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We develop deterministic fluid approximations to describe the recovery from rare con-
gestion events in a large multi-server system in which customer holding times have a general
distribution. There are two cases, depending on whether or not we exploit the age distribu-
tion (the distribution of elapsed holding times of customers in service). If we do not exploit
the age distribution, then the rare congestion event is a large number of customers present. If
we do exploit the age distribution, then the rare event is an unusual age distribution, possibly
accompanied by a large number of customers present. As an approximation, we represent the
large multi-server system as an M/G/∞ model. We prove that, under regularity conditions,
the fluid approximations are asymptotically correct as the arrival rate increases. The fluid
approximations show the impact upon the recovery time of the holding-time distribution
beyond its mean. The recovery time may or not be affected by the holding-time distribution
having a long tail, depending on the precise definition of recovery. The fluid approximations
can be used to analyze various overload control schemes, such as reducing the arrival rate
or interrupting services in progress. We also establish large deviations principles to show
that the two kinds of rare events have the same exponentially small order. We give numer-
ical examples showing the effect of the holding-time distribution and the age distribution,
focusing especially on the consequences of long-tail distributions.

Keywords: multi-server systems, high congestion, recovery from congestion, overload
control, long-tail distributions, transient behavior, fluid limits, fluid approximations, large
deviations, Sanov’s theorem, residual lifetimes, age distributions

1. Introduction

In this paper we study recovery from congestion in a large multi-server system.
Our motivating application is a link in a high-bandwidth multi-service communication
network, but there are many possible applications. We assume that service requests
arrive according to a Poisson process with rate λ and require a certain bandwidth for
a random holding (service) time with general cumulative distribution function (cdf) G
having mean γ. As a simplifying assumption, we let the required bandwidth be 1 for
each customer. (See section 6 for multi-class extensions, where different classes have
different holding-time cdf’s and required bandwidths.) We consider how the system
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recovers from congestion, with and without intervention, where the intervention may
be to reduce the arrival rate or to interrupt some services in progress. Our goal is to
obtain insights for system design and overload control.

We focus on large systems, where the offered load λγ is large and the capacity
is even larger, so that demand exceeding capacity is a rare event. The size enables
us to apply relatively simple deterministic fluid approximations in order to describe
the transient behavior of the system. We show that these fluid approximations are
asymptotically correct as the size increases.

Numerical results are not difficult to obtain when the holding-time distribution is
exponential, e.g., see Abate and Whitt [2] and Davis, Massey and Whitt [13]. However,
here we are primarily interested in non-exponential holding-time distributions. We
focus on the impact of the holding-time cdf G beyond its mean. For instance, we
investigate the consequence of G having a long tail; e.g., G might have a power tail,
i.e., Gc(t) ∼ αt−β as t→∞, where Gc is the complementary cdf (ccdf), i.e., Gc(t) =
1 − G(t), α and β are positive constants and f (t) ∼ g(t) means that f (t)/g(t) → 1
as t → ∞. We are interested in long-tail distributions because they are frequently
reported in measurements of existing communications networks, e.g., see Cáceres,
Danzig, Jamin and Mitzel [8], Leland, Taqqu, Willinger and Wilson [24], Paxson [28]
and Crovella and Bestavros [12]. In models of stationary traffic, Willinger, Taqqu,
Sherman and Wilson [31] have proved that long-tail on and off times in individual
sources can cause self-similarity seen in aggregate traffic.

It is somewhat difficult to anticipate the impact of a long-tail holding-time cdf
G upon recovery from congestion, because there is somewhat conflicting evidence.
First, it is known that long-tail service times cause long-tail waiting times in single-
server queues, e.g., see Abate, Choudhury and Whitt [1]. In that setting the impact
can be great. However, in the fluid limit arising under heavy loads, the service-time
cdf beyond its mean ceases to matter in single-server queues, e.g., see Chen and
Mandelbaum [9] and Choudhury, Mandelbaum, Reiman and Whitt [11].

That background is not especially relevant, though, because the model here is
not a single-server queue. If we consider the M/G/s/0 multi-server loss model or the
M/G/∞ infinite-server model, then the steady-state distribution of the number of busy
servers has the insensitivity property, i.e., that distribution depends on the holding-time
cdf G only through its mean. However, the transient behavior of these models does not
have the insensitivity proper, e.g., see Eick, Massey and Whitt [16] and Davis, Massey
and Whitt [13]. Moreover, when the system gets large, the holding-time cdf beyond
its mean continues to matter. We will show that the deterministic fluid limit describing
recovery from congestion in a multi-server system as the arrival rate increases depends
strongly on the holding-time cdf G. On the other hand, the long-tail character of G
might not have serious consequences. We will show that the impact of the cdf G
beyond its mean upon recovery depends on how recovery is defined.

In order to simplify analysis, we will only consider the M/G/∞ infinite-server
model, but the conclusions are also applicable more generally to M/G/s/r models
with s servers and r extra waiting spaces, provided that the offered load (mean number
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of busy servers) λγ is indeed large and s is even larger; e.g., see example 2 in section 3.
(It appears that the limit theorems in sections 7–10 extend to such finite-capacity
systems, but that remains to be proven.) This paper continues to develop the idea that
infinite-server models are very useful for understanding the behavior of multi-server
systems; for related previous work, see Davis, Massey and Whitt [13], Eick, Massey
and Whitt [16], Glynn and Whitt [19], Leung, Massey and Whitt [25] and Massey
and Whitt [27]. This paper also continues to develop the idea that a large size, when
viewed correctly, need not lead to excessive computational complexity, but instead can
lead to statistical regularity and a simplification in performance analysis; for related
previous work, see Chen and Mandelbaum [9], Glynn and Whitt [19] and Krichagina
and Puhalskii [22].

It should be noted that the M/G/∞ model is also of interest because it arises
as the limit of the superposition of N possibly heterogeneous on-off (0–1 valued)
processes as N → ∞ with the mean off time increasing so that the overall mean
remains fixed. Analysis similar to what we do here applies to superpositions of in-
dependent on-off processes (and more general component processes). We intend to
discuss recovery from congestion in such alternative models elsewhere.

In addition to serving as an approximation for finite-capacity models, the infinite-
capacity model is directly applicable to systems for which bandwidth allocations are
somewhat elastic. We are thinking of applications which can function down to very
low bandwidths, but for which a certain minimum allocation is desirable. If the
allocation falls below this level, either too frequently or for too long, then the quality
of service received by the application is deemed insufficient. A concrete example is
packet telephony running over a link operating a rate-based feedback mechanism, with
the application responding to rate-control messages by using a coarser encoding. Each
call would use up to c units of bandwidth, but calls would never be blocked. If the
total bandwidth is B and the number of calls present is n, then the allocated bandwidth
would be min{c,B/n}. As a first approximation, it seems reasonable to assume that
the call holding time is independent of the allocated bandwidth, so that the M/G/∞
model is directly appropriate.

In the M/G/∞ model the obvious high-congestion event is having a large num-
ber of customers in the system. The likelihood of such an event is easy to determine
because the steady-state number of customers in the system, denoted by N , has a
Poisson distribution with mean m = λγ, i.e.,

P (N > n) =

∞∑
k=n

e−mmk

k!
. (1.1)

From the point of view of (1.1), the cdf G beyond its mean plays no role, but
(1.1) does not tell the whole story. The congestion is usually regarded as worse when
the number of customers remains high for a longer period of time. This is certainly
the case when there is inflow to a buffer with a rate proportional to the content of the
M/G/∞ system above a certain level, as in ATM switch models.
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Let N (t) be the number of customers in service in the M/G/∞ system as a
function of time t. We say that the system has recovered from a rare congestion
event at time 0 when N (t) first reaches a recovery level k with m < k < n. Thus,
assuming that the rare congestion event is an unusually large number of customers
present initially, i.e., the event {N (0) = n}, the recovery time is

T ≡ Tn,k = inf
{
t > 0: N (t) 6 k | N (0) = n

}
. (1.2)

We are interested in determining how the distribution of T depends on the parameters
m, n, k, λ and the holding-time cdf G. We show that, unlike in (1.1), the holding-time
cdf G beyond its mean can play a big role in (1.2).

We are particularly interested in the distribution of T when λ, m and n are large.
In that case, we show that the recovery time T is approximately constant, being equal
to an associated recovery time for the mean, which can be regarded as a fluid limit
(shown in section 7). Paralleling (1.2), the recovery time for the mean is

τ ≡ τn,k = inf
{
t > 0: E

(
N (t) | N (0) = n

)
6 k

}
(1.3)

for m < k < n. More generally, we suggest focusing on the time-dependent condi-
tional mean E(N (t) | N (0) = n). It turns out to be remarkably tractable.

A complication in our discussion of recovery is the precise meaning of the rare
congestion event {N (0) = n}. There is no difficulty if the holding-time distribution is
exponential, because then the stochastic process {N (t): t > 0} is Markov. However,
we want to treat non-exponential holding-time distributions. A key to the remarkably
simple analysis here is the assumption that the M/G/∞ system is in steady state at
time 0. In the steady-state setting, we condition on the event {N (0) = n}. However,
in most applications we actually want to define the rare congestion event as a first
hitting time of the level n by the process N (t). To properly formalize the meaning for
successive hitting times, we can let the hitting time be the first time to hit the high
level n after first hitting a suitably low level, such as the mean m or 0. (When the
arrival rate is not too large, 0 should suffice (and will be regenerative), but when the
arrival rate is large, 0 will be visited too rarely.)

We propose our steady-state rare event, not only as an approximation for what
we see at a random (steady-state) time, but also as an approximation for the associated
hitting-time rare event. We conjecture that this approximation is asymptotically correct
as n→∞, by which we mean that the age distribution conditional on {N (0) = n} has
the same distribution asymptotically as n → ∞ for both definitions of the rare event
{N (0) = n}, i.e., when it is a hitting time and when the system is in steady-state.
Intuitively, this asymptotic equivalence is believable if we note that P (N > n + 1 |
N > n)→ 0 as n→∞ when N has a Poisson distribution.

We also establish supporting theory for the hitting-time approximation in the case
of a large arrival rate. Conditioning on {N (0) = n} in steady state, we show that in
the limit as λ→∞ and n→∞ with n/λ→ δ > γ the normalized path before time 0
is increasing. (See the corollary to theorem 6 in section 7.) We are able to describe
the path before time 0 as well as the path after time 0, because the M/G/∞ system
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is time reversible. We are able to characterize the entire path, not just the behavior at
finitely many time points, by establishing a functional law of large numbers.

