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It has long been conjectured that the tight upper bound of the mean steady-state waiting time in the

GI/GI/1 queue given the first two moments of the interarrival-time and service-time distributions is attained

asymptotically by two-point distributions. The two-point distribution for the interarrival time has one mass

point at 0, but the service-time distribution involves a limit; there is one mass point at a high value,

but that upper mass point must increase to infinity while the probability on that point must decrease to

0 appropriately. In this paper we develop effective numerical and simulation algorithms to compute the

value of this conjectured tight bound. The algorithms are aided by reductions of the special queues with

extremal intarrival-time and extremal service-time distributions to D/GI/1 and GI/D/1 models. Combining

these reductions yields an overall representation in terms of a D/RS(D)/1 discrete-time model involving a

geometric random sum of deterministic random variables (the RS(D)), where the two deterministic random

variables in the model may have different values, so that the extremal steady-state waiting time need not

have a lattice distribution. Efficient computational methods are developed. The computational results show

that the conjectured tight upper bound offers a significant improvement over established bounds.
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1. Introduction

An open problem for the GI/GI/1 queue is to determine a tight upper bound (UB) for the

mean steady-state waiting time when the interarrival-time and service-time distributions

are partially characterized by their first two moments. The classic result in this direction

is the Kingman (1962) UB. A significant improvement was made by Daley (1977). Many

further studies have been made since then, as can be seen from the papers by Daley et al.

(1992), Wolff and Wang (2003) and Chen and Whitt (2018), but the issue is still unre-

solved.

Based on numerical experiments and partial theoretical results, there is considerable

agreement on how the tight UB arises. In particular, the conjectured upper bound is
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attained asymptotically by two-point distributions as the upper mass point of the service-

time distribution increases and the probability decreases, while one mass of the interarrival-

time distribution is fixed at 0. In this paper we shall refer to that as the tight UB, even

though it has not yet been proved. In this paper we develop effective numerical and simu-

lation algorithms to compute the value of this tight UB. We show that the tight UB offers

a significant improvement over previous bounds.

The extremal model is also of interest because Chen and Whitt (2019a) have shown

that it yields the tight lower bound (LB) for the asymptotic decay rate of the steady-state

waiting time, under regularity conditions. (The LB arises because smaller decay rates are

associated with larger waiting times.)

The algorithms are aided by reductions of the special queues with extremal intarrival-

time and extremal service-time distributions to D/GI/1 and GI/D/1 models. Theorem

1 shows that these reductions overall combine to yield an overall representation in terms

of a D/RS(D)/1 discrete-time model involving a geometric random sum of deterministic

random variables (the RS(D)), where the two deterministic random variables in the model

may have different values, so that the extremal steady-state waiting-time distribution need

not be a lattice distribution.

This paper is organized as follows. In §2 we give important background on the GI/GI/1

model, the established bounds and the extremal distributions. In §3 we state the overall

model reduction theorem and show the improvement provided by the tight UB. In §4 and

§5 we establish the two reductions. In §6 we give explicit formulas for a class of special

cases. In §7-§9 we develop and study the new algorithms. In §10 we draw conclusions.

Additional supporting material appears in Chen and Whitt (2019b).

2. Background

We start by carefully defining the model, reviewing established bounds and introducing

the extremal distributions.

2.1. The Model

The GI/GI/1 model is a single-server queue with unlimited waiting space and the first-

come first-served service discipline. There is a sequence of independent and identically

distributed (i.i.d.) service times {Vn : n≥ 0}, each distributed as V with cumulative dis-

tribution function (cdf) G, which is independent of a sequence of i.i.d. interarrival times
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{Un : n≥ 0} each distributed as U with cdf F . With the understanding that a 0th customer

arrives at time 0 to find an empty system, Vn is the service time of customer n, whle Un is

the interarrival time between customers n and n+1.

Let U have mean E[U ] ≡ λ−1 ≡ 1 and squared coefficient of variation (scv, variance

divided by the square of the mean) c2a; let a service time V have mean E[V ]≡ τ ≡ ρ and

scv c2s, where ρ≡ λτ < 1, so that the model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting

service, assuming that the system starts empty with W0 ≡ 0. The sequence {Wn : n≥ 0} is
well known to satisfy the Lindley recursion

Wn+1 = [Wn+Vn−Un]
+, n≥ 0, (1)

where x+ ≡ max{x,0}. Let W be the steady-state waiting time. It is also well known

that Wn
d
= max{Sk : 0≤ k≤ n} and W

d
= max{Sk : k≥ 0}, where d

= denotes equality in

distribution, S0 ≡ 0, Sk ≡ X1 + · · ·+Xk and Xk ≡ Vk − Uk, k ≥ 1; e.g., see §§X.1-X.2 of

Asmussen (2003) or (13) in §8.5 of Chung (2001). It is also known that, under the specified

finite moment conditions, Wn and W are proper random variables with finite means, given

by

E[W ] =

n
∑

k=1

E[S+
k ]

k
<∞ and E[W ] =

∞
∑

k=1

E[S+
k ]

k
<∞. (2)

For numerical computation of E[W ], formula (2) is unattractive, because it contains

an infinite sum of terms, and thus involves a k-fold convolution integral for all k ≥ 2.

Effective algorithms avoid that computational approach. One way to proceed is to apply

numerical transform inversion with the Pollaczek contour integral representation, as in (5)

of Abate et al. (1993), i.e.,

E[W ] =
1

2πi

∫

C

log {1−φ(z)}dz
z
, (3)

where i≡
√
−1, z is a complex variable,

φ(z)≡E[ez(V −U)] (4)

and C is a contour in the complex plane to the left of, and parallel to, the imaginary axis,

and to the right of any singularities of log{1−φ(z)} in the left half plane. As a regularity

condition, we assume that the transform φ in (4) is analytic in the complex plane for z is
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the strip |z|< δ for some δ > 0. As in many probability applications, convolution is avoided

by considering the transform in (4).

Unfortunately, our model with two-point distributions does not satisfy the regularity

condition; e.g., see §14 of Abate and Whitt (1992). As shown in Abate et al. (1993), that

difficulty can be avoided by asymptotic arguments. That was illustrated by calculating

the cumulants and distribution of W in the Ek/Ek/1 for a wide range of k, even up to

k = 104. In this paper, we will derive model reductions that will also enable us to avoid

direct convolution in other ways.

2.2. The Established Upper Bounds

Recall that our goal is to bound E[W ] given a partial specification of the model, charac-

terized by the parameter vector

(E[U ],E[U 2],E[V ],E[V 2]) = (1, c2a+1, ρ, ρ2(c2s +1)), (5)

Given that we have set E[U ] = 1, we have the parameter triple (ρ, c2a, c
2
s).

In this setting, the classical UB for E[W ] is the Kingman (1962) UB,

E[W ]≤ ρ2([c2a/ρ
2] + c2s)

2(1− ρ) . (6)

An improvement is provided by the Daley (1977) UB, which replaces the term c2a/ρ
2 by

(2− ρ)c2a/ρ, i.e.,
E[W ]≤ ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ) . (7)

Both of these bounds are asymptotically correct in heavy traffic, i.e.,

lim
ρ→1

(1− ρ)
ρ2

E[W ] = (c2a+ c2s)/2, (8)

which also supports the commonly used heavy-traffic approximation (HTA)

E[W ]≈ ρ2(c2a+ c2s)

2(1− ρ) . (9)

The HTA reduces to the Pollaczek-Khintchine exact formula when the arrival process

is a Poisson process, so that c2a = 1. The heavy-traffic limit also shows that the scaled

waiting-time distribution is asymptotically exponential and thus is asymptotically fully

characterized by its mean.
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2.3. The Extremal Distributions

In general, by “extremal model” we mean a model that yields the largest or smallest value

of some performance measure given a partial model specification. We are considering the

extreme values of E[W ] in the GI/GI/1 queue with the parameters in (5). Thus, the

extremal model means the pair of cdf’s (F,G) of (U,V ) yielding the extreme values of

E[W ].

