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In this paper we compare the sliding-window (SW) and leaky-bucket (LB) input
regulators. These regulators reject, or treat as lower priority, certain arrivals to a
queueing system, so as to reduce congestion in the queueing system. Such regulators
are currently of interest for access control in emerging high-speed communication net-
works. The SW admits no more than a specified number W of arrivals in any interval
of specified length L. The LB is a counter that increases by one up to a maximum
capacity C for each arrival and decreases continuously at a given drain rate to as
low as zero; an arrival is admitted if the counter is less than or equal to C —~ 1. To indit-
ectly represent the impact of the regulator on the performance of the queueing system,
we focus on the maximum bursts admissible at the peak rate. We show that the SW
admits larger bursts than the LB at any given peak rate and admissible average rate.
To make the comparison, we use a special construction: We start with a sample
path of an arrival process with a given peak rate. We choose a window length L for
the SW and find the minimum window content W that is just conforming (so there
are no rejections). We then set the LB drain rate equal to W /L, so that the two admis-
sible average rates are identical. Finally, we choose the LB capacity C so that the given
arrival process is also just conforming for the LB. With this construction, we show that
the SW will admit larger bursts at the peak rate than the LB. We also develop approxi-
mations for these maximum burst sizes and their ratio over long time intervals based
on extreme-value asymptotics. We use simulations to confirm that these approxi-
mations do indeed enable us to predict the burst ratios for typical stochastic arrival
processes.

Keywords: Communication networks, ATM, broadband ISDN, leaky-buckét
algorithm, sliding-window algorithm, partial charactenzatmn of point processes,
extreme values, traffic descriptors, queues.

Introduction

An area of active research where queueing theory is playing an important role
is the design of new communication networks. The general goal is to be able to
support a wide variety of services, exploiting high bandwidth; see Roberts [14].
Our paper is concerned with developing methods for describing and regulating
the traffic in these emerging broadband integrated services digital networks
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(B-ISDNs), assuming that they will exploit the asynchronous transfer mode (ATM)
technology, which is (partly) characterized by small fixed packets called cells.

Work on traffic description for B-ISDNs can roughly be divided into two
categories: (1) stochastic models and (2) deterministic algorithms; in this paper we
focus on deterministic algorithms. Stochastic models are primarily being developed
to describe important classes of traffic or service types. A good example is the multi-
state Markov chain model for video teleconference service traffic developed by
Heyman, Tabatabai and Lakshman [8]. These stochastic models have many uses,
including guiding the design of equipment and the operation of networks.

However, stochastic models are awkward for standardized traffic descriptors
to be employed by sources and network operators to control the flow on a connec-
tion in real time. It is envisioned that users will make traffic contracts with network
service providers. Such a contract may include a description of the traffic to go over
the connection. Given that the user has chosen to provide a description of the traffic
(or that a particular service requires a description of the traffic), the “typically” fore-
seen scenario is that the user equipment will shape the traffic to be conforming to the
traffic descriptor, and network equipment will police the traffic to confirm that it is
indeed conforming.

The problem, then, is to develop (standardized) traffic descriptors. In order
that at all times during a connection both the user and the network operator can
determine whether the flow is conforming to the contract, it is convenient if the
traffic descriptor is specified by a deterministic algorithm. We call a traffic descrip-
tor defined in terms of a deterministic algorithm an operational traffic descriptor
(OTD).

In this paper, we compare the performance of two OTD’s: the sliding window
(SW) and the leaky bucket (LB). The SW admits no more than a specified number W
of arrivals in any interval of specified length L. (We consider the intervals to be half
open, i.e., {t,#+ L).) The LB is a counter that increases by one up to a maximum
capacity C for each arrival and decreases continuously at a given drain rate D to
as low as zero; an arrival is admitted if the counter is less than or equal to C — 1
(so that after the arrival it will be less than or equal to C).

We would like to determine which OTD most effectively reduces congestion
in a following queueing system. In order to make a fair comparison, we stipulate
that the SW and the LB should have the same peak rate and admissible average
rate. We define these two rates operationally as well. We define peak rate as the
reciprocal of the minimum distance between successive arrivals. We define the
admissible average rate as the reciprocal of the smallest distance between successive
arrivals in a hypothetical deterministic equally spaced arrival process that is just
conforming with the algorithm. We make a distinction between the admissible aver-
age rate and the actual long-run average rate of the source. Note that the admissible
average rate is an upper bound on the long-run average rate of sources that conform
to the OTD. For the SW, the admissible average rate is W/L; for the LB the admis-
sible average rate is D. '
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It remains to specify how the OTD reduces congestion in a following queue-
ing system. Instead of focusing on this directly, we consider the largest burst at the
peak rate that is conforming with the OTD. We are thus relying on the intuitive
idea that congestion depends on burstiness, and that a regulator will be less effec-
tive in controlling congestion if it admits larger bursts at the peak rate.

We show that the SW can admit larger bursts at the peak rate than the LB.
Thus the SW is inferior to the LB with respect to this performance measure.
Thus, we contend that the LB should be more attractive to the network provider.
On the other hand, users would typically prefer the additional flexibility of larger
admissible bursts, everything else being equal. However, with larger bursts, the net-
work may need to allocate more resources per connection, and thus need to have a
higher price per connection; i.e., everything else may not be equal. (We remark that
some of the results in this paper contributed to decisions by an industry forum to
adopt the LB for specifying the admissible average rate, there referred to as the
“sustainable” rate.)

