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Abstract

In a recent paper we introduced the queue-and-idleness-ratio (QIR) family of routing rules for many-

server service systems with multiple customer classes and server pools. A newly available server next

serves the customer from the head of the queue of the class (from among those he is eligible to serve)

whose queue length most exceeds a specified proportion of the total queue length. Under fairly general

conditions, QIR produces an important state-space collapse as the total arrival rate and the numbers

of servers increase in a coordinated way. That state-space collapse was previously used to delicately

balance service levels for the different customer classes. In this sequel, we show that a special version

of QIR stochastically minimizes convex holding costs in a finite-horizon setting when the service rates

are restricted to be pool-dependent. Under additional regularity conditions, the special version of QIR

reduces to a simple policy: Linear costs produce a priority-type rule, in which the least-cost customers

are given low priority. Strictly convex costs (plus other regularity conditions) produce a many-server

analogue of the generalized-cµ (Gcµ) rule, under which a newly available server selects a customer

from the class experiencing the greatest marginal cost at that time.
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1 Introduction

The optimal control of queueing systems to minimize holding costs or maximize revenues has been the

subject of extensive literature; e.g., see Stidham [21]. Many have exploited Markov decision processes

(MDP’s), but the scope of the MDP approach is necessarily limited to models that have an underlying

Markovian structure. The price of trying to find the exact optimal solution is that simple solutions can

be found only for relatively simple models. The curse of dimensionality tends to make large problems

intractable.

An alternative more tractable approach for complex models is to exploit heavy-traffic asymptotics. Ap-

proximations for description and control are generated by considering limits of a sequence of appropriately

scaled queueing processes. The goal then is to generate good policies from asymptotically optimal poli-

cies. In contrast to the conventional heavy-traffic regime, which has increasing demand volumes with a

fixed number of servers, we will be considering the many-server heavy-traffic regime, where the number of

servers increases together with the demand volume. Thus we will be generating approximate controls for

many-server service systems, such as complex call centers.

A key paper in the conventional-heavy-traffic literature is Mandelbaum and Stolyar [16], which extended

the seminal multi-class single-server work of Van Mieghem [22], building on Harrison [12], to a setting with

multiple non-identical servers working in parallel. In these papers, as will be the case also in the current

paper, a queue is formed for each customer class and customers leave the system after a single service

completion. This stands in contrast to queueing networks in which customers receive service in several

stations before leaving the system. Examples of some simple parallel server systems are depicted in Figure

1. Each box at the top of the figure represent a queue for arriving customers of a given class; each circle at

the bottom of the figure represents a pool of servers with common skills.

Mandelbaum and Stolyar [16] showed that the generalized-cµ (Gcµ) rule asymptotically minimizes

convex holding costs. Let µi,j be the service rate of class-i customers by server j, let Qi(t) be the class-i

queue length at time t, and assume that the class-i queue incurs a cost at rate Ci(Qi(t)), where Ci is a

twice-continuously-differentiable strictly-increasing strictly-convex function with Ci(0) = C ′
i(0) = 0. The

Gcµ rule dictates that, when becoming free at time t, server j next serves a customer from the class i that

maximizes µi,jC
′
i(Qi(t)), where C ′

i is the first derivative of Ci; i.e., the class to be served next by server j
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Figure 1: The V, N, M and
∧

Models

is

i ∈ argmax
i

µi,jC
′
i(Qi(t)).

The classic cµ rule is obtained when Ci is linear, but strict convexity is required for this result.

The Gcµ rule has appealing simplicity, allowing the decisions to be made myopically in a decentralized

manner. To make the decision for pool j, it suffices to know the queue lengths of the classes those agents

can serve. The asymptotic optimality result in [16] builds on a useful invariance principle that implies, under

a complete-resource-pooling condition, that a certain Reflected Brownian Motion (RBM) serves as a lower

bound for the aggregate workload process. As a consequence, the minimal cost can be achieved asymptot-

ically by: (a) making sure that that the aggregate workload asymptotically achieves the RBM lower bound,

and (b) that, given a workload level, its distribution among the different customer classes is performed op-

timally with respect to holding costs Ci(·). The Gcµ rule achieves both objectives simultaneously via a

state-space-collapse result, building on the general framework introduced by Bramson [5].

The restriction of [16] to strictly convex cost functions is not made for technical convenience. The simple

cµ rule obtained from the Gcµ rule when the holding costs are linear indeed fails to asymptotically minimize

the holding costs for parallel-server systems in the conventional heavy-traffic limit. In fact, applying the cµ

rule to these systems may be disastrous, leading to “system explosion” as illustrated by Harrison [13] and

further discussed in [7].

The purpose of the present paper is to extend, as much as possible, the result of [16] to the many-server
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heavy-traffic limiting regime introduced in the Halfin and Whitt [11]. Unlike [16], our results do cover

linear holding costs, thus underscoring the significant differences between the two heavy-traffic regimes.

Again, §1.1 of [7] highlights these differences. Unfortunately, however, the useful invariance phenomenon

that exists in the conventional heavy-traffic regime does not carry over to the many-server regime. In order

to establish a related invariance principle in the many-server setting, we restrict attention to multi-server

systems with pool-dependent service rates, i.e., to settings in which µi,j = µj for every class i that can be

served by servers of type j. (That effectively eliminates the µ component of the Gcµ rule.)

But that is not all: The restriction to pool-dependent service rates is not sufficient by itself to guarantee

that the aggregate workload in the system is asymptotically minimized. In contrast to the conventional

heavy-traffic regime, care is needed in assigning customers to servers. Not any work-conserving policy will

achieve the desired performance. Consequently, our proposed solution contains two components: a routing

component - specifying what to do upon customer arrival, and a scheduling component - specifying what to

do upon service completion.

Our solution builds on the queue-and-idleness-ratio (QIR) family of controls introduced in Gurvich and

Whitt [10]. Moreover, our proofs here draw heavily upon [10]. Here we show that a special version of QIR

(with appropriately chosen state-dependent ratio functions) asymptotically minimizes convex holding costs,

including linear costs. Moreover, when restricting the attention to strictly convex holding-cost functions

(with additional regularity conditions), the scheduling component of QIR reduces to the Gcµ rule (where

the µ component is trivial, as indicated above).

We hasten to admit that we are by no means the first to analyze holding-cost minimization in the Halfin-

Whitt regime. A multi-class but single-pool (single-server-type) model (the V-model) with linear holding

and abandonment costs was considered by Harrison and Zeevi [14]. A simplified setting of the V-model

with a common service rate for all classes and more complex, but still linear, cost structure was analyzed

in Gurvich et. al. [2], where a threshold policy was proposed. Armony [1] stochastically minimized the

queue-length in a multi-server-pool setting with a single customer class, which she names the inverted-V (or
∧

) model. Our analysis exploits her results.

Much greater generality was achieved by Atar [3]. In his far-reaching paper, Atar covers asymptotic

minimization of holding costs in general multi-class multi-pool systems in the Halfin-Whitt regime. His

analysis focuses on the HJB equations governing the limit Brownian control problem and on obtaining

asymptotically optimal controls. His results are very general, but because of this generality, they provide
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little insight about specific cases, and the proposed controls are not as elegant as the Gcµ rule.

Our results here and in [9, 10] are closely related to concurrent and independent results by Dai and

Tezcan [7, 8]. Their first paper [7] took the important path of constructing explicit solutions for specific

cases, assuming linear holding costs. Their first paper [7] considers the N model, having two customer

classes and two agent pools - one of which is dedicated and the other flexible. Their second paper [8] is a

generalization of the first, considering general SBR systems with pool-dependent rates, just as in this paper,

but still focusing on linear holding costs. Our current paper extends their result to more general convex

holding costs. Thus, our current paper includes their results as a special case. Moreover, we show that the

policy that [8] shows to be optimal for linear cost functions is also optimal much more generally; linearity

is sufficient, but a weaker condition on the derivatives of the cost functions is sufficient as well.

As should be expected, the analysis here is similar to the analysis in [8], but there are significant differ-

ences. Dai and Tezcan [8] build on their previous important work [6] extending Bramson’s [5] state-space

collapse framework to the Halfin-Whitt many-server regime. In contrast, we apply our own previous paper

[10] and Armony [1].

The remainder of the paper is organized as follows: We introduce the model and some notation in §2.

Then we state the main results in §3. Included there are analogous results for a delay-cost formulation

involving a special version of the waiting-and-idleness-ratio (WIR) routing rule. We provide the proofs,

building on [10], in §4. Finally, we make concluding remarks in §5.

