4) 0.0210 0.0196 85.8 80.0 0.0846 0.0792

M(10) 0.0198 0.0196 202.8 200.0 0.2003 0.1980

Table 3: A comparison of the overloaded G/GI/s + GI fluid approximation with simulations
in the M/M/s + GI queueing model with different abandon-time distributions and with ex-
act numerical results in the Markovian M/M/s + M queueing model having an exponential
abandon-time distribution. The number of servers, s, and the arrival rate λ > s are indicated
at the left. The time-to-abandon distributions considered are Erlang of order 2 with mean
m, denoted by E2(m), lognormal with mean m and variance v, denoted by LN(m, v) and
exponential with mean m, denoted by M(m).
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The form of the associated fluid limit in continuous time is also readily apparent from the

discrete-time limit, but it remains to prove Conjecture 2.1.

To make the connections to continuous time, we assume that all events take place in the

discrete time scale {kδ : k ≥ 0} for some small δ > 0. We often will drop the δ and use integer

arguments, with the understanding that the interval between successive time epochs is δ.

Since multiple events can take place at the same time epoch, we need to specify the order

of events at each time epoch. We are able to do the construction and proof for any order, but

we do need to specify what order we are using. We assume that, first, customers in service

are served; second, waiting customers in queue move into service (from the front of the queue,

in order of arrival); third, some waiting customers elect to abandon; and finally we add new

arrivals (to the end of the queue).

We also consider a more general model here, letting the arrival process be both state-

dependent and time-dependent. The model we consider can be denoted by Gt(n)/GI/s + GI.

The waiting room may be either finite or infinite; the case of a finite waiting room arises as

the special case in which the state-dependent arrival rate becomes zero whenever the number

of customers in the queue reaches some level.

As in Section 2, we assume that the service times and abandon times come from independent

sequences of IID random variables with general distributions. As in Section 2, let S be a generic

service time and let T be a generic abandon time. Here we assume that the possible values

these random variables are positive-integer multiples of the small positive δ. We define the

probability mass functions (pmf’s) and associated cdf’s and ccdf’s by letting

g(k) ≡ P (S = kδ), G(k) ≡
k∑

j=1

g(j), Gc(k) = 1−G(k) , (6.1)

f(k) ≡ P (T = kδ), F (k) ≡
k∑

j=1

f(j) and F c(k) = 1− F (k) (6.2)

for k ≥ 0, where g(0) ≡ f(0) ≡ 0 and
∞∑

k=1

f(k) ≡
∞∑

k=1

g(k) ≡ 1 . (6.3)

As in Section 2, we assume that ES = 1, but because the discrete time unit is δ, we have
∞∑

k=0

kg(k) =
∞∑

k=0

Gc(k) = δ−1 > 1 . (6.4)

Let a subscript s indicate that the random variable is associated with the system having

s servers, with the understanding that we will be letting s → ∞. Let bs(n, k) be the number
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of busy servers at time nδ that are serving customers that have been in service precisely for

time kδ. Let qs(n, k) be the number of customers in queue at time nδ that have been in queue

precisely for time kδ. Let σs(n) be the number of service completions at time epoch nδ and

let αs(n) be the total number of abandonments at time epoch nδ. We assume that customers

are served in order of arrival (FCFS) by the first available server. Customers enter service

whenever a server is available, so that the system is work-conserving; i.e., letting

Bs(n) ≡
∞∑

k=0

bs(n, k) and Qs(n) ≡
∞∑

k=1

qs(n, k) , (6.5)

we assume that Qs(n) = 0 whenever Bs(n) < s, and that Bs(n) = s whenever Qs(n) > 0.

Given that bs(n, k) and qs(n, k) are nonnegative, that condition can be summarized by the

equation

(1− (Bs(n)/s))Qs(n) = 0 for all n and s . (6.6)

Since Bs(n) ≤ s and since the time unit is actually δ, the maximum long-run service-completion

rate in integer time is δ.

