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Abstract
We study the tight upper bound of the transient mean waiting time in the classical
GI/GI/1 queue over candidate interarrival-time distributions with finite support,
given the first two moments of the interarrival time and the full service-time distri-
bution. We formulate the problem as a non-convex nonlinear program. We derive the
gradient of the transient mean waiting time and then show that a stationary point of
the optimization can be characterized by a linear program. We develop and apply
a stochastic variant of the Frank and Wolfe (Naval Res Logist Q 3:95–110, 1956)
algorithm to find a stationary point for any given service-time distribution. We also
establish necessary conditions and sufficient conditions for stationary points to be
three-point distributions or special two-point distributions. We illustrate by applying
simulation together with optimization to analyze several examples.

Keywords GI/GI/1 queue · Tight bounds · Extremal queues · Bounds for the
transient mean waiting time · Moment problem

Mathematics Subject Classification Primary 60K25 · Secondary 65C50 · 90B22

1 Introduction

It is often helpful to have a bound on the possible performance in a stochastic
performancemodel given only partial information, which can serve as a useful approx-
imation. A classic example is the mean steady-state waiting time in the GI/GI/1
queueing model, given the first two moments of the underlying interarrival-time and
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service-time distributions. For that problem, the bound ofKingman [16] has often been
applied, but that bound is not tight. A long-standing open problem is to determine the
tight upper bound of the steady-state mean waiting time and the distributions that
attain it, exactly or asymptotically; see [11], especially Sect. 10, [25] and references
therein. Progress on that problem is reviewed in [5], where algorithms are developed to
compute the conjectured upper bound, which is attained asymptotically by two-point
distributions, where the interarrival-time distribution, denoted by F0, has one mass at
0, while the service-time distribution, denoted by Gu , has one mass at the upper limit
of support Ms , and then Ms is allowed to increase to infinity. A convenient formula
is also developed in Theorem 3.2 of [5] for an upper bound to the conjectured tight
upper bound, which provides a good approximation overall, but the main conjecture
remains unresolved.

There are also variants of the classic extremal problem above when one of the
two underlying distributions is given. An appealing simple story is developed for
higher moments of both the transient and steady-state GI/GI/1 waiting time in [7]
by applying the theory of Tchebycheff systems from [15] and stochastic comparison
theory from [21] and [12]. To state them, letWn(F,G) be the waiting time of customer
(arrival) n starting empty with interarrival-time cdf F and service-time cdf G. Let Fu
and G0 be two-point distributions defined the same as Gu and F0 above. For these
performance measures and for interarrival-time and service-time distributions with
bounded support, Theorems 1 and 3 of [7] show that the following order relations
hold for all n, 1 ≤ n ≤ ∞ (n = ∞ means steady-state), and k ≥ 2:

(a) E[Wn(Fu,G)k] ≤ E[Wn(F,G)k] ≤ E[Wn(F0,G)k] for allG,

(b) E[Wn(F,G0)
k] ≤ E[Wn(F,G)k] ≤ E[Wn(F,Gu)

k] for all F,

(c) E[Wn(Fu,G0)
k] ≤ E[Wn(F,G)k] ≤ E[Wn(F0,Gu)

k] for all F andG.

(1)

Corresponding simple comparison results for the asymptotic decay rate of the steady-
state waiting time appear in [6]. (These results require assumptions to avoid heavy
tails.)

Unfortunately, the nice story in (1) breaks down for k = 1, i.e., for the transient
and steady-state mean. For k = 1, counterexamples to cases (a) and (b) in the first two
lines of (1) for n ≤ ∞ and for case (c) in the final line for n < ∞ were constructed
by considering the special case of two-point distributions in [8], extending previous
results in Sect. V of [24] and Sect. 8 of [25]. (The paper [8] studies optimization over
two-point and over three-point distributions.) Partial positive results for cases (a) and
(b) with k = 1 and n = ∞ (for the steady-state mean) are contained in Theorem 2
of [7]. In particular, case (a) was established for k = 1 and n = ∞ when G can be
represented as a mixture of exponential distributions.

In this paper, we contribute by applying classical optimization theory to develop
new mathematical tools to study the extremal theory for the transient mean waiting
time. To the best of our knowledge, the present paper is the first to focus on tight
bounds for the transient mean. Since the transient mean increases to the steady-state
mean as n increases [see (4)], we also provide new ways to study tight bounds for the
steady-state mean.
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In particular, we study the upper bound of the transient mean E[Wn(F,G)] over
candidate interarrival-time distributions F assumed to have finite support and specified
first two moments, for any given service-time distribution G assumed to have finite
second moment (case (a) in (1) for k = 1 and n < ∞). We show that this problem
can be represented as a non-convex nonlinear program. (In an online supplement [9],
we obtain related results for maximizing E[Wn(F,G)] over candidate service-time
distributions G, for given interrarrival-time distribution F , corresponding to case (b)
of (1) We also consider the associated minimization problem there.)

In order to establish counterexamples and to obtain partial positive results, we focus
on stationary points of the optimization, as in Proposition 3.1.1 of [2] (see Sect. 4). It
is well known that any local optimum must be a stationary point. The first step is to
derive the gradient of the transient mean with respect to F , which we do for F having
finite support in Sect. 3.

We next show in Sect. 4 that we can test whether or not F0 (or any other candidate
F) is a stationary point of the optimization by solving a linear program. We specify
the objective function and show that it easily can be accurately estimated by stochastic
simulation. In that way, we can construct counterexamples and develop candidates for
the optimal distribution. By combining simulation and optimization, in this paper we
show that the pair (F0,Gu) is a stationary point of the optimizations over F given Gu

and over G given F0 for the steady-state mean in numerical examples, thus providing
evidence to support the main outstanding conjecture about case (c) mentioned in the
opening paragraph.

Given the gradient of the transient mean, we also show in Sect. 5 that we can apply
the conditional-gradient or Frank-Wolfe [14] (FW) algorithm as in Sect. 3.2 of [2] to
calculate a stationary point of the optimization in numerical examples. Because we
estimate the objective function by simulation, we use a stochastic variant of FW as in
[20]. Our version of the algorithm typically converged very rapidly, in 2–5 steps, and
only rarely in up to 15 steps, thus providing a practical way to find stationary points.

Finally, in Sect. 6 we also provide numerical methods to determine structural prop-
erties, i.e., whether the extremal distribution is a two-point or three-point distribution.
In Sect. 6.1, we develop an abstraction of our optimization problem, so that the results
can be applied to other related stochastic models. This involves a moment problem
over product measures. In Sect. 6.2, we establish structural properties (monotonicity
and convexity) of the objective function in our queueing problem. In Sect. 6.3, we then
state positive structural results in the general setting from the structure established in
Lemma 1. The following Sect. 7 is devoted to the proofs. In Sect. 8, we give simulation
examples related to Sect. 6. In Sect. 9, we draw conclusions. Additional supporting
material appears in [9], a supplement to this paper available from the authors’ web
pages.

