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Abstract
It has long been conjectured that the tight upper bound for the mean steady-state wait-
ing time in the G I/G I/1 queue given the first two moments of the interarrival-time
and service-time distributions is attained asymptotically by two-point distributions.
The two-point distribution for the interarrival time has one mass point at 0, but the
service-time distribution involves a limit; there is one mass point at a high value, but
that upper mass point must increase to infinity while the probability on that point
must decrease to 0 appropriately. In this paper, we develop effective numerical and
simulation algorithms to compute the value of this conjectured tight bound. The algo-
rithms are aided by reductions of the special queues with extremal interarrival-time
and extremal service-time distributions to D/G I/1 and G I/D/1 models. Combining
these reductions yields an overall representation in terms of a D/RS(D)/1 discrete-
time model involving a geometric random sum of deterministic random variables
(the RS(D)), where the two deterministic random variables in the model may have
different values, so that the extremal steady-state waiting time need not have a lat-
tice distribution. Efficient computational methods are developed. The computational
results show that the conjectured tight upper bound offers a significant improvement
over established bounds.
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1 Introduction

An open problem for the G I/G I/1 queue is to determine a tight upper bound (UB)
for the mean steady-state waiting time when the interarrival-time and service-time
distributions are partially characterized by their first two moments. The classic result
in this direction is the Kingman [14] UB. A significant improvement was made by
Daley [10]. Many further studies have been made since then, as can be seen from
[11,29], but the issue is still unresolved.

Based on numerical experiments and partial theoretical results, there is consid-
erable agreement on how the tight UB arises. In particular, the conjectured upper
bound is attained asymptotically by two-point distributions as the upper mass point
of the service-time distribution increases and the probability decreases, while one
mass of the interarrival-time distribution is fixed at 0. In this paper, we shall refer
to that as the tight UB, even though it has not yet been proved. We develop
effective numerical and simulation algorithms to compute the value of this tight
UB. We show that the tight UB offers a significant improvement over previous
bounds.

The extremal model is also of interest because we have shown in [6,7] that it yields
the tight lower bound (LB) for the asymptotic decay rate and the tight upper bound
(UB) for higher moments of the steady-state waiting time, under regularity conditions.
(The LB for the decay rate is appropriate because smaller decay rates are associated
with larger waiting times.)

The algorithms are aided by reductions of the special queues with extremal
interarrival-time and extremal service-time distributions to D/G I/1 and G I/D/1
models. Theorem 3.1 shows that these reductions overall combine to yield an overall
representation in terms of a D/RS(D)/1 discrete-time model involving a geomet-
ric random sum of deterministic random variables (the RS(D)), where the two
deterministic random variables in the model may have different values, so that
the extremal steady-state waiting-time distribution need not be a lattice distribu-
tion.

This paper is organized as follows: In Sect. 2, we give important background on the
G I/G I/1 model, the established bounds and the extremal distributions. In Sect. 3,
we state the overall model reduction theorem and show the improvement provided by
the tight UB. In Sects. 4 and 5 we establish the two reductions. In Sect. 6, we give
explicit formulas for a class of special cases. In Sects. 7–9, we develop and study the
new algorithms. In Sect. 10, we draw conclusions. Additional supporting material
appears in [5].

2 Background

Westart by carefully defining themodel, reviewing established bounds and introducing
the extremal distributions.
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2.1 Themodel

The G I/G I/1 model is a single-server queue with unlimited waiting space and the
first-come first-served service discipline. There is a sequence of independent and
identically distributed (i.i.d.) service times {Vn : n ≥ 0}, each distributed as V with
cumulative distribution function (cdf) G, which is independent of a sequence of i.i.d.
interarrival times {Un : n ≥ 0} each distributed as U with cdf F . With the understand-
ing that a 0th customer arrives at time 0 to find an empty system, Vn is the service time
of customer n, while Un is the interarrival time between customers n and n + 1.

Let U have mean E[U ] ≡ λ−1 ≡ 1 and squared coefficient of variation (scv,
variance divided by the square of the mean) c2a ; let a service time V have mean
E[V ] ≡ τ ≡ ρ and scv c2s , where ρ ≡ λτ < 1, so that the model is stable. (Let ≡
denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting
service, assuming that the system starts empty with W0 ≡ 0. The sequence {Wn : n ≥
0} is well known to satisfy the Lindley recursion

Wn+1 = [Wn + Vn − Un]+, n ≥ 0, (2.1)

where x+ ≡ max {x, 0}. Let W be the steady-state waiting time. It is also well known

that Wn
d= max {Sk : 0 ≤ k ≤ n} and W

d= max {Sk : k ≥ 0}, where d= denotes equal-
ity in distribution, S0 ≡ 0, Sk ≡ X0 + · · · + Xk−1 and Xk ≡ Vk − Uk, k ≥ 0; for
example, see Sects. X.1–X.2 of [3] or (13) in Sect. 8.5 of [8]. It is also known that,
under the specified finite moment conditions, Wn and W are proper random variables
with finite means, given by

E[W ] =
n∑

k=1

E[S+
k ]

k
< ∞ and E[W ] =

∞∑

k=1

E[S+
k ]

k
< ∞. (2.2)

For numerical computation of E[W ], formula (2.2) is unattractive, because it con-
tains an infinite sum of terms and thus involves a k-fold convolution integral for all
k ≥ 2. Effective algorithms avoid that computational approach. One way to proceed
is to apply numerical transform inversion with the Pollaczek contour integral repre-
sentation, as in (5) of [2], i.e.,

E[W ] = 1

2π i

∫

C
log {1 − φ(z)}dz

z
, (2.3)

where i ≡ √−1, z is a complex variable,

φ(z) ≡ E[ez(V −U )] (2.4)

and C is a contour in the complex plane to the left of, and parallel to, the imaginary
axis, and to the right of any singularities of log {1 − φ(z)} in the left-half plane. As a
regularity condition, we assume that the transform φ in (2.4) is analytic in the complex
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plane for z in the strip |z| < δ for some δ > 0. As in many probability applications,
convolution is avoided by considering the transform in (2.4).

Unfortunately, ourmodelwith two-point distributions does not satisfy the regularity
condition; for example, see Sect. 14 of [1]. As shown in [2], that difficulty can be
avoided by asymptotic arguments. That was illustrated by calculating the cumulants
and distribution of W in the Ek/Ek/1 for a wide range of k, even up to k = 104.
In this paper, we will derive model reductions that will also enable us to avoid direct
convolution in other ways.