The new arrivals at time epoch nδ become qs(n, 0); we do not include these new arrivals

in Qs(n). In time epoch (n + 1)δ, these new arrivals possibly move into service and possibly

abandon.

Let as(n) count the number of arrivals at time epoch nδ, in the system with s servers.

We allow as(n) to depend on the history of the system up to time epoch nδ. We make an

assumption about the limiting behavior of as(n), which depends upon the limiting behavior

of Bs(n) and Qs(n). (The time epoch is n in both cases because arrivals at time epoch n

occur after the other events at epoch n.) Let ⇒ denote convergence in distribution, which is

equivalent to convergence in probability for deterministic limits. Here we assume that

as(n)
s

⇒ λ(n,B(n) + Q(n)) as s →∞ (6.7)

for all n ≥ 0, where λ(n, t) is a nonnegative real-valued (deterministic) function of a nonnegative-

integer argument n and a nonnegative-real argument t, whenever

Bs(k)
s

⇒ B(k) and
Qs(k)

s
⇒ Q(k) as s →∞ (6.8)

for all k, 0 ≤ k ≤ n, and for all n ≥ 0, where B(k) and Q(k) are deterministic for all k.

If we initialize the system properly, then we can establish the desired fluid limit recursively

by successive applications of the weak law of large numbers (WLLN).
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Theorem 6.1. (the discrete-time fluid limit) Consider the discrete-time Gt(n)/GI/s + GI

model specified above, with arrivals satisfying (6.7). Suppose that, for each s, the system

is initialized with workload characterized by nonnegative-integer-valued stochastic processes

{bs(0, k) : k ≥ 0} and {qs(0, k) : k ≥ 1}, where

Bs(0) ≡
∞∑

k=0

bs(0, k) ≤ s and Qs(0) ≡
∞∑

k=1

qs(0, k) < ∞ , (6.9)

with

(1− (Bs(0)/s))Qs(0) = 0 (6.10)

for each s w.p.1. Suppose that

bs(0, k)
s

⇒ b(0, k) for k ≥ 0 and
qs(0, k)

s
⇒ q(0, k) for k ≥ 1 (6.11)

as s → ∞, where b(0, ·) and q(0, ·) are deterministic functions. Moreover, suppose that for

each ε > 0 and η > 0, there exists an integer k0 such that

P (
∞∑

k=k0

bs(0, k)
s

> ε) < η and P (
∞∑

k=k0

qs(0, k)
s

> ε) < η . (6.12)

Then, first, condition (6.12) holds for all n, i.e., for each n, ε > 0 and η > 0, there exists an

integer k0 such that

P (
∞∑

k=k0

bs(n, k)
s

> ε) < η and P (
∞∑

k=k0

qs(n, k)
s

> ε) < η . (6.13)

And, second, as s →∞,

bs(n, k)
s

⇒ b(n, k),

Bs(n)
s

≡
∑∞

k=0 bs(n, k)
s

⇒ B(n) ≡
∞∑

k=0

b(n, k),

qs(n, k)
s

⇒ q(n, k),

Qs(n)
s

≡
∑∞

k=1 qs(n, k)
s

⇒ Q(n) ≡
∞∑

k=1

q(n, k),

σs(n)
s

⇒ σ(n),

αs(n)
s

⇒ α(n) (6.14)

for each k ≥ 0 and n ≥ 1, where (b, q, σ, α) is a vector of deterministic functions characterized

as follows for n ≥ 1. For each n, 0 ≤ B(n) ≤ 1, Q(n) ≥ 0 and (1−B(n))Q(n) = 0. As we go

from time n−1 to n, there are two cases, depending on whether B(n−1) = 1 or B(n−1) < 1.
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Case 1: B(n− 1) = 1.