2.3.1. Large Service Times Versus Large Interarrival Times. An intuitive explana-

tion of the extremal distributions for E[W ] in theGI/GI/1 queue is provided by considering

the very different way that E[W ] is affected by an exceptionally large interarrival time com-

pared to an exceptionally large service time. A large interarrival time will tend to empty

the queue seen by the next customer, but making it even larger has no further impact. On

the other hand, a large service times increases waiting for many following customers, and

making it even larger increases that impact. We elaborate in §2.4 below.

2.3.2. The Two-Point Distributions. A special role is played by two-point distribu-

tions, which necessarily have finite support. Let P2,2(m1, c
2,M) be the set of all two-point

distributions with mean m1 and second moment m2 =m2
1(c

2+1) with support in [0,m1M ].

The set P2,2(m1, c
2,M) is a one-dimensional parametric family. Any element is determined

by specifying one mass point. Let F
(2)
b be the cdf that has probability mass c2/(c2+(b−1)2)

on m1b, and mass (b− 1)2/(c2 + (b− 1)2) on m1(1− c2/(b− 1)) for 1 + c2 ≤ b ≤M . The

cases b= 1+ c2 and b=M constitute the two extremal distributions.

Since we are only interested in the extremal cdf’s here, we will use different notation.

We let F0 ≡ F (2)
1+c2 , because it is the unique element that has lower mass point 0 and we let

Fu ≡ F (2)
M , because it is the unique element that has upper mass point m1M . We use this

definition for both the cdf’s we consider: F of U and G of V , but recall that our parameter

specification in (5) with E[U ] = 1 makes the support of Fu be [0,Ma], while the support of

Gu ≡Gu is [0, ρMs]. Therefore, with Ma ≥ 1+ c2a for F and Ms ≥ 1+ c2s for G, we have:

• F0 : c
2
a/(1+ c2a) on 0, 1/(1+ c2a) on 1+ c2a;

• Fu: (Ma− 1)2/(c2a+(Ma− 1)2) on 1− c2a/(Ma− 1), c2a/(c
2
a+(Ma− 1)2) on Ma;

• G0 : c
2
s/(1+ c2s) on 0, 1/(1+ c2s) on ρ(1+ c2s);

• Gu: (Ms− 1)2/(c2s +(Ms− 1)2) on ρ(1− c2s/(Ms− 1)), c2s/(c
2
s +(Ms− 1)2) on ρMs.
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2.3.3. Special Notation. Given that we are interested in the pair of cdf’s (F,G) of

(U,V ) yielding the extreme values of E[W ], it will be convenient to introduce some special

notation, which departs from the classic Kendall queueing notation. In particular, we will

often denote a GI/GI/1 model with cdf pair (F,G) as the F/G/1 model or as the U/V/1

model (with the understanding that U and V are then shorthand for their cdf’s). We might

even mix the notation, e.g., referring to the D(m)/G/1 model, where D(m) represents a

deterministic random variable with mean m. (The G without the GI refers to the service-

time cdf G.) We will also refer to the steady-state waiting time as a function of the pair

(F,G) as as E[W (F,G)] or E[W (U,V )].

We also introduce some notation to account for the limit we consider, which involves

Ms→∞ in the setting above. In particular, with a slight abuse of notation, for any cdf F

of U , we let Gu∗ denote the limit

E[W (F,Gu∗)]≡ lim
Ms→∞

E[W (F,Gu)]. (10)

This definition is formalized and justified in Theorem 5.

2.4. Asymptotics for the Extremal Distributions

With this notation, we can elaborate on the impact of very large interarrival times and

service times discussed in §2.3.1 above. For that purpose, let ⇒ denote convergence in

distribution; e.g., see Billingsley (1999). Let the cdf’s F and G have parameters in (5).

In this setting, it is easy to see that these two-point distributions have deterministic

limits as the support bounds increase; i.e.,

Fu⇒D(1) as Ma→∞ and Gu⇒D(ρ) as Ms→∞, (11)

even though the scv of the deterministic limit is 0 instead of the original value.

2.4.1. The Tight Lower Bound. The tight lower bound (LB) for E[W ] in GI/GI/1

subject to (5) has long been known; see Stoyan and Stoyan (1974), §5.4 of Stoyan (1983),

§V of Whitt (1984a), Ott (1987) and Theorem 3.1 of Daley et al. (1992). The LB is not

attained at two-point distributions. The LB is attained asymptotically by F = D(1) as

Ma→∞ and G=A3, where A3 denotes any three-point service-time distribution (with the

given mean ρ) that concentrates all mass on nonnegative-integer multiples of the deter-

ministic interarrival time. The tight LB has explicit formula

E[W (D(1),A3)] =
ρ((1+ c2s)ρ− 1)+

2(1− ρ) . (12)
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We will show the LB in numerical comparisons, but not focus on it.

Consistent with (12), we have an associated asymptotic result. In particular, by Theorem

X.6.1 of Asmussen (2003), for any cdf G with the parameters in (5),

W (Fu,G)⇒W (D(1),G) and E[W (Fu,G)]→E[W (D(1),G)] as Ma→∞. (13)

That partly explains the LB in (12).

2.4.2. A Contrasting Story for the Upper Bound. In contrast, there is a very different

story for the UB. To explain, let VMs
be a random variable with distribution Gu as a

function of Ms. By the definitions, E[VMs
] = ρ and E[V 2

Ms

] = ρ2(1+ c2s) for all Ms. By (11),

VMs
⇒D(ρ) asMs→∞, but E[V 2+p

Ms

]→∞ for all p > 0 and the family {V 2
Ms

:Ms ≥ c2s+1} is
not uniformly integrable; see §X.6 of Asmussen (2003) and pages 30-32 of Billingsley (1999).

Nevertheless, by Theorem 5 below, for any cdf F , E[W (F,Gu)] converges as Ms→∞, but

the limit is typically strictly larger than E[W (F,D(ρ))]. The definition (10) is intended to

capture the true limit as Ms→∞. That limit is given in Theorem 5 in §5. See Corollary

3 to Theorem 5 for more details.

3. Summary of the Results

We now summarize our main results. We first state our main reduction theorem. Then we

develop an explicit UB formula for E[W (F0,Gu∗)] in (10). Then we show the advantage of

the tight UB over previous UB’s.

3.1. The Overall Reduction Theorem

Our main purpose in this paper is to develop and evaluate algorithms to efficiently compute

E[W (F,Gu∗)] in (10). That is challenging because the large service time is a rare event.

For example, standard Monte Carlo simulation with the Lindley recursion and the inverse

method is not so effective to estimate E[W ] accurately. We show that effective algorithms

can be developed if we transform the problem, which we do through two model reductions.

In §4 we introduce our first model reduction. Drawing on Halfin (1983) or Whitt (1983),

we show that, for any service-time cdf G, the mean waiting time in the F0/G/1 model can

be expressed in terms of the mean waiting time in an associated D/G/1 model with a new

service-time distribution involving a geometric random sum. Then, drawing on Daley et al.