2.2 The established upper bounds

Recall that our goal is to bound E[W ] given a partial specification of the model,
characterized by the parameter vector

(E[U ],E[U 2],E[V ],E[V 2]) = (1, c2a + 1, ρ, ρ2(c2s + 1)). (2.5)

Given that we have set E[U ] = 1, we have the parameter triple (ρ, c2a, c2s ).
In this setting, the classical UB for E[W ] is the Kingman [14] UB,

E[W ] ≤ ρ2([c2a/ρ2] + c2s )

2(1 − ρ)
. (2.6)

An improvement is provided by the Daley [10] UB, which replaces the term c2a/ρ2 by
(2 − ρ)c2a/ρ, i.e.,

E[W ] ≤ ρ2([(2 − ρ)c2a/ρ] + c2s )

2(1 − ρ)
. (2.7)

Both of these bounds are asymptotically correct in heavy traffic, i.e.,

lim
ρ→1

(1 − ρ)

ρ2 E[W ] = (c2a + c2s )/2, (2.8)

which also supports the commonly used heavy-traffic approximation (HTA)

E[W ] ≈ ρ2(c2a + c2s )

2(1 − ρ)
. (2.9)

The HTA reduces to the Pollaczek-Khintchine exact formula when the arrival process
is a Poisson process, so that c2a = 1. The heavy-traffic limit also shows that the scaled
waiting-time distribution is asymptotically exponential and thus is asymptotically fully
characterized by its mean.
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2.3 The extremal distributions

In general, by “extremal model,” we mean a model that yields the largest or smallest
value of some performance measure given a partial model specification. We are con-
sidering the extreme values of E[W ] in the G I/G I/1 queue with the parameters in
(2.5). Thus, the extremal model means the pair of cdf’s (F, G) of (U , V ) yielding the
extreme values of E[W ].

2.3.1 Large service times versus large interarrival times

An intuitive explanation of the extremal distributions forE[W ] in the G I/G I/1 queue
is provided by considering the very different way that E[W ] is affected by an excep-
tionally large interarrival time compared to an exceptionally large service time. A
large interarrival time will tend to empty the queue seen by the next customer, but
making it even larger has no further impact. On the other hand, a large service time
increases waiting for many following customers, and making it even larger increases
that impact. We elaborate in Sect. 2.4.

2.3.2 The two-point distributions

A special role is played by two-point distributions, which necessarily have finite sup-
port. Let P2,2(m1, c2, M) be the set of all two-point distributions with mean m1 and
second moment m2 = m2

1(c
2 +1) with support in [0, m1M]. The set P2,2(m1, c2, M)

is a one-dimensional parametric family. Any element is determined by specifying one
mass point. Let F (2)

b be the cdf that has probability mass c2/(c2 + (b − 1)2) on m1b,
and mass (b − 1)2/(c2 + (b − 1)2) on m1(1− c2/(b − 1)) for 1+ c2 ≤ b ≤ M . The
cases b = 1 + c2 and b = M constitute the two extremal distributions.

Sinceweare only interested in the extremal cdf’s here,wewill use different notation.
We let F0 ≡ F (2)

1+c2
because it is the unique element that has lower mass point 0, and

we let Fu ≡ F (2)
M because it is the unique element that has upper mass point m1M . We

use this definition for both the cdf’s we consider: F of U and G of V , but recall that
our parameter specification in (2.5) with E[U ] = 1 makes the support of F equal to
[0, Ma], while E[V ] = ρ makes the support of G equal to [0, ρMs]. Therefore, with
Ma ≥ 1 + c2a for F and Ms ≥ 1 + c2s for G, we have:

• F0 : c2a/(1 + c2a) on 0, 1/(1 + c2a) on 1 + c2a ;
• Fu : (Ma − 1)2/(c2a + (Ma − 1)2) on 1 − c2a/(Ma − 1), c2a/(c2a + (Ma − 1)2) on

Ma ;
• G0 : c2s /(1 + c2s ) on 0, 1/(1 + c2s ) on ρ(1 + c2s );
• Gu : (Ms − 1)2/(c2s + (Ms − 1)2) on ρ(1 − c2s /(Ms − 1)), c2s /(c

2
s + (Ms − 1)2)

on ρMs .

2.3.3 Special notation

Given that we are interested in the pair of cdf’s (F, G) of (U , V ) yielding the extreme
values of E[W ], it will be convenient to introduce some special notation, which
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departs from the classic Kendall queueing notation, without changing the indepen-
dence assumptions. In particular, we will often denote a G I/G I/1 model with cdf
pair (F, G) as the F/G/1 model or as the U/V /1 model (with the understanding
that U and V are then shorthand for their cdf’s). We might even mix the notation, for
example, referring to the D(m)/G/1 model, where D(m) represents a deterministic
random variable with mean m. (The G without the G I refers to the service-time cdf
G.) We will also refer to the steady-state waiting time as a function of the pair (F, G)
as E[W (F, G)] or E[W (U , V )].

We also introduce somenotation to account for the limitwe consider,which involves
Ms → ∞ in the setting above. In particular, with a slight abuse of notation, for any
cdf F of U , we let Gu∗ denote the limit

E[W (F, Gu∗)] ≡ lim
Ms→∞E[W (F, Gu)]. (2.10)

This definition is formalized and justified in Theorem 5.1.

2.4 Asymptotics for the extremal distributions

With this notation, we can elaborate on the impact of very large interarrival times and
service times discussed in Sect. 2.3.1. For that purpose, let ⇒ denote convergence in
distribution; for example, see [4]. Let the cdf’s F and G have parameters in (2.5).

In this setting, it is easy to see that these two-point distributions have deterministic
limits as the support bounds increase; i.e.,

Fu ⇒ D(1) as Ma → ∞ and Gu ⇒ D(ρ) as Ms → ∞, (2.11)

even though the scv of the deterministic limit is 0 instead of the original value.

2.4.1 The tight lower bound

The tight lower bound (LB) for E[W ] in G I/G I/1 subject to (2.5) has long been
known; see [23], Sect. 5.4 of [22], Sect. V of [19,25] and Theorem 3.1 of [11]. The
LB is not attained at two-point distributions. The LB is attained asymptotically by
F = D(1) as Ma → ∞ and G = A3, where A3 denotes any three-point service-time
distribution (with the given mean ρ) that concentrates all mass on nonnegative-integer
multiples of the deterministic interarrival time. The tight LB has explicit formula

E[W (D(1), A3)] = ρ((1 + c2s )ρ − 1)+

2(1 − ρ)
. (2.12)

We will show the LB in numerical comparisons, but not focus on it.
Consistent with (2.12), we have an associated asymptotic result. In particular, by

Theorem X.6.1 of [3], for any cdf G with the parameters in (2.5),
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W (Fu, G) ⇒ W (D(1), G) and E[W (Fu, G)]
→ E[W (D(1), G)] as Ma → ∞. (2.13)

That partly explains the LB in (2.12).

2.4.2 A contrasting story for the upper bound

In contrast, there is a very different story for the UB. To explain, let VMs be a random
variable with distribution Gu as a function of Ms . By the definitions, E[VMs ] = ρ

and E[V 2
Ms

] = ρ2(1 + c2s ) for all Ms . By (2.11), VMs ⇒ D(ρ) as Ms → ∞, but

E[V 2+p
Ms

] → ∞ for all p > 0 and the family {V 2
Ms

: Ms ≥ c2s + 1} is not uniformly
integrable; see Sect. X.6 of [3] and pages 30-32 of [4]. Nevertheless, by Theorem 5.1,
for any cdf F , E[W (F, Gu)] converges as Ms → ∞, but the limit is typically strictly
larger than E[W (F, D(ρ))]. Definition (2.10) is intended to capture the true limit as
Ms → ∞. That limit is given in Theorem 5.1 in Sect. 5. See Corollary 5.3 to Theorem
5.1 for more details.