2 The GI/GI/1model and the optimization problem

In this section, we review the GI/GI/1 model and the optimization problem.
The GI/GI/1 single-server queue has unlimited waiting space and the first-come
first-served service discipline. There is a sequence of independent and identically
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distributed (i.i.d.) service times {Vn : n ≥ 0}, each distributed as V with cumulative
distribution function (cdf) G, which is independent of a sequence of i.i.d. interarrival
times {Un : n ≥ 0} each distributed as U with cdf F . With the understanding that a
0th customer arrives at time 0, Vn is the service time of customer n, while Un is the
interarrival time between customers n and n + 1.

Let U have mean E[U ] ≡ λ−1 ≡ 1 and squared coefficient of variation (scv,
variance divided by the square of the mean) c2a < ∞; let a service time V have mean
E[V ] ≡ τ ≡ ρ and scv c2s < ∞, where ρ ≡ λτ < 1, so that the model is stable. (Let
≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting
service, assuming that the system starts empty, so that W0 = 0. The sequence {Wn :
n ≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 + Vn−1 −Un−1]+, n ≥ 1, (2)

where x+ ≡ max {x, 0}. Let W be the steady-state waiting time, satisfying Wn ⇒ W
as n → ∞, where ⇒ denotes convergence in distribution. It is well known that the
cdf H of W is the unique cdf satisfying the stochastic fixed point equation

W
d= (W + V −U )+, (3)

where
d= denotes equality in distribution. It is also well known that Wn

d=
max {Sk : 0 ≤ k ≤ n} for n ≤ ∞, S0 ≡ 0, Sk ≡ X0 + · · ·+ Xk−1 and Xk ≡ Vk −Uk ,
k ≥ 1. Moreover, it is known that, under the specified finite moment conditions, for
1 ≤ n ≤ ∞, Wn is a proper random variable with finite mean given by

E[Wn] ≡ E[Wn|W0 = 0] =
n∑

k=1

E[S+
k ]

k
< ∞, 1 ≤ n < ∞,

and E[W ] =
∞∑

k=1

E[S+
k ]

k
< ∞; (4)

see Sect. X.1–X.2 of [1] or (13) in Sect. 8.5 of [10]. We will exploit the formula for
the transient mean in (4) in our analysis.

The goal is to identify the distribution that yields a tight upper bound over F , given
a specification of the cdf G and the first two moments of F . In this paper, we assume
that the distribution F has bounded support. Let P(μ, c2, M) be the set of probability
measures on [0, M]with finitemeanμ and scv c2, i.e., with secondmomentμ2(1+c2).

With this notation, our primary goal is to establish results for the optimization
problem

sup {E[Wn(F,G)] : F ∈ P(1, c2a, M)}, (5)

for fixed cdf G with E[V ] = ρ < 1 and scv c2s < ∞. The objective function is given
by (4), but finding the global optimal solution of (5) is challenging because it is a non-

123



Queueing Systems

convex nonlinear program with affine constraints. Thus, we focus on local optimal
solutions, which must be stationary points of the optimization, under the additional
assumption that F has finite support.

3 The gradient of the transient mean waiting time

In this section, we establish smoothness properties of the transient mean waiting
time E[Wn] in the GI/GI/1 queue as a function of the underlying interarrival-time
cdf F for given service-time cdf G. For this purpose, we consider interarrival-time
distributions with finite support. Analogs of the following results can be established
for cdf’s with densities; see Sect. 3.1 in [9]. These results supplement the literature on
continuity of queues, for example, Sect. X.6 of [1].

Let the finite support set in [0, M] be F . Let the elements of F be 0 = u1 < u2 <

· · · < um = M with m ≡ |F | ≥ 3. Let P(F) be the subset of P(1, c2a, M) with
support set F . With this assumption, we will simplify the notation. In particular, we
will suppress the fixed service-time cdfG andwewill replace F by its pmf (probability
mass function) p ≡ (p1, . . . , pm). Let wn(p) ≡ E[Wn(p,G)] ≡ E[Wn(F,G)].

With finite support and this new notation, the optimization problem in (5) becomes

max {wn(p) ≡ E[Wn(p)] : p ∈ P(F)}

such that
m∑

i=1

pi = 1,
m∑

i=1

ui pi = 1,
m∑

i=1

u2i pi = (1 + c2a) and pi ≥ 0, (6)

where 0 = u1 < u2 < · · · < um = M are the support points in F ⊆ [0, M]. There is
no loss of generality in going from the optimization problem in (5) to the optimization
problem in (6) with finite support, provided that the optimal solution to (5) has support
inF . Thus, we always require thatF contains the support of the natural candidate F0,
which has mass 1/(1+ c2a) at 1+ c2a and the rest at 0. Support for conclusions can be
gained by considering successively larger finite support sets.

We now show that the function wn(p) in (6) is a smooth function of p ≡
(p1, . . . , pm). In particular, we show that the gradient is well defined. We do that
by showing that the Frechet derivative is well defined. For that purpose, let ‖x‖ be the
l1 norm in Rm , i.e., for x ∈ R

m ,

‖x‖ ≡
m∑

i=1

|xi |. (7)

The functionwn(p) is said to be Frechet differentiable with respect to p if it is Frechet
differentiable with respect to p at each p̂ ∈ P(F). The function wn(p) is Frechet
differentiable with respect to p at p̂ ∈ P(F) if the following limit as p → p̂ is well
defined:

lim
‖p− p̂‖→0

∣∣wn(p) − wn( p̂) − ∇wn( p̂)t · (p − p̂)
∣∣

‖p − p̂‖ = 0, (8)
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where∇wn( p̂) is the gradient ofwn at p̂, which we regard as anm×1 column vector,
i.e.,

∇wn( p̂) ≡
((

∂wn

∂ p1
( p̂)

)
, . . . ,

(
∂wn

∂ pm
( p̂)

))t

(9)

with t denoting the transpose of vector inRm . The gradient is associated with the local
linear approximation of wn(p) at some p̂ ∈ R

m , using the dot product, as

wn(p) ≈ wn( p̂) + ∇wn( p̂)
t · (p − p̂). (10)

We now show that the transient mean waiting time in this finite support setting
is Frechet differentiable with respect to the interarrival-time pmf p and derive the
gradient and Hessian. We write V (G) to indicate that V has cdf G; similarly, we write
U ( p̂) to indicate that U has pmf p̂.