In this first case, after epoch n− 1 asymptotically all servers are busy and in general there

may be a positive queue. In this case,

σ(n) =
∞∑

k=1

b(n− 1, k − 1)
g(k)

Gc(k − 1)
, (6.15)

b(n, k) = b(n− 1, k − 1)
Gc(k)

Gc(k − 1)
, k ≥ 1 , (6.16)

b(n, 0) = min {σ(n), Q(n− 1) + q(n− 1, 0)} , (6.17)

B(n) =
∞∑

k=0

b(n, k) , (6.18)

q(n, k) = 0 for k ≥ cn + 2, q(n, cn + 1) = (1− pn)q(n− 1, cn)
F c(cn + 1)

F c(cn)
, (6.19)

where cn and pn are determined by

∞∑

k=cn+1

q(n− 1, k) ≤ σ(n) <

∞∑

k=cn

q(n− 1, k) (6.20)

and

pn =
σ(n)−∑∞

k=cn+1 q(n− 1, k)
q(n− 1, cn)

, (6.21)

α(n) =
cn−1∑

k=0

q(n− 1, k)
f(k + 1)
F c(k)

+ (1− pn)q(n− 1, cn)
f(cn + 1)
F c(cn)

, (6.22)

q(n, k) = q(n− 1, k − 1)
F c(k)

F c(k − 1)
for 1 ≤ k ≤ cn , (6.23)

Q(n) =
∞∑

k=1

q(n, k) , (6.24)

q(n, 0) = λ(n,B(n) + Q(n)) . (6.25)

Case 2: B(n− 1) < 1.

In this second case, after epoch n− 1 asymptotically all servers are not busy so that there

is no queue. As in the first case, equations (6.15), (6.16) and (6.18) hold. Instead of (6.17),

b(n, 0) = min {σ(n) + 1−B(n− 1), q(n− 1, 0)} . (6.26)

Then

q(n, k) = 0 for all k ≥ 2 and q(n, 1) = (q(n− 1, 0)− b(n, 0))+ . (6.27)

Finally, q(n, 0) is just as in (6.25).
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Proof. We apply mathematical induction on n, starting with n = 0. The convergence of

Bs(n) and Qs(n) in (6.14) for n = 0 can be proved using conditions (6.11) and (6.12). Those

limits together with the assumed limit (6.7) for the arrival process imply that the limit for the

arrival process qs(n, 0) = as(n) in (6.7) holds for n = 0.

Now we go on to treat higher values of n. We first observe that the regularity property in

(6.12) extends to higher n, as indicated in (6.13). Given the limits for the summands, that

follows from the inequalities
∞∑

k=k0+n

bs(n, k) ≤
∞∑

k=k0

bs(0, k) (6.28)

and ∞∑

k=k0+n

qs(n, k) ≤
∞∑

k=k0

qs(0, k) , (6.29)

which hold w.p.1 for all s, n and k.

Suppose that the limits in (6.14) have been established for 0 ≤ k ≤ n − 1. We show that

the limits also hold for n. To be concrete, we first consider Case 1 in which B(n− 1) = 1. We

first consider the service process for those customers in service. Let σs(n, k−1) be the number

of customers served at time epoch nδ who had been in service for time (k− 1)δ at time epoch

(n − 1)δ. For each s, n ≥ 1 and k ≥ 1, we can represent σs(n, k − 1) and bs(n, k) as random

sums of IID Bernoulli random variables; in particular,

σs(n, k − 1) =
bs(n−1,k−1)∑

i=1

Xi (6.30)

and

bs(n, k) =
bs(n−1,k−1)∑

i=1

(1−Xi) , (6.31)

where Xi assumes the value 1 if the ith customer among those in service at time epoch (n−1)δ

that have been in the system for time (k− 1)δ is served at epoch nδ, and assumes the value 0

otherwise. Thus {Xi : i ≥ 1} is a sequence of IID random variables with

P (Xi = 1) = 1− P (Xi = 0) =
g(k)

Gc(k − 1)
. (6.32)