3 Summary of the results

We now summarize our main results. We first state our main reduction theorem. Then,
we develop an explicit UB formula for E[W (F0, Gu∗)] in (2.10). Then, we show the
advantage of the tight UB over previous UB’s.

3.1 The overall reduction theorem

Our main purpose in this paper is to develop and evaluate algorithms to efficiently
computeE[W (F, Gu∗)] in (2.10). That is challenging because the large service time is
a rare event. For example, standardMonte Carlo simulation with the Lindley recursion
and the inverse method is not so effective for estimating E[W ] accurately. We show
that effective algorithms can be developed if we transform the problem, which we do
through two model reductions.

In Sect. 4, we introduce our first model reduction. Drawing on [13] or [24], we show
that, for any service-time cdf G, the mean waiting time in the F0/G/1 model can be
expressed in terms of the mean waiting time in an associated D(m)/G/1 model with
a new service-time distribution involving a geometric random sum. Then, drawing
on [11], in Sect. 5, we introduce a second model reduction. We show that, for any
interarrival-time cdf F , E[W (F, Gu∗)] in (2.10) can be expressed in terms of the
mean waiting time in an associated model.

For the statement of our main decomposition result (to be proved in the next two
sections), (i) let D(m) be a deterministic random variable with a unit mass on m and
(ii) let RS(V , p) be a geometric random sum of i.i.d. random variables distributed as
V , i.e.,
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RS(V , p)
d=

N (p)∑

k=1

Vk, (3.1)

where N (p) is a geometric random variable on the positive integers, having mean
E[N (p)] = 1/p, i.e., P(N (p) = k) ≡ p(1 − p)k−1, k ≥ 1.

Theorem 3.1 (overall decomposition of the upper bound) For the G I/G I/1 model
with extremal interarrival-time cdf F0 and service-time cdf Gu,

E[W (F0, Gu∗)] ≡ lim
Ms→∞E[W (F0, Gu)]

= E[W (D(1/p), RS(D(ρ), p))] + ρc2a + ρ2c2s
2(1 − ρ)

(3.2)

for p ≡ 1/(c2a + 1).

Remark 3.1 (functional form) Notice that the first term in (3.2) is independent of c2s ,
while the second term is independent of c2a , but the functional dependence on the pair
(ρ, c2a) is somewhat complicated because p = 1/(1 + c2a). The interarrival time and
service time in the D(1/p)/RS(D(ρ), p))/1 model have means 1+c2a and ρ(1+c2a),
but the distribution is more complicated. The variance and scv of the service time are
given in Lemma 4.1.

Remark 3.2 (nonlattice distribution)Theorem 3.1may explain the long-standing diffi-
culty establishing the tight upper bound, because the D(1/p)/RS(D(ρ), p)/1 model
is a discrete model, where the service times are necessarily multiples of ρ, while the
interarrival times are multiples of 1/p = c2a + 1. Hence, the distribution of W is
discrete nonlattice for most parameter pairs (ρ, c2a). ��

In Sect. 6, we exhibit the steady-state distribution of E[W (F0, Gu∗)] for a class of
special cases, but it involves solving an equation for a key parameter. With (3.2), we
can apply basic convex stochastic order relations to obtain a convenient upper bound
formula for E[W (D(1/p), RS(D(ρ), p))]. For that purpose, let ≤cx and ≤icx denote
convex stochastic order and increasing stochastic order, respectively, as in Sect. 9.5 of
[20] or Sect. 1.5 of [18]. Also let M(m) be an exponential random variable with mean
m. Since D(m) ≤cx M(m), we deduce the following theorem. To obtain an explicitly
computable formula usingmathematical software, we exploit the Lambert W function,
here denoted by w, characterized by z = w(z)ew(z) for all complex variables z; see
[9].

Theorem 3.2 In the setting of Theorem 3.1,

W (D(1/p), RS(D(ρ), p)) ≤icx W (D(1/p), M(ρ/p)), (3.3)

so that well-known results for the D/M/1 queue yield

E[W (F0, Gu∗)] ≤ [2(1 − ρ)ρ/(1 − δ)]c2a + ρ2c2s
2(1 − ρ)

, (3.4)
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where δ ∈ (0, 1) solves the equation

δ = exp(−(1 − δ))/ρ)), so that δ = −ρw(−ρ−1e−1/ρ), (3.5)

where w is the Lambert W function.

Proof Since D(m) ≤cx M(m) for all m, we also have RS(D(ρ), p) ≤cx

RS(M(ρ), p) by Theorem 9.6.7 of [20], but

RS(M(ρ), p)
d= M(ρ/p), (3.6)

as can be verified by computing the Laplace transforms. Then, for the transient waiting
times, we have the ordering

Wn(D(1/p), RS(D(ρ), p)) ≤icx Wn(D(1/p), M(ρ/p)) for all n ≥ 1, (3.7)

by Theorem 9.6.2 of [20]. Given our second moment conditions in (2.5), we also have
the conclusion for the steady-state variables in (3.3) by Theorem 1.5.9 of [18].

Finally, we derive the explicit representation of the root δ using the Lambert W
function w in the last line. Start with the equation ebx = cx for positive real numbers
b and c, where x is a real variable. Then, let y = −bx , which implies that −b/c =
yey . Now apply the characterization z = w(z)ew(z) to obtain y = w(−b/c) and
x = −w(−b/c)/b. Then, substitute for b and c. ��
Remark 3.3 (not tight) Table 1 shows that the UB for E[W (F0, Gu∗)] in (3.4) is very
accurate, but it is a not tight UB. We conjecture that formula (3.4) is a legitimate
overall UB. Given Theorem 3.2, a sufficient condition is for E[W (F0, Gu∗)] to be the
tight UB.

3.2 The algorithms

In Sect. 7, we use the representation in (3.2) to produce the first effective numerical
algorithm involving the negative binomial distribution. For further progress, following
[16,17,29], in Sect. 8, we review the representation of the mean waiting time E[W ]
in terms of the parameter vector (1, c2a, ρ, c2s ) and the idle-time distribution. When
combined with the idle-time representation, this yields other convenient ways to cal-
culate or estimate E[W ] via numerical algorithms and simulations. We then study
three simulation algorithms in Sect. 9.

3.3 The advantage of the tight UB

To show that the tight UB E[W (F0, Gu∗)] studied in this paper and its approximation
formula in (3.4) provide significant improvements, we compare the numerical esti-
mates of the tight UB for the G I/G I/1model with given first twomoments associated
with c2a = c2s = 4.0 to other bounds and approximations in Table 1. Comparisons for
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the cases (c2a, c2s ) = (0.5, 0.5), (4.0, 0.5) and (0.5, 4.0) appear in Sect. 2 of the online
supplement, [5]. The heavy-traffic approximation (HTA) is (2.9). The MRE is the
maximum relative error between the new UB in (3.4) and the conjectured tight UB
E[W (F0, G∗

u)] in (3.2).

Remark 3.4 (need for additional information) While Table 1 shows that the
conjectured tightUB in (2.10) and (3.2) and itsUB in (3.4) provide significant improve-
ments over previous UB’s, Table 1 also shows that there remains a wide range between
the LB and the UB. That indicates that more reliable prediction depends on additional
information. One way to address that is described in [6].