Our performance measure, the largest burst at the peak rate that is conform-
ing to the OTD, is frequently used to construct the stressful ON/OFF traffic pattern
of a source that bursts at the peak rate for as long as allowed and then is idle just
long enough for the overall rate to equal the average rate. These hypothetical
sources are sometimes called the worst case traffic that is conforming to the OTD,
where worst is in the sense of arrivals loss. However, for the case of multiple sources
and a finite buffer, Doshi [6] has shown circumstances where the ON/OFF traffic is

.in fact not worst, but rather that higher cell losses can occur when the source, after

the ON period, continues at the average rate for a time period before becoming idle.
Also, Lee [12] has shown that this latter traffic pattern can lead to higher mean delay
in an infinite buffer. Since the worst case non-ON/OFF sources of Doshi and Lee
still make use of the largest burst at the peak rate that is conforming to the OTD,
our performance measure is still of major interest from that perspective.

Our work here continues work by Reibman and Berger [13]. They applied the
SW and LB algorithms to actual data from variable bit rate (VBR) video telecon-
ferencing sequences. They chose SW and LB parameters with specified common
admissible average rate so that the given teleconferencing data is just conforming.
Under these conditions, they found that the largest burst size that could be
admitted is several times larger for SW than for LB. Now we want to see what
happens more generally.

To compare SW and LB, we consider a (finite segment of a) sample path of an
arrival process with peak rate p and perform a special construction: For any window
length L, we let W be the minimum value for which SW is just conforming (all
arrivals are admitted). This makes W /L the admissible average rate of the SW.
We then let the drain rate of the LB be D = W/L, so that LB has the same admis-
sible average rate as SW. We then choose the LB capacity C to be the minimum
value that is conforming for the same arrival process sample path. Finally, we deter-
mine the maximum burst sizes at the peak rate that are conforming with the SW and
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the LB, with the determined parameters. We call these maximum bursts Bgy, and
BLB.
It is not difficult to see that the maximum burst sizes are

w ifp>W/L,
Boy = 1.1
Sw {oo ifP< Ww/L, (11)
and
C-1)/(1-D/p)|+1 ifp>D,
B,y — { ( )/ ( /p)] ip (12)
oo lfPSD,

where | x| is the greatest integer less than or equal to x. (To determine (1.2), let X; be
the content of an initially empty, infinite capacity LB just after the ith arrival of the
burst. Then X;, = l,and forp > D, X; = X;_; — D/p+ 1, for i > 2, and thus,

X;=(i—-1)(1-D/p)+1.

Noting that By is the maximum i such that X; < C yields (1.2).)
Here is a summary of our results and an indication of how the rest of this
paper is organized. In section 2 we establish the general inequality

2< Brp < Bgy ' (1.3)

under minor regularity conditions, which implies that the burst ratio Bgy /By g is
always greater than or equal to 1. In section 3 we develop approximations for
W = Bgw, D, C and By as a function of the time interval 7" (when T is large)
and arrival process characteristics for quite general stochastic arrival processes
based on extreme-value asymptotics. It is interesting that for the SW the relevant
extreme-value behavior is for the arrival counting process, while for the LB the rele-
vant extreme value behavior is for the workload in a G/D/1 queueing model, because
the LB can be modelled as a G/D/1 queue.

This analysis leads us to propose a simple rough approximation to predict the

burst ratio, namely,
Bsw/Brg ~ 1/8L/c?log T, (1.4)

where L is the window length, 7 is the time interval and c? is the asymptotic variance
or limiting value of the index of dispersion for counts (IDC), defined in (3.2) below.
For a renewal arrival process, ¢? is the squared coefficient of variation (SCV, variance
divided by the square of the mean) of an interarrival time. Approximation (1.4) is
not extraordinarily accurate, but it gives a good idea how the burst ratio depends
on the arrival process and the variables L and 7. We also develop more accurate
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approximations, which are more complicated. The extreme-value asymptotics sup-
porting these approximations are of independent interest, and are being presented
separately in Berger and Whitt [3, 4].

In section 4 we provide additional insight by showing what the burst ratio is
for stylized deterministic ON/OFF arrival processes. In section 5 we describe simu-
lation experiments conducted to see what the burst ratio is for typical stochastic
arrival processes and to investigate the accuracy of the approximations proposed
in section 3. -

2. Bounds on conforming burst sizes

We restrict the set of sample paths of arrival times to those where a peak rate
and admissible average rate are well defined. In particular, we make the following
two assumptions:

(A1) The minimum interarrival time, p~!, exists and is positive.
(A2) There exists a choice for L such that p > W/L.

Note that assumption (A2) eliminates the uninteresting case of all arrivals
having equal spacing, i.e., continuous bit rate (CBR) connections. (These assump-
tions are satisfied in the communication network application of interest.) As the
typical case, we have in mind

rl< LT, (2.1)

i.e., p~! is much smaller than L, which in turn is much smaller than the duration of
the connection, which we take to be our time interval 7. However, this is not
assumed in the following.

For a sample path of arrival times that satisfies (A1), let N denote the maxi-
mum number of consecutive interarrival times that are equal to the minimum inter-
arrival time. Note that the number of arrivals in this “burst” is N + 1. The following
lemma provides a necessary condition for (A2). It says that in order for the admis-
sible average rate to be less than the peak rate, the window length needs to be chosen
greater than the longest burst of arrivals at the peak rate.