A second major theme in this paper is the idea that the notion of rare congestion
in an M/G/∞ system should include more than just large values for N (t). In order
to make the stochastic process {N (t): t > 0} a Markov process, we need to append
the elapsed holding times (ages) of the N (t) calls in progress at time t. (Alternatively,
we could obtain a Markov process by appending the residual holding times of each
customer in service at time t, but the residual times typically are not yet known at
time t.) When the holding-time distribution is not nearly exponential, observed ages
give important information about the residual holding times. Even as the arrival rate
λ increases, the ages play an important role in the evolution of the system. Hence we
also consider the empirical age distribution at time t, denoted by A(t); A(t,x) is the
fraction of the N (t) calls in progress with ages less than or equal to x.

Since the process {(N (t),A(t)): t > 0} is Markov, it is natural to consider rare
events for the pair (N (t),A(t)). We propose considering possible deviations of A(t)
from its mean as well as large values for N (t). We relate the rarity of high values
of N (t) to the rarity of exceptional age distributions A(t) by establishing a joint large
deviations principle (LDP) for N (t) and A(t) as the arrival rate λ increases. The
joint LDP for N (t) and A(t) implies LDPs for N (t) and A(t) separately. The LDP
for A(t) enables us to understand how likely are various possible age distributions.
The two LDPs show that the two kinds of rare events have probabilities of the same
exponentially small order. Thus, it is appropriate to consider unusual age distributions
as well as large numbers of customers.

We also relate the age distribution A(t) to the residual holding-time distribu-
tion R(t); R(t,x) is the fraction of the N (t) calls in progress with residual holding
times less than or equal to x. The same LDP applies to the pair (N (t),R(t)) as to
(N (t),A(t)). This LDP helps reveal the likelihood of alternative recovery paths starting
from N (0) = n. We mention here that the transient response of the LD rate-function
describing buffer overflow after conditioning on a rare event has been investigated for
single server queues by Duffield [15].

Here is how the rest of this paper is organized. In sections 2–7 we consider the
case in which we do not use the age distribution, while in sections 8–12 we consider
the case in which we do use the age distribution. In section 2 we present the basic
supporting M/G/∞ theory and the recovery equation for the mean, which approxi-
mates the recovery time of the process in (1.2). In section 3 we make comparisons
with M/M/s/0 numerical results to show that the infinite-server results can serve as
useful approximations for systems with finitely many servers. In section 4 we discuss
applications to overload control. In section 5 we discuss approximations for losses and
delays when the process N (t) represents the random input rate into a service facility
that processes fluid at a fixed rate c. In section 6 we discuss extensions to multiple
classes. In section 7 we present limit theorems as λ →∞ and n →∞ showing that
the approximation is asymptotically correct.

We begin considering the second case in which the age distribution is used in
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section 8. We show the importance of the ages in predicting the residual holding
times when the holding-time distribution has a long tail. In section 9 we consider how
the ages can be exploited in congestion control via call interruption. In section 10
we show that the new conditional mean in this setting is asymptotically correct for
large systems. In section 11 we study the asymptotic behavior of the conditional mean
as t → ∞, focusing especially on the impact of long-tail distributions. Finally, in
section 12 we present the supporting large deviation principles.

2. The conditional mean and the recovery equation

The M/G/∞ model structure enables us to treat the customers in service inde-
pendently of each other and of new arrivals. The following fundamental independence
result characterizes the distribution of the recovery time T in (1.2) and serves as a
basis for the limit theorems we prove later. The result can be proved by exploiting the
fact that the arrival-time and service-time pairs constitute a Poisson random measure
in the plane; e.g., see theorem 2.1 and (20) in Eick et al. [16] and references cited
in [16]. A proof of part (a) is given in the appendix of [20]. Part (b) is contained
in [16].

Theorem 1. (a) Conditional on N (0) = n, the n elapsed and n residual holding times
at time 0 are each distributed as n i.i.d. random variables with the stationary-excess
cdf associated with the holding-time cdf G, i.e.,

Ge(t) =
1
γ

∫ t

0
Gc(u) du, t > 0. (2.1)

(b) The number of new arrivals after time 0 in the service at time t, denoted
by N0(t), is independent of N (0) and the residual holding times of the N (0) initial
customers and has a Poisson distribution with mean mGe(t) for each t > 0, where
m = λγ and Ge is the stationary-excess cdf in (2.1).

Theorem 1 implies that the conditional mean and variance have remarkably simple
expressions.

Corollary. The conditional number (N (±t) | N (0) = n) has mean

Mn(t) ≡ E
(
N (t) | N (0) = n

)
= E

(
N (−t) | N (0) = n

)
= m+ (n−m)Gce(t), (2.2)

variance

Vn(t)≡Var
(
N (t) | N (0) = n

)
= Var

(
N (−t) | N (0) = n

)
= nGce(t)Ge(t) +mGe(t) (2.3)

and is asymptotically normally distributed as n→∞ and m→∞.
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Proof. Let Sn(t) be the number of the original n customers remaining in the system
at time t. By theorem 1,(

N (t) | N (0) = n
) d

= Sn(t) +N0(t), (2.4)

where
d
= denotes equality in distribution (as stochastic processes with t > 0), Sn(t)

and N0(t) are independent stochastic processes and Sn(t) has a binomial distribution
for each t, i.e.,

P
(
Sn(t) = k

)
=

(
n

k

)
Gce(t)

kGe(t)
n−k. (2.5)

Formulas (2.2) and (2.3) are simple consequences. We get (N (−t) | N (0) = n)
d
=

(N (t) | N (0) = n) because the M/G/∞ system in steady-state is time reversible.
Finally, as n → ∞ and m → ∞, after the usual normalization, the binomial and
Poisson distributions converge to normal distributions, and the convolution of two
normal distributions is a normal distribution. �

The corollary to theorem 1 allows us to characterize the recovery time for the
mean.

Theorem 2. If there is no t such that Gc(t−) > 0 = Gc(t), then Gce(t) is continuous
and strictly increasing. Then the recovery time for the mean, τ in (1.3), is the unique
root t of the recovery equation

Gce(t) =
k −m
n−m. (2.6)

More generally,

τ = sup

{
t: Gce(t) >

k −m
n−m

}
. (2.7)

Proof. We apply the conditional mean in (2.2). Note that Gce has positive density
ge(t) = Gc(t)/γ on the support of G, so that Gce is strictly decreasing and continuous
on the support of G. The condition implies that Gce(t)→ 0 as t approaches the upper
limit of support. Hence, there necessarily is a unique root of equation (2.6). If the
condition does not hold, then there is a t∗ such that Gce(t

∗−) > 0 = Gce(t
∗) and Gce is

continuous and strictly decreasing on [0, t∗]. In this case, if

Gce(t
∗−) > k −m

n−m > Gce(t
∗) = 0,

then clearly τ = t∗. �

The recovery time for the mean is easy to calculate, e.g., by bisection search,
because Gce is monotone. To illustrate how tractable the recovery equation in (2.6) is,
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Figure 1. Stationary-excess ccdf for Pareto and Exponential distributions with common mean.

suppose that G is exponential with mean 1. Then Gce(t) = Gc(t) = e−t, t > 0, so that
the recovery time for the mean is given explicitly by

τ = log
(
(n−m)/(k −m)

)
. (2.8)

For a second example, let g be the Pareto density p(1 + t)−p−1, t > 0, for p > 1,
which has mean γ = (p− 1)−1. Then the stationary-excess ccdf is Gce(t) = (1 + t)1−p

and

τ =

(
n−m
k −m

)1/(p−1)

− 1. (2.9)

For a small system, the recovery time for the mean might not be very revealing,
because the random recovery time T in (1.2) need not be close to τ . Indeed, even
the expected recovery time ET need not be close to τ . However, τ is meaningful for
large systems, because then T , ET and τ should all be close, as we show in section 7.

From (2.6) we can see that the impact of the cdf G on τ depends on whether the
recovery level k is close to n or close to m. When the recovery level k is close to the
m, the cdf G beyond its mean matters greatly. However, possibly counter to intuition,
when the recovery level k is not too far from the initial level n, the cdf G beyond its
mean matters little. If the recovery point k is closer to n than m, then the recovery
time τ depends more on the initial portion of the cdf Ge than upon its tail. Note
that the density of Ge is ge(t) = Gc(t)/γ, which has the value 1/γ at the origin; this
clearly depends upon the cdf G only through its mean. Since recovery in applications
may actually not require returning to a level close to the mean, the holding-time cdf
beyond its mean may indeed not matter much.

Consistent with this observation, we find that the impact of a long-tail cdf on τ
differs little from the impact of a short-tail cdf with the same mean if k is suitably
close to n, but it differs dramatically if k is suitably close to m. However, “suitably
close” depends on the decay rate of the ccdf Gce.
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Example 1. We illustrate by comparing the normalized conditional mean [E(N (t) |
N (0) = n)−m]/(n−m) for an exponential cdf and a Pareto cdf with a common mean
in figure 1. As above, we consider the Pareto density g(t) = p(1 + t)−p−1, t > 0,
which has mean γ = 1/(p − 1) and stationary-excess ccdf Gce(t) = (1 + t)1−p. The
cases of p = 1.8 and p = 1.1 are shown below in figure 1. For p = 1.8 and
(k −m)/(n −m) > 0.5, recovery with the Pareto is not too different from recovery
with an exponential. However, for p = 1.1, this is true only for (k−m)/(n−m) > 0.9,
say.

We propose the recovery equation (2.6) as a good way to understand the way
recovery occurs in a large system and the way it depends on the cdf G. To describe
the relation between G and τ , we use stochastic order relations. For background, see
Stoyan [29] and chapter 4 of Baccelli and Brémaud [3]. The relationship between
the cdf’s G and Ge is studied in Whitt [30]. For example, if G1 is stochastically
less variable than G2, denoted by G1 6v G2, i.e., if

∫∞
0 f dG1 6

∫∞
0 f dG2 for

all convex real-valued f for which the integrals are well defined (which requires
equal means), then G1e is stochastically less than G2e, denoted by G1e 6st G2e, i.e.,∫∞

0 f dG1e 6
∫∞

0 f dG2e for all nondecreasing real-valued f . (G1e 6st G2e if and
only if Gc1e(t) 6 Gc2e(t) for all t.) From (2.6), it is clear that if G1e 6st G2e, then
τ1 6 τ2. Hence we have the following result.