2 The Model

We consider a system with a fixed set I := {1, . . . , I} of customer classes and a fixed set J := {1, . . . , J}
of server pools. There is a queue for each customer class. If customers cannot enter service immediately

upon arrival, they go to the end of their queue. The number of servers in pool j is given by Nj . To define

the arrival processes for the different customer classes, we let {Ai, i ∈ I}, be a family of independent

renewal counting processes Ai := {Ai(t), t ≥ 0} with interarrival-time distribution having mean 1 and

squared coefficient of variation (scv, variance divided by the square of the mean) c2
a,i. Given a vector

−→
λ = (λ1, . . . , λI) of arrival rates, we let the arrival process for class i be the time-scaled renewal process

{Ai(λit), t ≥ 0}. We let λ :=
∑

i∈I λi be the total arrival rate.
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The set of possible assignments of customers to servers in this system has a natural representation as a

bipartite graph with vertices V = J ⋃ I; i.e., V is the union of the set of customer classes and the set of

agent pools. We let E be the set of edges in the graph. The set E is allowed to be a strict subset of the set

of all possible edges E := {(i, j) ∈ I × J }. An edge (i, j) ∈ E corresponds to allowing pool-j servers

serve class-i customers. In order to achieve needed resource pooling (see also Assumption 2.4), we make

the following assumption about E:

Assumption 2.1. (connected routing graph) The graph G = (V, E) is a connected graph.

Given the routing graph G := (V,E), which we characterize via E, let I(j) be the set of classes that

a pool-j server can serve; i.e., I(j) := {i ∈ I : (i, j) ∈ E}; I(j) is referred to as the skill set of pool-j

servers. Similarly, let J(i) be the set of all server pools that can serve class i; i.e., J(i) := {j ∈ J : (i, j) ∈
E}. Motivated by the application to call centers, we call these systems skill-based-routing (SBR) systems.

In that setting, servers are usually called agents; hereafter we use these terms interchangeably.

In general, the service time of a customer can depend on both the customer’s class and the pool of the

agent providing the service, but otherwise (conditional on that information), we assume that the service

times are mutually independent exponential random variables, independent of the arrival processes. With

that assumption, the dependence is formally introduced by assuming general service rates µi,j . In this paper,

however, we restrict the attention to systems in which the service rates are pool dependent:

Assumption 2.2. (pool-dependent service rates) There exist J constants µ1, . . . , µJ so that

µi,j = µj for all j and i ∈ I(j).

Without loss of generality, we assume that the agent (server) pools are ordered in decreasing order of

their processing rates, so that

µ1 ≥ µ2 . . . ≥ µJ . (1)

Assumption 2.2 is crucial to our asymptotic-optimality results. The pool dependence allows us to asymp-

totically minimize the aggregate queue length in the system independently of the way this aggregate queue

length is distributed among the different classes. This is analogous to the asymptotic minimality of the

workload in the conventional heavy-traffic regime studied by Mandelbaum and Stolyar [16]. We emphasize

that not any work-conserving policy will asymptotically achieve the minimal aggregate queue length; see
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Remark 3.1.

In the absence of Assumption 2.2, simple controls are not likely to emerge as asymptotically optimal

solutions in the Halfin-Whitt regime. Harrison and Zeevi [14] provide a counterexample to the asymptotic

optimality of the cµ rule with linear holding costs, thus highlighting the difference between the conventional

heavy-traffic regime and the many-server heavy-traffic regime, which we define next.

The many-server heavy-traffic scaling: We consider a family of systems indexed by the aggregate arrival

rate λ and let λ → ∞. The service rates µj , j ∈ J , the routing graph G, the basic rate-1 renewal

arrival processes Ai and the ratios ai := λi/λ are all held fixed. We set Aλ
i (t) := Ai(λit) and Aλ(t) :=

∑
i∈I Aλ

i (t). The associated family of staffing vectors is Nλ := (Nλ
1 , . . . , Nλ

J ), with Nλ
j being the number

of agents in pool j ∈ J . The staffing levels are assumed to satisfy the following many-server heavy-traffic

condition.

Assumption 2.3. (the many-server heavy-traffic regime) Assume that

lim
λ→∞

Nλ
j

λ
= νj , j ∈ J ,

for some strictly positive vector ν = (ν1, . . . , νJ) that satisfies
∑

j∈J µjνj = 1 and

lim
λ→∞

Nλ
j − νjλ√

λ
= γj , j ∈ J , (2)

for γ = (γ1, . . . , γJ) with −∞ < γj < ∞ for all j ∈ J .

Assumption 2.3 guarantees that the aggregate system capacity as given by
∑

j∈J µjNj is, in first order,

the minimal capacity that is needed to serve an arrival stream with rate λ. This, however, is not enough and

we require also a resource-pooling condition:

Assumption 2.4. (resource-pooling condition) There exists a vector x ∈ RI×J
+ that satisfies

∑

j∈J(i)

µjxijνj = ai, i ∈ I, and
∑

i∈I(j)

xij = 1, j ∈ J , (3)

and such that the graph E(x) := {(i, j) ∈ I × J : xij > 0} is a connected graph.

Assumption 2.4 guarantees that each customer class has access to more than the minimal capacity that

6



it requires, that is, that
∑

j∈J(i) µjνj > ai (with strict inequality). Indeed, as the graph E(x) is connected,

there exists at least one k 6= i such that xkl > 0 for some l ∈ J(i) and, in particular, xil < 1 so that
∑

j∈J(i) µjνj >
∑

j∈J (i) µjxijνj = ai. This local excess capacity condition, guarantees that if all the

capacity in the set of pools J(i) is directed to serve the class-i queue, the queue can be drained extremely

fast, and practically instantaneously as the system size grows. The capability to instantaneously decrease the

number of customers in a given queue lies at the heart of state-space collapse results in both heavy-traffic

regimes, the conventional and the many-server ones. It should be noted, however, that in contrast to much of

the heavy-traffic literature, we do not assume that the graph E(x) is a tree. Our less restrictive condition is a

consequence of the assumption on pool-dependent service rates and the corresponding state-space collapse

results in [10]. Finally, we point out that this assumption is consistent with the heavy-traffic assumptions in

[10] - see Assumptions 2.1-2.3 in [10].

Assumptions 2.1-2.4 will be assumed throughout the rest of the paper. Assumption 2.3 implies that

∑

j∈J
µjN

λ
j = λ + β

√
λ + o(

√
λ) as λ →∞, (4)

where β =
∑

j∈J µjγj . Letting the traffic intensity in system λ be ρλ := λ/
∑

j∈J µjN
λ
j , we see that

lim
λ→∞

√
λ(1− ρλ) = β, (5)

which generalizes the Halfin-Whitt many-server heavy-traffic condition for the single-class single-pool

M/M/N queue; see equation (2.2) in [11].

For the λth system, let Qλ
i (t) be the number of class-i customers in queue at time t and let Iλ

j (t) be

the number of idle agents in pool j at time t. Let Qλ
Σ(t) :=

∑
i∈I Qλ

i (t) and Iλ
Σ(t) :=

∑
j∈J Iλ

j (t) be the

corresponding aggregate quantities. Let Nλ
Σ =

∑
j∈J Nλ

j be the aggregate number of agents. Finally, let

the overall number of customers in the system at time t be

Xλ
Σ(t) := Qλ

Σ(t) +
∑

j∈J
(Nλ

j − Iλ
j (t)).

Let the corresponding scaled processes be

Q̂λ
i (t) :=

Qλ
i (t)√
λ

, i ∈ I, Îλ
j (t) :=

Iλ
j (t)√

λ
, j ∈ J ,
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and

Q̂λ
Σ(t) :=

Qλ
Σ(t)√
λ

, Îλ
Σ(t) :=

Iλ
Σ(t)√

λ
and X̂λ

Σ(t) :=
Xλ

Σ(t)−Nλ
Σ√

λ
.

We consider two different objective functions: The first measures cost in terms of the queue-length,

while the second measures cost in terms of customer delay. Specifically, let W λ,π
i,k be the waiting time of the

kth class-i customer to arrive to the λth system after time 0 and under a control π. Then let

Jλ
1 (π, T ) :=

∫ T

0

I∑

i=1

Ci(Q̂
π,λ
i (t))dt and Jλ

2 (π, T ) :=
1

Aλ
i (t)

I∑

i=1

Aλ
i (T )∑

k=1

Ci(
√

λW λ
i,k(π))

for appropriate cost functions Ci. Both the queue length and the waiting times in these objective functions

are scaled so that they have proper limits as λ →∞ with the many-server heavy-traffic scaling. We refer the

reader to §3 of [22] and §7 of [16] for a discussion and justification of using this scalings in the definition of

the objective functions. We make the following assumption about the cost functions {Ci, i ∈ I}:

Assumption 2.5. (admissible cost functions) For each i ∈ I, the cost function Ci is assumed to be

nondecreasing and convex with Ci(0) = 0.

The essential requirement in Assumption 2.5 are that the cost functions are convex and non-decreasing.

The assumption that Ci(0) = 0 is made without loss of generality as we can add an arbitrary constant to

each cost function without affecting the solution of the nonlinear program (11) below.