4 Reduction for the interarrival time

In this section, we show that for any service-time cdf G, the mean waiting time in the
F0/G/1 queue can be expressed in terms of the mean waiting time in an associated
D(m)/RS/1 queue with a new service-time distribution involving a random sum. The
key observation is that the F0/G/1 queue corresponds to the D/G I/1 queue with
batch arrivals; then, the new service-time cdf is the sum of the service times in the
batch. However, we need to make other adjustments as well.

Let F0 be the two-point upper bound extremal distribution with mean 1 and mass
p ≡ 1/(c2a + 1) on c2a + 1 and mass 1− p on 0. Let RS(V , p) be the random variable
defined in (3.1). For the interarrival times, we will consider D(x) for x = 1/p =
(c2a + 1).

Theorem 4.1 For any service-time V with cdf G having mean ρ and scv c2s , the steady-
state waiting time is distributed as

W (F0, G)
d= W (D(1/p), RS(V , p)) +

N (p)−1∑

k=1

Vk (4.1)

for N (p) and RS(V , p) in (3.1), where the two terms in (4.1) are independent. Hence,
the mean is

E[W (F0, G)] = E[W (D(1/p), RS(V , p)] + (E[N (p)] − 1)E[V ]
= E[W (D(1/p), RS(V , p))] + ρ(1 − p)/p

= E[W (D(1/p), RS(V , p))] + ρc2a . (4.2)

Proof The F0 interarrival time means that a random number of arrivals, distributed
as N (p), arrive at deterministic intervals with deterministic value 1/p = c2a + 1. So
the model has batch arrivals. The result in (4.2) follows from [13] or Theorem 1 of
[24], which states that the delay of an arbitrary customer in the batch is distributed the
same as the delay of the last customer in the batch when the batch-size distribution
is geometric. Because E[W (D(1/p), RS(V , p))] is the expected delay of the first
customer in a batch, we need to add the second term in (4.2) to get the delay of the
last customer in the batch; for example, see Sect. III of [24]. ��
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To work with the D(1/p)/RS(V , p)/1 model, we need the mean and variance of
the random sum RS(V , p) in (3.1).

Lemma 4.1 (random sum moments) Given that V has mean ρ and scv c2s , the mean
and variance of the random sum RS(V , p) in (3.1) are

E[RS(V , p)] = E[N (p)]E[V ] = ρ

p
= ρ(c2a + 1) (4.3)

and

V ar(RS(V , p)) = ρ2c2s (c
2
a + 1) + ρ2c2a(1 + c2a). (4.4)

Hence, the scv of RS(V , p) is

c̄2s ≡ V ar(RS(V , p))

E[RS(V , p)]2 = ρ2c2s (c
2
a + 1) + ρ2c2a(1 + c2a)

ρ2(1 + c2a)2
= c2a + c2s

1 + c2a
. (4.5)

Proof We apply the standard formulas for random sums from p. 113 of [21]. For the
variance,

V ar(RS(V , p)) = V ar(V )E[N ] + (E[V ])2V ar(N ) = ρ2c2s
p

+ ρ2(1 − p)

p2

= ρ2c2s (1 + c2a) + ρ2c2a(1 + c2a), (4.6)

as claimed. ��
Let c̄2a = 0 be the scv of D(1/p) and recall that p = 1/(1 + c2a).

Theorem 4.2 For the D(1/p)/RS(V , p)/1 model, the Kingman [14] upper bound in
(2.6) for the mean steady-state waiting time is

E[W ] ≤ ρE[RS(V , p)]((c̄2a/ρ2) + c̄2s )

2(1 − ρ)

= ρ2(1 + c2a)c̄2s
2(1 − ρ)

= ρ2(c2a + c2s )

2(1 − ρ)
. (4.7)

Hence, the associated upper bound for the F0/G/1 model is

E[W (F0, G)] ≤ ρ2(c2a + c2s )

2(1 − ρ)
+ ρc2a = ρ2(Ac2a + c2s )

2(1 − ρ)
, (4.8)

where

A ≡ A(ρ, c2a) ≡ 1 + 2(1 − ρ)

ρ
= 2

ρ
− 1, (4.9)

which makes (4.8) coincide with [10] bound in (2.7).
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Proof Weexploit Theorem4.1,which provides the representation (4.2). Then, observe,
with the aid of Lemma 4.1, that the [14] bound forE[W (D(1/p), RS(V , p))] is given
by the first term on the first line of (4.8). ��

5 Reduction for the service time

Daley proposed another decomposition that can be used to avoid the rare event of
the large service time Ms . The Daley decomposition allows us to reduce the model
F/Gu/1 to F/D/1 for arbitrary F as Ms → ∞. The Daley decomposition is stated in
(10.2) of the review paper [11] without proof, referring to an unpublished manuscript.
As before, let D(m) denote a deterministic cdf with mass 1 on m.

Theorem 5.1 (theDaley decomposition in (10.2) of [11])Consider the F/Gu/1model
with arbitrary interarrival-time cdf F and two-point service-time cdf Gu. Then,

lim
Ms→∞E[W (F, Gu)] = E[W (F, D(ρ))] + lim

Ms→∞E[W (D(1), Gu)]

= E[W (F, D(ρ))] + ρ2c2s
2(1 − ρ)

. (5.1)

Proof Given that this result is already known, we only outline our proof. We do a
regenerative analysis to compute the mean waiting time, looking at successive busy
cycles starting empty. We exploit the classic result that the steady-state mean waiting
time is the expected sum of the waiting times over one cycle divided by the expected
length of one cycle; for example, see Sects. 3.6 and 3.7 of [20].

As Ms increases, the two-point cdf Gu necessarily places probability of order
O(1/M2

s ) on Ms and the rest of themass on a point just less than themean service time,
ρ. For very large Ms , there will be only rarely, with probability of order O(1/M2

s ), be
a large service time of order O(Ms). In the limit, most customers never encounter this
large service time, so thatweget a contribution to the overallmeanE[W ] corresponding
to E[W (F, D(ρ))] in the first term on the right in (5.1).

On the other hand, the total impact of the very large waiting time of order Ms is
roughly the area of the triangle with height O(Ms) and width O(Ms), which itself is
O(M2

s ). When combined with the O(1/M2
s ) probability, this produces an additional

O(1) impact on the steady-state mean, which is given by the second term on the right
in (5.1). Moreover, because we can use a law-of-large-numbers argument to treat this
large service time, the asymptotic impact of that large service time is independent of
the interarrival-time cdf beyond its mean, so we can substitute D(1) for the original
interarrival-time cdf F with mean 1 in the second term.

To elaborate on the value of the last term, the mean cycle length is asymptotically
1. From the form of Gu in Sect. 2.3.2, we see that (i) the probability of the rare event
is asymptotically c2s /M2

s and (ii) when the rare event occurs, the large service time of
size ρMs will arrive. Assuming no other large service times arrive thereafter, service
times of size approximately ρ arrive every unit time, so that the queue will empty
approximately at time ρMs/(1− ρ). Hence, the sum of all the waiting times from the
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arrival of the large service time until the queue first empties and the cycle ends is about
ρ2M2

s /2(1 − ρ). Putting these together, we see that the expected sum of all waiting
times in the cycle is asymptotically (c2s /M2

s ) × ρ2M2
s /2(1− ρ) = ρ2c2s /2(1− ρ), as

stated. This reasoning can be made precise using the reasoning in [27]. ��
Corollary 5.1 (decomposition of the upper bound) For the F/Gu/1 model with Gu∗
in (2.10),

E[W (F0, Gu∗)] = E[W (F0, D(ρ))] + ρ2c2s
2(1 − ρ)

.