Theorem 3. If two potential holding-time cdf’s are ordered by G1 6v G2, then
τ1 6 τ2.

3. Systems with finitely many servers

To show that our infinite-server analysis also applies to systems with finitely many
servers, we make numerical comparisons for the Erlang loss (M/M/s/0) model.

Example 2. We apply the algorithm in [2] for computing the time-dependent mean
number of busy servers in the M/M/s/0 model given an arbitrary initial state. By
(2.2), the infinite-server formula is simply

E
(
N (t) | N (0) = n

)
= n+ (n−m) e−t, t > 0. (3.1)

We claim that the time-dependent mean E(N (t) | N (0) = n) will be approximately
independent of s for s > n if m is suitably large and n is suitably large compared to
m. We give two concrete examples: first, γ = 1, m = λγ = 400 and n = 500 and,
second, γ = 1, m = λγ = 100 and n = 130. The first case should be more dramatic
because m is larger and n exceeds m by 5

√
m as opposed to 3

√
m. (The standard

deviation of the steady-state number of busy servers in the infinite-server model is√
m.) Table 1 provides supporting evidence by displaying the time-dependent mean

for three values of s in each case, with s = n in the first case and s =∞ in the last
case, with the last case coming from (3.1).
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Table 1
The time-dependent mean E(N(t) | N(0) = n) in the M/M/s/0 model as a function of s. The model
parameters are γ = 1, m = λ = 400 and n = 500 in the first case and γ = 1, m = λ = 100 and

n = 130 in the second case.

m = λ = 400 m = λ = 100
time t s = 500 s = 600 s =∞ s = 130 s = 180 s =∞

0.0 500.00 500.00 500.00 130.00 130.00 130.00
1.0 435.15 436.79 436.79 109.42 111.04 111.04
2.0 412.93 413.53 413.53 103.34 104.06 104.06
3.0 404.76 404.98 404.98 101.17 101.49 101.49
4.0 401.75 401.83 401.83 100.39 100.55 100.55
5.0 400.64 400.67 400.67 100.10 100.20 100.20

∞ 400.00 400.00 400.00 99.94 100.00 100.00

When s is significantly greater than n, the infinite-server approximation is es-
sentially exact. When s = n, there is an error in the approximation, but it is not
large.

4. Recovery with intervention

We now consider modifications in the conditional mean E(N (t) | N (0) = n) and
the recovery equation based on intervention.

Reduction of the arrival rate. One form of intervention is to reduce the arrival rate
after time t = 0, where 0 is a point of high congestion, i.e., N (0) = n. In such control
settings it is natural for the control epoch to be the first hitting time of the level n.
Instead, our analysis is based on conditioning upon the event {N (0) = n} in steady
state. However, as indicated earlier, it seems reasonable to also apply our results to
the first hitting time of level n.

Reducing the arrival rate to a new constant value is equivalent to reducing m
in (2.2) and (2.6), which produces a new recovery equation of the same form. For
m < k < n, clearly (k−m)/(n−m) is increasing in m, so that the recovery time for
the mean is reduced by decreasing m.

One possible strategy is to completely turn off arrivals until recovery is achieved.
The resulting recovery time for the mean is the solution to (2.6) with m = 0. Further
recovery afterwards with the arrivals turned on is again described by (2.6) with n
replaced by k and k replaced by a new recovery level j with m < j < k.

More generally, we could decide to reduce the arrival rate to a time-dependent
function λ(t), t > 0, with λ(t) 6 λ. For example, this could be realized by admitting
an arrival at time t with a time-dependent probability λ(t)/λ. Then N0(t) still has a
Poisson distribution, but now with mean

EN0(t) =

∫ t

0
λ(u)Gc(t− u) du, (4.1)
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which is still increasing in t. However, with (4.1), E(N (t) | N (0) = n) need not be
decreasing in t. Because of the lack of monotonicity of E(N (t) | N (0) = n) when we
use (4.1), it is natural to consider changing the definition of the recovery time for the
mean to

τ = inf
{
t > 0: sup

u>t

(
N (u) | N (0) = n

)
6 k

}
. (4.2)

In general, it is natural to pay attention to the whole path E(N (t) | N (0) = n) for
t > 0 as well as τ . The suprema sup06u6tE(N (u) | N (0) = n) and supu>tE(N (u) |
N (0) = n) for t > 0 both may be interesting.

We must be careful defining a corresponding modified recovery time T extending
(1.2), because typically supu>tN (u) = ∞ w.p.1. One approach is to consider the
supremum up to a suitable finite time limit t1, i.e.,

T = inf
{
t: sup

06t6u6t1
N (u) 6 k | N (0) = n

}
(4.3)

with T = t1 if the infimum is not attained. If t1 > τ and τ <∞, where τ is defined
by (4.2), then T will still be approximately equal to τ in large systems (see section 7).

It is important to note that our analysis so far relies on the arrival process being
a Poisson process. Some methods of reducing the arrival rate would cause the Poisson
property to be lost. For example, if we reject every other arrival after time 0, then the
arrival process after time 0 becomes a renewal process with Erlang (E2) interarrival
times and rate λ/2. Obviously, changing the arrival process after time 0 leaves the
number of customers in the system at time 0 and the ages of their holding times
unchanged. It is significant that the critical mean formula EN0(t) in (4.1) actually
does not depend on the Poisson property, but instead holds for any point process with
arrival rate function λ(u), u > t; see remark 2.3 of Massey and Whitt [27] and the
analysis there. Thus, the analysis here is applicable to a large class of arrival rate
controls.

5. Loss and delay

The framework developed so far can be used to approximately describe loss and
delay in a service system with capacity c. In this setting, c is the fixed rate that fluid is
processed, while the process N (t) that we have been studying represents the random
fluid input rate at time t. There may be no buffer, an infinite buffer, or a finite buffer
of size b.

The natural simple approximation based on what we have done is to let the
input rate at time 0 have the steady-state Poisson distribution as in (1.1) and let
the conditional process (N (t) | N (0) = n) be approximated by its conditional mean
E(N (t) | N (0) = n) for t > 0 and t < 0. We will use the M/G/∞ model in section 2,
for which E(N (t) | N (0) = n) = m+ (n−m)Gce(t). We assume that c > m.
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No buffer. First consider the case of no buffer. Then the probability of loss (rate in
> rate out) at any time in steady-state is

P
(
N (0) > c

)
=

∞∑
k=c+1

e−mmk

k!
≈ Φc((c+ 0.5 −m)/

√
m
)
, (5.1)

where Φc(x) = 1− Φ(x) and Φ the standard (mean 0, variance 1) normal cdf. From
(5.1), we see that the likelihood of loss depends on the holding-time cdf G only through
its mean.

We next describe the average fluid loss rate, denoted by r. Let φ be the density
of the standard normal cdf Φ. Let N (a, b) denote a normal random variable with
mean a and variance b. We use basic properties of the conditional mean of a normal
random variable; e.g., see lemma 1 on p. 593 of Choudhury, Leung and Whitt [10].
The average fluid loss rate is

r=E
(
N (0)− c

)+
= E

(
N (0)− c | N (0) > c

)
P
(
N (0) > c

)
≈E

(
N (−(c−m),m

)
| N
(
− (c−m),m

)
> 0.5

)
P
(
N
(
− (c−m),m

)
> 0.5

)
=

(
−(c−m) +

√
m
φ((c−m+ 0.5)/

√
m)

Φc((c−m+ 0.5)/
√
m)

)
Φc((c−m+ 0.5)/

√
m
)
. (5.2)

However, when there is loss, the length of the period where it occurs depends
on the cdf G beyond its mean, as we have shown. Moreover, conditional on the rate
being n > c at time 0, the total loss associated with this excursion of N (t) above c
depends on the cdf beyond the mean. Let

τc(n) = inf
{
t > 0: E

(
N (t) | N (0) = n

)
6 c
}

(5.3)

and let L be the total quantity of fluid lost while the rate experiences this excursion
above c. Then our fluid approximation is(

L | N (0) = n
)
≈ 2

∫ τc(n)

0

[
E
(
N (t) | N (0) = n

)
− c
]

dt

= 2(n−m)
∫ τc(n)

0
Gce(t) dt− 2(c−m)τc(n), (5.4)

where

Gce
(
τc(n)

)
=
c−m
n−m. (5.5)

The 2 appears in (5.4) to account for the mean before time 0 as well as the mean after
time 0. From (5.4), we can see the influence of the cdf G.

Unlimited buffer capacity. Next suppose that there is an infinite-capacity buffer. The
net rate into the buffer is positive while N (t) > c. The maximum buffer content
associated with an excursion of N (t) above c, Qmax, is also approximated by (5.4).
The maximum delay experienced by any particle of fluid during the excursion above c
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is then Qmax/c. However, the buffer is still emptying after τc ≡ τc(n). The conditioned
busy period (the length of the period that the buffer is non-empty) is then approximated
by (

B | N (0) = n
)

≈ 2τc(n) + inf

{
u > 0: Qmax =

∫ τc+u

τc

[
c−E

(
N (t) | N (0) = n

)]
dt

}
= 2τc(n) + inf

{
u > 0: Qmax =

∫ τc+u

τc

[
c−m− (n−m)Gce(t)

]
dt

}
, (5.6)

where Qmax is approximated by (5.4).

A finite buffer. Now suppose that there is a finite buffer of capacity b. Using the
deterministic fluid approximation, let nb be the level such that the buffer just fills at
time 0, i.e., let nb be such that

b =

∫ τc(nb)

0

[
E
(
N (t) | N (0) = nb

)
− c
]

dt. (5.7)

We actually consider the interval [−τc(nb), 0], but the means forward and backward
from 0 are the same. Then we would approximate the probability of any loss at time
0 by

P
(
N (0) > nb

)
=

∞∑
k=nb+1

e−mmk

k!
≈ Φc((nb + 0.5−m)/

√
m
)
. (5.8)

The expected loss associated with an excursion above c is
∞∑

n=c+1

P
(
N (0) = n

)((
L | N (0) = n

)
− b
)+

, (5.9)

where (L | N (0) = n) is given by (5.4) and N (0) has the Poisson distribution. To get
an explicit value of (5.9), it seems necessary to calculate each term and then calculate
the sum.