Remark 2.1. (comparison to the assumptions in [16]) Our assumptions on the cost functions are sub-

stantially weaker than those imposed in [16]. In contrast to [16], the many-server regime does allow us to

consider non-strictly-convex cost functions, such as linear functions and piecewise-linear functions, but the

optimal policy is not Gcµ in those cases. The assumptions to get Gcµ will be similar.

Every control π needs to consist of two components: the routing component - specifying what to do

when a customer arrives to the system - and the scheduling component - specifying what to do when an

agent completes service and becomes available. We make additional restrictions on the family of controls:

Toward that end, let Πk be the set of admissible policies for Jλ
k (π, T ), k = 1, 2. The sets of admissible

policies for both criteria will consist of non-anticipating policies; see §4 for a formal definition. The set Π2

will be restricted to policies that serve customers first-come first-served (FCFS) within each customer class,
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so that Π2 ⊂ Π1. Our two optimization problems are then given by

inf
π∈Π1

Jλ
1 (π, T ) and inf

π∈Π2

Jλ
2 (π, T ) (6)

and are respectively referred to as the holding-cost formulation and the delay-cost formulation.

We say that a family of admissible policies {πλ} is asymptotically optimal (as λ →∞) for the objec-

tive function k ∈ {1, 2} if for any T > 0 and given any other sequence of admissible policies {π̃λ},

lim sup
λ→∞

Jλ
k (πλ, T ) ≤st lim inf

λ→∞
Jλ

k (π̃λ, T ), (7)

where≤st denotes (conventional) stochastic ordering. Stochastic ordering is a strong comparison, which is

not available in many problems, but turns out to be provable in our setting. Note that asymptotic optimality of

a sequence πλ does not imply uniqueness. Indeed, there might be multiple asymptotically optimal controls.

Our aim is to identify one such asymptotic solution.

3 The Main Results

In this section we state our main results. We establish the asymptotic optimality of special QIR and analo-

gous waiting-and-idleness-ratio (WIR) rules for the holding-cost and delay-cost formulations, respectively.

3.1 The Holding-Cost Formulation

We start by formally defining QIR; see [10] for background. Toward that end, we say that an Rm-valued

function f on a subset S of Rk is locally Hölder continuous with exponent α > 0 if, for every compact

subset K of S, there exists a constant CK such that

‖f(x)− f(y)‖ ≤ CK‖x− y‖α for all x, y ∈ K , (8)

where ‖ · ‖ is a chosen norm inducing the usual Euclidean topology, which we take to be the L1 norm:

‖x‖ :=
∑

i |xi|. With that definition, we are ready to define the class of admissible state-dependent ratio

functions.
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Definition 3.1. (an admissible state-dependent ratio function) For an integer d > 0, a vector-valued

function r : R+ 7→ Rd
+ is an admissible state-dependent ratio function if

∑d
k=1 rk(x) = 1 for all x ∈ R+

and if every component rk : R+ 7→ R+ is locally Hölder continuous on the open interval (0,∞) with some

exponent αk > 0.

Definition 3.2. (QIR for admissible state-dependent ratio functions) Given two admissible state-dependent

ratio functions v and p, QIR is defined as follows:

• Upon arrival of a class-i customer at time t, the customer will be routed to an available agent in

pool j∗, where

j∗ := j∗(t) ∈ argmax
j∈J(i),Îλ

j (t)>0

{
Îλ
j (t)− [X̂λ

Σ(t)]−vj

(
[X̂λ

Σ(t)]−
)}

;

i.e., the customer will be routed to an agent pool with the greatest idleness imbalance. If there are no

idle agents in any of the pools in J(i), the customer waits in queue i, to be served in order of arrival.

• Upon service completion by a pool-j agent at time t, the agent will admit to service the customer

from the head of queue i∗, where

i∗ := i∗(t) ∈ argmax
i∈I(j),Q̂λ

i (t)>0

{
Q̂λ

i (t)− [X̂λ
Σ(t)]+pi

(
[X̂λ

Σ(t)]+
)}

;

i.e., the agent will admit a customer from the queue with the greatest queue imbalance. If there are

customers waiting in any of the queue in I(j), the agent will remain idle.

Ties are broken in an arbitrary but consistent manner. Formally, let Ãλ
i (t) be the time that elapsed since

the last arrival of a class-i customer before time t. Then, ties are broken so that the vector-valued stochastic

process

(Q̂λ, Ẑλ, Ã) := (Q̂λ
i (t), Ẑλ

i,j(t), Ã
λ
i (t); i ∈ I, j ∈ J )), (9)

is a Markov process with stationary transition probabilities.

For given ratio functions v and p, we denote the resulting QIR control by QIR(p, v). We will be inter-

ested in special ratio functions p and v that are appropriate to achieve for our optimization objective. The

routing component is relatively simple, so we start with it. Let v∗ be the non-state-dependent ratio function
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given by

v∗(·) := (0, 0, . . . , 1). (10)

By (1) and (10), a customer of class i ∈ I(J) will be routed to agent pool J only when all the agents in any

other pool j ∈ J(i) are busy. This component of the control essentially maximizes the throughput of the

system, because it makes sure that all the idleness is concentrated in the slowest server pool.

Treating the scheduling component is much more complicated in general, but will become correspond-

ingly simple in special cases. To properly treat the scheduling component of our control, we define a deter-

ministic convex optimization problem: Let q∗i (x), i ∈ I, be an optimal solution to the nonlinear program

(NLP)

minimize
∑

i∈I Ci(qi(x))

s.t.
∑

i∈I qi(x) = x,

qi(x) ≥ 0, i ∈ I,

(11)

where Ci are the specified cost functions satisfying Assumption 2.5.

For each x, this NLP is a classical separable continuous nonlinear resource allocation problem, as

in Ibaraki and Katoh [15], Patriksson [18] and Zipkin [25]. A solution always exists and efficient algorithms

are available. We are interested in the parametric version, in which we consider the solution as a function of

the resource level x. Fortunately, the special structure implies that the solutions at different resource levels

are simply related: Having found a solution q∗(x) := {q∗i (x), i ∈ I} at resource level x, that determined

solution can be kept at resource level x+ε; it only remains to optimally allocate the incremental ε resource. It

suffices to perform marginal analysis: The infinitesimal incremental resource at any time should be allocated

to the class(es) with the smallest (right) derivative at the current allocation. As a consequence, we have the

following existence result:

Lemma 3.1. (the desired admissible state-dependent ratio function) Under Assumption 2.5, there exists

a parametric optimal solution q∗i (x) for i ∈ I and x > 0 to the resource allocation problem (11) such that

q∗i (x) ≤ q∗i (x + ε) ≤ q∗i (x) + ε for all i , x > 0 and ε > 0 ,

so that

p∗(x) := q∗(x)/x, x > 0 , (12)
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is an admissible state-dependent ratio function, satisfying (8) with α = 1.

The division by x in (12) causes difficulties in neighborhoods of 0, but the restriction to compact subsets

of the open interval (0,∞) in Definition 3.1 prevents that division by x in (12) from hurting us. Let p∗ be the

ratio function defined in (12), with p∗i (x) := q∗i (x)/x for all x > 0 and i, with p∗ chosen to be an admissible

state-dependent ratio function. The choice of the value at 0, p∗i (0), is of no real importance because that

corresponds to epochs that the queues are empty. Hence, we may choose any value that satisfies p∗i (0) ≥ 0

for all i ∈ I and
∑

i∈I p∗i (0) = 1.

Finally, let π∗1 := QIR(p∗, v∗) for v∗ and p∗ defined above. We are now ready to state our main result

for the holding-cost criterion. Let ⇒ denote convergence in distribution.

Theorem 3.1. (asymptotic optimality of QIR for the holding-cost criterion) If

(Q̂λ
i (0), Îλ

j (0); i ∈ I, j ∈ J ) ⇒ (Q̂i(0), Îj(0); i ∈ I, j ∈ J ) as λ →∞,

then

lim sup
λ→∞

Jλ
1 (π∗1, T ) ≤st lim inf

λ→∞
Jλ

1 (πλ, T ) (13)

for any T > 0 and any sequence {πλ} of admissible policies. Consequently, π∗1 is asymptotically optimal

for the holding-cost criterion.

Remark 3.1. (some intuition) There is a simple explanation for the validity of Theorem 3.1. By choosing

v := v∗ the control essentially tries to keep all servers, except for the slowest ones, constantly busy. By

doing so, the control asymptotically minimizes the aggregate queue-length in the system. Since the ratio

function p∗ defined by (11) and (12) is designed to optimally distribute the aggregate queue length between

the different customer classes, the asymptotic optimality follows.

In general, the scheduling component of this version of QIR can be relatively complicated, but it sim-

plifies in many cases. The rest of this section is primarily devoted to such simplifications. Particularly

appealing are the simplifications to (i) a priority-type rule and (ii) the Gcµ rule.