We can combine Theorem 4.1 and Corollary 5.1 to obtain Theorem 3.1. Corol-
lary 5.1 implies that calculating the UB of E[W ] is equivalent to calculating F0/D/1,
which has deterministic service time. Clearly, this makes the UB much easier to esti-
mate by classical simulation methods.

Corollary 5.2 (tightness of Kingman’s bound) For the D/Gu/1 model with Gu∗ in
(2.10),

E[W (D(1), Gu∗)] = E[W (D(1), D(ρ))] + ρ2c2s
2(1 − ρ)

= ρ2c2s
2(1 − ρ)

,

so that Kingman’s bound in (2.6) is asymptotically attained by the D/Gu/1 model as
Ms → ∞.

Finally, by the proof of Theorem 5.1, we also obtain the following negative result.

Corollary 5.3 (higher moments) For the F/Gu/1 model and any p > 0,

lim
Ms→∞E[W (F, Gu)1+p] → ∞ as Ms → ∞.

6 Explicit solution in special cases

FromCorollary 5.1 in Sect. 5, we conclude that we can express theUBE[W (F0, Gu∗)]
in terms of the mean E[W (F0, D(ρ))]. We now derive an explicit expression for this
mean and the full steady-state waiting-time distribution in this F0/D(ρ)/1 model for
some special cases.

Theorem 6.1 If 1 + c2a = kρ for a positive integer k, then

E[W (F0, D(ρ))] = rρ

1 − r
, (6.1)

where r ∈ (0, 1) is the root of
∑k−1

l=1 xl − c2a = 0. Moreover,

P(W (F0, D(ρ)) = lρ) = (1 − r)rl , l = 0, 1, 2, . . . (6.2)
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Proof In the F0/D(ρ)/1 model, the interarrival times and service times are lattice
distributions, with the support of F0 being {0, 1 + c2a} and the support of D(ρ) being
{ρ}. Thus, under the condition (1 + c2a) = kρ for some integer k, W (F0, D(ρ)) has
support {lρ : l ≥ 0}. Let pl ≡ P(W (F0, D(ρ)) = lρ), l ≥ 0. We see that pl satisfies
the recursion

pl+1 = pl
c2a

(1 + c2a)
+ pl+k

1

(1 + c2a)
, p0 =

(
k−1∑

l=0

pl

)
1

(1 + c2a)
. (6.3)

Given that {Wn : n ≥ 0} is an ergodic irreducible discrete-time Markov chain with a
unique steady-state distribution, it suffices to find a solution to the recursion in (6.3).
Thus, suppose that the pl is a geometric pmf as in (6.2) with unknown r and p0. We
then see that there exist unique p0 and r satisfying recursion (6.3). In particular, since
pl+1 = r pl where r ∈ (0, 1), we use the second equation of (6.3) to conclude that there
exists a unique r ∈ (0, 1) which is the unique root of the equation

∑k−1
l=1 xl − c2a = 0

with p0 = 1 − r . ��

7 The negative binomial numerical algorithm

In this section, we apply Theorem 3.1 to obtain an efficient algorithm for computing
the UB E[W (F0, Gu∗)]. Theorem 3.1 implies that it suffices to compute E[W ] in the
D(1/p)/RS(D(ρ), p)/1model. The representation of the service time as a geometric
random sum allows us to expressE[W ] directly in terms of the negative binomial (NB)
distribution, without having to perform any convolutions.

Let N B ≡ N B(n, p) be a conventional negative binomial random variable with
parameter pair (n, p) for nonnegative integer n and 0 < p < 1, which has probability
mass function (pmf)

pk(n, p) ≡ P(N B(n, p) = k) ≡
(

(n + k − 1)!
k!(n − 1)!

)
(1 − p)n pk, n ≥ 0, (7.1)

with mean and variance

E[N B(n, p)] = np

1 − p
and V ar(N B(n, p)) = np

(1 − p)2
. (7.2)

Lemma 7.1 (NB representation of the mean) For the D(1/p)/RS(D(ρ), p)/1model,

Sn
d= ρ(N B(n, 1 − p) + n) − (n/p), (7.3)

for Sn in (2.2), so that

E[W (D(1/p), RS(D(ρ), p))] =
∞∑

n=1

n−1
E[(N B(n, 1 − p) + n − (n/p))+].

(7.4)
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To compute, E[W ], we compute the transient mean E[WN ] in (2.2) for suitably
large N , which means truncating the sum in (7.4). As often with the NB pmf, because
of the factorials, it is convenient to use a recursive algorithm for computation. In the
first version, we initialize the recursion at k = 0, letting P(N B(n, 1− p) = 0) = pn .
Then, we can apply the recursion

P(N B(n, 1 − p) = k) = P(N B(n, 1 − p) = k − 1)(n + k − 1)(1 − p)

k
, (7.5)

where p = 1/(1 + c2a). However, for the parameter p = 1/(c2a + 1) already defined
by F0, we end up with negative binomial parameter 1 − p. A recursive algorithm is
given in Algorithm 1, with explanation afterward.

Algorithm 1 basic negative binomial recursion (k in outer loop)

1: Initially set E[W ] ← ρc2a + ρ2c2s
2(1−ρ)

and p = (1 + c2a)−1.
2: for k ∈ [1, K ] do
3: S(k) ← 0, nbpd f ← p(1 − p)k

4: for n ∈ [1, N ] do
5: S(k) ← S(k) + nbpd f max((n + k)ρ − n/p, 0)/n
6: nbpd f ← nbpd f ( n+k

n )p

7: E[W ] ← E[W ] + S(k)

8: Output E[W ]

To explain Algorithm 1, recall that we are applying Theorem 3.1 to obtain an
efficient algorithm for computing the UB E[W (F0, Gu∗)]. Thus, we initialize by the
constant term that depends only on the parameter vector (1, c2a, ρ, c2s ). We add that
to E[WN (D(1/p), RS(D(ρ))], which is computed by the recursion. We choose N
suitably large so that E[WN ] is close to E[W ], which can be seen when the values of
several successive N change only negligibly.

7.1 Performance of the negative binomial algorithm

We set different truncation levels K and N to study the computational accuracy and
effort of Algorithm 1. In the experiment, we consider the case c2a = 4.0, so that
p = 1/(1 + c2a) = 0.2. We fix the truncation level N = 103 and let K vary from
103 to 8× 103 to execute Algorithm 1. (It is good to have k in the outer loop because
p = 1/(1+c2a) < 0.5.) The results are shown in Table 2 for a range of traffic intensities
from ρ = 0.10 to ρ = 0.99. Also shown for comparison in the last two columns are
the simulation estimates from the highly accurate Minh-Sorli [17] simulation method,
as given in Table 6.