LEMMA 1
If W/L <p,then L> (N +1)p~".

Proof

Suppose the contrary: L < (N + 1)p~!. Then there exists an integer k < N
such that kp~' < L < (k+1)p~'. From the definition of N, the sample path
contains at least one portion with N consecutive interarrival times each with length
p~!. Thus, as a window with the above length L passes over the sample path, the
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. window will enclose & +I arrivals. Thus, W=k+ 1, and W/L = (k+ 1)/L>
(k4 1)/[(k+1)p7"] = p. But then the admissible average rate, W/L is greater
than or equal to p, whlch is a contradiction. Thus, L > (n+ l)p O

Note that the converse of Lemma 1 is false. That is, L can be greater than
(N +1)p~! and W/L is still greater than p. The idea is that the deﬁmtlon of N
says nothing about a burst of arrivals with spacing greater than p~!, and there
can be a burst of equally spaced arrivals but with a spacing that is just a bit bigger
than p~!. As a simple example, suppose p = 1, and N = 1 and L = 2.5. Supposs the
- sample path includes three consecutive arrivals whose spacing is 1.1. A window of
-length 2.5 would enclose these three arrivals, and thus W is, at least, 3. Thus, W/Lis
at least 1.2, which is greater than p.
The previous paragraph and Lemma 1 reveal an awkwardness of the SW
algorithm that is not present with the LB algorithm. With the LB we can a priori
_choose the drain rate to be less than the peak rate. However, with SW we need to
guess a value of L that is big enough in order that the resulting admissible average
- rate, W /L, is indeed less than the peak rate.
We now establish our main comparison result.

" THEOREM 1
If a sample path satisfies assumptions (Al) and (A2) and the SW and LB are
- just conforming with p > W /L = D, then (1.3) holds or, equivalently,

Bsw W
<———~ < —. .
1< 5% < (2.2)

. Proof |
a Consider any sample path that satisfies assumptions (A1) and (A2). Then p is

- determined and we can choose L such that p > W/L, and we do. Given p, L, and I¥,

~the SW maximum allowable burst Bgy, is simply W by (1.1). As for By, consider

B _."'f'the set of & of all sample paths that satisfy (A1) and (A2) and that are just conform-

- ing with the above values of p, L, and W. We imagine that the sample paths in & are

. used to increment an (infinite capacity) leaky bucket with drain rate D = W /L. We

. "."are interested in those sequences in & that yield the smallest and largest values for
st By (1 2), sample paths that yield the smallest value for C yield the smallest value

-for. BLB, and likewise for the largest value for C.

[=0 - Consider first the smallest possible value for C. We know that there are at
. least two arrivals a distance p~' apart. Suppose the bucket were empty prior to

" “the first of these arrivals. Thus, C must be at least 2 — D/p to be big enough to
“accommodate these two arrivals. Moreover, it is possible that C be no bigger.

" For example, consider a sample path where the first interarrival time is p—*, fol-

. lowed by an interarrival time at least long enough for the bucket to empty (at least



A.W. Berger, W. Whizt/Sliding window and leaky bucket 123

(2— D/p)D) and then all subsequent interarrival times are of length L/W. Thus,
the smallest possible value for C is 2 — D/p. With C equal to this value, B;p is
obviously equal to 2. (Substituting 2 — D/p for C in (1.2) yields By = 2.) Thus,
the minimum value for By p is 2.

To determine the largest value of C for the arrival processes in &, consider a
busy period of the LB that begins at some time ¢. To allow as much flexibility as
possible, suppose that the idle period before this busy period is long enough so
that the possible arrival times during the busy period are not constrained by the
SW algorithm for windows that begin before time ¢. The key observation is that
the LB will accumulate the greatest content during the busy period if as many arri-
vals come as possible and if they come as quickly as possible, i.e., if W arrivals occur
with a spacing of p~!. After the Wth arrival the content of the LB will be

Xy = (W —1)(1-D/p)+1.

Thus, for the arrival processes in &, the maximum possible content in the LB is
(W —1)(1—-D/p) + 1. Substituting (W —1)(1 — D/p)+1 for C in (1.2) shows
that the maximum burst at the peak rate that is conforming to this LB is W.
Thus, for the arrival processes in &, the largest possible value for B; z is W, which
equals Bgy,. Taking the reciprocal of the terms in (1.3), multiplying by Bgy,, and
using (1.2) yields (2.2). O

The inequalities in (2.2) highlight the fact that the burst ratio Bgy /B, 5 can be
as small as one but can be very large, since W increases with L. For the example
video teleconferencing sequences in Reibman and Berger [13], typical values for
W were in the range of 100 to 1,000.

3. Approximations from extreme-value asymptotics

In this section we develop approximations based on extreme-value asympto-
tics for the burst ratio Bgy /By g. From (1.1), we have that Bgy = W, provided p is
not too small, which we assume is the case. From (1.2) we see that B, 3 =~ C when
D « p, and we assume that this is the case as well. Hence, we want to estimate
W and C for a given time horizon T, window length L and given stochastic arrival
process 4 = {A(?) : 1 > 0} with arrival rate A and peak rate p. (The random variable
A(#) counts the number of arrivals in the interval [0, #].) Without loss of generality,
we choose the measuring units so that the arrival rate is A = 1. We first estimate W
and then estimate C assuming a drain rate of D= W /L.