Remark 3.2. (a priority-type rule) If all cost functions are linear, i.e., if Ci(x) = cix, x ≥ 0, with

ci0 ≤ ci for all i 6= i0, then an optimal solution to (11) is obtained by setting q∗i0(x) = x and q∗i (x) = 0

for all i 6= i0. Consequently, the selected ratio function p∗ in (12) is the non-state-dependent ratio function

given by pi0(·) := 1 and pi(·) := 0 for all i 6= i0.
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We now discuss the implications of this structure in QIR. First, it is easily verified that for the N-model

setting with linear holding costs analyzed in [7], QIR reduces to the static-priority cµ rule. Indeed, QIR is

equivalent to a static priority rule for all settings in which the set

argmax
i∈I(j),Q̂λ

i (t)>0

{
Q̂λ

i (t)− [X̂λ
Σ(t)]+pi

(
[X̂λ

Σ(t)]+
)}

is identical to the set

argmax
i∈I(j),Q̂λ

i (t)>0

Q̂λ
i (t),

and one can verify that the N-model of [7] indeed satisfies this restriction. As observed in [8], this restriction

does not hold for most networks. Instead, a more general priority-type rule is proposed in §2.1 of that same

paper. This more general rule is, however, identical to the QIR rule we obtain for linear holding costs.

Consequently, in the absence of abandonments, Theorem 3.2 covers the results of both [7] and [8] as special

cases.

It is significant that the same simple priority-type rule, as proposed in [8] for linear holding cost, is

asymptotically optimal in much greater generally; our analysis shows that linearity is not the critical feature.

For the priority-type rule to be asymptotically optimal, it suffices for the marginal cost of one class to be

always less than the marginal costs of all other classes. Since Ci is convex, the derivative C ′
i exists at all but

countably many points and is nondecreasing. Hence, the sufficient condition for the priority-type rule to

be asymptotically optimal within our convex-cost framework is for there to be a class i0 such that

C ′
i0(∞) := lim

x→∞C ′
i0(x) ≤ C ′

i(0+) for all i 6= i0 . (14)

Under condition (14), the NLP has the same priority-type optimal policy. In other words, it suffices to

have one low-cost class and then essentially give that class low priority. We then do not need more specific

assumptions about the cost functions of the other classes.

While the priority-type rule has a desirable simplicity, it may not be asymptotically optimal when (14) is

violated. One can construct simple instances of cost functions in which it is straightforward to identify the

asymptotically optimal policy but in which this policy does not yield a simple priority-type rule. One such

example is given below.

Remark 3.3. (a single switching point) Condition (14) is clearly a common case for applications, making
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the priority-type rule a common solution. A candidate for the next simplest policy is to have a single

switching point x∗, with one class having low priority if the total queue length is less than x∗, while another

class has low priority for the excess above x∗ if the total queue length is above x∗. That occurs if and only

if there exists x∗ such that

C ′
i0(x

∗) ≤ C ′
i(0+) for all i 6= i0 (15)

and

C ′
i1(∞) ≤ min {C ′

i0(x
∗+), C ′

i(0+)} for all i 6∈ {i0, i1} . (16)

In this case, q∗i0(x) = x ∧ x∗, q∗i1(x) = (x− x∗)+ and qi(x) = 0 for all other i. A simple example has one

linear cost function and one piecewise-linear cost function: C1(x) = c1x, x ≥ 0, C2(x) = b2x, 0 ≤ x < x∗

and C2(x) = d2(x− x∗) + b2x
∗, x ≥ x∗, where b2 < c1 < d2.

In this single-switching-point setting we have just considered, there is a threshold x∗. If the scaled

aggregate queue length X̂λ
Σ(t) is less than this threshold, class i0 has low priority, just as in the priority-type

case above, and other classes are served in order of their queue lengths. However, when this threshold is

exceeded, then this version of QIR becomes more complicated, because a term is subtracted from the scaled

queue length for both classes i0 and i1, with the proportion subtracted for class i1 increasing as X̂λ
Σ(t)

increases, so we have a level-dependent weighted-priority scheme. Eventually, as X̂λ
Σ(t) increases high

enough, class i1 would be the low-priority class, but scheduling for the remaining classes would not simply

be by the longest queue, because class i0 would still have a large term subtracted.

Remark 3.4. (adding abandonment) Unfortunately, in general, our QIR solution in Theorem 3.1 is not

preserved if we allow customer abandonment. Specifically, assume that with each customer there is an

associated exponentially distributed patience random variable. A customer, whose waiting time exceeds his

patience, abandons the system. The patience rate for a class i customer is θi and the patience of different

customers are independent.

First, it seems reasonable that in the presence of customer abandonment one should consider cost struc-

tures that will take into account the cost of abandonment in addition to holding or delay associated costs.

But even if one restricts the attention to the same cost structure considered in the current paper, the problem

is far from being trivial.

When all holding costs are linear, Dai and Tezcan [7] showed that, provided that the class with the lowest

holding cost coefficient ci is also the one with the least patience, static priority - which is a specific case of
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QIR for the N model they consider (see Remark 3.2) - is asymptotically optimal. However, their result does

not hold without this special ordering of costs and abandonment rates.

Since our results allow for even more general cost structures, optimality will fail in all but the most

trivial case in which all patience rates are equal, i.e, θi = θ for all i ∈ I. Even for this case, though, it seems

that additional conditions need to be imposed for our results for the holding-cost criterion to hold without

any change; see e.g. the discussion in §5 of Atar et. al. [4]. The reason for the failure in the more general

case is very simple: Our approach builds on the ability to asymptotically minimize the aggregate queue

length in the system independently of the way it is distributed between the different classes. Thus, after

optimizing the aggregate queue length we may distribute it between the different classes without damaging

the aggregate queue. In the presence of class-dependent abandonment rates, however, the aggregate queue

length is extremely sensitive to the way it is distributed between the different classes.

3.2 The Gcµ Rule

We have observed in Remark 3.2 that Theorem 3.1 provides a simple priority-type optimal policy in the

case of linear holding costs and under the more general condition (14). Otherwise, the optimal QIR control

can be somewhat complicated. We now show that our QIR policy reduces to the Gcµ rule when the costs

are strictly convex and satisfy additional regularity conditions. Since costs in practice often are regarded as

convex instead of linear, we regard this as an important conclusion, just as in [22] and [16].

The many-server Gcµ rule is defined as follows:

Definition 3.3. (the many-server Gcµ rule) The Gcµ rule for the SBR model with pool-dependent service

rates is defined by changing the scheduling component p∗ of QIR(p∗, v∗) to:

Upon service completion by a pool-j agent at time t, the agent will admit to service the customer from

the head of queue i∗ where

i∗ := i∗(t) ∈ argmax
i∈I(j),Q̂λ

i (t)>0

µjC
′
i(Q̂

λ
i (t)); (17)

If there are no customers waiting in any of the queues in J(i), the agent will remain idle.

Note that the µj in (17) is redundant. This redundancy is a result of the pool-dependence assumption.

However, we choose to explicitly display µj to emphasize the analogy with Mandelbaum and Stolyar’s Gcµ

rule. We let π∗2 := Gcµ.
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Theorem 3.2. (asymptotic optimality of the Gcµ rule for the holding-cost criterion) If, in addition to

the assumptions of Theorem 3.1, the cost function Ci is continuously differentiable and strictly convex with

C ′
i(0) = Ci(0) = 0 for all i, then the Gcµ rule is asymptotically optimal.

We now outline the proof of Theorem 3.2, assuming that Theorem 3.1 has been established. To do so,

we apply the Karush-Kuhn-Tucker (KKT) conditions, which exploit the assumption that the cost functions

be continuously differentiable as well as convex; i.e., differentiable with a continuous derivative. (That

rules out piecewise-linear cost functions.) The convexity implies that the KKT conditions are necessary and

sufficient for an optimal solution. The KKT conditions say that a solution {q∗i (x)} is optimal for the NLP

(11) if and only if there exist functions y(x) and {ηi(x)} satisfying the equations:

C ′
i(q

∗
i (x))− ηi(x) = y(x), i ∈ I,

∑I
i=1 q∗i (x) = x,

q∗i (x) ≥ 0, ηi(x) ≥ 0 i ∈ I,

ηi(x)qi(x) = 0, i ∈ I .

(18)

The function y(x) is the Lagrange multiplier of the constraint
∑

i∈I qi(x) = x.

Moreover, there is a unique solution to these equations if the cost functions are strictly convex. If we

assume in addition that C ′
i(0) = Ci(0) = 0, then all activities receive positive resource for any x > 0,

making ηi(x) = 0 for all i. We combine these observations in the following lemma:

Lemma 3.2. (simple inverse solution) If Ci is continuously differentiable and strictly convex with C ′
i(0) =

Ci(0) = 0 for all i, then there is a unique solution to the KKT equations (18) and the NLP (11), satisfying

q∗i = C ′−1
i (y(x)), x > 0 for all i , (19)

where C ′−1
i is the inverse of C ′

i, with ηi(x) = 0 for all i and y(x) < mini∈I Ci(∞).