Given the established limit for bs(n− 1, k− 1), we can apply the WLLN to obtain convergence

for σs(n, k − 1) and bs(n, k) at epoch nδ:

σs(n, k − 1)
s

=
bs(n− 1, k − 1)

s

∑bs(n−1,k−1)
i=1 Xi

bs(n− 1, k − 1)

⇒ b(n− 1, k − 1)EXi = b(n− 1, k − 1)
g(k)

Gc(k − 1)
(6.33)
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and

bs(n, k)
s

=
bs(n− 1, k − 1)

s

∑bs(n−1,k−1)
i=1 (1−Xi)
bs(n− 1, k − 1)

⇒ b(n− 1, k − 1)(1−EXi) = b(n− 1, k − 1)
Gc(k)

Gc(k − 1)
(6.34)

as s →∞.

We apply these limits in (6.33) and (6.34) to establish the limits for the sum σs(n) in

(6.14). To obtain convergence for the sum, we use the inequality σs(n, k) ≤ bs(n − 1, k − 1)

and inequality (6.28), which hold w.p.1 for all s, n and k. These inequalities with the first

regularity condition (6.12) ensure convergence of σs(n) given the established convergence of

the summands σs(n, k − 1).

Given that the number of served customers in epoch nδ is σs(n), the number of customers

to move into service from the queue at that time epoch is the minimum of σs(n) and the queue

length at that point, which is Qs(n− 1) + qs(n− 1, 0). Thus, we have the limit

bs(n, 0)
s

⇒ b(n, 0) as s →∞ (6.35)

for b(n, 0) in (6.17).

We next apply the limits established for bs(n, k) in (6.34) and (6.35) and the first regularity

condition in (6.13) to deduce that

Bs(n)
s

⇒ B(n) as s →∞ . (6.36)

We next need to establish the asymptotic effect on the queue caused by the customers

moving into service. For each s, we have the analog of equations (6.19)– (6.21), specifically,

qs(n, k) = 0 for k ≥ cs,n +2, qs(n, cs,n +1) = (1−ps,n)qs(n−1, cs,n)
F c(cs,n + 1)

F c(cs,n)
, (6.37)

where cs,n and ps,n are determined by

∞∑

k=cs,n+1

qs(n− 1, k) ≤ σs(n) <
∞∑

k=cs,n

qs(n− 1, k) (6.38)

and

ps,n =
σs(n)−∑∞

k=cs,n+1 qs(n− 1, k)

qs(n− 1, cs,n)
, (6.39)

We now divide by s in (6.38) and let s →∞. There are two cases: (i) when 0 < pn < 1 and (ii)

when pn = 0. In the first case, when 0 < pn < 1, we have ps,n → pn and P (cs,n = cn) → 1 as

s →∞, implying that qs(n, k)/s ⇒ q(n, k) for k ≥ cn +1. In the second case, when pn = 0, we
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cannot claim that the index cs,n determined by (6.38) converges in probability to the limiting

index cn. However, even though the index cn is not continuous in the amount served σ(n)

and the queue-length function q(n− 1, k), the resulting queue-length q(n, k) is. In this second

case, we have P (cs,n ∈ {cn, cn−1}) → 1 as s → ∞, and we still have qs(n, k)/s ⇒ q(n, k) for

k = cn + 2 and k = cn + 1. When cs,n = cn−1, the limit is determined by the abandonment

from queue, discussed next.