We develop approximations for W by exploiting extreime-value asymptotics
for the specified arrival process A. In general, the extreme-value asymptotics:
depends on the detailed properties of the arrival process 4; see Leadbetter et al.
[11]. However, if L is suitably large, then we might hope that the window content
for any fixed interval is approximately normally distributed, so that it might suffice
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to consider extreme values for normally distributed random variables depending
only on appropriate mean and variance parameters. Of course, we must consider
L in relation to 7. To obtain useful new extreme-value results, we consider the
asymptotic behavior as T and L get large, with T much larger than L, but L
much larger than log 7. Motivated by the present problem, in Berger and Whitt
[3] we show that in the regime T > L >> log T we can use extreme value theory
for Brownian motion, which means that the arrival process can be characterized
by only a single parameter beyond its rate. In particular, in [3] we justify the
approximation

W~EW=L+V ch(\/2 log(T/L) + 2loglog T — 1.28/\/2log(T/L)), (3.1

where the arrival rate equals one and where ¢ is the asymptotic variance (limiting
value of the index of dispersion for counts), i.e.,

2 . VarA(t) )
¢ =B (32)
see (2) and Theorem 1 of [3]. For a renewal arrival process, c?is just the squared
coefficient of variation (SCV, variance divided by the square of the mean) of an
interarrival time. Approximation (3.1) is appealing because it is relatively simple.
Moreover, having T > L > log T seems realistic for communication network
applications.

As a simplification of (3.1), we also propose the foliowing rough approxi-
mation:

W s EW = L +1/2¢2L1og(T/L). (3.3)

Approximation (3.3) is obtained from (3.1) by dropping asymptoticailly negligible
terms. (For greater accuracy we suggest (3.1), but we will show that (3.3) is quite
close to (3.1) in our numerical examples in section 35.)

Before proceeding, note that (3.3) states that W is approximately equal to a
single mean window content L plus a standard deviation VcZL (obtained from
a central limit theorem argument) times a multiplicative factor 1/2log(7"/L), which
reflects the growth due to the maximization. The simplification in (3.3) applies only
to this multiplicative factor.

Given the approximation for W, we obtam the associated approxn:natlon for
the LB drain rate D = W /L. The LB capacity C is then the maximum buffer content
in [0, T'] with the given arrival process A and drain rate D. If we use (3.3), then we
obtain the approximation

D=W/L~1+§ | (3.4)
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where

¢ = \/2c*log(T/L)/L. (3.5)

We use (3.5) to develop simple approximations (3.17) and (3.18) below. We used D
obtained from (3.1} for more accurate approximations.

If we change the measuring units for time so that the drain rate is 1 and the
arrival rate is p = D~! (and keeping unit jumps), then the content of the leaky
bucket is equivalent to the workload process in a G/D/1 queue with arrival rate
p and service time 1. Again motivated by this problem, in Berger and Whitt [4]
we develop approximations for the maximum values of queueing processes over
long time intervals in general single-server queues. In [4] the service rate is 1, so
the results there apply after making the change of the time scale by p~!. In particu-
lar, in [4] we develop the approximation (for our time scale here)

C ~ EC = v{log(p™' T) +log 8 + 0.577), (3.6)

where v and [ are parameters that can be approximated given the arrival process
with arrival rate p and service time 1.

The approximation (3.6) is natural in view of extreme-value limit theorems;
see Leadbetter et al. [11] and Iglehart [9]. In [4] we extend the class of systems
previously considered and develop approximations for the parameters v and 3. In
general, v and 8 depend on the arrival process beyond ¢? though, so we will con-
sider refinements. Approximation (3.6) is not limited to deterministic service
times, but here we will only consider this special case.

The critical parameter - in (3.6) is the reciprocal of the asymptotic decay
rate of the steady-state workload, say Z; i.e., v = n~! where

P(Z>x)~ae™ as x-— oo, (3.7

with f (x) g(x) as x — oo meaning that f(x)/g(x) — 1 as x — co.

The asymptotic decay rate # in (3.7) can be calculated exactly for many
arrival processes; see Glynn and Whitt [7], Whitt [15] and references cited there.
For example, for renewal purposes, 7 is the unique root of the equation
Ee®"=U) = 1, where ¥ is a service time and U is an interarrival time. We will use
this formula in our numerical examples in Section 5.

Methods for approximating the asymptotic decay rate n in (3.7) in quite
general single-server queues have also been developed by Abate et al. [1] and
Choudhury and Whitt [5]. The simple heavy-traffic approximation in the case of
a general arrival process is

n~ngr = 2(1 - p)/c?, (3.8)
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from which we obtain
v % yur = ¢*/2(1 ~ p). (39)

The HT approximation in (3.9) is appealing because it only depends on the
available parameters ¢ and p. However, it is known to be not very accurate. We
can do better if we know more about the arrival process 4. A refinement for the
special case of renewal arrival processes with known first three moments is

n = Ngr(l —7°(1 - p)), (3.10)
where

. 2 2m3+3c2(c +2)

L , (.11)

with m, being the third moment of the rate-1 arrival process; see Theorem 3 of [1]
and (6.14) of [4].

The parameter 8 in (3.6) can be approximated by 8 = af, where « is the
asymptotic constant in (3.7) and

0~ 2(1 — p)*/c?; (3'.12)

see (1.10) and (5.9) of [4]. Other approximations for § are also given in [4], but we
will not consider them here. The exact formula for & for renewal arrival processes
is given in Iglehart [9], but it is somewhat complicated. The asymptotic parameters
a and n7in (3.7) can often be computed for fully specified models. A simple approxi-
mation for the workload asymptotic constant from [1] and Theorem 2 of [2] is

o (B ) 2= = g yote - 1), (3.13)

where W is the steady-state waiting time (seen by arrivals and thus not the work-
load) in the G/D/1 model.