Theorem 1 (Frechet derivative) For the GI/GI/1 queue in the finite support setting
above, the function wn(p) in (6) is Frechet differentiable with respect to p at p̂ in
P(F), with partial derivatives with respect to p at p̂ given by

∂wn

∂ pi
( p̂) =

n∑

j=1

E

⎡

⎣

⎛

⎝
j∑

k=1

Vk−1(G) −
j−1∑

k=1

Uk−1( p̂) − ui

⎞

⎠
+⎤

⎦ , (11)

so that

∇wn( p̂)
t · (p − p̂) =

m∑

i=1

∂wn

∂ pi
( p̂)(pi − p̂i ). (12)

Higher-order derivatives hold as well. The Hessian matrix H of wn(p) at p̂ given by

H(l, k) ≡ ∂(2)wn

∂ pl∂ pk
( p̂) =

n∑

j=1

( j − 1)E

⎡

⎣

⎛

⎝
j∑

k=1

Vk−1(G) −
j−2∑

k=1

Uk−1( p̂) − ul − uk

⎞

⎠
+⎤

⎦ .

(13)

Proof We do the proof of the gradient for n = 2; the argument for higher n and higher-
order differentiation is analogous. For any real-valued functions f (x) and g(x), let
f (x) = �(g(x)) denote that there exist constants c1 and c2 such that 0 < c1 < c2 <

∞ and c1g(x) ≤ | f (x)| ≤ c2g(x) for all x . Then, adding and subtracting p̂i and p̂ j

inside the expression for w2(p) from (4), we get

w2(p) =
∑

i

E[(V0 − ui )
+]pi + 1

2

∑

i, j

E[(V0 + V1 − ui − u j )
+]pi p j

=
∑

i

E[(V0 − ui )
+](pi − p̂i + p̂i )
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+1

2

∑

i, j

E[(V0 + V1 − ui − u j )
+](pi − p̂i + p̂i )(p j − p̂ j + p̂ j )

=
∑

i

E[(V0 − ui )
+] p̂i + 1

2

∑

i, j

E[(V0 + V1 − ui − u j )
+] p̂i p̂ j

+
∑

i

E[(V0 − ui )
+](pi − p̂i )

+
∑

i

E[(V0 + V1 −U0(F̂) − ui )
+](pi − p̂i ) + �(‖p − p̂‖2)

= w2( p̂) +
∑

i

∂w2

∂ pi
( p̂)(pi − p̂i ) + �(‖p − p̂‖2), (14)

where

∂w2

∂ pi
( p̂) =

2∑

j=1

E

⎡

⎣

⎛

⎝
j∑

k=1

Vk−1(Ĝ) −
j−1∑

k=1

Uk−1(F) − ui

⎞

⎠
+⎤

⎦ . (15)

To justify the conclusion in (14), we observe that there exists a constant C such that
E[(V0 + V1 − ui − u j )

+] ≤ C < ∞ for all i and j . Consequently, the second term in
the second line of (14) associated with the second order of (pi − p̂i ) can be bounded
by the square of the norm, in particular,

∣∣∣∣∣∣
1

2

∑

i, j

E[(V0 + V1 − ui − u j )
+](pi − p̂i )(p j − p̂ j )

∣∣∣∣∣∣
≤ C

∑

i, j

∣∣(pi − p̂i )(p j − p̂ j )
∣∣

≤ C
∑

i, j

∣∣(pi − p̂i )
∣∣ ∣∣(p j − p̂ j )

∣∣ = C‖p − p̂‖2.

Therefore, as ‖p − p̂‖ → 0,

∣∣w2(p) − w2( p̂) − ∑
i

∂w2
∂ pi

( p̂)(pi − p̂i )
∣∣

‖p − p̂‖ ≤ C
‖p − p̂‖2
‖p − p̂‖ = C‖p − p̂‖ → 0.

Hence, we have shown that w2(p) is Frechet differentiable. We can extend to general
n by observing that the argument above implies that for n = 2 the relation (10) extends
to

wn(p) ≈ wn( p̂) + ∇wn( p̂)
t · (p − p̂) + O(‖p − p̂‖2) as ‖p − p̂‖ → 0.

(16)

It is not difficult to prove that (16) holds for all n ≥ 2 by mathematical induction.
Given (11), we can continue to take the derivative with respect to p at p̂, so that
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∂2w2

∂ pl∂ pk
( p̂) =

2∑

j=1

E

⎡

⎣

⎛

⎝
j∑

k=1

Vk−1(Ĝ) −
j−2∑

k=1

Uk−1(F) − ul − uk

⎞

⎠
+⎤

⎦

= E

⎡

⎣
(

2∑

k=1

Vk−1(Ĝ) − ul − uk

)+⎤

⎦ . (17)

Therefore, we directly obtain (13) for the case n = 2. We can continue the argument
to obtain (13). ��

4 The linear program for a stationary point

We now show how to exploit the smoothness established in Theorem 1 to establish
partial results for the optimization problem formulated in (5) and (6). First, we observe
that there exists a global maximum because we are maximizing a continuous function
over a compact subset of Rm .

Recall that a point p̂ is a local maximum for (6) if there exists δ > 0 such that

wn(p) ≤ wn( p̂) for all p such that ‖p − p̂‖ < δ. (18)

Clearly, there exists at least one local maximum because the global maximum is
necessarily a local maximum. We apply the following necessary condition for a local
maximum from Proposition 3.1.1 of [2].

Proposition 1 (Necessary condition for a local maximum, Proposition 3.1.1 of [2]) If
p̂ ∈ P(F) is a local maximum of wn(p) in (6), then

∇wn( p̂)
t · (p − p̂) ≤ 0 for all p ∈ P(F). (19)

If there exists p̂ satisfying (19), then p̂ is called a stationary point (of the optimization).

It will be convenient to look at the partial derivatives in (11) as a function of the
support point u with p̂ ∈ P(F) given. Hence, we define

φa(u) ≡ ∂wn

∂ pi
( p̂)(u) ≡

n∑

i=1

E

⎡

⎣
(

i∑

k=1

Vk−1(G) −
i−1∑

k=1

Uk−1( p̂) − u

)+⎤

⎦ , u ≥ 0.

(20)

Corollary 1 (The key linear program) A pmf p̂ in P(F) is a stationary point of the
optimization in (6), satisfying (19), if and only if p̂ is the solution of the linear program
(LP)

sup

{
∇wn( p̂)

t · p ≡
m∑

i=1

∂wn

∂ pi
( p̂)pi ≡

m∑

i=1

φa(ui )pi : p ∈ P(F)

}
; (21)
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for φa(u) in (20), i.e., if and only if

sup

{
m∑

i=1

φa(ui )pi : p ∈ P(F)

}
=

m∑

i=1

φa(ui ) p̂i . (22)

For the steady-state mean, the two-point cdf F0 provides the tight upper bound for
E[W (F,G)] formanyG, but that is not true forG0, as shown in Sect. 8 of [25]. Hence,
we now apply Corollary 1 to study the special two-point interarrival-time distribution
F0 for the case G ≡ G0.