We now go on to treat the customers remaining in the queue. The argument is similar to

the treatment of the customers in service in (6.30)–(6.32). Let αs(n, k − 1) be the number of

customers abandoning at time epoch nδ who had been in queue for time (k−1)δ at time epoch

(n − 1)δ. For each s, n ≥ 1 and k ≥ 1, we can represent αs(n, k − 1) and qs(n, k) as random

sums of IID Bernoulli random variables; in particular,

αs(n, k − 1) =
qs(n−1,k−1)∑

i=1

Yi (6.40)

and

qs(n, k) =
qs(n−1,k−1)∑

i=1

(1− Yi) , (6.41)

where {Yi : i ≥ 1} is a sequence of IID random variables with

P (Yi = 1) = 1− P (Yi = 0) =
f(k)

F c(k − 1)
. (6.42)

Given the established limit for qs(n−1, k−1), we can apply the WLLN to obtain convergence

for αs(n, k − 1) and qs(n, k) at epoch n for 0 ≤ k ≤ cn:

αs(n, k − 1)
s

=
qs(n− 1, k − 1)

s

∑qs(n−1,k−1)
i=1 Yi

qs(n− 1, k − 1)

⇒ q(n− 1, k − 1)EYi = q(n− 1, k − 1)
f(k)

F c(k − 1)
(6.43)

and

qs(n, k)
s

=
qs(n− 1, k − 1)

s

∑qs(n−1,k−1)
i=1 (1− Yi)
qs(n− 1, k − 1)

⇒ q(n− 1, k − 1)(1−EYi) = q(n− 1, k − 1)
F c(k)

F c(k − 1)
(6.44)

as s →∞.

We next apply the limits established for qs(n, k) and the second regularity condition in

(6.13) to deduce that
Qs(n)

s
⇒ Q(n) as s →∞ . (6.45)

31



Finally, given the limits for Bs(n) and Qs(n) in (6.36) and (6.45), and assumption (6.7) for

the arrival process, we have the limit

qs(n, 0)
s

=
as(n)

s
⇒ λ(n,B(n) + Q(n)) = q(n, 0) as s →∞ . (6.46)

We now turn to Case 2, in which B(n−1) < 1. In this second case, after time epoch (n−1)δ

asymptotically all servers are not busy, so that the queue is necessarily empty except for the

new arrivals characterized by q(n− 1, 0). The service process limits are as in Case 1. We need

a new argument to move new customers into service, but the convergence bs(n, 0)/s ⇒ b(n, 0)

for b(n, 0) in (6.26) follows from the previously established limits for σs(n), Bs(n − 1) and

qs(n − 1, 0). As a consequence, we then obtain the limit qs(n, k)/s ⇒ q(n, k) for k ≥ 1 with

q(n, k) in (6.27). Finally, we obtain the limit for qs(n, 0) just as before.

We conclude this section by observing that we can compute the limiting fluid functions in

Theorem 6.1 recursively by proceeding in the same order as the proof. Indeed, if we had directly

considered the continuous-time model, it would be natural to introduce the associated discrete-

time model in order to calculate the desired deterministic fluid functions. That corresponds

to the elementary Euler method for solving differential and integral equations.

7. Equilibria Without Time-Dependence

In this section we describe the steady-state (or equilibrium) behavior of the fluid limit in

Section 6 under the condition that there is no time-dependence in the arrival process, i.e., so

that λ(n, x) = λ(x) for all n ≥ 0. We do still allow state-dependence, however.

We say that the deterministic fluid process characterized by the vector of functions (b, q, λ)

has an equilibrium, denoted by (b∗, q∗, λ∗) without the time argument n, if

(b(n, k), q(n, k), λ(n,B(n) + Q(n))) = (b∗(k), q∗(k), λ∗) for all k ≥ 0 and n ≥ 0 , (7.1)

when

(b(0, k), q(0, k), λ(0, B(0) + Q(0))) = (b∗(k), q∗(k), λ∗) for all k ≥ 0 . (7.2)

If (7.1) holds, then necessarily we also have

(B(n), Q(n), σ(n), α(n)) = (B∗, Q∗, σ∗, α∗) for all n ≥ 1 , (7.3)

where these associated quantities are defined in terms of the elements above by equations

(6.15), (6.18), (6.20)– (6.22) and (6.24)–(6.27), depending upon the case (whether B(n) < 1

or B(n) = 1).
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It is not difficult to see that the fluid model has an equilibrium under very general con-

ditions. In fact, with a state-dependent arrival rate, the fluid model may well have multiple

equilibria.