Lemma 3.2 will be used to show that QIR and Gcµ are in some sense equivalent. Theorem 3.2 will then

follow from the asymptotic optimality of QIR as stated in Theorem 3.1. The details appear in §4.
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3.3 The Delay-Cost Formulation

We next present the results for the delay-cost criterion. We define two delay-based rules. The first is a

special version of WIR, which in turn is a simple modification of QIR that replaces the individual queue-

length by the waiting time of the customer at the head of the queue. The second rule, is a modification of the

many-server Gcµ rule, which we denote by D-Gcµ rule, following [16]. Toward that end, we let Wh,i(t)

be the accumulated waiting time of the customer at the head of class-i queue at time t. We define the scaled

version Ŵ λ
h,i(t) :=

√
λW λ

h,i(t). Also, we let Aλ
Σ(t) :=

∑
i∈I Aλ

i (t).

Definition 3.4. (the WIR rule)

For the SBR model with pool-dependent service rates, WIR(p, v) is defined from QIR by replacing the

scheduling component p with:

• Upon service completion by a pool-j agent at time t, the agent will next serve the customer from

the head of queue i∗, where

i∗ := i∗(t) ∈ argmax
i∈I(j),Q̂λ

i (t)>0

{
Aλ

i (t)
Aλ

Σ(t)
Ŵ λ

h,i(t)− [X̂λ
Σ(t)]+pi

(
[X̂λ

Σ(t)]+
)}

;

If there are no customers waiting in any of the queues in J(i), the agent will remain idle.

For given ratio functions p and v, we denote the resulting control by WIR(p, v). For x > 0, we let

p∗∗ be an admissible state-dependent ratio function given by p∗∗i (x) := q∗i (x)/x, where for each x > 0,

q∗i (x), i ∈ I, is a solution to the NLP (11) but with the functions Ci(·) replaced by Ca
i (·) := Ci(·/ai),

where, as before, ai := λi/λ. Finally, let π∗3 =WIR(p∗∗, v∗).

Following [16], we restrict attention to the case in which all queues are empty at time t = 0, but

this assumption is removable. However, the fluid-equations corresponding to the hydrodynamic model are

significantly more complicated to analyze in the absence of this condition and we choose to impose it for

simplicity. An alternative, somewhat weaker, sufficient condition is given by

∣∣∣∣∣
Q̂λ

i (0)
ai

− Ŵ λ
h,i(0)

∣∣∣∣∣ ⇒ 0 as λ →∞ for all i ∈ I.

Our notion of asymptotic optimality for the delay-cost criterion is weaker then the one we have used
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in Theorem 3.1, because we will restrict the attention to sequences of controls πλ that are asymptotically

efficient. (We define non-anticipating controls in the next section.)

Definition 3.5. (asymptotically efficient controls) A sequence of non-anticipating controls {πλ} is said to

be asymptotically efficient if

sup
0≤t≤T

Q̂λ
Σ(t) ∧ Îλ

Σ(t) ⇒ 0 as λ →∞ (20)

whenever Q̂λ
Σ(0) ∧ Îλ

Σ(0) ⇒ 0, as λ → ∞. We let Πe be the family of asymptotically efficient control

sequences, i.e. Πe :=
{{πλ} : πλ ∈ Π2, and the limit (20) holds

}
.

Asymptotic efficiency implies that there cannot be a significant number of customers in any queue while

there are idle agents in some of the agent pools. In the terminology of Atar [3], we require asymptotic joint

work conservation; see §2.4 there. The restriction to asymptotically efficient controls is imposed in order

to guarantee that the family {Qλ
Σ(t), λ > 0} is C-tight. The need for C-tightness should not be surpris-

ing given the analysis in both [22] and [16]. Indeed, in both these papers, C-tightness of the sequence of

aggregate workloads plays a crucial role in establishing a lower bound in the delay-cost case. It will also

play this role here; see the proof of Proposition A.1 in the online companion to this paper. However, in the

conventional-heavy-traffic setting the C-tightness need not be imposed, because it is obtained as a conse-

quence of the complete-resource-pooling condition (CRP) which trivially holds in the setting of [22]). The

CRP condition guarantees that any work-conserving policy will asymptotically achieve the same aggregate

workload process. It remains to determine if a similar result holds in the Halfin-Whitt regime; that remains

an open problem. Hence, we restrict attention to asymptotically efficient controls. This seems reasonable

for practical purposes, because asymptotically efficient controls are usually desirable. (We probably would

not want to consider other alternatives.) As in [22], this assumption will play a key role in establishing a

lower bound for the delay-cost. It should be noted that the asymptotic efficiency of QIR and WIR follows

from the corresponding state-space collapse results in Theorem 4.3 below and Theorem A.1 in the online

companion. Consequently, π∗3 ∈ Πe.

Here is our asymptotic optimality result in the delay-cost context:

Theorem 3.3. (asymptotic optimality of WIR for the delay-cost criterion) If Q̂λ
Σ(0) = 0 for all λ and

Îλ
j (0) ⇒ Îj(0) as λ →∞ for all j ∈ J ,
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then

lim sup
λ→∞

Jλ
2 (π∗3, T ) ≤st lim inf

λ→∞
Jλ

2 (πλ, T ) (21)

for any T > 0 and any sequence πλ ∈ Πe. Consequently, π∗3 is asymptotically optimal for the delay-cost

criterion within the family Πe.

Remark 3.5. (the priority-type rule) An analog of condition (14) holds to characterize when WIR reduces

to the priority-type rule, using the new scaled cost functions Ca
i (x) := Ci(x/ai) instead of the original cost

functions Ci. Note that the conditions to reduce to the priority-type rule are not equivalent for QIR and

WIR, because the scaling by the ratios ai changes the derivatives: Ca′
i (x) = C ′

i(x/ai)/ai. Moreover, when

a priority-type rule is optimal for both, as with linear costs, the low-priority class could be different for WIR

and QIR, because the slopes change from ci to ci/ai.

3.4 The D-Gcµ Rule

Definition 3.6. (the many-server D-Gcµ)

For the SBR model with pool-dependent service rates, the D-Gcµ rule is defined from the many-server

Gcµ rule by replacing the scheduling component with:

• Upon service completion by a pool-j agent at time t, the agent will next serve the customer from

the head of queue i∗, where

i∗ := i∗(t) ∈ argmax
i∈I(j),Q̂λ

i (t)>0

C ′
i(Ŵ

λ
h,i(t));

If there are no customers waiting in any of the queues in J(i), the agent will remain idle.

We let π∗4 = D-Gcµ

Remark 3.6. (comparing WIR and D-Gcµ) The D-Gcµ rule has a clear advantage over any form of

WIR, because WIR requires knowledge of the ratios Aλ
i (t)/Aλ

Σ(t), while D-Gcµ does not.

Theorem 3.4. (asymptotic optimality of the D-Gcµ for the delay-cost criterion ) If, in addition to

the assumptions of Theorem 3.3, the cost function Ci is continuous differentiable and strictly convex with

C ′
i(0) = Ci(0) = 0 for all i, then the D-Gcµ rule is asymptotically optimal for the delay-cost criterion

within the family Πe.
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4 Proofs

The line of reasoning we use to establish the asymptotic optimality results can be informally summarized as

follows: First, we show that, with v∗ as defined in (10), QIR(p, v∗) asymptotically minimizes the aggregate

queue length in the system for any admissible ratio function p. Once this is established, it only remains to

show that we can choose p∗ so as to optimally distribute this aggregate queue among the different classes to

minimize the convex holding costs.

To show that QIR with v∗ asymptotically minimizes the aggregate queue length, we show that the

aggregate queue length is bounded from below by a model with multiple agent pools but a single customer

class, known as the inverted-V (or
∧

) model. For the
∧

model, Armony [1] showed that the faster-server-

first (FSF) policy is asymptotically optimal; see Definition 4.2. We will show that with v∗ the SBR model

with QIR is asymptotically equivalent to its lower bound and hence asymptotically optimal with respect to

the aggregate queue length. For the second step, we use the state-space collapse results for QIR established

in [10].

Before proceeding to the actual proofs, we make some definitions and notational conventions to be used

throughout. All the processes in consideration are constructed on a common probability space (Ω,F, P ).

For an integer d > 0, we let Dd := Dd[0,∞) be the space of all RCLL (right-continuous with left limit)

functions with values in the d-dimensional Euclidean space Rd, equipped with the Skorohod J1 metric; e.g.,

see chapter 3 of [24]. We will write Y λ(t) ⇒ Y in Dd to emphasize that we are considering processes in

Dd instead of stationary distributions on R.