Suppose that we seek the probability that a quantity of fluid of at least size d is
lost associated with an excursion above c. Then, let n(b, d) be the largest level n such
that

b+ d > 2
∫ τc(n)

0
dt
[
E
(
N (t) | N (0) = n

)
− c
]
, (5.10)

where τc(n) is as defined in (5.3) Let Lb be the quantity of fluid lost during an excursion
above c with buffer capacity b. Then

P
(
Lb > d | N (0) > c

)
≈P

(
N (0) > n(b, d) | N (0) > c

)
≈ Φc((n(b, d) + 0.5−m)/

√
m)

Φc((c+ 0.5−m)/
√
m)

. (5.11)
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In summary, the simple fluid approximation gives useful insight into the way loss and
delays depend on the holding-time cdf G when the input rate is an M/G/∞ process.

6. Multiclass extensions

The results so far extend easily to multiple classes of customers, which is very
important for analyzing integrated-services networks. With the infinite-server model,
multiple classes are easily treated separately as independent single classes.

To illustrate, suppose that there are c independent customer classes. For customer
class i, service requests arrive according to a Poisson process with arrival rate λi and
require a fixed bandwidth bi for a random holding time having a general cdf Gi with
mean γi. We now define the recovery time for the mean

τ = inf

{
t > 0: sup

u>t

c∑
i=1

biE
[
Ni(u) | N1(0) = n1, . . . ,Nc(0) = nc

]
6 k

}
, (6.1)

where it is understood that the recovery level k is in between the mean and the initial
level, i.e.,

m ≡
c∑
i=1

bimi < k <
c∑
i=1

bini ≡ n, (6.2)

with mi = λiγi. Paralleling (4.2), we include the supremum in (6.1) because we need
not have monotonicity. Paralleling (4.3), we can define a corresponding recover time
T using an upper time limit t1.

The initial congestion time 0 might be determined as the first hitting time of the
total bandwidth process

∑c
i=1 biNi(t) to the level n. At that time, a congestion alarm

goes off. We then observe the values Ni(0) = ni for 1 6 i 6 c and consider how
recovery occurs.

The analysis is a straightforward extension of the previous analysis, because
the processes {Ni(t): t > 0} are conditionally mutually independent given the event
{Ni(0) = ni, 1 6 i 6 c}. Paralleling (2.2),

E
(
Ni(t) | Ni(0) = ni

)
= ESin(t) +ENi0(t) = mi + (ni −mi)G

c
ie(t), (6.3)

so that

E

(
c∑
i=1

biNi(t) | Ni(0) = ni, 1 6 i 6 c
)

= m+
c∑
i=1

bi(ni −mi)G
c
ie(t). (6.4)

Thus, we obtain the following generalization of theorem 2.
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Theorem 4. Suppose that Gci (t) > 0 for all i and t. If (6.2) holds in the multiclass
setting, then the recovery time for the mean defined in (6.1) is

τ = inf

{
t > 0: sup

u>t

{
c∑
i=1

bi(ni −mi)G
c
ie(u)

}
= k −m

}
. (6.5)

7. Large systems

We now return to the basic M/G/∞ setting of section 2, and show that we are
justified in focusing on the recovery time for the mean in (1.3) when the system is
large. We show that the actual recovery time T in (1.2) will be close to the recovery
time for the mean when the system is large. To do so, we consider the limit as the
arrival rate increases and impose appropriate regularity conditions. Let Tλ and τλ be
the recovery times in (1.2) and (1.3) as functions of λ. Let

p→ denote convergence in
probability.

Theorem 5. If λ → ∞, n → ∞ and k → ∞ with n/λ → δ and k/λ → β, where
γ < β < δ, then

τλ → τ and Tλ
p→ τ ,

where

τ = sup
{
t > 0: Gce(t) > (β − γ)/(δ − γ)

}
. (7.1)

We now discuss the proof of theorem 5. First, the limit for τλ is an elementary
consequence of (2.6) and (2.7). Hence the main problem is the limit for Tλ. We
can establish the desired convergence by applying the law of large numbers, but it is
important to apply the law of large numbers in function space, because we want the
sample paths of the stochastic process {N (t): t > 0 | N (0) = n} to be suitably close
to the conditional expectation E(N (t) | N (0) = n) for all t in intervals [0, t0] for each
t0. (The conditional stochastic process {N (t): t > 0 | N (0) = n} is well defined by
theorem 1 and (2.4).) It is not enough that the random variable (N (t) | N (0) = n) be
close to its mean with high probability for each t. We need the uniform convergence
over bounded intervals in order for the first passage time to be continuous almost surely
with respect to the deterministic limit process. Uniform convergence over bounded
intervals also allows us to treat the supremum over bounded intervals in (4.3) by
applying the continuous mapping theorem.

In fact we can obtain a functional weak law of large numbers (FWLLN) as a
corollary of a functional central limit theorem (FCLT). For the FCLT, it is convenient
to treat the two processes Sn(t) and N0(t) in (2.4) separately. For Sn(t), we can apply
the FCLT for empirical distribution functions in sections 13 and 16 of Billingsley [5].
For N0(t), we can apply the FCLT for the M/G/∞ model starting empty (and more
general models) on p. 103 Borovkov [7]. (See Glynn and Whitt [19] and Krichagina
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and Puhalskii [22] for other work related to the FCLT for infinite-server queues.) In
particular, theorem 5 is a consequence of the following result. Let D[0,∞) be the
function space of all right-continuous real-valued functions with left limits, endowed
with the usual Skorohod metric, which reduces to uniform convergence on bounded
intervals at continuous limit functions, and let ⇒ denote convergence in distribution.
Let N (µ,σ2) denote a normal distribution with mean µ and variance σ2.

Theorem 6. Under the conditions of theorem 5,

(Nλ(·) | Nλ(0) = n)−E(Nλ(·) | Nλ(0) = n)√
λ

⇒ Z(·) in D[0,∞) as λ→∞,

where {Z(t): t > 0} is a Gaussian process with zero means and continuous sample
paths. In particular,

Z(t)
d
= N

(
0,σ2(t)

)
, (7.2)

where

σ2(t) = δGce(t)Ge(t) + γGe(t). (7.3)

The variance formula in (7.3) follows directly from (2.3).
As an immediate consequence of the FCLT in theorem 6, we obtain the associated

functional weak law of large numbers (FWLLN).

Corollary. Under the conditions of theorem 5,

λ−1[(Nλ(·) | Nλ(0) = n
)
−E

(
Nλ(·) | Nλ(0) = n

)]
⇒ θ(·) in D[0,∞) as λ→∞,

(7.4)
where θ(t) = 0 for t > 0, so that for all (deterministic) times T∗

sup
06t6T∗

{∣∣∣∣ (Nλ(t) | Nλ(0) = n)−m
n−m −Gce(t)

∣∣∣∣}⇒ 0 as λ→ 0. (7.5)

Proof. For (7.4) we apply theorem 6 and the continuous mapping theorem, theo-
rem 5.5 of [5], using the mappings hλ(x) = x/

√
λ for x ∈ D[0,∞). The limit (7.5)

is essentially just a restatement of (7.4) using the fact that

E
(
Nλ(t) | Nλ(0) = n

)
= m+ (n−m)Gce(t). (7.6)

By (7.6),

(n−m)
λ

[(Nλ(t) | Nλ(0) = n)−E(Nλ(t) | Nλ(0) = n)]
n−m

=
(Nλ(t) | Nλ(0) = n)−m

n−m −Gce(t).

Finally, use the conditions to obtain (n−m)/λ→ δ − γ as λ→∞. �
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Proof of theorem 5. Theorem 5 is an elementary consequence of (7.5) and (7.6).
First, by (7.6),

E
(
Nλ(t) | Nλ(0) = n

)
< k

if and only if

Gce(t) <
k −m
n−m ,

where

k −m
n−m →

β − γ
δ − γ as λ→∞.

Hence τλ → τ as λ → ∞ for τ in (7.1). (We exploit the fact that Gce(t) is strictly
decreasing in t.) We now turn to Tλ and apply (7.5). If we choose T∗ > τ for T∗ in
(7.5), then by the closeness of sample paths Tλ → τ as λ→∞ too. �

We point out that the FWLLN in the corollary to theorem 6 helps justify the
use of the steady-state conditioning results to approximate hitting-time conditioning,
as indicated in the introduction. By the time reversibility, the process before 0 is
distributed the same as the process after 0. By (3.3), the limiting mean before time 0
is increasing.

Under slightly stronger conditions on the growth of k and n with λ, we can
obtain a stronger distributional limit for Tλ.

Theorem 7. Let λ→∞ and n→∞ with (k−βλ)/
√
λ→ 0 and (n− δλ)/

√
λ→ 0.

Assume that the support of G is greater than τ for τ in (6.1). Then
√
λ (τλ − τ )→ 0

as λ→∞ and
√
λ(Tλ − τ )⇒ N

(
0,σ2) as λ→∞, (7.7)

where

σ2 =
γ2

Gc(τ )2

[
δ(β − γ)(δ − β) + γ(δ − β)(δ − γ)

(δ − γ)2

]
. (7.8)

Proof. Apply (7.6). By the new conditions,(
k −m
n−m

)
−
(
β − γ
δ − γ

)
= o
(
1/
√
λ
)

as λ→∞,

which implies that τλ − τ = o(1/
√
λ) as λ→ ∞. Next, by theorem 6, recalling that

[(Nλ(Tλ) | Nλ(0) = n)−m]/(n−m) = (k−m)/(n−m) and Gce(τλ) = (k−m)/(n−m),

√
λ
(
Gce(τλ)−Gce(Tλ)

)
=
√
λ

(
(Nλ(Tλ) | Nλ(0) = n)−m

n−m −Gce(Tλ)

)
⇒Z(τ ), as λ→∞. (7.9)
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(We use the fact that Z(Tλ) ⇒ Z(τ ) as λ → ∞, because Z has continuous sample
paths and Tλ ⇒ τ .) By theorem 5 and Taylor’s theorem,

Gce(Tλ)−Gce(τλ) = −(Tλ − τλ)ge(τλ) + o(Tλ − τλ). (7.10)

Combining (7.9) and (7.10), and using the differentiability of Gce(t) in a neighborhood
of τ (implied by the second condition), we obtain

√
λ(Tλ − τλ)⇒ Z(τ )

−ge(τ )
as λ→∞.