(1992), in §5 we introduce a second model reduction. We show that, for any interarrival-

time cdf F , E[W (F,Gu∗)] in (10) can be expressed in terms of the mean waiting time in

an associated model.
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For the statement of our main decomposition result (to be proved in the next two

sections), (i) let D(m) be a deterministic random variable with a unit mass on m and (ii)

let RS(V, p) be a geometric random sum of i.i.d. random variables distributed as V , i.e.,

RS(V, p)
d
=

N(p)
∑

k=1

Vk, (14)

where N(p) is a geometric random variable on the positive integers, having mean E[N(p)] =

1/p, i.e., P(N(p) = k)≡ p(1− p)k−1, k≥ 1.

Theorem 1. (overall decomposition of the upper bound) For the GI/GI/1 model with

extremal interarrival-time cdf F0 and service-time cdf Gu,

E[W (F0,Gu∗)] ≡ lim
Ms→∞

E[W (F0,Gu)]

= E[W (D(1/p),RS(D(ρ), p))] + ρc2a+
ρ2c2s

2(1− ρ) (15)

for p≡ 1/(c2a+1).

Remark 1. (functional form) Notice that the first term in (15) is independent of c2s,

while the second term is independent of c2a, but the functional dependence on the pair (ρ, c2a)

is somewhat complicated because p= 1/(1+ c2a). The interarrival time and service time in

the D(1/p)/RS(D(ρ), p))/1 model have means 1+ c2a and ρ(1+ c2a), but the distribution is

more complicated. The variance and scv of the service time are given in Lemma 1 below.

Remark 2. (non-lattice distribution) Theorem 1 may explain the long-standing diffi-

culty establishing the tight upper bound, because the D(1/p)/RS(D(ρ), p)/1 model is a

discrete model, where the service times are necessarily multiples of ρ, while the interarrival

times are multiples of 1/p= c2a +1. Hence, the distribution of W is discrete nonlattice for

most parameter pairs (ρ, c2a).

In §6 we exhibit the steady-state distribution of E[W (F0,Gu∗)] for a class of special

cases, but it involves solving an equation for a key parameter. With (15), we can apply

basic convex stochastic order relations to obtain a convenient upper bound formula for

E[W (D(1/p),RS(D(ρ), p))]. For that purpose, let ≤cx and ≤icx denote convex stochastic

order and increasing stochastic order, respectively, as in §9.5 of Ross (1996) or §1.5 of

Muller and Stoyan (2002). Also let M(m) be an exponential random variable with mean

m. Since D(m)≤cxM(m), we deduce the following theorem. To obtain an explicitly com-

putable formula using mathematical software, we exploit the Lambert W function, here
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denoted by w, characterized by z =w(z)ew(z) for all complex variables z; see Corless et al.

(1996).

Theorem 2. In the setting of Theorem 1,

W (D(1/p),RS(D(ρ), p))≤icxW (D(1/p),M(ρ/p)), (16)

so that well known results for the D/M/1 queue yield

E[W (F0,Gu∗)]≤ [2(1− ρ)ρ/(1− δ)]c2a+ ρ2c2s
2(1− ρ) , (17)

where δ ∈ (0,1) solves the equation

δ= exp(−(1− δ))/ρ)), so that δ =−ρw(−ρ−1e−1/ρ), (18)

where w is the Lambert W function.

Proof. Since D(m)≤cx M(m) for all m, we also have RS(D(ρ), p)≤cx RS(M(ρ), p)]) by

Theorem 9.6.7 of Ross (1996), but

RS(M(ρ), p)
d
=M(ρ/p), (19)

as can be verified by computing the Laplace transforms. Then, for the transient waiting

times, we have the ordering

Wn(D(1/p),RS(D(ρ), p))≤icxWn(D(1/p),M(ρ/p)) for all n≥ 1, (20)

by Theorem 9.6.2 of Ross (1996). Given our second moment conditions in (5), we also have

the conclusion for the steady-state variables in (16) by Theorem 1.5.9 of Muller and Stoyan

(2002).

Finally, we derive the explicit representation of the root δ using the LambertW function

w in the last line. Start with the equation ebx = cx for positive real numbers b and c,

where x is a real variable. Then let y=−bx, which implies that −b/c= yey. Now apply the

characterization z =w(z)ew(z) to obtain y=w(−b/c) and x=−w(−b/c)/b. Then substitute

for b and c.

Remark 3. (not tight) Table 1 below shows that the UB for E[W (F0,Gu∗)] in (17) is

very accurate, but it is a not tight UB. We conjecture that formula (17) is a legitimate

overall UB. Given Theorem 2, a sufficient condition is for E[W (F0,Gu∗)] to be the tight

UB.
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3.2. The Algorithms

In §7 we use the representation in (15) to produce the first effective numerical algo-

rithm involving the negative binomial distribution. For further progress, following Marshall

(1968), Minh and Sorli (1983) and Wolff and Wang (2003), in §8 we review the represen-

tation of the mean waiting time E[W ] in terms of the parameter vector (1, c2a, ρ, c
2
s) and the

idle-time distribution. When combined with the idle-time representation, this yields other

convenient ways calculate or estimate E[W ] via numerical algorithms and simulations. We

then study three simulation algorithms in §9.

3.3. The Advantage of the Tight UB

To show that the tight UB E[W (F0,Gu∗)] studied in this paper and its approximation

formula in (17) provide significant improvements, we compare the numerical estimates of

the tight UB for the GI/GI/1 model with given first two moments associated with c2a = c2s =

4.0 to other bounds and approximations in Table 1. Comparisons for the cases (c2a, c
2
s) =

(0.5,0.5), (4.0,0.5) and (0.5,4.0) appear in §2 of the online supplement, Chen and Whitt

(2019b). The heavy-traffic approximation (HTA) is (9). The MRE is the maximum relative

error between the new UB in (17) and the conjectured tight UB E[W (F0,G
∗

u)] in (15).

Table 1 A comparison of the bounds and approximations for the steady-state mean E[W ] as a function of ρ for

the case c2
a
= c2

s
= 4.0.

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(12) (9) (15) (17) (18) (7) (6)

0.10 0.000 0.044 0.422 0.422 0.000 0.00% 0.444 2.244
0.20 0.000 0.200 0.904 0.906 0.007 0.19% 1.000 2.600
0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114
0.40 0.333 1.067 2.304 2.326 0.107 0.94% 2.667 3.867
0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000
0.60 1.500 3.600 5.295 5.352 0.324 1.07% 6.000 6.800
0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933
0.80 6.000 12.800 14.917 15.017 0.629 0.67% 16.000 16.400
0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200
0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100
0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040
0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020

Remark 4. (need for additional information) While Table 1 shows that the conjectured

tight UB in (10) and (15) and its UB in (17) provide significant improvements over previous

UB’s, Table 1 also shows that there remains a wide range between the LB and the UB.
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That indicates that more reliable prediction depends on additional information. One way

to address that is described in Chen and Whitt (2019a).

4. Reduction for the Interarrival Time

In this section we show that, for any service-time cdf G, the mean waiting time in the

F0/G/1 queue can be expressed in terms of the mean waiting time in an associatedD/RS/1

queue with a new service-time distribution involving a random sum. The key observation

is that the F0/G/1 queue corresponds to the D/GI/1 queue with batch arrivals; then the

new service-time cdf is the sum of the service times in the batch. However, we need to do

other adjustments as well.