For renewal arrival processes we can use the Kraemer and Langenbach-Belz
[10] approximation for EW, specialized to D service, to obtain the approximation

EW = pe” ————h(p,c?), , | (3.14)

2(1— 2)
where
2y _ Jexp(—2(1 = p)/3p)(1 = /), <1,
Hee )“{exp(*(lw)(cz-l)/cz), 21, O
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In summary, a full approximation for C in the case of a rate-1 renewal arrival
process partially characterized by the second and third moments of the interarrival
time is (3.6) with y = ™! for 57in (3.10) and (3.11), and with 8 = a# for 8 (3.12) and
a in (3.13), (3.14) and (3.15). A simple rough heavy-traffic (HT) approximation
based on (3.6) and (3.9) only is

C =~ cllog(T)/2(1 - p). (3.16)

We now consider simple approximations based on (3.4). Combining (3.4) and
(3.16), and replacing 1 + £ by 1 and log(7T/L) by log T, we obtain another simple
approximation for C, namely,

1+ .2 /chlogT

Finally, we can combine approximations for ¥ and C to obtain an approx-
imation for the burst ratio Bsy/B; g. In particular, using (3.4) and the middle term
in (3.17), we obtain

Bsw W _(1+8L %L [RLiog(T/L) 1 (2.18)
Big C  C " cllogT - c? logT" |

Approximating log(7/L) by log T, we obtain (1.4) from (3.18).

The relatively simple approximations for W, C and Bgy/B;zin (3.3), (3.17)
and (1.4) are obviously appealing because they clearly reveal the dependence upon
the basic model parameters T, L and ¢2. We evaluate these approximations by mak-
ing comparisons with simulations in section 5.

We conclude this section by pointing out that the approximations for W in

(3.1) and (3.3) and the approximations for C in (3.6), (3.16) and (3.17) are really .-

for the expected values. For single sample paths there will be fluctuations about
these expected values. "

First, from (4) of [3], we see that the standard deviation of W is approxl- |

mately

STD(W ) » 1.28 4/c2L/210g(T/L). (3.19)° 3

To see the impact of (3.19) on the drain rate D and the G/D/1 traffic intensity p, note 7- .
that, by (3.3) and (3.19), :

STD(W) _ 0.64
E(W —L) log(T/L)

(3.20) -

For T/L = 1000, the ratio in (3.20) is 0.093.
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- Second, given the drain rate D = p~!, from (1.6) of [4], we see that the
standard deviation of the LB capacity C is approximately

STD(C) = 1.28~. (3.21)
To see the impact on our estimate of C, note that, by (3.6) and (3.21),

STD(C) _ 1.28

2 . 3.22
EC log(p~'T) +log B+ 0.577 (322)

For the examples in section 5 with 7 = 10°, the ratio in (3.22) is also approximately
0.10. Since these ratios are only about 10%, we conclude that the main effect is in the
means.

4, Burst ratios for stylized deterministic arrival processes

To provide additional insight, we now consider a stylized deterministic
sample path of arrivals, for which we can easily determine the bursts allowed by
the OTD’s. Suppose the source is ON/OFF with constant length ON and OFF
periods. In particular, the source repeats the following, constant length, cycle: it
emits a fixed number of arrivals, say B, at the peak rate, p, and then the source is
idle for a fixed period that is longer than p~! (so that the average rate of source is
less than the peak rate).

We consider in turn three cases for the length of the window, L, with the third
case being of greatest interest:

1. L is less than or equal to the length of the ON period, the latter being
(B—1)/p
2, L is greater than the length of the ON period and less than or equal to the
- length of one ON+ OFF cycle.

3. L is greater than the length of one ON + OFF cycle

The first case is degenerate since the SW and LB have an admissible average
rate that is equal to (or even a bit greater than) the peak rate, and thus the maximum
conforming burst at the peak rate is inﬁnite for both the SW and the LB. In parti-
cular, suppose for some integer s, (n — 1)p~' < L < np~!. Then the maximum count
in the window is n and the admissible average rate is n/ L. Thus, if L happens to
exactly equal np~, then the admissible average rate is the peak rate, otherwise
the admissible average rate is actually a bit bigger than the peak rate. In this degen-
erate case, the SW and LB impose no further constraint on the class of conforming
processes than that imposed by the peak rate alone.

In the second case, W equals the number of arrivals in an ON period, and
thus Bgy = B. Note that the admissible average rate, W/L, is greater than or equal
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to the actual long-run average rate. As for the leaky bucket, since the drain rate
equals W /L and thus is greater than or equal to the long-run average rate, the leaky
bucket can work off the cells of one ON period before the next ON period begins.
Thus, for the given sample path, the capacity of the leaky bucket is determined by a
burst of B arrivals at the peak rate. Thus, the leaky bucket, by construction, will
allow a maximum, conforming burst of B arrivals at the peak rate. (That is, with
the drain rate set to the admissible average rate, the capacity, C, is given by
(B—1){1 — D/p) + 1, which when substituted into |(C — 1)/(1 — D/p}| + 1 yields
B again.) Thus in the second case, Bgy = Bz = B and the ratio Bgy /By is one.