Example 1 (application of Corollary 1 to an established counterexample) We now
assume that the service-cdf is the two-point cdf G0. We consider two cases, one
designed to approximately represent steady state and one to be genuinely transient.
The nearly steady-state example has n = 40, ρ = 0.1, c2a = c2s = 0.5, M = 10. The
support contains m = 401 points in [0, 10] (including the endpoints) so that F0 is in
the support, while the transient example has n = 4, ρ = 0.7, c2a = c2s = 0.5, M = 10.
(The cdf F0 has mass 1/(1 + c2a) on 1 + c2a = 1.50.)

In both cases, we apply simulation to estimate the objective function in (20) when
G = G0 and F = F0 and then solve the linear program in (21). We perform five
independent replications, so that we can estimate 95% confidence intervals. In each
replication we use a large sample size such as 106, so that the randomness in the
objective function can be ignored. When we do the optimization, we always find that
the solution has support on at most three points, so there is little ambiguity.

When we apply this procedure for most standard service-time distributions, we
find that F0 is a stationary point. However, for G0, for the example with n = 4,
we find that F0 is not the solution of the linear program. In particular, the solution
F∗ of the linear program has masses 0.3423, 0.3242, 0.3333 on 0.020, 1.500, 1.520,
respectively. Hence, F0 is not a stationary point when the service-time cdf is G0. As
a consequence, F0 is not locally optimal, and thus not optimal. On the other hand, for
the nearly steady-state example with n = 40, we find that F0 is a stationary point. For
G0, we find that the stationary point of the optimization with respect to F can depend
on ρ.

5 A version of Frank–Wolfe (1956) to find a stationary point

The availability of the gradient of the transientmean allows us to apply the conditional-
gradient or Frank-Wolfe [14] algorithm as in Sect. 3.2 of [2], [17] and references there
to compute a stationary point starting from any initial feasible F , provided we can
calculate the objective function (20) in the LP in Corollary 1. As in stochastic variants
of the Frank-Wolfe [14] algorithm, such as in [20], we estimate the objective function
of the LP by applying simulation.

We can exploit the first-order linear approximation in (10). By Proposition 1, if
p̂ ∈ P(F) is not a stationary point of the optimization in (6), then we can find a
p ∈ P(F) such that ∇wn( p̂)t · (p − p̂) > 0. We thus apply line search to find a
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p that improves the objective function. The FW algorithm computes a succession of
improvements until a stationary point is found.

Let the successive cdf’s F be indexed by j ≥ 1. (These successive Fj play the role
of p̂ in Corollary 1.) The first step is to use Monte-Carlo simulation to estimate the
objective value in (20) via

φa(u; Fj ) ≡
n∑

i=1

E

⎡

⎣
(

i∑

k=1

Vk−1(G) −
i−1∑

k=1

Uk−1(Fj ) − u

)+⎤

⎦ (23)

≈ 1

B

B∑

b=1

n∑

i=1

(
i∑

k=1

V (b)
k−1(G)−

i−1∑

k=1

U (b)
k−1(Fj )−u

)+
, u∈F , (24)

where we sample B i.i.d. copies of {(Vk,Uk) : 0 ≤ k ≤ n − 1} for each j . In each
iteration, we solve a linear program in the optimization step. In the following practical
algorithm, we havemade an additional simplifying approximation, letting the step size
be ε j = 2/( j + 2), j ≥ 1. We found that this approximation was effective in all our
numerical examples. See the supplement [9] for amore complicated step size algorithm
following [17]. There we prove that the sequence of cdf’s {Fj : j ≥ 1} converges
to a stationary point as j → ∞, assuming accuracy in the objective function, by
applying [17]. Here, we give a practical algorithm that we have found to be effective
in identifying a stationary point in only a few iterations.

To state the practical algorithm, let EF [·] denote the expectation with respect to
candidate the cdf F of U .

Algorithm 1: Practical Stochastic Frank–Wolfe Algorithm
Initialization: A distribution F1 in the feasible region P(F).
Input: Step size ε j ≡ 2/(2 + j) for each step j = 1, 2, . . . and a stopping
threshold δ > 0.
Procedure: For each iteration j = 1, 2, . . . , given a distribution Fj :

1 Compute the estimate of φa(u) in (23) by

φ̂a(u; Fj ) ≡ 1

B

B∑

b=1

n∑

i=1

(
i∑

k=1

V (b)
k−1(G) −

i−1∑

k=1

Ub
k−1(Fj ) − u

)+
, u ∈ F . (25)

2 Apply the LP in Corollary 1 to solve

Q j = argmaxF∈P(F) EF [φ̂a(U (Fj−1); F)] and let the FW gap at iteration j be

ḡ j ≡ EQ j [φ̂a(U ; Fj )] − EFj [φ̂a(U ; Fj )]. (26)

3 Update Fj+1 = (1 − ε j )Fj + ε j Q j .
Repeat until ḡ j ≤ δ or Q j is not changed for two consecutive iterations. If Q j

has not changed for two consecutive iterations, test whether Q j itself is a
stationary point. If so, stop; otherwise, continue iterating.
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Table 1 The successive optimal distributions Q j for E[W4(F,G0)] with c2a = c2s = 0.5, ρ = 0.5 when
the initial distribution is F = Fu

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0.0000 1.500

2 0.3795 0.1538 0.4667 0.1000 1.400 1.600

3 0.4190 0.5810 0.1500 1.600

4 0.3816 0.4828 0.1356 0.1000 1.550 1.575

5 0.3816 0.4828 0.1356 0.1000 1.550 1.575

In all our numerical experiments, we found that, for given service-time cdf G, the
stochastic FW algorithm converged to the same stationary point whatever initial cdf
F is used. (The traffic intensity ρ is the mean of G, so it is fixed given G.) In addition,
we observed that the sequence of {Q j } does not change after the initial few steps and
Fj → Q∞ as j → ∞. Algorithm 1 always terminated within at most 15 steps.

With regard to the extremal cdf’s, here is a summary of our findings: For case (a), we
determine stationary points for F/G0/1 and found that F0 is not always a stationary
point.We also found examples of cdf’sG having a density for which F0 is not optimal;
see Sect. 8. We have not yet found an example of a completely monotone G for which
F0 is not optimal. Thus, we conjecture that the transient analog of Theorem 2 of [7]
is valid.

For case (b), we found that G0 was the only stationary point for E[Wn(M,G)]
with n < ∞. The uniqueness for n < ∞ is in contrast to the insensitivity property of
the steady-state mean. For case (c), we confirm the conjectured solution (F0,Gu) and
(F0,Gu,n) are stationary points for E[W∞(F,G)] and E[Wn(F,G)]. (Recall that the
distribution Gu,n is a the distribution, where the upper mass point converges to Ms as
n → ∞.)