Let F0 be the two-point upper bound extremal distribution with mean 1 and mass

p≡ 1/(c2a+1) on c2a+1 and mass 1− p on 0. Let RS(V, p) be the random variable defined

in (14). For the interarrival times, we will consider D(x) for x= 1/p= (c2a+1).

Theorem 3. For any service-time V with cdf G having mean ρ and scv c2s, the steady-

state waiting time is distributed as

W (F0,G)
d
=W (D(1/p),RS(V, p))+

N(p)−1
∑

k=1

Vk (21)

for N(p) and RS(V, p) in (14), where the two terms in (21) are independent. Hence, the

mean is

E[W (F0,G)] = E[W (D(1/p),RS(V, p)] + (E[N(p)]− 1)E[V ]

= E[W (D(1/p),RS(V, p))] + ρ(1− p)/p

= E[W (D(1/p),RS(V, p))] + ρc2a. (22)

Proof. The F0 interarrival time means that a random number of arrivals, distributed as

N(p), arrive at deterministic intervals with deterministic value 1/p= c2a+1. So the model

has batch arrivals. The result in (22) follows from Halfin (1983) or Theorem 1 of Whitt

(1983), which states that the delay of an arbitrary customer in the batch is distributed

the same as the delay of the last customer in the batch when the batch-size distribution is

geometric. Because E[W (D(1/p),RS(V, p))] is the expected delay of the first customer in

a batch, we need to add the second term in (22) to get the delay of the last customer in

the batch; e.g., see §III of Whitt (1983).

To work with the D(1/p)/RS(V, p)/1 model, we need the mean and variance of the

random sum RS(V, p) in (14).
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Lemma 1. (random sum moments) Given that V has mean ρ and scv c2s, the mean and

variance of the random sum RS(V, p) in (14) are

E[RS(V, p)] =E[N(p)]E[V ] =
ρ

p
= ρ(c2a+1) (23)

and

V ar(RS(V, p))= ρ2c2s(c
2
a+1)+ ρ2c2a(1+ c2a). (24)

Hence, the scv of RS(V, p) is

c̄2s ≡
V ar(RS(V, p))

E[RS(V, p)]2
=
ρ2c2s(c

2
a+1)+ ρ2c2a(1+ c2a)

ρ2(1+ c2a)
2

=
c2a+ c2s
1+ c2a

. (25)

Proof. We apply the standard formulas for random sums from p. 113 of Ross (2014). For

the variance,

V ar(RS(V, p)) = V ar(V )E[N ] + (E[V ])2V ar(N) =
ρ2c2s
p

+
ρ2(1− p)

p2

= ρ2c2s(1+ c2a)+ ρ2c2a(1+ c2a), (26)

as claimed.

Let c̄2a = 0 be the scv of D(1/p) and recall that p= 1/(1+ c2a).

Theorem 4. For the D(1/p)/RS(V, p)/1 model, the Kingman (1962) upper bound in

(6) for the mean steady-state waiting time is

E[W ] ≤ ρE[RS(V, p)]((c̄2a/ρ
2)+ c̄2s)

2(1− ρ)

=
ρ2(1+ c2a)c̄

2
s

2(1− ρ) =
ρ2(c2a+ c2s)

2(1− ρ) . (27)

Hence, the associated upper bound for the F0/G/1 model is

E[W (F0,G)] ≤
ρ2(c2a+ c2s)

2(1− ρ) + ρc2a =
ρ2(Ac2a+ c2s)

2(1− ρ) , (28)

where

A≡A(ρ, c2a)≡ 1+
2(1− ρ)

ρ
=

2

ρ
− 1, (29)

which makes (28) coincide with the Daley (1977) bound in (7).

Proof. We exploit Theorem 3, which provides the representation (22). Then observe, with

the aid of Lemma 1, that the Kingman (1962) bound for

E[W (D(1/p),RS(V, p))] is given by the first term on the first line of (28).
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5. Reduction for the Service Time

Daley proposed another decomposition that can be used to avoid the rare event of the

large service time Ms. The Daley decomposition allows us to reduce the model F/Gu/1

to F/D/1 for arbitrary F as Ms→∞. The Daley decomposition is stated in (10.2) of the

review paper Daley et al. (1992) without proof, referring to an unpublished manuscript.

As before, let D(m) denote a deterministic cdf with mass 1 on m.

Theorem 5. (the Daley decomposition in (10.2) of Daley et al. (1992)) Consider the

F/Gu/1 model with arbitrary interarrival-time cdf F and two-point service-time cdf Gu.

Then

lim
Ms→∞

E[W (F,Gu)] = E[W (F,D(ρ))] + lim
Ms→∞

E[W (D(1),Gu)]

= E[W (F,D(ρ))] +
ρ2c2s

2(1− ρ) . (30)

Proof. Given that this result is already known, we only outline our proof. We do a

regenerative analysis to compute the mean waiting time, looking at successive busy cycles

starting empty. We exploit the classic result that the steady-state mean waiting time is

the expected sum of the waiting times over one cycle divided by the expected length of

one cycle; e.g., see §3.6 and §3.7 of Ross (1996).

As Ms increases, the two-point cdf Gu necessarily places probability of order O(1/M 2
s )

on Ms and the rest of the mass on a point just less than the mean service time, ρ. For

very large Ms, there will be only rarely, with probability of order O(1/M 2
s ), a large service

time of order O(Ms). In the limit, most customers never encounter this large service time,

so that we get a contribution to the overall mean E[W ] corresponding to E[W (F,D(ρ))] in

the first term on the right in (30).

On the other hand, the total impact of the very large waiting time of orderMs is roughly

the area of the triangle with height O(Ms) and width O(Ms), which itself is O(M 2
s ). When

combined with the O(1/M 2
s ) probability, this produces an additional O(1) impact on the

steady-state mean, which is given by the second term on the right in (30). Moreover,

because we can use a law-of-large-numbers argument to treat this large service time, the

asymptotic impact of that large service time is independent of the interarrival-time cdf

beyond its mean, so we can substitute D(1) for the original interarrival-time cdf F with

mean 1 in the second term.
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To elaborate on the value of the last term, the mean cycle length is asymptotically

1. From the form of Gu in §2.3.2, we see that (i) the probability of the rare event is

asymptotically c2s/M
2
s and (ii) when the rare event occurs, the large service time of size ρMs

will arrive. Assuming no other large service times arrive thereafter, service times of size

approximately ρ arrive every unit time, so that the the queue will empty approximately

at time ρMs/(1− ρ). Hence the sum of all the waiting times from the arrival of the large

service time until the queue first empties and the cycle ends is about ρ2M 2
s /2(1 − ρ).

Putting these together, we see that the expected sum of all waiting times in the cycle is

asymptotically (c2s/M
2
s )× ρ2M 2

s /2(1− ρ) = ρ2c2s/2(1− ρ), as stated. This reasoning can be

made precise using the reasoning in Whitt (1986).

Corollary 1. (decomposition of the upper bound) For the F/Gu/1 model with Gu∗ in

(10),

E[W (F0,Gu∗)] =E[W (F0,D(ρ))] +
ρ2c2s

2(1− ρ) .

We can combine Theorem 3 and Corollary 1 to obtain Theorem 1. Corollary 1 implies

that calculating the UB of E[W ] is equivalent to calculating F0/D/1, which has determinis-

tic service time. Clearly, this makes the UB much easier to estimate by classical simulation

methods.

Corollary 2. (tightness of Kingman’s bound) For the D/Gu/1 model with Gu∗ in (10),

E[W (D(1),Gu∗)] =E[W (D(1),D(ρ))] +
ρ2c2s

2(1− ρ) =
ρ2c2s

2(1− ρ) ,

so that Kingman’s bound in (6) is asymptotically attained by the D/Gu/1 model as Ms→
∞.