Next note that ge(t) = Gc(t)/γ. Finally, by theorem 6,

Z(τ )
d
= N

(
0,σ2(τ )

)
, (7.11)

where

σ2(τ ) = δGce(τ )Ge(τ ) + γGe(τ ). (7.12)

Since Gce(τ ) = (β − γ)/(δ − γ), we obtain (7.8). �

As a practical consequence of theorem 7, we see that (in a stochastic sense)

Tλ ≈ τ + O
(
1/
√
λ
)
. (7.13)

8. Exploiting the age distribution

The main reason for using the non-Markov M/G/∞ model instead of a Markov
model is to allow for non-exponential holding-time distributions. When the holding-
time distribution is exponential, the elapsed holding times provide no information
about the remaining holding times, by the lack-of-memory property of the exponen-
tial distribution. However, when the holding-time distribution is very different from
exponential, the elapsed holding times can enable us to accurately predict the remain-
ing holding times. Non-exponential holding-time distributions make stochastic models
harder to analyze, but they help us predict remaining holding times by exploiting the
elapsed holding times.

To see the impact of elapsed holding times on remaining holding times, it is
useful to consider the failure rate or hazard rate associated with a cdf G with pdf g,
i.e.,

r(x) ≡ g(x)
Gc(x)

, x > 0. (8.1)

It is significant that the conditional remaining-holding-time ccdf can be expressed
directly in terms of the failure rate by

Hc
x(t) ≡ Gc(x+ t)

Gc(x)
= exp

(
−
∫ x+t

x
r(u) du

)
, t > 0. (8.2)
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To see (8.2), note that

Gc(x) = exp

(
−
∫ x

0
r(u) du

)
, x > 0, (8.3)

which in turn can be verified by taking the logarithm and then differentiating.
It is useful to employ stochastic comparison results related to aging that have

been considered in reliability theory, e.g., see Barlow and Proschan [4]. For example,
Hc
x is stochastically increasing in x, i.e.,

Hc
x1

(t) 6 Hc
x2

(t) for all t when x1 < x2 (8.4)

if and only if the holding-time cdf G has decreasing failure rate (is DFR); see
[4, p. 54]. Similarly, Hx is stochastically decreasing in x if and only if G has in-
creasing failure rate (is IFR). Thus, if G is DFR (IFR), then recovery from congestion
would be speeded up if we interrupt the longest (shortest) holding times.

The potential advantage of knowing the actual ages can be determined by com-
paring

Hc
` (t) ≡ inf

x
Hc
x(t) and Hc

u(t) ≡ sup
x
Hc
x(t). (8.5)

When G is DFR, Hc
` (t) = Gc(t) 6 Gce(t); when G is IFR, Hc

u(t) = Gc(t) > Gce(t);
when G is exponential, it is both DFR and IFR, so that Hc

` (t) = Gc(t) = Gce(t) =
Hc
u(t).

We now consider some concrete examples. First, the hyperexponential (Hk) ccdf
is

Gc(t) =
k∑
i=1

pi e−λit, t > 0, (8.6)

where λ1 < · · · < λk. The Hk ccdf is known to be DFR. Moreover, it is easy to see
that Hx is again hyperexponential, i.e.,

Hc
x(t) =

k∑
i=1

pi(x) e−λit, t > 0, (8.7)

where

pi(x) =
pi e−λix∑k
j=1 pj e−λjx

, i = 1, . . . , k. (8.8)

It is easy to see that

Hc
x(t)→ e−λ1t as x→∞. (8.9)

Moreover, Hc
x(t) → 1 as x → ∞ for all t if and only if r(t) → 0 as t → ∞.

This means that the remaining holding time gets large as the elapsed holding time gets
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large. Many long-tail distributions, such as the Weibull and Pareto distributions have
the DFR property with r(t)→ 0 as t→∞. For the Weibull ccdf

Gc(t) = e−(t/a)c , t > 0, (8.10)

it is easy to see directly that Hc
x(t)→ 1 as x→∞ for each t. An even more revealing

property holds for the Pareto ccdf

Gc(t) = (1 + bt)−a, t > 0, (8.11)

which we state as a theorem. Let
d
= denote equality in distribution.

Theorem 8. Let Y (a, b) have the Pareto ccdf in (8.11) and let Yx(a, b) have the asso-
ciated conditional remaining-holding-time ccdf in (8.2). Then

Yx(a, b)
d
= (1 + bx)Y (a, b). (8.12)

Proof. Given (8.11),

Hc
x(t) =

(1 + bx)a

(1 + b(x+ t))a
=
(
1 +

(
b/(1 + bx)

)
t
)−a

, (8.13)

so that Hc
x(t) = Gc(t/(1 + bx)), t > 0, which implies the stated result. �

Formula (8.12) dramatically shows how the distribution of the remaining holding
time increases stochastically as the elapsed holding time increases, when the underlying
holding-time distribution is Pareto.

It should thus prove to be more effective, but possibly more costly, to keep
track of the age distribution and exploit it in predictions. Given that we know the age
distribution, it does not matter how our time of interest is selected. It could be a hitting
time or a random time (in steady-state). If we keep track of the n ages x1, . . . ,xn of
the customers in service, then we can use them to obtain a new estimate for the mean
number remaining at time t, ESn(t).

The combinatorial possibilities for n calls with ages x1, . . . ,xn makes the distri-
bution of Sn(t) somewhat complicated, but the mean has the simple form

ESn(t) =
n∑
i=1

Hc
xi(t) (8.14)

for Hx in (8.2). As before, ESn(t) is decreasing in t. But if ESn(t) in (8.14) is used
to find the overall conditional mean E(N (t) | N (0) = n) by exploiting (2.4), then
E(N (t) | N (0) = n) need not be decreasing in t. Hence, we could use the modified
recovery times in (4.2) and (4.3).
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9. Congestion control via call interruption

Another form of intervention, which might be regarded as more drastic than
reducing the input rate (section 4), is to interrupt and block some services in progress.
If we elect to block j customers in service, then it is natural to ask which j should
be selected. From the point of view of revenue, assuming that revenue is earned
proportional to the holding time, then we might prefer to block the customers with
shortest elapsed holding times. On the other hand, from the point of view of recovery
from congestion, this might not be the best choice, because the services that have
been in progress for a long time may be more likely to remain in progress a long
time. Fortunately, we can evaluate the effect of any decision upon the recovery from
congestion. Given n customers in service at time t = 0 with ages x1, . . . ,xn, suppose
that we decide to eliminate the last j (without necessarily assuming any ordering on
the ages). Then, instead of (8.14), we obtain

ER′n(t) =

n−j∑
i=1

Hc
xi(t). (9.1)

More generally, in order to determine which customers to interrupt, we can for-
mulate and solve mathematical programs. To illustrate, suppose that there is a revenue
r1 + r2x for completing service of a request with holding time x. Let the control
variables be yk, i.e., yk = 0 if the kth customer is interrupted and yk = 1 otherwise.
One approach is to minimize the lost revenue, counting only the elapsed holding times,
subject to the expected remaining number of customers in service at time t being less
than some target value v. This is achieved by the integer program:

min
n∑
k=1

(r1 + r2xk)(1− yk) (9.2)

subject to:
n∑
k=1

Hc
xk

(t)yk 6 v, yk = 0 or 1, 1 6 k 6 n. (9.3)

If we wanted to minimize the expected total lost revenue of interruptions, including
the remaining holding times, then we would replace xk in the objective function in
(9.2) by xk + x′k, where x′k is the conditional mean residual life, i.e.,

x′k =

∫ ∞
0

Hc
xk

(t) dt. (9.4)

However, some of the lost future revenue associated with interrupted calls may be
replaced by revenue from new arrivals.

Different interruption strategies suggest that it is interesting to compare the impact
of different age distributions upon the empirical residual holding-time distribution.
Note, however, that we typically would observe the value of A(0), but the associated
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empirical residual holding-time distribution R(0) is a random cdf. To compare random
cdf’s, we use notions of stochastic order on complete separable metric spaces with
closed partial orders (using the natural orders on the underlying spaces, i.e., cdf’s are
ordered F1 6 F2 if F c1 (t) 6 F c2 (t) for all t); e.g., see Kamae, Krengel and O’Brien
[21] and Lindvall [26, chapter IV]. Thus, R1(0) 6st R2(0) means that Ef (R1(0)) 6
Ef (R2(0)) for all nondecreasing real-valued functions defined on the space of cdf’s,
while, for possible realizations, R1(0) 6 R2(0) means stochastic order for cdf’s, i.e.,
R1(0,x) > R2(0,x) for all x w.p.1. Since we typically know the ages, the natural
condition is A1(0) 6 A2(0) w.p.1, which means A1(0,x) > A2(0,x) for all x w.p.1.
However, this w.p.1 comparison implies the stochastic comparison A1(0) 6st A2(0).

Theorem 9. Assume that N (0) = n. Let Ri(0) be the empirical residual holding-time
distribution associated with the empirical age distribution Ai(0) for i = 1, 2. If G is
DFR (IFR) and A1(0) 6st (>st) A2(0), then R1(0) 6st R2(0) and τ1 6 τ2.

Proof. Condition on the event {N (0) = n}. If A1(0) 6st A2(0), then there are
new versions Ã1(0), and Ã2(0), on a common probability space so that P (Ã1(0) 6
Ã2(0)) = 1 by Strassen’s theorem, [26, p. 129]. Then, by the DFR property applied
to each atom of Ãi(0), P (R̃1(0) 6 R̃2(0)) = 1, which in turn implies that R̃1(0) 6st

R̃2(0). Since R̃i(0)
d
= Ri(0), we have the desired conclusion: R1(0) 6st R2(0). Since

R1(0) 6st R2(0), ER1n(t) 6 ER2n(t) for all t, so that τ1 6 τ2. �

So far, we have shown that we can obtain a suitable new recovery time for the
mean if we do any or all of the following: (1) change the arrival rate, (2) keep track
of the elapsed holding times and (3) interrupt some of the customers in service. It
is worth remarking that the both the intervention and age-tracking strategies depend
on the fact that the process {(N (t),A(t)): t > 0} is Markovian. Changing the arrival
rate amounts to introducing time-inhomogeneity into the process, while tracking ages
and/or interrupting holding times in progress amount to conditioning with respect to a
certain state at a given time.