Since the limit processes we consider are either the deterministic zero function or diffusion processes,

the limit processes have continuous sample paths, so the notion of convergence on the underlying function

space Dd coincides with uniform convergence on closed bounded intervals. To express that, for a vector-

valued process B(t) in Dd, let ‖B‖∗s,T ; = sups≤t≤T ‖B(t)‖, where ‖B(t)‖ =
∑J

k=1 |Bk(t)|. These are

defined similarly for a process B(t) in Dd×m[0,∞), where now ‖B(t)‖ =
∑d

k=1

∑m
l=1 |Bk,l(t)|.

We will also consider a weaker notion of convergence, using the space Dd− := Dd(0,∞), where the

domain is treated as open at the left instead of closed. We again let convergence (to continuous limits) be

characterized by uniform convergence over bounded intervals. The restriction to the domain (0,∞) means

that we exclude uniform convergence for intervals of the form [0, b]. We have Y λ(t) ⇒ 0 in Dd(0,∞) if

and only if, for each 0 < s < T < ∞, ‖Y λ‖∗s,T ⇒ 0. This weaker notion of convergence is required when
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discussing state-space collapse as it might not hold at t = 0. It will, however, hold on compact subintervals

of (0,∞).

We now formally define the set of admissible policies Π1. While the notion of non-anticipation is

intuitively clear, it requires a careful definition that takes care of measurability issues and allows, for ex-

ample, the application of martingale methods. In defining this concept, we follow Definition 2 in [3].

Toward that end, let Zλ
i,j(t) is the number of pool-j agents giving service to class-i customers at time t.

The number of service completions by pool-j agents of class-i customers in the time interval [0, t] equals

Si,j

(
µj

∫ t
0 Zλ

i,j(s)ds
)

, where Si,j(·), i ∈ I, j ∈ J is a family of independent rate-1 Poisson processes.

For i ∈ I and j ∈ J(i), let Ai,j(t) be the number of class-i customers to be routed upon arrival to pool

j. Similarly, for i ∈ I and j ∈ J (i), let Bi,j(t) be the number of class-i customers scheduled to receive

service from a pool-j agent after having waited in queue, some of which will be served but others remain in

service. We set Ai,j(t) = Bi,j(t) := 0 whenever j /∈ J(i). The system dynamics then satisfy the following

equations:

Zλ
i,j(t) = Zλ

i,j(0) + Aλ
i,j(t) + Bλ

i,j(t)− Si,j

(
µj

∫ t

0
Zλ

i,j(s)ds

)
, (22)

Qλ
i (t) = Qλ

i (0) + Aλ
i (t)−

∑

j∈J
Aλ

i,j(t)−
∑

j∈J
Bλ

i,j(t). (23)

See §4 of [10] for a more detailed discussion of this construction.

We now define two families of σ-fields. The system history up to time t is given by

Ft := σ{Aλ
i (s), Qλ

i (s), Zλ
i,j(s), Si,j(T λ

i,j(t)), A
λ
i,j(s), B

λ
i,j(s); i ∈ I, j ∈ J , s ≤ t}.

We next define future events, starting after the interarrival times in progress at time t are complete. For that

purpose, let τλ
i (t) be the time of the first class-i arrival after time t, i.e. τi(t) = inf{u ≥ t : Aλ

i (u) −
Aλ

i (u−) > 0}. Let T λ
i,j(t) := µj

∫ t
0 Zλ

i,j(s)ds. Then let

Gt := σ{Aλ
i (τλ

i (t) + u)−Aλ
i (τλ

i (t)), Si,j(T λ
i,j(t + u))− Si,j(T λ

i,j(t)); i ∈ I, j ∈ J , u ≥ 0}.

We let Dd
↑ be the subspace of Dd that consists of nondecreasing functions, where for Rd we use the

partial ordering induced by componentwise comparison.
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Definition 4.1. (non-anticipating policies) A policy π is a mapping Ω 7→ D2I×2J
↑ taking ω into

{(Ai,j(t), Bi,j(t); i ∈ I, j ∈ J ), t ≥ 0}(ω)

such that (Zλ
i,j(t), Q

λ
i (t); i ∈ I, j ∈ J , t ≥ 0) satisfies equations (22)-(23). A policy π is said to be

non-anticipating if

(i) for each t ≥ 0, Ft is independent of Gt, and

(ii) for each i ∈ I, j ∈ J and t ≥ 0, the process Si,j(T λ
i,j(t)+ ·)−Si,j(T λ

i,j(t)) is equal in law to Si,j(·).

We let Π1 be the set of non-anticipative policies.

Recall that Π2 is obtained from Π1 by requiring that customers within each class are served FCFS.

Observe that the value of Wh,i(t) is included in the information provided by Ft and consequently both WIR

and D-Gcµ are in Π2.

4.1 The
∧

Model and the FSF Policy

SBR -Model

1 2 3 = 1+ 2+ 3

Figure 2: An SBR model and its corresponding
∧

model

Some of the asymptotic optimality results in our previous paper [9] relied heavily on the fact that the

M/M/N model served, in some sense, as a lower bound for the SBR system with a common service rate µ.

The model with a single customer class and multiple agent pools, known also as the inverted-V model (or
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∧
) model will serve as a corresponding lower bound for the SBR system here with pool-dependent service

rates. More precisely, the optimally controlled
∧

model will serve as our lower bound.

In order to present our stochastic ordering results, we let SBR(I,
−→
λ ,J , E, N, µ) denote an SBR system

with a set I of customer classes, arrival-rate vector
−→
λ = (λ1, . . . , λI), a set J of agent pools, a routing

graph E, staffing vector N and pool-dependent service rates given by the vector µ = (µ1, . . . , µj). The

corresponding
∧

model is denoted by
∧

(λ,J , N, µ) and stands for an inverted-V model with arrival rate

λ =
∑

i∈I λi, a set J of agent pools with staffing vector N and service-rate vector µ. The set of admissible

policies for the
∧

model is the set of non-anticipating policies. Since the
∧

model is a special case of the

SBR model, we may use Definition 4.1 to define this set of policies. An example of an SBR system and its

corresponding
∧

model is given in Figure 2.

We will abbreviate and use SBR and
∧

when the data (I, λ,J , E, N, µ) is clear from the context. The

following result holds for each λ so the superscript is omitted from the notation. Given admissible controls

π1 and π2 for the SBR and
∧

model, respectively, we let Zπ1
j,SBR(t) and Zπ2

j,
V(t) be the corresponding

number of busy agents in agent pool j in each of the systems under their respective controls. Similarly, we

let Qπ1
Σ,SBR(t) and Qπ2

Σ,
V(t) be the corresponding aggregate queue length processes. Here, the subscript Σ

is used also for the
∧

model only for purposes of notational consistency and the reader is reminded that the
∧

model has only a single queue. We add a superscript to explicitly express the dependence on the control.

Lemma 4.1. (the
∧

model as a lower bound) Fix the data (I,J , E,N,
−→
λ , µ). Assume that

(Zj,SBR(0), QΣ,SBR(0); j ∈ J ) = (Zj,
V(0), QΣ,

V(0)s; j ∈ J ).

Then, given any admissible policy π1 for the SBR system, there exists an admissible policy π2 for the
∧

and

a construction of the sample paths such that almost surely

{Qπ1
Σ,SBR(t), t ≥ 0} = {Qπ2

Σ,
V(t), t ≥ 0}.

Consequently,

{Qπ1
Σ,SBR(t), t ≥ 0} d= {Qπ2

Σ,
V(t), t ≥ 0}.

The proof of Lemma 4.1 follows a very simple coupling argument based on the observation that any

customer assignment that can be made in the SBR system also can be made in the corresponding
∧

system.
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The complete formal argument is omitted. We now define the faster-server-first (FSF) policy proposed in

Armony [1].

Definition 4.2. (the FSF control for the
∧

model) The FSF control is defined as follows:

• Upon customer arrival: A customer that arrives at time t ≥ 0 will be routed to the fastest available

server, i.e, to agent pool j with

j ∈ argmax
k∈J :Iλ

k (t)>0

µk.

If all agents are busy the customer will remain in queue.

• Upon service completion: An agent that completes service will serve next a customer from the queue.

If the queue is empty the server will idle.

We now let Xλ
Σ,
V(t) be the aggregate number of customers in the

∧
model and let the scaled process be

X̂λ
Σ,
V(t) := (Xλ

Σ,
V(t)−Nλ

Σ)/
√

λ. Finally, let π∗V := FSF . The set of admissible policies for the
∧

model

is the set of non-anticipating policies, as defined in Definition 4.1. That is appropriate since the
∧

model is

a special case of an SBR model.

Theorem 4.1. (asymptotic optimality of FSF for the
∧

model) Fix any family of admissible policies

{πλ, λ > 0} for the
∧

model. Suppose that

X̂λ
Σ,
V(0) ⇒ X̂Σ,

V(0) in R as λ →∞.