To illustrate, we describe two experiments, one for the transient mean and one for
the (approximate) steady-state mean. For the transient mean, we let n = 4, ρ = 0.5,
B = 1 × 107 and support consisting of m = 401 points uniformly distributed in the
interval [0, 10]. (Since F0 has mass on 1+c2a = 1.50, F0 is in the support.) For steady-
state waiting time, we let ρ = 0.1 and n = 40. In the simulation studies, we consider
different initial distributions. In all experiments, the optimization step in Algorithm 1
is numerically solved via the Gurobi solver in CVX.

5.1 The transient mean waiting time

We first consider the transient mean E[W4] for the four service-time distributions:
exponential (M), Erlang (E10) and the special two-point distributions Gu with one
mass point on 10 and G0 with one mass point on ρ2(1 + c2a) = 3/8 = 0.375. For
G being M , E10 and Gu , the algorithm converged to F0 in two steps for all initial F
considered, leading to Q j = F0 for all subsequent j .

ForG0, the story was different. Table 1 gives the numerical calues of Q j forG0 and
F1 = Fu when the support contains m = 401 points uniformly distributed in [0, 10].

123



Queueing Systems

Table 2 The sequence of optimal distribution Q j for GI/G0/1 for E[W60(F,G)] during each iteration
when the initial distribution is F = M with ρ = 0.5

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0.000 1.500

2 0.4170 0.1413 0.4417 0.000 0.175 1.325

3 0.3326 0.3448 0.3226 0.000 1.450 1.550

4 0.3317 0.3509 0.3175 0.000 1.425 1.575

5 0.3304 0.3571 0.3125 0.000 1.400 1.600

6 0.3304 0.3571 0.3125 0.000 1.400 1.600

7 0.3287 0.3636 0.3077 0.000 1.375 1.625

8 0.3287 0.3636 0.3077 0.000 1.375 1.625

9 0.3295 0.3232 0.3472 0.000 1.375 1.600

10 0.3295 0.3232 0.3472 0.000 1.375 1.600

The solution in Table 1 is a three-point distribution, but it has two adjacent points
in its support (1.5500 and 1.575), suggesting that it might change if we refined the
support. Indeed, when we increase m to 801 from 401, we find the right two mass
points change to 1.5500 and 1.5625. Continuing to increase the support set in this
way, our numerical estimate of the extremal distribution for (5) is actually a two-point
distribution with masses 0.3816 and 0.6184 on 0.1000 and 1.5556, respectively.

5.2 Steady-state mean waiting time

We repeat the above experiments for the approximate steady-state mean waiting
time E[W40(F,G)] under the same four models. The story is not changed for
F = M, E10, Fu , again yielding F = F0 as the stationary point. For F/G0/1, we
obtain F0 being an approximate stationary point under ρ = 0.1.

Butwhenwe setρ = 0.5,weobtain a different stationary points F with threemasses
of {0.3295, 0.3232, 0.3472} on the support {0.000, 1.375, 1.600}. Table 2 shows the
successive Q j .

Therefore, we obtain different stationary points under different ρ. We see that F0
is not the stationary point for F/G0/1 for all ρ. It seems likely that a three-point
distribution will be the extremal distribution for E[W∞(F,G0)] for some ρ.

6 Sufficient conditions for structured extremal distributions

In this section, we establish sufficient conditions for the extremal cdf to have spe-
cial structure, for example, to be a three-point distribution or a two-point distribution.
However, we first abstract the queueing problem we have considered so far to provide
a framework that can be used for other stochastic models in addition to the GI/GI/1
transient mean waiting time. We show that our problem can be regarded as a special
case of a multi-dimensional moment problem. That generalization leads to extensions
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of the function φa(u) in (20). We will then identify structure needed for these func-
tions in order to characterize the solutions of the optimization problems. To provide
guidance, in Sect. 6.2 we will establish structure of the objective function arising with
the transient mean waiting time.

6.1 An abstraction to amulti-dimensional moment problem

Our abstraction extends the classical moment problem, as reviewed in [4], [22] and
other references therein. A version (special case) of the classical moment problem is
the optimization

max
F

{
E[ĝ(X)] ≡

∫ M

0
ĝ(x)dF(x) subject to F ∈ P(μ, c2a, M)

}
, (27)

where ĝ is a real-valued continuous function defined on [0, M] and X is a random
variable distributed as F , where F lies in the domain P(μ, c2a, M) with fixed first two
moments μ and μ2(1 + c2a) and bounded support [0, M], which is thus convex and
compact. The classical moment problem in our setting is a convex program over a
compact domain and it has been shown that there always exists an optimal distribution
F∗ with all mass on at most three points.

In this paper, we consider a similar moment problem for a continuous objective
function ĝ over independent random variables with a specified common marginal
distribution; i.e., over randomvectors (X1, . . . , Xn),where Xi are independent random
variables with a common marginal cdf’s F . The new formulation is

max
F

{
E[ĝ(X1, . . . , Xn)] ≡

∫ M

0
ĝ(x1, . . . , xn)dF(x1) · · · dF(xn) subject to

F ∈ P(μ, c2a, M)

}
, (28)

where ĝ(x1, . . . , xn) is a nonnegative continuous real-valued function defined on the
product space [0, M]n with M ≥ 1+c2 (to have a feasible solution). In (28), the com-
mon marginal distribution has specified first two moments. The program formulation
in (28) has many applications, such as robust estimation in tail analysis and rare-event
simulation; for example, [18,19] propose the reformulation in (28) with ĝ being an
indicator function. In that case, for some positive b, we are interested in solving

max
F

{
P(X1 + · · · + Xn ≥ b) =

∫ M

0
1{x1+···+xn≥b}dF(x1) · · · dF(xn)

subject to F ∈ P(μ, c2a, M)

}
,

where all Xi are independent and distributed as the same cdf F , where F lies in an
uncertainty set with unspecified tail.
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As in Sect. 3, we restrict attention to probability distributions with finite support.
We assume that all F ∈ P(μ, c2a, M) have the common finite supportF with elements
0 = u1 < · · · < um = M with sufficient largem. So,we have the following alternative
formulation for (28):

max
p

ŵn(p) ≡
∑

i1,...,in

ĝ(ui1 , . . . , uin )pi1 . . . pin

subject to
m∑

i=1

pi = 1,
m∑

i=1

ui pi = 1,
m∑

i=1

u2i pi = 1 + c2 and pi ≥ 0, (29)

where g : F → R and the probability mass function p belongs to P(F), defined in
Sect. 3, which is a compact and convex subset of Rm .