For ρ ≤ 0.90, the recursive algorithm with truncation level N = 103 and K =
3 × 103 performs well, but for ρ ≥ 0.95, the numerical values of E[W ] converge as
K increases but are not close to the simulation results.
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7.2 Refinement to the negative binomial algorithm for heavy traffic

The difficulty in heavy traffic occurs because as ρ increases, we need larger values of
n. For extremely large n, as is needed in heavy traffic, pn and (1− p)n are eventually
very small numbers. That causes the probability to become too small to be represented
in the implemented floating-point number system. Hence, in heavy traffic, the basic
recursive algorithm broke down because the large values of n caused underflow.

As when computing the steady-state of the birth-and-death processes, for example,
as in Sect. 7 of [28], for very large n we can encounter underflow problems if we start
the recursion at 0, but it can be avoided by starting the recursion elsewhere. We avoid
the underflow problem by doing two recursions, one up and the other down, starting
from the mean.

It now remains to consider how to do the truncations. First, consider the truncation
of the sum on k for given n. For given n,

E[N B(n, 1 − p)] ≡ m(n) = n(1 − p)

p
and

V ar(N B(n, 1 − p)) ≡ σ 2(n) = n(1 − p)

p2
. (7.6)

From the central limit theorem, we know that the NB distribution is approximately
Gaussian with a mean near its mode. In particular,

N B(n, 1 − p) ≈ N (m(n), σ 2(n)) as n → ∞. (7.7)

for m(n) and σ 2(n) in (7.6). Hence, for large n, it suffices to consider only a modest
range of k, i.e., of order O(

√
n). In particular, it should suffice to consider m(n) −

aσ(n) ≤ k ≤ m(n) + aσ(n) for, for example, a = 10, 20. However, we need to add
a term for small k. For k ≤ m(n) − aσ(n), we let P(N B(n, 1 − p) > k) = 1. That
means we add (m(n) − aσ(n)) ∨ 0, where a ∨ b ≡ max {a, b}.

Finally, the relevant values of n depend on the traffic intensity ρ and other model
parameters. For heavy traffic (large ρ), we can use the approximation (2.9) to esti-
mate the relevant n. Moreover, given that the heavy-traffic limit of the waiting-time
distribution is exponential, we can see the relevant range of n.

Suppose N is the upper bound of n. As a consequence, for large N , we consider
k ∈ [max(m(n) − 20

√
N , 0), m(n) + 20

√
N ] in the implementation. Here is how we

proceed: For fixed n ≤ N , we start from the mean in (7.5) and let P(N B(n, 1− p) =
n(1− p)/p) = 1 and then do recursive formula (7.5) up and down separately. Define
the mean n(1 − p)/p by m(n). The two-part recursion going up and down becomes

P(N B(n, 1 − p) = m(n) + j)

= P(N B(n, 1 − p) = m(n) + j − 1)(n + m(n) + j − 1)(1 − p)

m(n) + j
, (7.8)

P(N B(n, 1 − p) = m(n) − j)

= P(N B(n, 1 − p) = m(n) − j + 1)(m(n) − j + 1)

(n + m(n) − j)(1 − p)
(7.9)
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for j ≥ 1. Afterward, we normalize the values obtained from the above recursion to
get probabilities P(N B(n, 1 − p) = k) for any k given n.

As in Algorithm 1, in Algorithm 2 we apply Theorem 3.1 to obtain an efficient
algorithm for computing the UB E[W (F0, Gu∗)]. Thus, we initialize by the constant
term that depends only on the parameter vector (1, c2a, ρ, c2s ).

Algorithm 2 negative binomial recursion (up and down from the mean)

1: Initially set E[W ] ← ρc2a + ρ2c2s
2(1−ρ)

, p = (1 + c2a)−1, and m(n) = n(1 − p)/p.
2: for n ∈ [1, N ] do
3: nbpd f (1, m(n)) ← 1
4: for k ∈ [m(n) − 20

√
N + 1, m(n)] do

5: nbpd f (1, k − 1) ← nbpd f (1, k)/(n + k − 1)(k)/(1 − p)

6: for k ∈ [m(n), m(n) + 20
√

N − 1] do
7: nbpd f (1, k + 1) ← nbpd f (1, k)(n + k)/(k + 1)(1 − p)

8: Normalize nbpd f to obtain P(N B(n, 1 − p) = k)

9: S(n) ← ∑
k P(N B(n, 1 − p) = k)max((n + k)ρ − n/p, 0)

10: E[W ] ← E[W ] + S(n)/n

11: Output E[W ]

We now carefully compare the negative binomial pmf values generated from the
basic recursion (7.5) used in Algorithm 1with the values obtained in the new up–down
recursion used in Algorithm 2 in Table 3. We focus on the terms after m(n) and report
the values from the term m(n) to m(n) + 10.

For n ≤ 102, the results from the two methods agree to all digits shown, but
a significant difference occurs when n = 103. At n = 103, underflow occurs in
Algorithm 1, which causes the errors we saw for large ρ in Table 2.

7.3 Performance studies for the refined negative binomial algorithm

Table 4 shows that Algorithm 2 is also very efficient for ρ ≤ 0.95. Table 4 shows that
the new algorithm is effective if we increase N from 103 to 104 as ρ increases.

In particular, the numerical algorithm is more efficient than the simulation. It
requires nomore than 30 seconds CPU time in theworse case (N = 2×104, ρ = 0.95)
to produce more than ten decimal places accuracy, while the MS simulation algorithm
only attains 10−4 confidence interval level for 0.5 ≤ ρ ≤ 0.95 while producing three
decimal places accuracy within around 30 seconds CPU time.

Next, we applyAlgorithm 2 for the heavy-traffic caseswith ρ = 0.98 and ρ = 0.99.
To do so, we restrict the range of k to k ≤ m(n) + 20

√
N for the purpose of setting

smaller N . Table 5 shows that the poor performance of the NB algorithm in Table 2
has been improved dramatically by the alternative algorithm.

Remark 7.1 (suggested parameters) Our experiments suggest that, for typical values
of p (not too small), it suffices to set N = O(1/(1 − ρ)3) to obtain highly accurate
results.
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Remark 7.2 (opportunity for simulation efficiency) Since the service-time variability
parameter c2s is not used to evaluate E[W (D(1/p), RS(D(ρ), p)] in Algorithm 2,
Tables 4 and 5 can be reused to computeE[W (F0, Gu∗)]with any other c2s via Theorem
3.1.

8 Exploiting the idle-time representation

To develop alternative algorithms, following [16,17] and [29], we relate the mean
waiting time given the first two moments of the interarrival time and service time to
the first two moments of the idle time I . In Sect. 8.1, we review the basic relation. In
Sect. 8.2,wediscuss the implications of the relationwhenwe let Ms → ∞. In Sect. 8.3,
we show the advantage of combiningTheorem8.1 andCorollary 5.1. Later, in Sect. 9.2,
we apply the representation to develop a new numerical algorithm based on computing
absorption probabilities in finite-state discrete-time Markov chains (DTMCs).

8.1 The basic representation

The key relation is in the following theorem.