10. Large systems with an unusual age distribution

We now consider an analog of the limiting behavior as λ→∞ given in theorem 5
when we condition upon the age distribution. We consider the conditional stochastic
process {N (t): t > 0 | N (0) = n, A(0) = Fn}, where Fn is a cdf compatible in the
sense that it has has n jumps of size 1/n. The recovery times τ and T in (4.2) and
(4.3) have the conditional counterparts

τ = inf
{
t > 0: sup

u>t
E
(
N (u) | N (0) = n, A(0) = Fn

)
6 k

}
, (10.1)

T = inf
{
t > 0: sup

t6u6t1

(
N (u) | N (0) = n, A(0) = Fn

)
6 k

}
, (10.2)
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where we assume that t1 is sufficiently large that τ < t1. The next theorem justifies
the use of the mean recovery time when the system is large. As before, let τλ and
Tλ be the recovery times in (10.1) and (10.2) as functions of λ. As a preliminary
definition, following equations (8.2) and (8.14), we note that if the age is distributed
according to the cdf F and the holding time is distributed according to the cdf G, then
the remaining holding time has cdf ΘF given by

ΘF (t) =

∫ ∞
0

dF (x)Hx(t). (10.3)

We call Θ the residual time mapping. It follows from (2.1) that Ge is a fixed point
Θ, i.e., ΘGe = Ge. A sequence of cdf’s {Fn: n > 1} converges weakly to a cdf
F if the associated probability measures converge weakly; see [5]. This means that
Fn(t)→ F (t) as n→∞ for all t that are continuity points of F .

Theorem 10. Assume that G is continuous. Under the conditions of theorem 5, with
the addition that the cdf Fn converges weakly to some cdf F ,

λ−1Mn(t)≡ λ−1E
(
N (t) | N (0) = n, A(0) = Fn

)
→M (t)

≡ δ(ΘF )c(t) + γGe(t) as λ→∞ (10.4)

and, for each T∗ > 0,

sup
06t6T∗

∣∣λ−1(N (t) | N (0) = n, A(0) = Fn
)
−M (t)

∣∣⇒ 0 as λ→∞, (10.5)

so that

τλ → τ and Tλ
p→ τ as λ→∞,

where

τ = inf
{
t > 0: sup

u>t
M (t) 6 β

}
. (10.6)

Proof. Paralleling (3.1),(
N (t) | N (0) = n, A(0) = Fn

) d
=
(
Sn(t) | N (0) = n, A(0) = Fn

)
+N0(t),

where the two summands on the right are independent processes, so that

Mn(t) ≡ E
(
N (t) | N (0) = n, A(0) = Fn

)
= n(ΘFn)(t) +mGe(t).

Using the continuity of G to obtain the continuity of Θ, we obtain λ−1Mn(t) →
M (t) as λ → ∞ for M (t) in (10.4), from which it follows that τλ → τ as λ →
∞. As in section 6, we establish the FWLLN in (10.5) and desired limit for Tλ by
establishing FCLTs for (Sn(t) | N (0) = n, A0 = Fn) and N0(t). The FCLT for N0(t)
was established before. Hence, it remains to treat Sn(t). Just as before (theorem 6),
{Sn(t) | t > 0} is the sum of n independent processes, but now these component
processes are no longer identically distributed. Nevertheless, it is straightforward to
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modify the proof of theorem 16.4 of Billingsley [5] (the i.i.d. case) to obtain a FCLT
in this case, in particular,

(Sn(·) | N (0) = n, An(0) = Fn)−E(Sn(·) | N (0) = n, An(0) = Fn)√
n

⇒ Z(·) in D[0,∞) as n→∞,

where {Z(t): t > 0} is a Gaussian process. In particular, we can directly verify con-
vergence of the finite-dimensional distributions and tightness. The finite-dimensional-
distribution-limit is a consequence of the Lindeberg–Feller CLT for triangular arrays
of non-identical summands, each of which is asymptotically negligible (here bounded),
see Feller [18, theorem 3, p. 262, example e, p. 264, and pp. 518, 524]. As before,
the FCLT implies the associated FWLLN (10.5), here using the maps hn(x) = x/

√
n.

As before, the FWLLN implies that Tλ
p→ τ as λ→∞. �

Theorem 10 motivates trying to understand how the mean occupation function
{M (t): t > 0} in (10.4) depends on the holding-time cdf G and the limiting age cdf F .
From (10.4), we see that it suffices to understand the stationary-excess map G→ Ge
defined in (2.1) and the residual-time mapping (F ,G)→ ΘF defined in (10.3).

By essentially the same reason as in theorem 9, we obtain the following stochastic
comparison result.

Theorem 11. If the holding-time cdf G is DFR and two prospective limiting age cdf’s
are ordered by F1 6st F2, then ΘF1 6st ΘF2, M1(t) 6M2(t) for all t and τ1 6 τ2. If
G is IFR, then the inequalities are reversed.

The following is another elementary stochastic comparison result, which follows
easily from (10.3).

Theorem 12. If G1 and G2 are two holding-time cdf’s for which H (1)
x 6st H

(2)
x for

all x, then Θ1F 6st Θ2F .

Example 3. Consider the one-parameter family of Pareto ccdf’s Gcp(x) = (p− 1)(1 +

x)−p for p > 1, all of which have mean 1. Since Gp1(x) crosses Gp2(x) for only one
x, Gp1 6v Gp2 when p1 > p2; see Stoyan [29, p. 12]. Hence Gp1e 6st Gp2e, as noted
before theorem 2. Clearly Gp is DFR for each p and H (p)

x is stochastically decreasing
in p for all x. Hence, if F1 6st F2, then

Θ1F1 6st Θ2F1 6st Θ2F2

by theorems 11 and 12. Combining this with Gp1e 6st Gp2e, we obtain M1(t) 6M2(t)
for all t and τ1 6 τ2, where Mi(t) and τi are defined in terms of Gi and Fi, i = 1, 2. �
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11. The asymptotic tail behavior of the mean

It is also interesting to see how the tail behavior of Ge and ΘF depends upon
the tail behavior of F and G. Our motivation here is that, while M (t) is generally
not monotonic, if (β − γ)/(δ − γ) is small (for example, when we consider recovery
from a level which is high to one which is close to the mean), then the recovery time
should be determined by the asymptotic form of mean occupation M (t) for large t.

The effect of G upon the tail behavior of Ge is easy to see because asymptotics
for Gc(t) is inherited by the integral (see, e.g., Erdelyi [17, p. 17]). For example, we
thus have the following result.

Theorem 13. Let G be a cdf with mean γ. (a) If Gc(x) ∼ αxβ e−ηx as x → ∞ for
α > 0 and η > 0, then Gce(x) ∼ Gc(x)/ηγ as x→∞.

(b) If Gc(x) ∼ αx−p as x → ∞ for α > 0 and p > 1, then Gce(x) ∼
αx−(p−1)/(p− 1)γ.

More generally, it is convenient to capture the possible power law tails for F
and G within the framework of regularly varying functions. Recall that a function f
defined on [0,∞) is said to be regularly varying of index ρ if

lim
x→∞

f (λx)/f (x) = λρ, for all λ > 0; (11.1)

see Bingham, Goldie and Teugels [6].
We can extend theorem 13(b) by applying Karamata’s theorem, theorem 1.5.11(ii)

of [6, p. 28].

Theorem 14. If G is a cdf with mean γ such that Gc(x) is regularly varying with
index −p for p > 1, then Gce(x) ∼ xGc(x)/γ(p− 1) as x→∞.

We now treat the residual time mapping Θ. First we obtain a general result
showing that (ΘF )c inherits an exponential tail from Gc.

Theorem 15. If Gc(x) ∼ α e−ηx as x → ∞, then (ΘF )c(x) ∼ α′ e−ηx as x → ∞,
where

α′ = α

∫ ∞
0

dF (y)
[
e−ηy/Gc(y)

]
<∞. (11.2)

Proof. The condition implies that there are positive constants k and K such that

0 < k < inf
x

eηxGc(x) 6 sup
x

eηxGc(x) 6 K <∞,

which in turn implies that

eηxHc
y(x) =

Gc(x+ y) eη(x+y)

Gc(y) eηy
6 K

k
<∞.
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Hence, we can apply the dominated convergence theorem. In particular,

eηxHc
y(x)→ α

Gc(y) eηy
as x→∞,

so that

eηx(ΘF )c(x) =

∫ ∞
0

dF (y)Hc
y(x) eηx →

∫ ∞
0

dF (y)
α

Gc(y) eηy
as x→∞,

where the last integral is finite because

α

Gc(y) eηy
6 α

k
. �

Theorem 15 tells us that (within the class of probability distributions considered)
if G has an exponentially decaying tail, so does ΘF even if F is long-tailed. Hence
the tails of ΘF and G and, hence by theorem 13b, also Ge, are dominated by the same
exponential rate, so that M (t) will eventually relax exponentially at this rate to γ.

In the following theorem we examine the effect upon ΘF of power-tails in F
and G.

Theorem 16. If Gc(x) ∼ αx−q e−ηx and F c(x) ∼ βx−p for p and q, η > 0 (but not
q = η = 0). Then

eηx(ΘF )c(x) ∼

βpΓ[p]Γ[q − p]
/

Γ[q] x−p, if p < q,
βp x−p logx, if p = q,
α′ x−q, if p > q,

(11.3)

where α′ is defined in (11.2), and is finite when p > q.

Proof. For any r > 0 we can divide up (ΘF )c(x) as

(ΘF )c(x) = Ar(x) +Br(x), (11.4)

where

Ar(x) =

∫ r

0
dF (y)Hc

y(x) and Br(x) =

∫ ∞
r

dF (y)Hc
y(x). (11.5)

For each r < ∞, the asymptotics of Ar(x) as x → ∞ are as follows. By the
assumption on G, eηxxqGc(x+y) converges to α as x→∞, uniformly for y ∈ [0, r].
Hence

Ar(x) ∼ x−q e−ηxαr as x→∞, (11.6)

where

αr = α

∫ r

0
F (dy)

[
e−ηy

/
Gc(y)

]
. (11.7)



N.G. Duffield, W. Whitt / Control and recovery from rare congestion events 95

Now we turn to the asymptotics of Br(x). By assumption on F and G, for all k′, k > 1,
we can choose r′ such that for all r > r′ and x > 0

eηxBr(x)6 kk
∫ ∞
r

dF (y)(1 + x/y)−q

6 kF c(r)(1 + x/r)−q + k

∫ ∞
r

dy F c(y)
d

dy
(1 + x/y)−q (by parts)

6 kF c(r)(1 + x/r)−q + kk′β

∫ ∞
r

dy y−p
d

dy
(1 + x/y)−q

(since y 7→ (1 + x/y)−q is non-decreasing)

= k
(
1− k′

)
F c(r)(1 + x/r)−q + kk′βp

∫ ∞
r

dy y−p−1(1 + x/y)−q

6 kk′Cr(x),

where

Cr(x) = βp

∫ ∞
r

dy y−p−1(1 + x/y)−q. (11.8)

The argument can be repeated to get a lower bound by replacing k, k′ by their
reciprocals. Thus for all k > 1 we can find y such that

k−1Cr(x) 6 Br(x) 6 kCr(x). (11.9)

The advantage of working with Cr(x) is that its asymptotics are relatively easy
to obtain. By making the change of variable z = t/x in (11.8), Cr(x) can be written

as βpx−p times
∫ x/r

0 dz zp−1(1 + z)−q. As x→∞, this integral is either convergent
to a finite limit Γ[p]Γ[q − p]/Γ[q] (if q > p), or is divergent and ∼ logx (if q = p),
or is divergent and ∼ (p− q)−1(x/r)p−q (if q < p).