6.2 Structural properties of the objective function in (20)

Toprovide guidance aboutwhat possible conditions to assume for our general objective
function, we next establish structural properties of the objective function in (20) and
(21) regarded as a function of u over the interval [0, M].
Lemma 1 (Structure of the objective function in (20)) If the fixed cdf G of V has a
positive pdf g over [0,∞), then the random variable Yi ≡ ∑i

k=1 Vk − ∑i−1
k=1Uk has

a cdf 
i with support in [−(i − 1)M,∞) which has a positive pdf γi over [0,∞) for
each i , 1 ≤ i ≤ m. Hence, for x > 0, the cdf of Yi can be expressed as


i (x) = 
i (0) +
∫ x

0
γi (y) dy for x ≥ 0, (30)

so that the function φa in (20) can be expressed as

φa(u) ≡ ∂wn

∂ p
( p̂) =

n∑

i=1

∫ ∞

0
(x − u)+γi (x) dx > 0, u ≥ 0. (31)

Hence, φa(u) > 0 and the first two derivatives of φa in (20) with respect to u exist for
u > 0 and satisfy

φ̇a(u) =
n∑

i=1

(
i (u) − 1) < 0, φ̈a(u) =
n∑

i=1

γi (u) > 0, u ≥ 0. (32)

Thus, φa is continuous, strictly decreasing and strictly convex on [0, M].
Proof We directly calculate the derivative of φa(u) in (20) term by term. Since the
random variable V with cdf G has a positive pdf, so does Yi for each i ; see Sect. V.4 of
[13]. To calculate the derivative of each term in the sum, we apply the Leibniz integral
rule for differentiation of integrals of integrable functions that are differentiable almost
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everywhere. Each term involves the positive part function (x)+ ≡ max {x, 0}. Observe
that the derivative of (x−u)+γi (x)with respect to u is−γi (x) for u < x . That implies
that

φ̇a(u) = −
n∑

i=1

∫ ∞

u
γi (x) dx =

n∑

i=1

(
i (u) − 1). (33)

The rest follows directly. ��
Going forward, we will see that the extremal distributions will depend on the struc-

ture of φ̈a(u) in (32), which is the second derivative of φa(u) in (20), where γi is
the pdf of Yi ≡ ∑i

k=1 Vk − ∑i−1
k=1Uk . We will establish concrete results in the next

section.

6.3 Sufficient conditions to be a stationary point

We clearly have a generalization of the linear program in Corollary 1with the objective
function φa(u) in (20) replaced by a new function

ψ(u) ≡ ∂ŵn

∂ pi
( p̂)(u) (34)

for ŵn in (29). It suffices to check the optimality for

max

{
m∑

i=1

ψ(ui )pi ≡ ∇g( p̂)t p, p ∈ P(F)

}
= ∇g( p̂)t p̂. (35)

As regularity conditions, we require the properties deduced for φa in Lemma 1, but
we also need an extra condition on the second derivative ψ̈ .

We apply duality theory for the LP in (35). From basic LP duality theory as in
Ch. 4 of [3], the dual problem associated with the LP in (35) is to find the vector
λ∗ ≡ (λ∗

0, λ
∗
1, λ

∗
2) that attains the minimum

min {λ0 + λ1 + λ2(1 + c2)}
such that r(ui ) ≡ λ0 + λ1ui + λ2u

2
i ≥ ψ(ui ) for all i, 1 ≤ i ≤ m. (36)

We are now ready to state the results obtained in this paper. Our first theorem
establishes sufficient conditions for any specific stationary point to be a three-point
distribution. For this purpose, we now introduce additional notation. LetPn(F) denote
the subset of P(F) with support on at most n points.

For the queueing problem,Lemma1 shows that thefirst three conditions are satisfied
if the fixed service-time cdf G has a positive pdf.

Theorem 2 (Sufficient condition for a stationary point p̂ to be a three-point distribu-
tion)We make the following initial three assumptions for the optimization problem in
(29)-(35):

(i) The objective function ŵn(p) in (29) is Frechet differentiable at all p ∈ P(F).
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(ii) ψ(u) in (34) is a strictly convex, strictly positive and strictly decreasing function
over [0, M].

(iii) ψ(u) is twice differentiable and the second derivative ψ̈(u) is a smooth function
over [0, M].

For any stationary point p̂ of (29), the LP given p̂ in (35) has a unique optimal
solution, which is thus an extreme point, and thus an element ofP3(F), if and only if the
quadratic function r(u) in (36) has at most three intersections with ψ(u) ≡ ψ(u; p̂)
over [0, M].

Our next theorem establishes sufficient conditions for one of the special two-point
distributions F0 or Fu to be a stationary point of the optimization. For the shape of
ψ̈(u), we introduce the following strong from of unimodality.

Definition 1 (Single peak) A nonnegative continuous function f : [0, M] → R is said
to have a single peak if its maximum value is achieved uniquely at an interior point û
and if f is monotone increasing over [0, û] and monotone decreasing over [û, M].
Theorem 3 (sufficient conditions for F0 or Fu to be a stationary point) Under the same
initial three assumptions as Theorem 2,

(a) For any candidate cdf F , if ψ̈(u; F) is strictly decreasing or has a single peak over
[0, M], then F0 must be a solution of the LP in (35). Hence, if this condition is
satisfied for F = F0, then F0. must be a stationary point.

(b) Similarly, for any candidate cdf F , if ψ̈(u; F) is strictly increasing over [0, M],
then Fu must be a solution of the LP in (35). Hence, if this condition is satisfied
for F = Fu , then Fu . must be a stationary point.

Corollary 2 (Sufficient conditions for F0 or Fu to be a global optimum)Under the same
initial three assumptions as Theorem 2, if ψ̈(u; F) satisfies the specified conditions for
all F ∈ P(F), then the identified stationary points in Theorem 3 provide the unique
global optimal solution.

Wecan also extend to other functional forms of ψ̈ using the following generalization
of Definition 1.

Definition 2 (Multiple peaks) A nonnegative continuous function f : [0, M] → R

is said to have n peaks if it has n unique interior local maximum points and it is
monotone increasing before the first maximum point and then thereafter the function
is first monotone decreasing and then monotone increasing between each adjacent
two peaks before the final maximum point. Then, the function is monotone decreasing
after the final maximum point.

Theorem 4 (Implication ofmultiple peaks)Under the setting of Theorem 3, if ψ̈(u; F)

has at most n (1 ≤ n < ∞) peaks over [0, M] for any candidate F ∈ P(F), then all
stationary points of the optimization in (35) must lie in Pn+1(F).

7 Proofs for Theorems 2–4 in Section 6.3

We now prove the results above.
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7.1 Proof of Theorem 2

We first show the necessary condition, and then the sufficient condition.
Necessary Condition: Starting with p̂ being a stationary point satisfying the con-

dition that r(u) has at most three intersection points with ψ(u; p̂), the main goal is to
show such (35) has a unique solution, so that the p̂ must be an extremal point. For that
purpose, we apply the following lemma, which is Corollary 1 to Theorem 4 in [23].