In the third case, the sliding window will enclose arrivals from more than one
burst, and W will be greater than B. Now here is the key point: Although for this
sample path the burst size is always B, when one asks what is the maximum con-
forming burst at the peak rate, the SW algorithm would allow all of the arrivals
in the window to be clumped as one burst. In contrast, the leaky bucket would
not allow arrivals beyond one ON period, because the drain rate, which is equal
to W/L, will again be greater than or equal to the long-run average rate and the
reasoning of the second case pertains. (D will equal the long-run average rate
when L equals an integral multiple of the length of the ON + OFF cycle, otherwise
D is greater than the long-run average rate.) Hence, for the leaky bucket, the max-
imum conforming burst size is still B. In summary, for L greater than the length of
one ON + OFF cycle,

BSW:' W>B=BLB' (4.1)
If we think of L as being “large™ such that W = ».B for some integer n, then
Bsw/Brg= W/B=n, (4.2)

and thus the ratio can be arbitrarily large, given that n can be arbitrarily large. If we
consider alternative stylized ON/OFF sample paths that differ in the value of the
buzst size, B, then the ratio Bgy, /B p is greatest when B is its minimum value of
2. Thus, we attain the upper bound W/2 in (2.2).

5. Simulations of stochastic arrival processes

Theorem 1 implies that the burst ratio Bgy /B;p must be in the interval
[1, W /2]. The stylized deterministic example in section 4 shows that the burst ratio
can be anywhere in this interval, depending on the arrival process. It also gives an
idea about when the ratio will be near 1 and when it will be substantially greater
than 1. Now we are interested in stochastic arrival processes. The approximations
in section 3 yield predictions of the burst ratio, but it remains to determine how
accurate these approximations are. Hence, we snnulated some stochastic arrival
processes to get further insight.
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In our simulations we consider sample paths of 1,000,000 arrivals (which,
given the 48 byte information field of an ATM cell and ignoring the overhead of
higher layers, corresponds to 48 Mbytes of information being sent during the
course of an ATM connection), and we consider a normalized arrival rate of 1
arrival per time unit.

As a first example, we consider the arrival process to be Poisson, and we
obtained the results shown in figs. 1(a) through 1(g) for a simulated sample path.
For the given sample path, we consider a range of values for L from 10 to 1,000.
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Fig. 1. Simulation results for a Poisson arrival process.
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For each value of L, we obtain the value for ¥, and the admissible average rate,
W /L, as displayed in figs. 1{a) and 1(b), respectively. Figure 1(b) shows that, over-
all, the admissible average rate is decreasing in L. However, there can be intervals
where an increase in L yields an “atypically” large increase in ¥, sufficient to cause
the admissible average rate to increase, not decrease.

Given L and W, we set D, the drain rate of the LB, equal to W /L so that both
algorithms have the same admissible average rate. For each value of D, we obtain
the value for C, as shown in fig. 1(c). For the sample path; the minimum inter-
epoch time is roughly 3.4E-07, and its reciprocal, 2,900,000, is the peak rate p.
(The peak rate is “large” because in simulating the Poisson process we did not a
priori enforce a minimum inter-epoch time.) Given p, D, and C, then B, is deter-
mined from (1.2), and Bgy is W. The maximum burst sizes Bgy, and By g versus the
admissible average rate are shown in fig. 1(d), and the burst ratio Bgy /By p versus L
and versus the admissible average rate is shown in figs. 1(e) and 1(f), respectively.
Lastly, fig. 1(g) plots the epoch at which the window or bucket content reaches a
maximum for each value of the window length. Figure 1(g) shows that the epochs
need not coincide for the two algorithms and that for each algorithm, as L
increases, the epoch at which the maximum occurs can shift significantly. The key
observation from fig. I is that Bgy is significantly bigger than B; g, roughly an order
of magnitude bigger for admissible average rates up to twice the long-run average
rate.

We also considered multiple sample paths of the Poisson process. Table 1
reports the results from twenty runs, each of 1,000,000 arrivals and differing in
the choice of the initial seed. The table includes the 90% confidence intervals using
the t-distribution under the standard assumptions of independence and normality.
(The drain rate of the leaky bucket is obtained from table 1 by simply dividing the
reported average value of W by L.) The results in table 1 are consistent with those in
fig. 1. '

For a second example, we consider a renewal arrival process with D + H,
interarrival times, i.e., with an interarrival time of a constant plus a hyperexponen-
tially distributed random variable. The constant is 0.01 and the parameters of the
hyperexponential distribution were chosen so that it has balanced means and so
that the interarrival times have mean | and SCV 4. Balanced means holds when

Table 1
Data from twenty sample paths of a Poisson arrival process with rate 1.
Window length Maximum window count Leaky bucket capacity Burst ratio
L 14 C Bsp/Brg
10. 29.3+0.5 7.9+02 40402
100. 1482+ 1.1 17.6 £ 0.7 3.8£03

1,000. 1,126.8 1 4.3 458+ 1.4 251109




132 A.W. Berger, W. Whitt/Sliding window and leaky bucket

AT = (1 — 7)A3! for the H, density 7Ae™ + (1 — m)\,e”2*. The specific para-
meters are 7 = 0.1106437, A; = 0.223523 and A\; = 1.796680. This H, distribution
has SCV 4.0812.