Then, for each T > 0 and continuous nondecreasing function g,

lim inf
λ→∞

∫ T

0
g

(
Q̂λ,πλ

Σ,
V (t)

)
dt ≥st lim sup

λ→∞

∫ T

0
g

(
Q̂

λ,π∗V

Σ,
V (t)

)
dt.

Before proceeding with the proof of Theorem 4.1, we state a corollary that follows directly from Theo-

rem 4.1 and Lemma 4.1.

Corollary 4.2. (a lower bound for the SBR system) For any family of admissible policies {πλ, λ > 0}
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for the SBR system and continuous nondecreasing function g,

lim inf
λ→∞

∫ T

0
g

(
Q̂λ,πλ

Σ,SBR(t)
)

dt ≥st lim sup
λ→∞

∫ T

0
g

(
Q̂

λ,π∗V

Σ,
V (t)

)
dt,

for each T ≥ 0.

Proof of Theorem 4.1: Theorem 4.1 follows from Armony [1], but the result is not stated as such in her

paper. Thus we sketch how the different results in [1] paper can be combined. We assume familiarity with

[1].

First, fix λ. Lemma 3.1 of [1] then establishes that there exists a sample-path construction such that a

preemptive version of FSF (FSFP ) minimizes pathwise the aggregate number of customers in system. Since

FSFP is a work-conserving policy minimizing the aggregate number of customers also minimizes the queue

length. Returning to the sequence of scaled processes, we have then that the sequence of
∧

models operated

under FSFP constitutes an asymptotic lower bound in terms of the queue-length in the system.

By Proposition 4.2 and Remark 4.7 in [1], the sequence of
∧

models operated under FSF has the same

diffusion limit as the sequence operated under FSFP . Consequently, the lower bound is asymptotically

achieved and the result holds.

To complete the proof, we observe that, while [1] assumes Poisson arrivals, the results that we used

above are easily extended to renewal arrivals. Indeed, Lemma 3.1 of [1] is a sample-path argument that does

not use the Poisson structure of the arrivals, so it holds for any arrival process. Proposition 4.2 in [1] relies

on two results. The first is the state-space collapse result, Proposition 4.1 there, that can be easily extended

to renewal-arrivals; see Remark 4.1 below. The second step is an FCLT result, Proposition 4.2, that is proved

through a martingale decomposition approach. Using the FCLT for renewal processes, it is readily verified

that Proposition 4.2 and Remark 4.7 remain valid (with appropriate change of the infinitesimal variance

term) for renewal processes; see Theorem 7.6 of [17] for an illustrative example. ¥

We now show that QIR with appropriately chosen parameters achieves asymptotically the same aggre-

gate number of customers as the optimally controlled
∧

model. Recall that v∗ is the non-state-dependent

ratio function given by v∗ ≡ (0, 0, . . . , 1). For the following, recall that π∗V is the FSF policy for the
∧

model.

Proposition 4.1. (asymptotic equivalence with the
∧

model) Fix any ratio function p and let π̃ :=
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QIR(p, v∗). If X̂λ
Σ(0) = X̂λ

Σ,
V(0) for all λ and

X̂λ
Σ(0) ⇒ X̂Σ(0) in R as λ →∞,

then both

X̂λ,π̃
Σ,SBR(t) ⇒ X̂Σ(t) in D as λ →∞ (24)

and

X̂
λ,π∗V

Σ,
V (t) ⇒ X̂Σ(t) in D as λ →∞, (25)

where X̂Σ(t) is the unique solution to the following one-dimensional SDE:

X̂Σ(t) = X̂Σ(0)− βt + µJ

∫ t

0
[X̂Σ(s)]−ds +

√
1 + c2

aB(t), (26)

with {B(t), t ≥ 0} being a standard Brownian motion and c2
a =

∑
i∈I c2

a,i.

Proof: Equation (24) follows from Theorem 5.1 in [10] by setting θi = 0 for all i ∈ I and replacing the

Poisson arrivals with the renewal arrivals; see Remark 4.1 below. It is easy to see that equation (128) in [10]

remains valid provided that θi = 0 for all i ∈ I. Equation (25) follows from Proposition 4.2 in Armony

[1] with the appropriate replacement of scaling (by
√

Nλ rather then
√

λ), and after replacing the Poisson

arrival process with the renewal process. ¥

The implication of Proposition 4.1 is that QIR asymptotically achieves the lower bound given by the
∧

model provided that the ratio function v∗ is used for the routing component. Consequently, QIR minimizes

the aggregate number of customers in the system as well as the aggregate queue length. This aggregate-

queue-length optimality replaces the invariance phenomenon in [16].

In the next two subsections we will focus mainly on the general SBR model (rather then the
∧

model).

Hence, we omit the subscript SBR from all notation. We will explicitly use the subscript
∧

when referring

to the inverted-V model.

4.2 Asymptotic Optimality for the Holding-Cost Formulation

The following is a direct consequence of Theorem 3.1 in [10].

Theorem 4.3. (state-space collapse under QIR with pool-dependent rates)

26



If (X̂λ(0), Ẑλ(0)) ⇒ (X̂(0), Ẑλ(0)) in RI+I·J , then we have state-space collapse:

Q̂λ
i (t)− Q̂λ

Σ(t)pi

(
Q̂λ

Σ(t)
)
⇒ 0 in D− as λ →∞, i ∈ I, (27)

and

Îλ
j (t)− Îλ

Σ(t)vj

(
Îλ
Σ(t)

)
⇒ 0 in D− as λ →∞, j ∈ J . (28)

The convergence in (27) and (28) is strengthened to convergence in D if we assume that

Q̂λ
i (0)− Q̂λ

Σ(0)pi

(
Q̂λ

Σ(0)
)
⇒ 0, i ∈ I, and Îλ

j (0)− Îλ
Σ(0)vj

(
Îλ
Σ(0)

)
⇒ 0, j ∈ J . (29)

Remark 4.1. (relaxing the Poisson-arrival assumption in [10]) Theorem 3.1 in [10] was proved under

the assumption of Poisson arrivals, but the proof is easily changed to allow for renewal arrival processes.

For that purpose, Lemma 4.3 in [10] needs to be slightly changed to take care of renewal arrivals. That can

be done along the lines of Proposition 6.1 in [6]. We omit the details here.

Before we proceed we state a lemma that will be used in the Proof of Theorem 3.1. It allow us to

conclude convergence of integrals starting from 0 despite the fact that state-space collapse holds only in

D−. This lemma appears as Proposition 5.2 in [10] and is proved there.

Lemma 4.2. Fix T > 0. Let fi : R 7→ R be continuous functions for all i ∈ I. Then, under the conditions

of Proposition 4.1,

(∫ T

0
f1

(
Q̂λ

i (t)
)

dt, . . . ,

∫ T

0
fI

(
Q̂λ

i (t)
)

dt

)
⇒

(∫ T

0
f1

(
[X̂Σ(t)]+pi([X̂Σ(t)]+)

)
dt, . . . ,

∫ T

0
fI

(
[X̂Σ(t)]+pi([X̂Σ(t)]+)

)
dt

)
in RI as λ →∞, (30)

where X̂Σ(t) is the diffusion process from Proposition 4.1

Proof of Theorem 3.1: Start by fixing a family {πλ, λ > 0} of admissible policies, i.e. πλ ∈ Π1 for all

λ > 0. Then, by the definition of q∗i (x), we have that

I∑

i=1

Ci

(
Q̂λ,πλ

i (t)
)
≥

I∑

i=1

Ci

(
q∗i (Q̂

λ,πλ

Σ (t))
)

, (31)
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for all λ and t ≥ 0. In particular, by Lemma 4.1, there exists an admissible policy π̃λ for the
∧

model so

that

inf
πλ∈Π1

Jλ
1 (πλ) ≥ inf

πλ∈Π1

∫ T

0

∑

i∈I
Ci

(
q∗i (Q̂

λ,πλ

Σ (t))
)

dt ≥st

∫ T

0

∑

i∈I
Ci

(
q∗i (Q̂

λ,π̃λV (t))
)

dt, (32)

where, Q̂λ,π̃λ

∧ (t) is the queue length at time t in the corresponding
∧

model with initial scaled queue length

Q̂λ
Σ(0), initial scaled idleness vector Îλ(0) and operated under a control π̃λ ∈ Π̃λ. By Theorem 4.1,

lim inf
λ→∞

∫ T

0

∑

i∈I
Ci

(
q∗i (Q̂

λ,π̃λV (t))
)

dt ≥st lim sup
λ→∞

∫ T

0

∑

i∈I
Ci

(
q∗i (Q̂

λ,π∗VV (t))
)

dt. (33)

Applying Lemma 4.2 to the right hand side (observe that this can be done as the
∧

model is just a special

case of an SBR system), we have that

lim inf
λ→∞

∫ T

0

∑

i∈I
Ci

(
q∗i (Q̂

λ,π̃λV (t))
)

dt ≥st

∫ T

0

∑

i∈I
Ci

(
q∗i ([X̂Σ(t)]+)