Lemma 2 (Non-degeneracy and uniqueness inLP)AstandardLPhas a unique optimal
solution if and only if its dual has a non-degenerate optimal solution.

To apply Lemma 2 from Corollary 1 to Theorem 4 in [23], we express the dual
(36) in standard form by introducing slack variables and dividing the three variables
λi into their positive and negative parts as

min {(λ+
0 − λ−

0 ) + (λ+
1 − λ−

1 ) + (λ+
2 − λ−

2 )(1 + c2)}
such that (λ+

0 − λ−
0 ) + (λ+

1 − λ−
1 )ui + (λ+

2 − λ−
2 )u2i + si = ψ(ui ) for all i, 1 ≤ i ≤ m,

and λ+
j ≥ 0, λ−

j ≥ 0, 1 ≤ j ≤ 3; si ≥ 0, 1 ≤ i ≤ m. (37)

In the setting of (37), we have m + 6 variables and m equality constraints. To show
that there exists a non-degenerate optimal solution, will show that at least one among
(λ+

i , λ−
i ) for i = 0, 1, 2 are not equal to be zero, for example, λ+

0 > 0, λ−
1 > 0 and

λ+
2 > 0, while λ−

0 = 0, λ+
1 = 0 and λ−

2 = 0. That is equivalent to show all λ∗
i in (36)

are not equal to zero. We will achieve the goal by establishing Lemma 3.
Hence, when at most three of the slack variables si are 0 (at most three intersection

points), the dual problem has a non-degenerate solution, thus the p̂ will be the unique
solution in (35) and p̂ must be in P3(F), i.e., must be a three-point distribution.

Lemma 3 (Non-degeneracy for the dual) For the dual formulation (36), any optimal
dual solution (λ∗

0, λ
∗
1, λ

∗
2) associated with p̂, λ∗

i for i = 0, 1, 2 cannot be zero.

From (36), we see that the constraints produce the quadratic function r(u) that is
required to dominateψ(u) for all u ∈ F . We exploit the structure of the functionψ(u)

in (35), under the assumed conditions. (The first three are established in Lemma 1.)
Under those conditions, ψ(u) is continuous, strictly positive, strictly decreasing and
strictly convex. Recall that we are working with standard LP’s, where the cdf F has
finite support setF , but the support setF always contains the two endpoints 0 and M .

The inequality constraints in (36) are only required to hold at the finitelymany point
in the support set F . Even though we exploit the structure of continuous functions,
the following argument applies to any finite support set.

If M = 1 + c2, the second moment, which is the lower limit of the support, then
the primal has the unique feasible, and thus optimal, two-point feasible distribution
with masses on 0 and 1 + c2. So henceforth assume that M > 1 + c2 as well.

We start knowing that both the dual LP (36) and the primal LP (35) have feasible
solutions and the feasible region of the primal LP (35) is compact, thus they both
have at least one optimal solution. We will show that the primal LP (35) has a unique
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solution by applying Lemma 2 and showing that no optimal solution of the dual (36)
can be degenerate.

Hence, we will show (i) that we cannot have the optimal λ∗
i be 0 for any i in (36).

We start with the λ∗
i . First, we must have λ0 ≥ ψ(0) > 0, so we cannot have

λ∗
0 = 0. Next, suppose that λ1 = 0. In this setting, with λ∗

0 > 0 and λ∗
1 = 0, if λ∗

2 ≥ 0,
then r can intersect ψ(u) only at 0, which cannot correspond to a feasible solution of
the primal. (We exploit complementary slackness here and in the following.) On the
other hand, if λ∗

2 < 0, then ψ(u) can only intersect ψ at the two endpoints, without
violating the conditions at the endpoints, but that does not correspond to a feasible
solution of the primal, assuming that M > 1+c2. Hence, we cannot have a degenerate
optimal solution with λ∗

1 = 0. Finally, suppose that λ∗
2 = 0, which makes ψ linear.

If λ0 = ψ(0) > 0, then again ψ can only meet ψ(u) at the two endpoints without
violating the conditions at the endpoints, but that does not correspond to a feasible
solution of the primal, assuming that M > 1 + c2. Otherwise, r can only have one
intersection point with ψ(u) (as we have done).

Sufficient Condition: To prove the sufficient condition, if p̂ is the unique optimal
solution for (35), which must be in P3(F), by the strict complimentary slackness
condition in the LP, the optimal distribution can be identified from the solution to the
LP, so that such ψ and r have at most three intersection points over [0, M], which
corresponds to the same points having positive masses in p̂.

7.2 Proof of Theorem 3

We now consider the LP (35) based on an objective function determined by a cdf F
under the conditions of Theorem 3. In each case, we will show that the LP (35) has a
unique optimal solution and the unique optimal solutions will be the specified special
two-point distribution.

We first do the proof for (a) and then (b). For (a), we first establish the claim for
only one unique interior intersection point and then the claim for F0.

The argument for the single peak case is essentially same as that for the strictly
monotone decreasing case. So we do the proof for the two cases together.

We first show that at most one of the internal inequality constraints for 0 = u1 <

ui < um = M can be satisfied as equalities ifψ is strict monotone (strictly decreasing
or strictly increasing) or has a single peak. For any interior intersection point u, where
r(u) = ψ(u), according to (36), we also have

r̈(u) = 2λ∗
2 = ψ̈(u),

ṙ(u) = λ∗
1 + 2λ∗

2u = ψ̇(u),

r(u) = λ∗
0 + λ∗

1u + λ∗
2u

2 = ψ(u). (38)

We first assume that equalities are obtained at the two interior points x , y, where
0 < x < y < M , and show that produces a contradiction. Since x, y are interior
intersection points,
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r̈(x) = 2λ∗
2 = ψ̈(x), ṙ(x) = ψ̇(x), r(u) = ψ(x),

r̈(y) = 2λ∗
2 = ψ̈(y), ṙ(y) = ψ̇(y), r(y) = ψ(y). (39)

Looking at the differences of these derivatives, we obtain

2λ∗
2 = ψ̇(y) − ψ̇(x)

y − x
= ψ̈(x) = ψ̈(y). (40)

Therefore, by theMean Value Theorem, there exists ũ ∈ (x, y) such that ψ̈(ũ) = 2λ∗
2.

That leads to a contradiction because such ψ̈(u) can only have at most two intersection
points with 2λ∗

2.
Assume that the unique interior intersection point is y. We next show thatψ(u) and

r(u) cannot intersect at u = M .
Recall that, at the point y, we must have

2λ∗
2 = ψ̈(y), ṙ(y) = ψ̇(y), r(y) = ψ(y). (41)

Since r(u) > ψ(u) for u ∈ (y, M), then 2λ∗
2 > ψ̈(u) for u ∈ (y, y+δ) for some small

δ > 0. Therefore, given the shape of ψ̈(u), the point y must be the final intersection
point for ψ̈(u) and 2λ∗. For u > y, since 2λ∗ > ψ̈(u) (ψ̈ has a single peak or is
strictly monotone decreasing), that implies ψ(u) < r(u) for all u, so that they cannot
intersect again at u = M .