Theorem 7.1. (existence of equilibria for the discrete-time fluid process) Consider the discrete-

time fluid limit for the Gt(n)/GI/s+GI model established in Theorem 6.1 in the case that the

arrival rate is independent of time n; i.e., so that λ(n, x) = λ(x) for all n. As before, let the

mean service time be ES = 1, so that we have (6.4).

(a) (underloaded and balanced cases)

For each x, 0 < x ≤ 1, such that λ(x) = δx, the fluid limit in Theorem 6.1 has an

underloaded (or balanced if x = 1) equilibrium (b∗, q∗, λ∗) with

B∗ = x, Q∗ = 0, σ∗ = δx, α∗ = 0, λ∗ = δx and b∗(k) = δxGc(k), k ≥ 0 . (7.4)

(b) (overloaded case)

For each vector of numbers, (Q∗, α∗, c∗, p∗), where Q∗ > 0, α∗ > 0, c∗ is a nonnegative

integer and 0 ≤ p∗ < 1 such that

λ(1 + Q∗) = δ + α∗ ,

Q∗ =
c∗∑

k=0

(δ + α∗)F c(k) + (1− p∗)(δ + α∗)F c(c∗ + 1) ,

α∗ =
c∗∑

k=0

(δ + α∗)f(k) + (1− p∗)(δ + α∗)f(c∗ + 1) ,

p∗ =
δ − (δ + α∗)F c(c∗ + 1)

(δ + α∗)F c(c∗)
, (7.5)

the fluid limit in Theorem 6.1 has an overloaded equilibrium (b∗, q∗, λ∗) with

B∗ = 1, Q∗ > 0, σ∗ = δ, α∗ = λ∗ − δ > 0 ,

b∗(k) = δGc(k), k ≥ 0 ,

q∗(k) = (δ + α∗)F c(k), 0 ≤ k ≤ c∗ ,

q∗(c∗ + 1) = (1− p∗)(δ + α∗)F c(c∗ + 1) ,

q∗(k) = 0, k ≥ c∗ + 2 . (7.6)

(c) (no state-dependence)

A unique equilibrium exists if λ(x) = λ(0) for all x > 0. The underloaded, balanced and

overloaded cases arise if λ(0) < δ, λ(0) = δ or λ(0) > δ.
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Proof. In general, from (6.16), we have

b∗(k) = b∗(k − 1)
Gc(k)

Gc(k − 1)
= b∗(0)Gc(k) . (7.7)

Given (7.7), we obtain B∗ = b∗(0)δ−1 by (6.4) and σ∗ = b∗(0).

We first consider the underloaded and balanced cases. Letting B∗ = x and Q∗ = 0, we

obtain λ∗ = λ(B∗ + Q∗) = δx, which implies that b∗(0) = δx, which in turn implies that

σ∗ = δx and B∗ = x. Thus the alleged equilibrium indeed is an equilibrium.

We now go on to consider the overloaded case. The equilibrium we construct will have

B∗ = 1, Q∗ > 0 and λ∗ = λ(B∗ + Q∗) = δ + α∗ . (7.8)

We again have (7.7) above, but now (7.8) implies that b∗(0) = δ. Since σ∗ = b∗(0), we must

have σ∗ = δ too. By the first equation in (7.5),

α∗ = λ(B∗ + Q∗)− δ = λ∗ − δ . (7.9)

Given that the equations in (7.5) hold, we then obtain the equations in (7.6).

Finally, we consider part (c). First, if λ(0) ≤ δ, then we can apply the underloaded or

balanced case above, starting with λ(x) = δx for x = λ(0)/δ, to construct a fully specified

equilibrium, which therefore must be unique

On the other hand, if λ(0) > δ, then we can apply the overloaded case, letting α∗ = λ(0)−δ.