Thus when q 6 p, Ar(x) is o(Cr(x)) as x → ∞, and the stated result follows
since k > 1 is arbitrary. When q > p then both Ar(x) and Cr(x) are O(x−q) and so

lim sup
x→∞

xq eηx(ΘF )c(x) 6 αr + kβp(p− q)−1rq−p, (11.10)

with a corresponding lower bound for the lim inf obtained by replacing k with k−1.
But for fixed k, we are free to take r → ∞ and hence rq−p → 0. From q < p, is
follows that αr → α <∞ and the stated result obtains. �

We now examine the long-tailed case, η = 0, in more detail (using the notation
of theorem 16). We assume that q > 1 in order that the stationary-excess distribution
Ge exists. Theorem 16 says that the tail of ΘF is dominated by the longer of the
tails of F and G. So the tail of (ΘF ) behaves like t−min[p,q] while that of Ge behaves
like t−(q−1). Hence we can identify two regimes. If p < q − 1, customers in service
at t = 0 leave more slowly that new customers arrive. Thus, provided δ − γ > 0
is sufficiently small, M (t) can be expected to increase initially before relaxing to γ
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Figure 2. Evolution of M (t). Left: p = 0.3, ages long. Right: p = 0.9, ages short.

according to a power law t−p. But if p > q − 1, then new customers arrive more
slowly, so we expect M (t) to fall below γ according to a power law t−min[p,q] before
rising up to γ according to t1−q.

Example 4. We illustrate this behavior for F and G Pareto with densities p(1 +
x)−1−p and q(1 + x)−1−q respectively, so that Gc(x) = (1 + x)−q , γ = (q − 1)−1 and
Gce(x) = (1 + x)−q+1. In this case, one can express (ΘF )c(x) directly in terms of the
hypergeometric function 2F1 without need of the approximation used during the proof
of theorem 16, and

M (t) = δ2F1(p, q, 1 + p,−t) + γ
(
1− (1 + x)1−q).

In figure 2 we display M (t) for δ = 2.5, q = 1.5 and hence γ = 2. By (10.4), M (t)
goes from δ = 2.5 to γ = 2.0, but figure 2 shows how. On the left 0.5 = q − 1 >
p = 0.3, while on the right 0.5 = q − 1 < p = 0.9. Note that the horizontal time axis
is logarithmic.

The case p = 0.3 corresponds to longer ages, while the case p = 0.9 corresponds
to shorter ages. Longer (shorter) ages correspond to longer (shorter) residual times,
since G is DFR. Longer residual times mean that the congestion will take longer to
clear and, indeed, M (t) goes up before it goes down when p = 0.3. On the other
hand, shorter residual times mean that the congestion should clear relatively quickly
and, indeed, M (t) goes down quickly, even going below its eventual value γ = 2.0,
when p = 0.9.

12. Large deviations

In this section we use large deviations theory to see how likely are various
deviations from the mean in large systems. First, we can directly analyze what it
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means for the event {N > n} to be unlikely. Since the event is a Poisson tail
probability as indicated (1.1), we can directly show that

P (N > n)
P (N = n)

→ 1 as n→∞ (12.1)

and by Stirling’s formula,

P (N = n)∼ 1√
2πn

(
m

n

)n
e−(m−n)

=
1√
2πn

e−n(log(n/m)−1+m/n) as n→∞. (12.2)

However, we are primarily interested in the case in which the mean m is large.
To discuss this case, let Nm denote the Poisson distribution as a function of m. For
moderately small tail probabilities, a normal approximation can be used, i.e., when m
is not too small,

P
(
Nm > m+ x

√
m
)
≈ Φc(x), (12.3)

where Φ(x) is the standard (mean 0, variance 1) normal cdf and Φc(x) = 1 − Φ(x).
However, for smaller tail probabilities it is better to use a large deviations approxima-
tion. If we let m→∞ and n = cm (assumed to be integer) with c > 1, then

P (Nm = cm) ∼ 1√
2πcm

e−mI(c) as m→∞, (12.4)

where

I(c) ≡ c(log c− 1) + 1. (12.5)

In fact, it is well known that a large deviation principle (LDP) holds for the distribution
of N (0).

Theorem 17. As m → ∞, the distribution of m−1Nm satisfies an LDP with good
rate function I in (12.5).

Proof. This follows from the Gärtner–Ellis theorem (see, e.g., Dembo and Zeitouni
[14, section 2.3]) upon the observation that the cumulant generating function (cgf)

m−1 logE
[
eθNm

]
=
(
eθ − 1

)
(12.6)

exists for all θ, independent of m, is continuous and essentially smooth, and, as can
be shown directly, has Legendre transform

I(c) = sup
θ

{
cθ −

(
eθ − 1

)}
. (12.7)

�
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We also note that the two asymptotic forms in (12.3) and (12.4) are different. If
only n→∞ as in (12.1) and (12.2), then

logP (N > n) ∼ −n logn as n→∞, (12.8)

whereas, by (12.7),

logP (Nm > cm) ∼ mI(c) as m→∞. (12.9)

We now turn to the empirical residual holding-time distribution at t = 0, con-
ditional on N (0) = n. (Recall that the empirical residual holding-time distribution
has the same distribution as the empirical age distribution.) The residual holding-time
distribution can be expressed in terms of the random cdf Sn by

Rn(t) = 1− n−1Sn(t), t > 0, (12.10)

where Sn(t) is the decreasing stochastic process whose marginals are distributed as in
(2.5), so that

ERn(t) = Ge(t), t > 0. (12.11)

By the FCLT supporting theorem 6,
√
n
(
Rn(·)−Ge(·)

)
⇒W (·) in D[0,∞) as n→∞, (12.12)

where W is a Gaussian process. From either (12.12) or (2.5),
√
n
(
Rn(t)−Ge(t)

)
⇒N

(
0,Ge(t)G

c
e(t)
)

as n→∞, (12.13)

where N (0,σ2) is a random variable with mean 0 and variance σ2. Hence, we already
have some idea how Rn(t) may deviate from Ge(t)

An alternative view is provided by an LDP. By virtue of theorem 1, an LDP for
Rn follows directly from Sanov’s theorem (see [14, section 6.2]). By reversibility of
the underlying processes, an identical LDP holds for the distribution of the empirical
age measures An(0).

Theorem 18. Equipping the set of cdf’s with the topology of weak convergence in-
herited from the space of measures, the empirical residual holding-time distributions
Rn satisfy an LDP as n→∞ with good rate function J , where

J(F ) = K(F ,Ge), (12.14)

the entropy of F relative to Ge (or their Kullback–Leibler “distance”) defined as

K(F ,Ge) =

∫ ∞
0

dF (x) log
dF
dGe

(x), (12.15)

for F absolutely continuous w.r.t. Ge, and ∞ otherwise.
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Specifically, Sanov’s theorem says that for Borel sets of cdf’s A,

− inf
F∈A0

J(F )6 lim inf
n→∞

n−1 logP
(
Rn ∈ A

)
6 lim sup

n→∞
n−1 logP

(
Rn ∈ A

)
6 − inf

F∈Ā
J(F ), (12.16)

where A0 is the interior and Ā the closure of A. It is worth remarking that the
stationary-excess cdf Ge in (2.1) always has a density ge. Thus, a necessary (but not
sufficient) condition for J(F ) to be finite is for F to have a density f , in which case
(by an abuse of notation) we write J(F ) as

J(f ) =

∫ ∞
0

dt f (t) log
f (t)
ge(t)

. (12.17)

The joint large deviation behavior of N (0) and Rn(0) can be seen informally by
observing from (12.5) and (12.15)–(12.17) that for m large, the probability that N (0)
is near mc and RN (0) has density near f is roughly

e−mI(c) e−mcJ(f ). (12.18)

We formulate this more precisely near the end of this section.
There are two important consequences of (12.15)–(12.17). First, the relative

entropy in (12.17) enables us to quantify how rare are various age or residual life
densities f that might appear instead of the stationary-excess density ge.

Example 5. As in example 1, it is interesting to consider exponential and Pareto cdf’s
with a common mean. Given that ge(t) = e−t, t > 0,

J(f ) =

∫ ∞
0

f (t) log

(
f (t)
e−t

)
dt

=

∫ ∞
0

tf (t) dt+

∫ ∞
0

f (t) log f (t) dt ≈
∫ ∞

0
tf (t) dt.

Hence, when f (t) = fp(t) ≡ p(1 + t)−p−1, t > 0, I(f ) ≈ 1/(p − 1). Clearly J(fp)
diverges as p approaches 1: longer residual holding-times become progressively more
unlikely, and become impossible as the mean diverges, i.e., as p→ 1. We now make
ge longer tailed. If ge is Pareto, in particular, if ge = fq, then

J(fp) = log(p/q) + (q − p)/p.

For fixed q, J(fp) is finite for all q. The curves of J(fp) for these two cases are shown
in the left hand plot of figure 3. On the right hand plot we display I(f ) when ge = fq
as a function of q for f exponential. All these examples confirm that the likelihood of
a given empirical residual holding-time distribution decreases with increasing disparity
between its temporal characteristics and those of the stationary-excess distribution.
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Figure 3. J(f ). Left: as a function of p for f = fp. Right: as a function of q for ge = fq.

The second consequence of (12.15)–(12.17) is that the likelihood of Rn deviating
from its expected value for large n is of the same exponential order as the likelihood
of the event {Nm > cm} for c > 1 in (12.9). This confirms that in considering
rare congestion events we should consider the empirical age and residual holding-time
distributions as well as large values for N (0).