Finally, by the proof of Theorem 5 above, we also obtain the following negative result.

Corollary 3. (higher moments) For the F/Gu/1 model and any p> 0,

lim
Ms→∞

E[W (F,Gu)
1+p]→∞ as Ms→∞.
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6. Explicit Solution in Special Cases

From Corollary 1 in §5 above, we conclude that we can express the UB E[W (F0,Gu∗)] in

terms of the mean E[W (F0,D(ρ))]. We now derive an explicit expression for this mean and

the full steady-state waiting-time distribution in this F0/D(ρ)/1 model for some special

cases.

Theorem 6. If 1+ c2a = kρ for a positive integer k, then

E[W (F0,D(ρ))] =
rρ

1− r , (31)

where r ∈ (0,1) is the root of
∑k−1

l=1 x
l− c2a = 0. Moreover,

P(W (F0,D(ρ)) = lρ) = (1− r)rl, l=0,1,2, . . . (32)

Proof. In the F0/D(ρ)/1 model, the interarrival times and service times are lattice dis-

tributions, with the support of F0 being {0,1 + c2a} and the support of D(ρ) being {ρ}.
Thus, under the condition (1 + c2a) = kρ for some integer k, W (F0,D(ρ)) has support on

{lρ : l≥ 0}. Let pl ≡ P(W (F0,D(ρ))= lρ), l≥ 0. We see that pl satisfies the recursion

pl+1 = pl
c2a

(1+ c2a)
+ pl+k

1

(1+ c2a)
, p0 = (

k−1
∑

l=0

pl)
1

(1+ c2a)
. (33)

Given that {Wn : n≥ 0} is an ergodic irreducible discrete-time Markov chain with a unique

steady-state distribution, it suffices to find a solution to the recursion in (33). Thus, suppose

that the pl is a geometric pmf as in (32) with unknown r and p0. We then see that there

exists unique p0 and r satisfying the recursion (33). In particular, since pl+1 = rpl where

r ∈ (0,1), we use the second equation of (33) to conclude that there exists a unique r ∈ (0,1)
which is the unique root of equation

∑k−1
l=1 x

l− c2a = 0 with p0 =1− r.

7. The Negative Binomial Numerical Algorithm

In this section we apply Theorem 1 to obtain an efficient algorithm for computing

the UB E[W (F0,Gu∗)]. Theorem 1 implies that it suffices to compute E[W ] in the

D(1/p)/RS(D(ρ), p)/1 model. The representation of the service time as a geometric ran-

dom sum allows us to express E[W ] directly in terms of the negative binomial (NB)

distribution, without having to perform any convolutions.
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LetNB ≡NB(n, p) be a conventional negative binomial random variable with parameter

pair (n, p) for nonnegative integer n and 0 < p < 1, which has probability mass function

(pmf)

pk(n, p)≡ P(NB(n, p)= k)≡
(

(n+ k− 1)!

k!(n− 1)!

)

(1− p)npk, n≥ 0, (34)

with mean and variance

E[NB(n, p)] =
np

1− p and V ar(NB(n, p))=
np

(1− p)2 . (35)

Lemma 2. (NB representation of the mean) For the D(1/p)/RS(D(ρ), p)/1 model,

Sn
d
= ρ(NB(n,1− p)+n)− (n/p), (36)

for Sn in (2), so that

E[W (D(1/p),RS(D(ρ), p))]=
∞
∑

n=1

n−1
E[(NB(n,1− p)+n− (n/p))+]. (37)

To compute, E[W ], we compute the transient mean E[WN ] in (2) for suitably large

N , which means truncating the sum in (37). As often with the NB pmf, because of the

factorials, it is convenient to use a recursive algorithm for computation. In the first version

we initialize the recursion at k= 0, letting P(NB(n,1− p) = 0) = pn. Then, we can apply

the recursion

P(NB(n,1− p)= k) =
P(NB(n,1− p)= k− 1)(n+ k− 1)(1− p)

k
, (38)

where p=1/(1+ c2a). However, for the parameter p= 1/(c2a+1) already defined by F0, we

end up with negative binomial parameter 1−p. A recursive algorithm is given in Algorithm

1, with explanation afterwards.

Algorithm 1 basic negative binomial recursion (k in outer loop)

1: Initially set E[W ]← ρc2a+
ρ2c2

s

2(1−ρ)
and p= (1+ c2a)

−1.

2: for k ∈ [1,K] do

3: S(k)← 0, nbpdf ← p(1− p)k

4: for n ∈ [1,N ] do

5: S(k)← S(k)+nbpdfmax((n+ k)ρ−n/p,0)/n
6: nbpdf ← nbpdf(n+k

n
)p

7: E[W ]←E[W ] +S(k)

8: Output E[W ]
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To explain Algorithm 1, recall that we are applying Theorem 1 to obtain an effi-

cient algorithm for computing the UB E[W (F0,Gu∗)]. Thus we initialize by the con-

stant term that depends only on the parameter vector (1, c2a, ρ, c
2
s). We add that to

E[WN(D(1/p),RS(D(ρ))], which is computed by the recursion. We choose N suitably large

so that E[WN ] is close to E[W ], which can be seen when the values of several successive N

change only negligibly.

7.1. Performance of the Negative Binomial Algorithm

We set different truncation levels K and N to study the computational accuracy and effort

of Algorithm 1. In the experiment, we consider the case c2a = 4.0, so that p= 1/(1+c2a) = 0.2.

We fix the truncation level N = 103 and let the K vary from 103 to 8× 103 to execute

Algorithm 1. (It is good to have k in the outer loop because p = 1/(1 + c2a) < 0.5.) The

results are shown in Table 2 for a range of traffic intensities from ρ=0.10 to ρ= 0.99. Also

shown for comparison in the last two columns are the simulation estimates from the highly

accurate Minh and Sorli (1983) simulation method, as given in Table 6.

For ρ ≤ 0.90, the recursive algorithm with truncation level N = 103 and K = 3× 103

performs well, but for ρ≥ 0.95, the numerical values of E[W ] converge as K increases but

are not close to the simulation results.

Table 2 Performance of Algorithm 1 for p= 1/(1+ c2
a
= 0.2 with different truncation levels

Algorithm Procedure 1 with N = 103 Minh and Sorli Algorithm

ρ\K 1× 103 2× 103 4× 103 8× 103 T = 1× 107 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916481 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.276662 34.673925 34.718140 34.718140 34.722 5.17E-04
0.95 66.874413 71.232241 73.264743 73.264743 74.621 7.11E-04
0.98 139.659440 152.638886 162.915010 162.915010 194.556 9.29E-04
0.99 245.012809 262.661919 278.499123 278.499123 394.532 1.45E-03

7.2. Refinement to the Negative Binomial Algorithm for Heavy-traffic

The difficulty in heavy traffic occurs because as ρ increases, we need larger values of n.

For extremely large n, as is needed in heavy traffic, pn and (1− p)n are eventually very
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small numbers. That causes the probability to become too small to be represented in the

implemented floating point number system. Hence, in heavy traffic the basic recursive

algorithm broke down because the large values of n caused underflow.

As when computing the steady-state of the birth-and-death processes, e.g. as in §7 of

Whitt (2005), for very large n we can encounter underflow problems if we start the recursion

at 0, but it can be avoided by starting the recursion elsewhere. We avoid the underflow

problem by doing two recursions, one up and the other down, starting from the mean.