Given α∗, we find p∗ and c∗ by using the last two equations in (7.5). Then we obtain q∗, Q∗

and the other elements. Again we have constructed a fully specified equilibrium, so that it is

necessarily unique.

We have not yet established convergence of the fluid limit to the fluid equilibrium as time

evolves when there is no time dependence. It seems evident that such convergence holds for

all initial conditions when the arrival rate is constant, but we do not yet have a proof. We do

have the following partial result about the convergence of the steady-state distributions in the

queueing model.

Theorem 7.2. (convergence of steady-state queueing distributions) Consider the discrete-

time G/GI/s + GI queueing model indexed by s in Theorem 6.1 when the arrival rate λs is

constant (proportional to s), being neither state-dependent not time-dependent. Suppose that

queueing model has a limiting steady-state distribution as n →∞ for each s, characterized by

bs(∞, k) for k ≥ 0 and qs(∞, k) for k ≥ 1. Suppose that scaled versions of the steady-state
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distributions converge, i.e.,

bs(∞, k)
s

⇒ b(∞, k) and
qs(∞, k)

s
⇒ q(∞, k) (7.10)

for all k, where b(∞, k) and q(∞, k) are deterministic functions, and suppose that the analog

of regularity condition (6.12) holds, i.e.,

P (
∞∑

k=k0

bs(∞, k)
s

> ε) < η and P (
∞∑

k=k0

qs(∞, k)
s

> ε) < η . (7.11)

Then these limits b(∞, k) and q(∞, k) coincide with the unique equilibrium of the associated

G/GI/s + GI fluid model established in Theorem 7.1.

Proof. The assumptions for bs(∞, ·) and qs(∞, ·) above imply that they satisfy the initial

conditions in Theorem 6.1. Hence we have the convergence established in Theorem 6.1 with

these initial conditions. However, since this initial fluid process holds for all times n, the limit

must actually be an equilibrium distribution. Since Theorem 7.1 implies that there is a unique

equilibrium for the fluid model, the limits b(∞, k) and q(∞, k) must indeed coincide with that

equilibrium.

For the underloaded case, it is easy to see that the fluid process converges monotonically

to its equilibrium when the system starts out empty. We state the elementary result without

proof.

Theorem 7.3. (monotonic convergence starting out empty in the underloaded regime) Con-

sider the discrete-time G/GI/s + GI fluid model, where the arrival rate is constant, being

neither time-dependent nor state-dependent, with λ ≤ δ. If b(0, k) = 0 for all k ≥ 0 and

q(0, k) = 0 for all k ≥ 1, then the fluid process converges monotonically to the unique equilib-

rium established in Theorem 7.1; i.e.,

b(n, k) = λGc(k), 0 ≤ k ≤ n, and b(n, k) = 0 for all k > n , (7.12)

so that

B(n) ↑ B∗ ≡ λ

δ
and σ(n) ↑ σ∗ ≡ λ (7.13)

as n →∞.

The transient behavior is more complicated otherwise, even when the system starts empty

(in the overloaded regime). However, as we observed before, it is easy to numerically compute

the transient descriptions of the fluid model.
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We conclude this section by observing that the steady-state behavior of the continuous-

time fluid model established in Theorem 3.1 appears as the limit of the unique equilibrium in

Theorem 7.1 associated with constant arrival rate λ (after changing the notation to rho) as

δ ↓ 0. (Of course, that does not provide a proof of Conjecture 2.1.) To get the densities in

Theorem 3.1, we must of course divide by δ in the discrete-time model with step size δ. Thus,

Theorems 6.1 and 7.1 provide strong support for the G/GI/s + GI fluid model in Section 2.

It would be nice to apply them to prove Conjecture 2.1. And it would be nice to establish a

functional-central-limit-theorem refinement, paralleling Krichagina and Puhalskii (1997).
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