Example 6. In figure 4 we display contours of the joint rate function (12.18) when f
is restricted to be in the family of Pareto densities fp = p(1 + x)−1−p and ge = fq
with q = 1. Observe the narrowing of the contours upon moving to the right from
(1, 1). This illustrates that the prefactor c to J in (12.18) means that a given deviation
in the age distribution become progressively less likely if it results from conditioning
over an increasing number of customers.

We make some observations on the combination of example 5 and theorem 16.
Recall that when F and G are Pareto with densities f = fp and g = fq and p > q,
theorem 16 says that (ΘF )c(x) ∼ α′x−q. Thus from the graphs in the left hand display
of figure 3, one might expect that Θ has rendered the original age distribution F less
unlikely by adjusting the tail exponent down from p to q. Indeed, if R = ΘA for a
general age distribution A, then

J(R) = K(ΘA,Ge)
(i)
= K(ΘA, ΘGe)

(ii)
6 K(A,Ge) = J(A). (12.19)

Here, (i) follows since ΘGe = Ge, (ii) since Θ, being a Markov map, does not increase
the relative entropy when applied to both its arguments; see [23, chapter 2]. However,
more than one such age distribution A can be mapped into R by Θ. Indeed, when
G is continuous we can approach equality in step (ii) above as closely as desired.
This follows from the large deviation contraction principle. To see this, recall that
by reversibility of the underlying processes, An(0) and Rn(0) satisfy an LDP with
the same rate function as n → ∞. For G continuous it follows that Θ is weakly
continuous, i.e., Fn → F weakly implies ΘFn → ΘF weakly. Thus by the large



N.G. Duffield, W. Whitt / Control and recovery from rare congestion events 101

Figure 4. Contours of I(c) + cJ(fp) for ge = f1.

deviation contraction principle (see, e.g., [14, section 4.2])

J(R) = inf
A:R=ΘA

J(A). (12.20)

Instead of the pair (N (t),A(t)) we can focus on a single quantity containing both
pieces of information, namely, the empirical age measure

ν(t) =

N (t)∑
i=1

δyi,t , (12.21)

where y1,t, . . . , yN (t),t are the ages of the holding times in process and δy is the Dirac
measure (unit point mass) at y. The empirical age measure process {ν(t): t > 0}
is also a Markov process. We now justify the use of the joint rate function (12.18)
by directly proving an LDP for the stationary empirical age measure ν(0) as the
arrival rate λ → ∞. By reversibility, the corresponding residual life measure Θν(0)
must satisfy the same LDP. We regard ν(0) is an element of M+, the set of positive
measures (not necessarily probability measures) on R+. We topologize M+ with
the topology of weak convergence (i.e., pointwise convergence on the set Cb(R+)
of bounded continuous functions on R+) which is inherited the space M of signed
measures on R+. The space M+ is metrizable as a complete separable space. For
convenience, we denote

∫
dν(x)f (x) by 〈ν, f〉 and 〈ν, 1〉 by ν̄.
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Theorem 19. As m → ∞, the distribution of m−1ν(0) satisfies an LDP with rate
function

L(ν) =

{
I(ν̄) + ν̄J(ν/ν̄), ν̄ 6= 0,
I(0), ν̄ = 0.

(12.22)

Proof. Define for all f ∈ Cb(R+) and m the cgf

Λm(f ) =m−1 logE e〈ν(0),f〉 = m−1 logE〈Ge, ef 〉ν̄(0) = 〈Ge, ef 〉 − 1

≡Λ(f ), (12.23)

independent of m. We now apply corollary 4.6.14 of [14]. For this purpose, it is
straightforward to show that:

(i) Λ(f ) is finite for all f ∈ Cb(R+).

(ii) Λ is Gateaux differentiable; i.e., for all f , g ∈ Cb(R+), the function R 3 t 7→
Λ(f + tg) is differentiable.

(iii) The set distributions of m−1ν(0) is exponentially tight; i.e., for all x <∞, there
exists a compact set Kx ⊂M+ such that

lim sup
λ→∞

m−1 logP
[
m−1ν(0) /∈ Kx

]
< −x. (12.24)

Item (iii) is due to the exponential tightness of the distributions of m−1ν̄(0) and
ν(0)/ν̄(0), which follows from the goodness of the rate functions in the LDP’s of
theorems 17 and 18 (see, e.g., [14, exercise 1.2.9]). To see this, pick 0 < a < 1 < b
and K a compact subset of probability measures in M+. Then (using c to denote
complements)

P
[
ν(0) ∈

(
[a, b]K

)c]
=P

[
m−1ν̄(0) ∈ [a, b]c, ν(0)/ν̄(0) ∈ K

]
+P

[
m−1ν̄(0) ∈ [a, b], ν(0)/ν̄(0) ∈ Kc]

6P
[
m−1ν̄(0) ∈ [a, b]c]

+ sup
n>am

P
[
ν(0)/ν̄(0) ∈ Kc | ν̄(0) = n

]
. (12.25)

Thus, lim supm→∞m
−1 logP [m−1ν(0) ∈ ([a, b]K)c] is bounded above by the maxi-

mum of −I(a), −I(b) and

lim sup
m→∞

m−1 sup
n>am

logP
[
Rn ∈ Kc]

6 lim sup
m→∞

sup
n>am

(a/n) logP
[
Rn ∈ Kc] (12.26)

= a lim sup
n→∞

n−1 logP
[
Rn ∈ Kc] (12.27)

6 −a inf
ν∈Kc

J(ν), (12.28)

and so (12.24) can be fulfilled for each x <∞ be choosing a, b, K appropriately.
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Thus, [14, corollary 4.6.14], the distributions of m−1ν(0) satisfy an LDP with a
good convex rate function which is the Legendre transform of Λ:

Λ∗(ν) = sup
f∈Cb(R+)

{
〈ν, f〉 − Λ(f )

}
. (12.29)

Then the given form of Λ∗ follows from the duality [14, lemma 4.5.8] provided we can
show, firstly, that Λ is the Legendre transform of L, and secondly that L is weak lower-
semicontinuous. The second property follows from the weak lower-semicontinuity of
K: see [14, lemma 6.2.12]. (For a sequence (να) converging weakly to ν 6= 0 then
clearly lim infαL(να) > L(ν). If να → 0 then να/ν̄α need not converge. But in this
case L(να) > I(ν̄α)→ I(0) as required.) We now establish the first property. For any
f ∈ Cb(R+),

sup
ν∈M+

{
〈ν, f〉 − Λ(f )

}
= sup
ω∈M1

+;x∈R+

{
x
(
〈ω, f〉 −K(ω,Ge)

)
− I(x)

}
(12.30)

= sup
x∈R+

{
x log

〈
Ge, ef

〉
− I(x)

}
. (12.31)

The negative of the functional in the last display is strictly convex and steep on R+,
so by differentiation the supremum is seen to occur for x = 〈Ge, ef 〉, where the
functional takes the value 〈Ge, ef − 1〉 = Λ(f ), as required. �
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[8] R. Cáceres, P.B. Danzig, S. Jamin and D.J. Mitzel, Characteristics of wide-area TCP/IP conversa-

tions, Computer Communication Review 21 (1991) 101–112.
[9] H. Chen and A. Mandelbaum, Discrete flow networks: bottleneck analysis and fluid approximation,

Math. Oper. Res. 16 (1991) 408–446.
[10] G.L. Choudhury, K.K. Leung and W. Whitt, An inversion algorithm to compute blocking probabil-

ities in loss networks with state-dependent rates, IEEE/ACM Trans. Networking 3 (1995) 585–601.
[11] G.L. Choudhury, A. Mandelbaum, M.I. Reiman and W. Whitt, Fluid and diffusion limits for queues

in slowly changing environments, Stochastic Models 13 (1997) 121–146.
[12] M.E. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic – evidence and possible

causes, in: Proc. Sigmetrics ’96 (1996) pp. 160–169.
[13] J.L. Davis, W.A. Massey and W. Whitt, Sensitivity to the service-time distribution in the nonsta-

tionary Erlang loss model, Management Sci. 41 (1995) 1107–1116.



104 N.G. Duffield, W. Whitt / Control and recovery from rare congestion events

[14] A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications (Jones and Bartlett,
Boston, 1993).

[15] N.G. Duffield, Conditioned asymptotics for tail probabilities in large multiplexers, Performance
Evaluation, to appear.

[16] S.G. Eick, W.A. Massey and W. Whitt, The physics of the Mt/G/∞ queue, Oper. Res. 41 (1993)
731–742.

[17] J.A. Erdelyi, Asymptotic Expansions (Dover, New York, 1956).
[18] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed. (Wiley, New

York, 1971).
[19] P.G. Glynn and W. Whitt, A new view of the heavy-traffic limit for infinite-server queues, Adv.

Appl. Probab. 23 (1991) 188–209.
[20] A.G. Greenberg, R. Srikant and W. Whitt, Resource sharing for book-ahead and instantaneous-

request calls. AT&T Laboratories (1996), submitted.
[21] T. Kamae, U. Krengel and G.L. O’Brien, Stochastic inequalities on partially ordered spaces, Ann.

Probab. 5 (1977) 899–912.
[22] E.V. Krichagina and A.A. Puhalskii, An asymptotic analysis of a closed queueing system with a

GI/∞ service center, Institute for Problems in Information Transmission, Moscow, 1995.
[23] S. Kullback, Information Theory and Statistics (Wiley, New York, 1959).
[24] W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wilson, On the self-similar nature of Ethernet

traffic, IEEE/ACM Trans. Networking 2 (1994) 1–15.
[25] K.K. Leung, W.A. Massey and W. Whitt, Traffic models for wireless communication networks,

IEEE J. Sel. Areas Commun. 12 (1994) 1353–1364.
[26] T. Lindvall, Lectures on the Coupling Method (Wiley, New York, 1992).
[27] W.A. Massey and W. Whitt, Networks of infinite-server queues with nonstationary Poisson input,

Queueing Systems 13 (1993) 183–250.
[28] V. Paxson, Empirically derived analytical models of wide-area TCP connections, IEEE/ACM Trans.

Networking 2 (1994) 316–336.
[29] D. Stoyan, Comparison Methods for Queues and Other Stochastic Models (Wiley, New York, 1983).
[30] W. Whitt, The renewal-process stationary-excess operator, J. Appl. Probab. 22 (1985) 156–167.
[31] W. Willinger, M.S. Taqqu, R. Sherman and D.V. Wilson, Self-similarity through high variability:

statistical analysis of Ethernet LAN traffic at the source level, in: SIGCOMM Symp. on Commun.
Arch. and Protocols (1995) pp. 100–113.