For a sample path of 1,000,000 arrivals, the realized minimum inter-epoch
time, to four significant figures, was 0.01000 and hence the peak rate was 100.00.
Repeating the same construction as with the first example, fig. 2 shows the results
from a single sample path and table 2 shows the sample averages from twenty
sample paths. Qualitatively, the results are simifar to those of the first example,

1200 2 ¥ o
o (]
=]
K 800 g
3 s 25
E &
= L
= 400 @ L
E
2 15}
o] 1 | 1
200 400 600 800 1000 200 400 600 800 1000
window length window length
sl (e g 1200
@ —— sliding window
3 B «eer laKy bucket
= 60 é 800 Ky
®
§  wf :
2 % 400
20 g
0 ] ] ] ] o t 1 ) 1
1.5 2.0 25 3.0 3.5 1.5 20 25 3.0 35
drain rate of isaky bucket admissible average rate
w 2]
© 20F a 20
(®) & (")
B g
a 15 ,E 15
2 :
E 10 % 10}~
: L
k-] ]
2 5 i L t 1 2 5F | 1 I |
g 200 400 600 80D 1000 © 1.5 2.0 25 3.0 35
window length admissible average rate
E
52 (@
ER —— sliding window
2e Qe 11l leaky bucket
E3
% J—
=y :
83
@ =
o ] k=l veewers l -------------- ln-. I
400 600 800 1000

window langth

Fig. 2. Simulation results for a (constant + H,) renewal arrival process.
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Table 2
Data from twenty sample paths of a renewal process with a constant plus hyperexponentially distri-
buted inter-epoch time.

Window length Maximum window count Leaky bucket capacity Burst ratio
L W C Bsw/Brg
10. 37.5+0.6 5.0+0.3 43+0.2
100. 185.6+2.4 242409 7.8 +04
1,600. 1,245.5+8.4 852+34 147 +0.7

and again Bgy is roughly an order of magnitude larger than B;p for admissible
average rates up to twice the long-run average rate.

For our last example, we simulated the popular ON/OFF process with a geo-
metrically distributed number of arrivals during an ON time with a mean of 100
arrivals and with a constant spacing of 0.1 during the ON time, and with an OFF
time equal to 0.1 plus an exponentially distributed random variable. The parameter
of the exponential distribution was chosen so that the overall mean interarrival time
is still 1. The resulting exponential distribution has mean 90. Thus, the arrival pro-
cess is again a renewal process and for these parameters the SCV is 161.2, and the
minimum inter-epoch time is 0.1, or equivalently, the peak rate is 10.

Note that from Lemma 1 in section 2, in order for W/L to be less than p, L
needs to be chosen longer than the longest ON period of the sample path. The
expected length of an ON period is 10, and for the given sample path, we found
that L equal to 100 happened to be longer than the longest realized ON period.
For L = 100, W was 995, or equivalently, admissible average rate was 9.95, which
is just a bit less than the peak rate of 10. Using the same construction procedure as in
the prior two examples, with L varying from 100 to 5,000, fig. 3 shows the results for
a single sample path of the ON/OFF arrival process, and table 3 shows the averages
for twenty sample paths. The ratio Bgy/B; g is smaller in this example than in the
prior two, though it is still greater than or equal to one, of course. The ratio is
greater than 2 for admissible average rates up to 3 times the long-run average
rate. Though, for admissible average rates above 6, or equivalently for L less

Table 3
Data from twenty sample paths of a renewal, ON/OFF process with a geometrically distributed num-
ber of arrivals during an ON period with a mean of 100 arrivals.

Window length Maximum window count Leaky bucket capacity Burst ratio

L w C . Bsw/BLp
200. 1359.5+33.1 33744239 1.31 £0.07

1000. 2978.4 + 102.7 8944+ 452 2.37+0.13

5000. 8481.0 +220.6 1575.6 £ 95.5 4.55+£0.22
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than 250, the ratio of burst sizes is relatively small, between 1.1 and 1.3, see figs. 3(f)
and 3(e), respectively.

To provide some insight into the relatively small burst ratios in this example,
we can heuristically compare the present, stochastic ON/OFF process with the
stylized, deterministic ON/OFF process in section 4. Note that in the stochastic
example, the burst ratio is close to 1 for small values of L, values on the order of
100, which is the mean length of an ON+ OFF cycle. These small values of L
roughly correspond to the second case of the deterministic ON/OFF process, where

(b)

window size

admissible average rate
[+]

] I | { 1 I
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

window length ) window length

8000

1200 ()
6000 —-- gliding window
...... leaky bucket

4000

bucket size
meaximum burst size

2000

drain rate of leaky bucket admissible average rate

1 ] 1 { i
1000 2000 3000 4000 5000

window length admissible average rate

ratio of maximum burst sizes
ratic of maximum burst sizes

{9)

— sliding window
------ leaky bucket

epoch that window or
bucket reaches maximum

: 1 1L
1000 2000 3000 4000 5000
window length

Fig. 3. Simulation results for an ON/OFF arrival process.



A.W. Berger, W. Whitt]Sliding window and leaky bucket 135

L is greater than the length of the ON period but not greater than the length of an
ON + OFF cycle. This second case of the stylized example yields the lower bound of
1 for the burst ratio.