The only remaining possible case is that ψ and r will intersect at 0 and an interior
point b ∈ (0, M). By the strict complementary slackness condition in the LP, the
optimal distribution can be identified from the solution to the LP. So that the optimal
distribution only has positive mass on 0 and b, a two-point distribution which has one
mass at 0 must be F0.

Essentially the same argument applies in part (b), but now the two-point distribution
must have one inner point and mass at the upper end point M , which corresponds to
the claimed Fu . ��

7.3 Proof of Theorem 4

Paralleling with lines before (40) in the proof of Theorem 3, given the number of peaks
equal to n ≥ 2, we can first show the number of interior intersection points betweenψ

and r is at most n. Then paralleling the arguments after (41), since the first intersection
point of ψ and r must be the second intersection point between ψ̈ and r̈ , the functions
ψ and r will not intersect at M . With at most n interior intersection points and possibly
an additional one intersection point at 0, the total number intersection points between
ψ and r is at most n + 1. Therefore, the optimal distribution in Pn+1(F).
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8 Numerical examples exploiting Theorem 3 (a)

In this section, we apply simulation to examine if the conditions in Theorem 3(a) for
F0 and other F to be a stationary point of the optimization are satisfied for various
GI/GI/1 examples, in the context of Corollary 1 and Lemma 1. That is, we consider
the maximization over interarrival-time cdf’s F with specified first two moments for
given service-time cdf G. For that purpose, we will look at φ̈a(u) in (32) for φa(u) in
(20). We obtain supporting positive results for the exponential (M) and Erlang (E2)
service-time distributions and negative results for amixture of two Erlang service-time
distributions.

First, Fig. 1 shows simulation estimates of φ̈a(u) in (32) and Lemma 1 for F0/M/1
(LHS) and M/M/1 (RHS) in the case c2a = 0.5, ρ = 0.7, n = 4, M = 10 with m =
501 equally spaced points in the support. Both plots show that φ̈a(u) is monotonically
decreasing over [0, M], implying that F0 is the optimal solution of the LP in (21) or
(35) in both cases. That in turn implies that, when the service-time distribution isM , F0
is a stationary point for the optimization, while M is not. As shown in the supplement
[9], corresponding plots for the models Fu/M/1 and E2/M/1 look very similar to the
LHS and RHS of Fig. 1, respectively, again implying that F0 is the optimal solution
of the LP in (21) or (35) in both cases. Hence, neither Fu nor E2 is a stationary point
when the service-time distribution is M .

Next, Fig. 2 shows simulation estimates of φ̈(u) in (32) and Lemma 1 again in the
case c2a = 0.5, ρ = 0.7, n = 4, M = 10 for two cases involving Erlang distributions.
First, the LHS shows the simulation estimates for the F0/E2/1 model. In this case
we do not see monotonicity, but instead we see the single-peak property over [0, M].
Thus, the LHS shows that F0 is again a solution of the LP in (35), because of the
single-peak property, so that F0 is a stationary point. The model with interarrival-time
cdf Fu looks very similar, again showing the single-peak property, but that implies Fu
is not a stationary point.

The RHS in Fig. 2 considers a more complex service-time cdf. Let Ek(μ) denote
an Ek distribution with mean μ, i.e., the distribution of the sum of k i.i.d. exponential
random variables, each with mean μ/k. Let mix(Ek1(m1), Ek2(m2), p) denote the
mixture of an Erlang Ek1(m1) distribution with probability p and an Ek2(m2) distri-
bution with probability 1 − p, which necessarily has mean pm1 + (1 − p)m2. The
specific G is mix(E20(0.4), E20(1.6), 0.5). The RHS shows that that the condition
of Theorem 3(a) is not satisfied for this more complicated service-time distribution.
Nevertheless, even though the condition of Theorem 3(a) is not satisfied for this more
complicated service-time distribution, an application of the FW algorithm shows that
F0 is a stationary point.

9 Conclusions

We applied the theory of non-convex nonlinear programs together with the explicit
expression for the transient mean E[Wn] in (4) to study the interarrival-time distribu-
tion that maximizes the transient mean waiting time in the GI/GI/1 queue, given a
specified service-time distribution and the first two moments of the interarrival time,
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assuming that the interarrival-time distribution has finite support.We establishedmath-
ematical properties justifying three different numerical algorithms, and illustrated each
in Sects. 4, 5, 8 and the supplement, [9].

Theorem 1 first establishes the gradient of the transient mean waiting time E[Wn]
with respect to the interarrival-time distribution F under finite support. Then, Corol-
lary 1 applies well-known first-order optimality conditions stated in Proposition 1
to characterize the stationary points of the optimization as solutions of a linear pro-
gram. This provides an efficient way to construct counterexamples, as we illustrate in
Example 1. The gradient also provides a basis for the Frank-Wolfe [14] or conditional-
gradient algorithm to find a stationary point, as we discuss in Sect. 5.

In Sect. 6, we develop new structural theorems. In Sect. 6.1, we develop an abstrac-
tion of the GI/GI/1 queueing problem that applies to other models in addition to the
GI/GI/1 queue, provided that the objective function inherits the structure established
for the GI/GI/1 model in Lemma 1 in Sect. 6.2. In that context, Theorem 2 estab-
lishes sufficient conditions for a stationary point to be a three-point distribution, while
Theorem 3 establishes the sufficient conditions for the special two-point distributions
F0 and Fu to be stationary points of the optimization. In Sect. 7, we prove Theorems 2
and 3. We prove Theorem 2 by applying Lemma 2, which establishes that an LP has a
unique solution if and only if its dual has a non-degenerate optimal solution.We extend
the proof of Theorem 3 to establish Theorem 4 for more complicated functional forms.
We present numerical examples illustrating Theorem 3(a) in Sect. 8. More examples
appear in the supplement [9].

There is much yet to be done. It remains to prove or disprove that there is a unique
stationary point of the maximization of E[Wn(F,G)] over F ∈ P(F) for given G. It
remains to be seen if the numerical examples can be extended to theorems, for example,
by efficiently calculating the functions that here have been estimated by simulation
in our numerical examples. It remains to derive expressions for the tight upper bound
of the mean E[Wn(F0,G)] as a function of the service-time cdf G, extending the
results for E[Wn(F0,Gu)] in [5]. It remains to obtain corresponding results for other
stochastic models. Hopefully, the results here can be helpful for that purpose.
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