Theorem 8.1 (the idle-time representation, Theorem 1 of Marshall [16]) In the
G I/G I/1 queue with cdf’s F and G having parameter 4-tuple (1, c2a, ρ, c2s ),

E[W ] = ψ(1, c2a, ρ, c2s ) − φ(I ), (8.1)

where

ψ(1, c2a, ρ, c2s ) ≡ E[(U − V )2]
2E[U − V ] = ρ2([c2a/ρ2] + c2s )

2(1 − ρ)
+ 1 − ρ

2
(8.2)

and

φ(I ) = E[I 2]
2E[I ] = E[Ie], (8.3)

with I being the steady-state idle time and Ie being a random variable with the
associated stationary excess distribution (as in renewal theory).

Notice thatE[W ] depends on themodel distributions F andG beyond the parameter
vector (1, c2a, ρ, c2s ) only through φ(I ) = E[Ie] in (8.3). For the M/G I/1 model, I is
distributed as F , φ(I ) = 1 and simple algebra yields the exact Pollaczek-Khintchine
formula. In general, the first term on the right in (8.2) is the [14] upper bound. For
the [14] bound to be obtained, the second term on the right in (8.2) would have to be
exactly canceled by the second term on the right in (8.1).
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8.2 The limit asMs → ∞

This section is based on the notion that the upper bound is obtained as the limit of
E[W ] within the F0/Gu/1 model as Ms → ∞. Because the mean waiting time is
not continuous as Ms → ∞, but the idle-time distribution is, we approach the upper
bound via the idle time.

We can apply Theorems 4.1 and 8.1 to obtain a limit within the decomposition. For
that purpose, let φ(I ; U , V ) denote φ(I ) in (8.3) for the model with interarrival time
U and service time V . We will consider U = D(1/p) and V = RS(D(ρ), p).

Theorem 8.2 (limitwithin the decomposition)For the F0/Gu/1model with parameter
vector (1, c2a, ρ, c2s ) and service-distribution support [0, ρMs],

lim
Ms→∞E[W (F0, Gu)] = ψ(1, c2a, ρ, c2s ) + ρc2a

−φ(I ; (1 + c2a), 0, ρ(1 + c2a), c̄2s ), (8.4)

where φ(I ; D(1/p), RS(D(ρ), p)) means (8.3) for the D(1/p)/RS(D(ρ), p))/1
model and the parameter vector for that model is ((1 + c2a), 0, ρ(1 + c2a), c̄2s ) for
c̄2s ≡ c2a/(1 + c2a).

Proof We apply Theorems 4.1 and 8.1 to write

lim
Ms→∞E[W (F0, Gu)] = ψ(1, c2a, ρ, c2s ) − φ(I ; 1, c2a, ρ, 0), (8.5)

where

ψ(1, c2a, ρ, c2s ) ≡ c2a + ρ2c2s
2(1 − ρ)

+ 1 − ρ

2
, (8.6)

which is independent of Ms and thus is unchanged by the limit on Ms . However,
the second term changes, consistent with the distribution Gu approaching D(ρ) as
Ms → ∞, and having the limiting mean but 0 variance. As a consequence,

lim
Ms→∞E[W (F0, Gu)] = ψ(1, c2a, ρ, c2s ) + ρc2a − lim

Ms→∞ φ(I )

= ψ(1, c2a, ρ, c2s ) + ρc2a − φ(I ; D(1/p), RS(D(ρ), p)),

= ψ(1, c2a, ρ, c2s ) + ρc2a
−φ(I ; (1 + c2a), 0, ρ(1 + c2a), c̄2s ). (8.7)

��
Theorem 8.2 implies that it only remains to evaluate the idle-time term φ(I ) in (43)

as it arises in the last line of (8.7) for the D(1/p)/RS(D(ρ), p)/1 model, for which
the only randomness is in the random sum in the service times. The random sum is
a geometric random sum of constants in this case. When we apply the Minh-Sorli
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Fig. 1 Simulation estimates of the steady-state idle-time distribution in the F0/D/1model and the F0/Gu/1
model as Ms → ∞ under traffic level ρ = 0.99 and c2a = c2s = 4.0

[17] method for simulation, it suffices to reduce variance by ignoring the large Ms .
We treat the service times as D with mean ρ. But, when we do so, we have to make
adjustments in the final formulas as indicated above.

To illustrate the algorithm for computing E[W (F0, Gu∗)] in (2.10) by using the
idle-time representation, and because it is directly interesting, we present a simulation
estimate of the idle-time distribution for ρ = 0.99 and c2a = c2s = 4.0 in Fig. 1. We
remark that this is also the steady-state idle-time distribution for model F0/D/1.

8.3 Combining Theorem 8.1 and Corollary 5.1

Combining Theorem 8.1 and Corollary 5.1, we obtain

Corollary 8.1 (reduction to idle time) For the G I/G I/1 model with extremal
interarrival-time cdf F0, extremal service-time cdf Gu and Gu∗ defined in (2.10),

E[W (F0, Gu∗)] = c2a + ρ2c2s
2(1 − ρ)

+ 1 − ρ

2
− φ(I ; 1, c2a, ρ, c2s ), (8.8)

where I is the idle time in an F0/Gu∗/1 queue or, equivalently, in a F0/D/1 queue
for an appropriate D.

Corollary 8.1 shows that to determine the UB E[W (F0, Gu∗)] defined in (2.10),
it suffices to calculate the term φ(I ; 1, c2a, ρ, c2s ) in (8.3) for the F0/D/1 model via
effective algorithms. In contrast, Theorem 8.2 concludes that it suffices to calculate φ

in (8.3) for the D(1/p)/RS(D(ρ), p)/1 model, but we see that these are equivalent,
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because we can go from one to the other by applying Theorem 4.1. Thus, we conclude
that Sects. 4 and 5 are two different ways to reach essentially the same conclusion.

9 Simulation algorithms and experiments

In this section, we compare three different simulation algorithms for estimating the
extremal mean steady-state waiting timeE[W (F0, Gu∗)]: (i) the standardMonte Carlo
(MC) algorithm, (ii) the Minh-Sorli [17] (MS) algorithm and (iii) the method from
Sect. 9.2.2 based on simulating a discrete-time random walk (RW). We now describe
the [17] simulation algorithm.

9.1 TheMinh-Sorli [17] simulation algorithm

The idea is to exploit Theorem 8.1. In particular, we exploit the discrete event simula-
tion method to estimate the first two moments of the steady-state idle period I ; i.e., we
exploit (8.1) and estimate φ(I ) in (8.3). In the simulation algorithm, the successive
events are classified in three ways: (i) arrival is next, (ii) departure is next and (iii)
next event occurs after given time T , where T is total simulation length.

Thus, within each replication, we estimate E[I ] and E[I 2] and then apply The-
orem 8.1 to obtain an associated estimate of E[W ]. We then compute confidence
intervals for this alternative estimate of E[W ] by performing multiple replications, as
described in the online supplement.

9.2 An idle-time randomwalk simulation algorithm

Theorem8.2 implies thatE[W (F0, Gu∗)] in (2.10) can be expressed in terms of the first
twomoments of the steady-state idle time I in the D(1/p)/RS(D(ρ), p)/1model and
the parameter vector (1, c2a, ρ, c2s ). In this section, we show how to develop algorithms
to calculate the distribution and moments of I in the D(1/p)/RS(D(ρ), p)/1 model
based on a random walk absorption representation.