It now remains to consider how to do the truncations. First, consider the truncation of

the sum on k for given n. For given n,

E[NB(n,1− p)] ≡ m(n) =
n(1− p)

p
and

V ar(NB(n,1− p)) ≡ σ2(n) =
n(1− p)
p2

. (39)

From the central limit theorem, we know that the NB distribution is approximately Gaus-

sian with a mean near its mode. In particular,

NB(n,1− p)≈N (m(n), σ2(n)) as n→∞. (40)

for m(n) and σ2(n) in (39). Hence for large n suffices to consider only a modest range

of k, i.e., of order O(
√
n). In particular, is should suffice to consider m(n) − aσ(n) ≤

k ≤m(n) + aσ(n) for, e.g., a = 10,20. However, we need to add a term for small k. For

k≤m(n)−aσ(n), we let P(NB(n,1−p)> k) = 1. That means we add (m(n)−aσ(n))∨0,
where a∨ b≡max{a, b}.

Finally, the relevant values of n depend on the traffic intensity ρ and other model param-

eters. For heavy traffic (large ρ), we can use the approximation (9) to estimate the relevant

n. Moreover, given that the heavy-traffic limit of the waiting-time distribution is exponen-

tial, we can see the relevant range of n.

Suppose N is the upper bound of n. As a consequence, for large N , we consider k ∈
[min(m(n)−20

√
N,0),m(n)+20

√
N ] in the implementation. Here is how we proceed: For

fixed n≤N , we start from mean in (38) and let the P(NB(n,1− p)= n(1− p)/p) = 1 and

then do recursive formula (38) up and down separately. Define mean n(1− p)/p by m(n).

The two-part recursion going up and down becomes

P(NB(n,1− p)=m(n)+ j)
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=
P(NB(n,1− p)=m(n)+ j− 1)(n+m(n)+ j− 1)(1− p)

m(n)+ j
, (41)

P(NB(n,1− p)=m(n)− j)

=
P(NB(n,1− p)=m(n)− j+1)(m(n)− j+1)

(n+m(n)− j)(1− p) (42)

for j ≥ 1. Afterwards, we normalize the values that obtained from the above recursion to

get probabilities of P(NB(n,1− p)= k) for any k given n.

As in Algorithm 1, in Algorithm 2 we apply Theorem 1 to obtain an efficient algorithm

for computing the UB E[W (F0,Gu∗)]. Thus we initialize by the constant term that depends

only on the parameter vector (1, c2a, ρ, c
2
s).

Algorithm 2 negative binomial recursion (up and down from the mean)

1: Initially set E[W ]← ρc2a+
ρ2c2

s

2(1−ρ)
, p= (1+ c2a)

−1, and m(n) = n(1− p)/p.
2: for n∈ [1,N ] do

3: nbpdf(1,m(n))← 1

4: for k ∈ [m(n)− 20
√
N +1,m(n)] do

5: nbpdf(1, k− 1)← nbpdf(1, k)/(n+ k− 1)(k)/(1− p)

6: for k ∈ [m(n),m(n)+ 20
√
N − 1] do

7: nbpdf(1, k+1)← nbpdf(1, k)(n+ k)/(k+1)(1− p)

8: Normalize nbpdf to obtain P(NB(n,1− p)= k)

9: S(n)←∑

k P(NB(n,1− p)= k)max((n+ k)ρ−n/p,0)
10: E[W ]←E[W ] +S(n)/n

11: Output E[W ]

We now carefully compare the negative binomial pmf values generated from the basic

recursion (38) used in Algorithm 1 with the values obtained in the new up-down recursion

used in Algorithm 2 in Table 3. We focus on the terms after m(n) and report the values

from the term m(n) to m(n)+ 10.
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Table 3 Comparison of the basic and up-down recursions for generating values of the negative binomial pmf in

Algorithms 1 and 2 for the case p= 0.2

Alg 1 Alg 2 Alg 1 Alg 2 Alg 1 Alg 2
k n= 10 n= 10 k n= 102 n= 102 k n= 103 n= 103

40 0.0279638 0.0279638 400 0.0089128 0.0089128 4000 0 0.0028207
42 0.0265023 0.0265023 402 0.0088641 0.0088641 4002 0 0.0028192
44 0.0247071 0.0247071 404 0.0087983 0.0087983 4004 0 0.0028170
46 0.0226875 0.0226875 406 0.0087160 0.0087160 4006 0 0.0028144
48 0.0205443 0.0205443 408 0.0086179 0.0086179 4008 0 0.0028111
50 0.0183647 0.0183647 410 0.0085047 0.0085047 4010 0 0.0028074

For n≤ 102, the results from the two methods agree to all digits shown, but a significant

difference occurs when n=103. At n= 103, underflow occurs in Algorithm 1, which causes

the errors we saw for large ρ in Table 2.

7.3. Performance Studies for the Refined Negative Binomial Algorithm

Table 4 shows that Algorithm 2 is also very efficient for ρ≤ 0.95. Table 4 shows that the

new algorithm is effective if we increase N from 103 to 104 as ρ increases.

Table 4 Performance of Algorithm 2 for p= 0.2 with different truncation levels

Algorithm 2 Minh and Sorli Algorithm

ρ\N 2× 103 4× 103 8× 103 1.6× 104 2× 104 T = 1× 107 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916937 14.916937 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.721476 34.721484 34.721484 34.721484 34.721484 34.722 5.17E-04
0.95 74.552341 74.619631 74.620917 74.620937 74.620937 74.621 7.11E-04

In particular, the numerical algorithm is more efficient than the simulation. It requires

no more than 30 seconds cpu time in the worse case (N = 2× 104, ρ= 0.95) to produce

more than 10 decimal places accuracy, while the MS simulation algorithm only attain

10−4 confidence interval level for 0.5≤ ρ≤ 0.95 while producing 3 decimal places accuracy

within around 30 seconds cpu times.

Next, we apply Algorithm 2 for the heavy-traffic cases with ρ= 0.98 and ρ= 0.99. To

do so, we restrict the range of k to k≤m(n)+20
√
N for the purpose of setting smaller N .
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Table 5 below shows that the poor performance of the NB algorithm in Table 2 has been

improved dramatically by the alternative algorithm.

Table 5 Performance of Algorithm 2 in heavy traffic, for p= 0.2

Case Algorithm 2 Minh and Sorli

ρ\N 1× 104 2× 104 3× 104 4× 104 T = 1× 107

0.98 194.0544167173 194.5385548017 194.5559125683 194.5567071265 194.556 9.29E-04

5× 104 1× 105 2× 105 3× 105

0.98 194.5567179973 194.5567742874 194.5567742874 194.5567742874 194.556 9.29E-04

ρ\N 1× 104 3× 104 5× 104 1× 105 T = 1× 107

0.99 372.0880005430 372.0880005430 391.8858614678 394.5238008176 394.532 1.45E-03

2× 105 3× 105 4× 105 5× 105

0.99 394.5331823499 394.5331886695 394.5331886695 394.5331886695 394.532 1.45E-03

Remark 5. (suggested parameters) Our experiments suggest that, for typical values of

p (not too small), it suffices to set N =O(1/(1− ρ)3) to obtain highly accurate results.

Remark 6. (opportunity for simulation efficiency) Since the service-time variability

parameter c2s is not used to evaluate E[W (D(1/p),RS(D(ρ), p)] in Algorithm 2, Table 4

and Table 5 can be reused to compute E[W (F0,Gu∗)] with any other c2s via Theorem 1.