We compare the approximations in section 3 to the simulation estimates for
these three examples in table 4. Since the approximations for the maximum window

Table 4
A comparison of approximations with simwlation estimates for three rate-1 renewal arrival processes
over a time interval T = 10°,

Characteristics Exponential, e2=1 D+ H,, c2=4 ON/OFF, e =161.2
L 100 1000 100 1000 1600 . 5000
w
simulation est. 148 1127 186 1246 2978 3481
approx. (3.1) 146 1127 191 1254 2615 8221
approx. (3.3) 143 1118 186 1235 2492 7922
p=D"'=L/W
simulation est. 0.675 0.887 0.539 0.803 0.336 0.589
approx. using (3.1) 0.686 0.887 0.523 0.797 0.382 0.608
arrival process parameters
third moment, m; 6.0 60.51 43,789
7" in (3.11) -0.33 . —0.980 —0.111
LB capacity approx.
Ygr in (3.9) 1.59 443 4.19 9.86 130.5 205.7
refined v in (3.10) 1.44 4.27 2.85 8.23 122.1 197.1
exact -y 1.47 4.59 1.90 8.29 112.2 204.2
approx. EW in (3.14) 1.09 3.93 i.53 6.75 27.0 84.8
approx. « in (3.13) 0.732 0.849 0.554 0.690 0.092 0.253
§in (3.12) 0.197 0.0255 0.114 0.0206 0.00473 0.00190
log 8 = log(af) -1.94 —3.83 -2.76 —4.26 -7.73 ~7.64
LB capacity C
simulation est. 176 - 458 24.2 85.2 894 1576
approx. (3.6) with exact v 18.9 480 233 859 855 1481
approx. (3.6) with (3.10)  18.5 45.6 351 85.1 931 1430
approx. (3.16) 22.0 61.2 57.9 136.2 1803 2842
approx. (3.17) 13.1 41.6 263 83.1 528 1180
burst ratio BSW/BLB ’
simulation est. 8.8 251 7.8 14.7 2.37 4.55
approx. (3.6) and (3.1) 7.7 23.0 8.2 I4.6 3.06 5.55
approx. (3.6), (3.1), (1.2) 8.1 23.0 8.3 14.6 2.26 4.64

approx. (1.4) 7.6 24.1 3.8 12.0 1.90 4.24
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content W are intended for the regime T > L >> log T, we consider only the two
largest values of L in tables 1-3. Thus we consider two window lengths L for
each arrival process, making six cases overall.

Given T = 10° and L, we consider the approximations for W in (3.1) and
(3.3). We see that both approximations agree quite closely with the simulation
estimates in all cases, although both approximations underestimate the simulation
estimates by about 5-15% for the highly bursty ON/OFF example. From table 4 we
see that the simple approximation (3.3) performs about as well as the more detailed
approximation (3.1). However, we use (3.1) for the remainder of the study, e.g., in
specifying the drain rate D.

Given the (approximate) drain rate D, there are several possible approxima-
tions for the LB capacity C. Our most detailed approximation is (3.6), for which we
consider three different values for . First, we consider the exact value obtained
from solving the equation

ESLVY) = R = 1, (5.1)

where V is a deterministic service time equal to one, and U = p~*Z where Z is
an interarrival time with mean one, as in the three examples herein for
which Ee% 2 is easily constructed. We also consider the heavy traffic (HT)
approximations vy in (3.9) and the refined approximation in (3.10). Consistent
with the supporting theory, the HT approximations for v perform better at higher
p, which corresponds to large L. The refined approximation in (3.10) has under 10%
error in all cases but one. For the D + H, example with L = 100, it has 50% error.
From the formulas and the numerical results, it is evident that it is desirable to
obtain the exact value of «y. Fortunately, it is often possible to obtain it, even for
non-renewal processes.

The refined ~ in (3.10) depends on " in (3.11) and thus the third moment of
the interarrival time for each renewal arrival process. The third moment m,, the
parameter 77" in (3.11) and the approximations for - in (3.9) and (3.10) are all given
in table 4.

Our approximation for C in (3.6) employs log 8 for 8 = a# for ¢ in (3.12) and
a in (3.13). The approximation for o in (3.13) depends on the approximation for
EW in (3.14) and depends on -y; we use the exact + from (5.1). All these are dis-
played in table 4 as well. Due to the logarithm in log 3, it seems less critical to
have high precision in the approximations for « and 6.

In table 4 we compare four approximations for the LB capacity C and three
approximations for the burst ratio Bgy /By g to the simulation estimates. We display
the approximation for C in (3.6) with the leading term -y being either the exact -y or
the refined «y in (3.10). (In both cases, log 8 is computed with the exact +.) From
table 4 we see that, overall, all of the approximations have a ball-park accuracy.
Approximation (3.6) for the LB capacity C with the exact -y is consistently good,
with less than 10% error in all cases. The approximations for the burst ratio using
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(3.6) all use the exact value of «y. For the third example, in which the peak rate is only
10, the approximation is significantly improved by using (1.2) for B, p instead of
Byp~ C. However, the simplest approximations (3.17) for C and (1.4) for
Bgyw /B, p seem remarkably good, given their simplicity.

Finally, in order to further evaluate the simple approximation (1.4), we per-
formed 20 replications for each example for 16 different values of L and plotted the
burst ratio Bgy /B, 5 as a function of v/L. The results in fig. 4 strongly support the
simple approximation in (1.4). In fig. 4 we also display the 90% confidence intervals
for each estimate of the burst ratio, the regression line fit to the sample means and
the line provided by formula (1.4). The close fit of the regression line to the sample
means indicates that the burst ratio is well approximated by a linear function in /L.
Also, a surprising good approximation for the slope is given by (1.4).
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