9.2.1 A randomwalk absorption representation of the idle time

For the reduced model D(1/p)/RS(D(ρ), p)/1, the steady-state idle time can be
expressed in terms of a random walk {Yk : k ≥ 0} defined in terms of the recursion

Yk+1 = Yk + ρNk − (1 + c2a), k ≥ 1, Y0 ≡ 0, (9.1)

where Nk is a negative binomial random variable with parameter p on the integers,
while 1+c2a = 1/p is a deterministic interarrival time. Hence, {Nk : k ≥ 1} is an i.i.d.
sequence with Nk

d= RS(D(1), p). The random variables ρNk − (1+ c2a) in (9.1) are
the steps of the random walk. Each step is the net input of work from one arrival time
to the next. Because Nk takes values on the positive integers, the possible steps are
kρ − (1 + c2a) for k ≥ 1, so that ρNk − (1 + c2a) ≥ ρ − (1 + c2a).
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As long as Yk ≥ 0, Yk represents the work in the system at the time of the kth arrival,
starting empty. The number of customers served in that busy cycle, Nc, and the length
of a busy cycle, C , are then

Nc = inf {k ≥ 1 : Yk ≤ 0} and C = Nc(1 + c2a). (9.2)

The associated idle-time random variable is distributed as

I
d= −YNc , so that 0 ≤ I ≤ c2a + 1 − ρ. (9.3)

9.2.2 An idle-time simulation algorithm

Given N i.i.d. copies of I , each obtained via (9.1)-(9.3), we can estimate the cdf
FI (x) ≡ P(I ≤ x), x ≥ 0, by the empirical cdf

F̄I (x) ≡ N−1
N∑

i=1

I (Ii ≤ x). (9.4)

To estimate the pth moment E[I p], we can compute the sample mean, using

ĪN ≡ R−1
R∑

i=1

N−1
N∑

i=1

I p
i , (9.5)

where R is the number of replications.

9.3 Comparison of the three simulation algorithms

Wenowapply and compareour three simulation algorithms to estimateE[W (F0, Gu∗)]
in (2.10): (i) the standard Monte Carlo (MC) algorithm, (ii) the Minh-Sorli [17] (MS)
algorithm and (iii) the method from Sect. 9.2.2 based on simulating a discrete-time
random walk.

Estimates of E[W (F0, Gu∗)] by the three algorithms are shown in Table 6. These
are for the case c2a = c2s = 4.0 and Ms = 1000 for the MC algorithm and Ms = ∞
for the other two simulation algorithms. Results are reported for a range of traffic
intensities ranging from ρ = 0.1 to ρ = 0.99.

We now describe the simulation parameters for each algorithm. The MC method
has truncation level N = 107 in sample mean and we make R = 20 i.i.d replications.
The MS method has total run length T = 106 again with R = 20 i.i.d replications.
(We use all idle periods that fall within that time interval.)

Table 6 shows the simulation estimates from all three approaches. Table 6 shows
that the simulation methods are mutually confirming, but that the confidence intervals
are quite different. The accuracy is ordered by M S > RW > MC with M S being
best. For additional details, see the online supplement.
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Table 6 Comparison of Three Different Simulation Algorithms

Simulation estimates of E[W (F0, Gu∗ )] for c2a = c2s = 4

ρ MC UB 95% CI Length MS UB 95% CI Length RW UB 95% CI Length

0.10 0.422 5.08E-04 0.422 7.79E-05 0.422 9.28E-04

0.20 0.904 2.29E-03 0.904 1.30E-04 0.903 1.64E-03

0.30 1.484 4.44E-03 1.499 1.71E-04 1.498 1.47E-03

0.40 2.310 1.47E-02 2.304 1.90E-04 2.305 1.68E-03

0.50 3.472 2.15E-02 3.470 2.25E-04 3.472 2.00E-03

0.60 5.276 5.39E-02 5.294 2.43E-04 5.295 3.14E-03

0.70 8.381 7.80E-02 8.442 3.05E-04 8.442 2.62E-03

0.80 15.016 1.54E-01 14.917 3.22E-04 14.919 3.13E-03

0.90 34.525 4.60E-01 34.722 5.17E-04 34.720 1.95E-03

0.95 76.059 1.24E+00 74.621 7.11E-04 74.621 2.26E-03

0.98 193.206 3.07E+00 194.556 9.29E-04 194.558 2.75E-03

0.99 394.763 1.02E+01 394.532 1.45E-03 394.532 2.62E-03

10 Conclusions

In this paper,we developed numerical and simulation algorithms to compute thewidely
conjectured tight upper bound for the mean steady-state waiting time E[W ] in the
G I/G I/1 queue given the first two moments of the interarrival-time and service-time
distributions, as specified by the parameter vector (1, c2a, ρ, c2s ). It is conjectured that
this tight bound is attained asymptotically be two-point distributions, specifically by
the pair (F0, Gu) defined in Sect. 2.3.2 as Ms → ∞.

Our algorithms are based on an explicit representation for E[W (F0, Gu∗)] in terms
of E[W (D(1/p), RS(D(ρ), p))] in Theorem 3.1, where Gu∗ is defined in (2.10) and
RS denotes a geometric random sum. Theorem 3.2 gives a convenient explicit formula
for an UB to E[W (F0, Gu∗)]. Table 1 shows that the UB formula is very accurate and
that the new results provide significant improvement over previous bounds.

In Sect. 6, we derived an explicit expression for E[W (D(1/p), RS(D(ρ), p))] in
some special cases, which yields an explicit expression for E[W (F0, Gu∗)] in those
cases. In Sect. 7, we developed effective numerical algorithms to compute the mean
steady-state waiting time E[W (D(1/p), RS(D(ρ), p))] using recursive algorithms
for the negative binomial probability mass function. We also conducted experiments
showing that the algorithms are effective. We exposed and resolved an underflow
problem that can arise in heavy traffic.

In Sect. 8, using the Minh-Sorli [17] insight, we showed that it also suffices
to compute the first two moments of the steady-state idle-time distribution in the
D(1/p)/RS(D(ρ), p)/1 model. Theorem 8.2 shows that the idle time is better
behaved than the waiting time as the extremal service mass increases. In Sect. 9 and
the online supplement [5], we studied three possible simulation algorithms for esti-
mating E[W (F0/Gu∗)]: the standard Monte Carlo simulation (MC) and two methods
exploiting the idle-time representation: the Minh-Sorli [17] (MS) algorithm and a new
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algorithm based on a discrete-time random walk (RW). We showed that both MS and
RW provide significant improvement over MC, but that MS tends to be best.

Overall, we found that, first, the reductions are powerful for simplifying the
algorithms and, second, that the refined negative binomial numerical algorithm in
Sect. 7 and the [17] simulation algorithm in Sect. 9 are most effective for computing
E[W (D(1/p), RS(D(ρ), p))].

Finally, there are many important directions for further research, including provid-
ing a proof that E[W (F0, Gu∗)] in (2.10) and Theorem 3.1 does indeed provide an
upper bound. It also remains to consider additional properties of the cdf’s F and G
that will narrow the range of possible values, as was done in [12,15,25] and [26] for
the G I/M/1 model. Some new contributions appear in [6].

Acknowledgements This research was supported by NSF CMMI 1634133.
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