8. Exploiting the Idle-Time Representation

To develop alternative algorithms, following Marshall (1968), Minh and Sorli (1983) and

Wolff and Wang (2003), we relate the mean waiting time given the first two moments of

the interarrival time and service time to the first two moments of the idle time I. In §8.1
we review the basic relation. in §8.2 we discuss the implications of the relation when we

let Ms→∞. In §8.3 we show the advantage of combining Theorem 7 and Corollary 1.

Later, in §9.2 we apply the representation to develop a new numerical algorithm based on

computing absorption probabilities in finite-state discrete-time Markov chains (DTMCs).

8.1. The Basic Representation

The key relation is in the following theorem.

Theorem 7. (the idle-time representation, Theorem 1 of Marshall (1968)) In the

GI/GI/1 queue with cdf ’s F and G having parameter 4-tuple (1, c2a, ρ, c
2
s),

E[W ] = ψ(1, c2a, ρ, c
2
s)−φ(I), (43)
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where

ψ(1, c2a, ρ, c
2
s)≡

E[(U −V )2]

2E[U −V ]
=
ρ2([c2a/ρ

2] + c2s)

2(1− ρ) +
1− ρ
2

(44)

and

φ(I) =
E[I2]

2E[I]
=E[Ie], (45)

with I being the steady-state idle time and Ie being a random variable with the associated

stationary excess distribution (as in renewal theory).

Notice that E[W ] depends on the model distributions F and G beyond the parameter

vector (1, c2a, ρ, c
2
s) only through φ(I) =E[Ie] in (45). For theM/GI/1 model, I is distributed

as F , φ(I) = 1 and simple algebra yields the exact Pollaczek-Khintchine formula. In general,

the first term on the right in (44) is the Kingman (1962) upper bound. For the Kingman

(1962) bound to be obtained, the second term on the right in (44) would have to be exactly

cancelled by the second term on the right in (43).

8.2. The Limit as M
s
→∞

This section is based on the notion that the upper bound is obtained as the limit of E[W ]

within the F0/Gu/1 model as Ms→∞. Because the mean waiting time is not continuous

as Ms→∞, but the idle-time distribution is, we approach the upper bound via the idle

time.

We can apply Theorems 3 and 7 to obtain a limit within the decomposition. For that

purpose, let φ(I;U,V ) denote φ(I) in (45) for the model with interarrival time U and

service time V . We will consider U =D(1/p) and V =RS(D(ρ), p).

Theorem 8. (limit within the decomposition) For the F0/Gu/1 model with parameter

vector (1, c2a, ρ, c
2
s) and service-distribution support [0, ρMs],

lim
Ms→∞

E[W (F0,Gu)] = ψ(1, c2a, ρ, c
2
s)+ ρc2a−φ(I; (1+ c2a),0, ρ(1+ c2a), c̄

2
s), (46)

where φ(I;D(1/p),RS(D(ρ), p)) means (45) for the D(1/p)/RS(D(ρ), p))/1 model and the

parameter vector for that model is ((1+ c2a),0, ρ(1+ c2a), c̄
2
s) forc̄

2
s ≡ c2a/(1+ c2a).

Proof. We apply Theorems 3 and 7 to write

lim
Ms→∞

E[W (F0,Gu)] = ψ(1, c2a, ρ, c
2
s)−φ(I; 1, c2a, ρ,0), (47)
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where

ψ(1, c2a, ρ, c
2
s)≡

c2a + ρ2c2s
2(1− ρ) +

1− ρ
2

, (48)

which is independent of Ms and thus is unchanged by the limit on Ms. However, the

second term changes, consistent with the distribution Gu approaching D(ρ) as Ms→∞,

and having the limiting mean but 0 variance. As a consequence,

lim
Ms→∞

E[W (F0,Gu)] = ψ(1, c2a, ρ, c
2
s)+ ρc2a− lim

Ms→∞

φ(I)

= ψ(1, c2a, ρ, c
2
s)+ ρc2a−φ(I;D(1/p),RS(D(ρ), p)),

= ψ(1, c2a, ρ, c
2
s)+ ρc2a−φ(I; (1+ c2a),0, ρ(1+ c2a), c̄

2
s). (49)

Theorem 8 implies that it only remains to evaluate the idle-time term φ(I) in (43) as

it arises in the last line of (49) for the D(1/p)/RS(D(ρ), p)/1 model, for which the only

randomness is in the random sum in the service times. The random sum is a geometric

random sum of constants in this case. When we apply the Minh and Sorli (1983) method

for simulation, it suffices to reduce variance by ignoring the large Ms. We treat the service

times as D with mean ρ. But, when we do so, we have to make adjustments in the final

formulas as indicated above.

To illustrate the algorithm for computing E[W (F0,Gu∗)] in (10) by using the idle time

representation, and because it is directly interesting, we present a simulation estimate of

the idle time distribution for ρ= 0.99 and c2a = c2s = 4.0 in Figure 1. We remark that this

is also the steady-state idle-time distribution for model F0/D/1.
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Figure 1 Simulation estimates of the steady-state idle-time distribution in the F0/D/1 model and the F0/Gu/1

model as Ms →∞ under traffic level ρ= 0.99 and c2
a
= c2

s
=4.0.

8.3. Combining Theorem 7 and Corollary 1

Combining Theorem 7 and Corollary 1, we obtain

Corollary 4. (reduction to idle time) For the GI/GI/1 model with extremal

interarrival-time cdf F0, extremal service-time cdf Gu and Gu∗ defined in (10),

E[W (F0,Gu∗)] =
c2a + ρ2c2s
2(1− ρ) +

1− ρ
2
−φ(I; 1, c2a, ρ, c2s), (50)

where I is the idle time in an F0/Gu∗/1 queue or, equivalently, in a F0/D/1 queue for an

appropriate D.

Corollary 4 shows that to determine the UB E[W (F0,Gu∗)] defined in (10), it suffices

to calculate the term φ(I; 1, c2a, ρ, c
2
s) in (45) for the F0/D/1 model via effective algo-

rithms. In contrast, Theorem 8 concludes that it suffices to calculate φ in (45) for the

D(1/p)/RS(D(ρ), p)/1 model, but we see that these are equivalent, because we can go

from one to the other by applying Theorem 3. Thus we conclude that §4 and §5 are two

different ways to reach essentially the same conclusion.
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9. Simulation Algorithms and Experiments

In this section we compare three different simulation algorithms for estimating the extremal

mean steady-state waiting time E[W (F0,Gu∗)]: (i) the standard Monte Carlo (MC) algo-

rithm, (ii) the Minh and Sorli (1983) (MS) algorithm and (iii) the method from §9.2.2 based
on simulating a discrete-time random walk (RW). We now describe the Minh and Sorli

(1983) Simulation Algorithm.

9.1. The Minh and Sorli (1983) Simulation Algorithm.

The idea is to exploit Theorem 7. In particular, we exploit the the discrete event simulation

method to estimate the first two moments of the steady state idle period I; i.e., we exploit

(43) and estimate φ(I) in (45). In the simulation algorithm, the successive events are

classified in three ways: (i) arrival is next, (ii) departure is next and (iii) next event occurs

after given time T , where T is total simulation length.

Thus, within each replication we estimate E[I] and E[I2] and then apply Theorem 7

to obtain an associated estimate of E[W ]. We then compute confidence intervals for this

alternative estimate of E[W ] by performing multiple replications, as described in the online

supplement.

9.2. An Idle-Time Random Walk Simulation Algorithm

Theorem 8 implies that E[W (F0,Gu∗)] in (10) can be expressed in terms of the first two

moments of the steady-state idle time I in the D(1/p)/RS(D(ρ), p)/1 model and the

parameter vector (1, c2a, ρ, c
2
s). In this section we show how to develop algorithms to calculate

the distribution and moments of I in the D(1/p)/RS(D(ρ), p)/1 model based on a random

walk absorption representation.

9.2.1. A Random Walk Absorption Representation of the Idle-Time For the reduced

model D(1/p)/RS(D(ρ), p)/1, the steady-state idle time can be expressed in terms of a

random walk {Yk : k≥ 0} defined in terms of the recursion,

Yk+1 = Yk + ρNk− (1+ c2a), k≥ 1, Y0 ≡ 0, (51)

where Nk is a negative binomial random variable with parameter p on the integers, while

1 + c2a = 1/p is a deterministic interarrival time. Hence, {Nk : k ≥ 1} is an i.i.d. sequence

with Nk
d
=RS(D(1), p). The random variables ρNk − (1+ c2a) in (51) are the steps of the

random walk. Each step is the net input of work from one arrival time to the next. Because
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Nk take values on the positive integers, the possible steps are kρ− (1 + c2a) for k ≥ 1, so

that ρNk− (1+ c2a)≥ ρ− (1+ c2a).

As long as Yk ≥ 0, Yk represents the work in the system at the time of the kth arrival,

starting empty. The number of customers served in that busy cycle, Nc, and the length of

a busy cycle, C, are then

Nc = inf {k≥ 1 : Yk ≤ 0} and C =Nc(1+ c2a). (52)

The associated idle-time random variable is distributed as

I
d
=−YNc

, so that 0≤ I ≤ c2a+1− ρ. (53)

9.2.2. An Idle-Time Simulation Algorithm Given N i.i.d. copies of I, each obtained

via (51)-(53), we can estimate the cdf FI(x)≡ P(I ≤ x), x≥ 0, by the empirical cdf

F̄I(x)≡N−1
N
∑

i=1

I(Ii≤ x). (54)

To estimate the pth moment E[Ip], we can compute the sample mean, using

ĪN ≡R−1
R
∑

i=1

N−1
N
∑

i=1

Ipi , (55)

where R is the number of replications.

9.3. Comparison of the Three Simulation Algorithms

We now apply and compare our three simulation algorithms to estimate E[W (F0,Gu∗)] in

(10): (i) the standard Monte Carlo (MC) algorithm, (ii) the Minh and Sorli (1983) (MS)

algorithm and (iii) the method from §9.2.2 based on simulating a discrete-time random

walk.

Estimates of E[W (F0,Gu∗)] by the three algorithms are shown in Table 6. These are

for the case c2a = c2s = 4.0 and Ms = 1000 for MC algorithm and Ms =∞ for other two

simulation algorithms. Results are reported for a range of traffic intensities ranging from

ρ= 0.1 to ρ= 0.99.
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Table 6 Comparison of Three Different Simulation Algorithms

simulation estimates of E[W (F0,Gu∗)] for c2a = c2s = 4

ρ MC UB 95% CI Length MS UB 95% CI Length RW UB 95% CI Length

0.10 0.422 5.08E-04 0.422 7.79E-05 0.422 9.28E-04

0.20 0.904 2.29E-03 0.904 1.30E-04 0.903 1.64E-03

0.30 1.484 4.44E-03 1.499 1.71E-04 1.498 1.47E-03

0.40 2.310 1.47E-02 2.304 1.90E-04 2.305 1.68E-03

0.50 3.472 2.15E-02 3.470 2.25E-04 3.472 2.00E-03

0.60 5.276 5.39E-02 5.294 2.43E-04 5.295 3.14E-03

0.70 8.381 7.80E-02 8.442 3.05E-04 8.442 2.62E-03

0.80 15.016 1.54E-01 14.917 3.22E-04 14.919 3.13E-03

0.90 34.525 4.60E-01 34.722 5.17E-04 34.720 1.95E-03

0.95 76.059 1.24E+00 74.621 7.11E-04 74.621 2.26E-03

0.98 193.206 3.07E+00 194.556 9.29E-04 194.558 2.75E-03

0.99 394.763 1.02E+01 394.532 1.45E-03 394.532 2.62E-03

We now describe the simulation parameters for each algorithm. The MC method has

truncation level N = 107 in sample mean and make R = 20 i.i.d replications. The MS

method has total run length T = 106 again with R = 20 iid replications. (We use all idle

periods that fall within that time interval.)

Table 6 shows the simulation estimates from all three approaches. Table 6 shows that

the simulation methods are mutually confirming, but that the confidence intervals are

quite different. The accuracy is ordered by MS > RW >MC with MS being best. For

additional details, see the online supplement.

10. Conclusions

In this paper we developed numerical and simulation algorithms to compute the widely con-

jectured tight upper bound for the mean steady-state waiting time E[W ] in the GI/GI/1

queue given the first two moments of the interarrival-time and service-time distributions,

as specified by the parameter vector (1, c2a, ρ, c
2
s). It is conjectured that this tight bound is

attained asymptotically be two-point distributions, specifically by the pair (F0,Gu) defined

in §2.3.2 as Ms→∞.
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Our algorithms are based on an explicit representation for E[W (F0,Gu∗)] in terms of

E[W (D(1/p),RS(D(ρ), p))] in Theorem 1, where Gu∗ is defined in (10) and RS denotes

a geometric random sum. Theorem 2 gives a convenient explicit formula for an UB to

E[W (F0,Gu∗)]. Table 1 shows that the UB formula is very accurate and that the new

results provide significant improvement over previous bounds.

In §6 we derived an explicit expression for E[W (D(1/p),RS(D(ρ), p))] in some spe-

cial cases, which yields an explicit expression for E[W (F0,Gu∗)] in those cases. In §7 we

developed effective numerical algorithms to compute the mean steady-state waiting time

E[W (D(1/p),RS(D(ρ), p))] using recursive algorithms for the negative binomial probabil-

ity mass function. We also conducted experiments showing that the algorithms are effective.

We exposed and resolved an underflow problem that can arise in heavy traffic.

In §8, using the Minh and Sorli (1983) insight, we showed that it also suffices

the compute the first two moments of the steady-state idle-time distribution in the

D(1/p)/RS(D(ρ), p)/1 model. Theorem 8 shows that the idle time is better behaved than

the waiting time as the extremal service mass increases. In §9 and the online supplement

Chen and Whitt (2019b) we studied three possible simulation algorithms for estimating

E[W (F0/Gu∗)]: the standard monte Carlo simulation (MC) and two methods exploiting

the idle-time representation: the Minh and Sorli (1983) algorithm and a new algorithm

based on a discrete time random walk (RW). We showed that both MS and RW provide

significant improvement over MC, but that MS tends to be best.

Overall, we found that, first, the reductions are powerful for simplifying the algo-

rithms and, second, that the refined negative-binomial numerical algorithm in §7 and

the Minh and Sorli (1983) simulation algorithm in §9 are most effective for computing

E[W (D(1/p),RS(D(ρ), p))].

Finally, there are many important directions for further research, including provid-

ing a proof that E[W (F0,Gu∗)] in (10) and Theorem 1 does indeed provide an upper

bound. It also remains to consider additional properties of the cdf’s F and G that will

narrow the range of possible values, as was done in Eckberg (1977), Whitt (1984a),

Klincewicz and Whitt (1984) and Whitt (1984b) for the GI/M/1 model.
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