)
dt, (34)

where X̂Σ(t) is the limit process in equation (26). Consequently,

lim sup
λ→∞

inf
πλ∈Π1

Jλ
1 (πλ) ≥st

∫ T

0

∑

i∈I
Ci

(
qi([X̂Σ(t)]+)

)
dt. (35)

Having established an asymptotic lower bound, it only remains to show that this lower bound is asymp-

totically achieved by π∗1 =QIR(p∗, v∗). Indeed, by Lemma 4.2

∫ T

0

∑

i∈I
Ci

(
Q̂

λ,π∗1
i (t)

)
dt ⇒

∫ T

0

∑

i∈I
Ci

(
qi([X̂Σ(t)]+)

)
dt, as λ →∞. (36)

Consequently, fixing any family π′λ of admissible controls, we have that

lim sup
λ→∞

Jλ
1 (π∗λ) ≤st lim sup

λ→∞
Jλ

1 (π′λ), (37)

which establishes the asymptotic optimality of π∗1 . ¥
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Proof of Theorem 3.2: By Lemma 3.2, the optimal ratio function p∗ is given by p∗i (x) := C ′
i
−1(y(x))/x

for all x > 0. In particular, QIR(p∗, v∗) chooses to serve next a class-i customer with

i ∈ argmax
k∈I(j):Qk(t)>0

Q̂λ
k(t)− C ′

k
−1

(
y([X̂λ

Σ(t)]+)
)

.

The result now follows from Remark 2.2 in [10]. Specifically, the same asymptotic cost, as given by
∑

i∈I Ci

(
qi([X̂Σ(t)]+)

)
dt, is achieved by any control that assigns to an available agent a customer from

the set

U+ :=
{

k ∈ I(j) : Q̂λ
k(t) > 0 : Q̂λ

k(t) > C ′
k
−1

(
y([X̂λ

Σ(t)]+)
)}

.

As C ′
i
−1 is a strictly increasing function we also have that

U+ =
{

k ∈ I(j) : Q̂λ
k(t) > 0 : C ′

k(Q̂
λ
k(t)) > y([X̂λ

Σ(t)]+)
}

,

Applying Remark 2.2 in [10] once again, we have that the same performance analysis is achieved by any

control that assigns an available agent to a customer from class i with

i ∈ argmax
k∈I(j):Qk(t)>0

C ′
k(Q̂

λ
k(t))− y([X̂λ

Σ(t)]+).

This, in turn, is equivalent to choosing

i ∈ argmax
k∈I(j):Qk(t)>0

C ′
k(Q̂

λ
k(t)),

which is precisely the Gcµ rule.

Remark 4.2. (proofs of Theorems 3.3 and 3.4) The proof of Theorem 3.3 mostly follows the proof of

Theorem 3.1 above. However, it requires some additional side results. These, as well as the proof of

Theorem 3.4, are given in the online companion to this paper.

5 Conclusions and Directions for Future Research

In this paper we have established asymptotic optimality in the many-server heavy-traffic regime of special

versions of the QIR and WIR rules for minimizing convex holding costs in many-server systems with multi-
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ple customer classes and agent pools, and pool-dependent service rates. We have shown that simple elegant

policies arise under extra regularity conditions. For strictly convex holding and delay costs (plus other regu-

larity conditions), the scheduling components of our asymptotically optimal policies reduce to the Gcµ and

D-Gcµ rules, respectively.

Consequently, our results extend the conventional-heavy-traffic results of Mandelbaum and Stolyar [16]

to the Halfin-Whitt regime. However, this extension is only partial since we had to restrict attention to

pool-dependent service rates.

The diffusion limits we obtain under QIR and Gcµ are identical to those obtained by solving the HJB

equations in Atar [3] when imposing the additional assumption of pool-dependent service rates. The solution

of the diffusion control problem, however, leaves the question of finding the asymptotically optimal controls

open. We make an important step forward in identifying simple asymptotically optimal controls (QIR and

Gcµ). The asymptotic optimality of QIR can not be deduced from [3], except for some very limited cases–

we refer the reader to [10] where cases in which QIR is almost equivalent to Atar’s control are identified.

It remains to be determined if simple elegant controls are asymptotically optimal with more general ser-

vice rates. Limitations on what can be achieved follow from the previous work of Harrison and Zeevi [14]

and Atar [3]. Harrison and Zeevi provide an example where a complicated bang-bang control is asymptot-

ically optimal for the V model with linear holding costs. Atar [3] relates the asymptotic optimality to the

optimal solution of a related Brownian control problem, which in most cases results in a complex solution.

While these examples and others are discouraging, there may well exist interesting subclasses of models

with elegant asymptotically optimal solutions.

It also remains to identify the class of all asymptotically optimal solutions. To what extent is that class

large or small? It also remains to investigate how the asymptotically optimal policies perform for actual

systems at typical loads.
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Online companion for:

Scheduling Flexible Servers with Convex Delay Costs In Many-Server
Service Systems

Itay Gurvich∗ Ward Whitt†

A Proofs of Asymptotic Optimality for the Delay-Cost Formulation

In this appendix we provide the proofs of Theorems 3.3 and 3.4 in the paper. We start by proving that

asymptotic efficiency (see Definition 3.5) implies the stochastic boundedness and C-tightness of Q̂λ
Σ(t). A

family {xλ, λ > 0} of processes in Dd[0, T ] is said to be stochastically bounded if

lim
k→∞

lim sup
λ→∞

P{‖xr‖T > k} = 0.

It is said to be tight if every subsequence with λk → ∞ contains a convergent subsequence and C-tight if

the limit of each such subsequence is continuous. We refer the reader to §5 of [17] for a detailed discussion

of these concepts.

Lemma A.1. (stochastic boundedness and C-tightness) For any family {πλ, λ > 0} ∈ Πe, the corre-

sponding family {Q̂λ
Σ(t), t ≥ 0} is stochastically bounded and C-tight.

Proof: By equation (52) of [10], we can write

X̂λ
Σ(t) = X̂λ

Σ(0)− βt +
∑

j∈J
µj

∫ t

0
Îλ
j (s)ds + M̂λ

Σ(t) + o(1) as λ →∞, (A1)

where M̂λ
Σ(t) is the square integrable Martingale defined prior to (52) in [10] for each λ. Consequently,

|X̂λ
Σ(t)| ≤ |β|t + µ1

∫ t

0
Îλ
Σ(s)ds + |M̂λ

Σ(t)|.

∗Columbia Business School, 4I Uris Hall, 3022 Broadway, NY, NY 10027. (ig2126@columbia.edu)
†IEOR Department, Columbia University, 304 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027-6699.

(ww2040@columbia.edu)
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By the asymptotic efficiency assumption, ‖Îλ
Σ − [X̂λ

Σ]−‖T ⇒ 0 as λ →∞, so that

|X̂λ
Σ(t)| ≤ |β|t + µ1

∫ t

0
|X̂λ

Σ(s)|ds + |M̂λ
Σ(t)|+ o(1) as λ →∞.

Since M̂λ
Σ(t) is C-tight - see the proof of Lemma 4.2 in [10]) - it is also stochastically bounded. Hence we

can apply Gronwall’s inequality to deduce that the family X̂λ
Σ(t) is stochastically bounded.

To establish C-tightness, we use (A1) to write

X̂λ
Σ(t)− X̂λ

Σ(s) = −β(t− s) +
∑

j∈J
µj

∫ t

s
Îλ
j (h)dh + M̂λ

Σ(t)− M̂λ
Σ(s) + o(1) as λ →∞

and, consequently,

|X̂λ
Σ(t)−X̂λ

Σ(s)| ≤ |β|(t−s)+µ1(t−s)‖X̂λ
Σ‖T +µ1

∫ t−s

0
|X̂λ

Σ(s+h)−X̂λ
Σ(s)|dh+|M̂λ

Σ(t)−M̂λ
Σ(s)|+o(1).

C-tightness now follows from the stochastic boundedness of X̂λ
Σ(t) and the C-tightness of M̂λ

Σ(t) through

an application of Gronwall’s inequality, just as in the proof of Lemma 4.2 in [10].

We have thus proved that the family X̂λ
Σ(t) is stochastically bounded and C-tight under the asymptotic

efficiency condition. To complete the proof, we apply the assumed asymptotic efficiency to deduce that

Q̂λ
Σ(t)− Q̂λ

Σ(s) = [X̂λ
Σ(t)]+ − [X̂λ

Σ(s)]+ + o(1) as λ →∞.

Consequently, the C-tightness and stochastic boundedness of X̂λ
Σ(t) imply these properties for Q̂λ

Σ(t). ¥

We turn now to the statement of the state-space collapse result for WIR.

Theorem A.1. (state-space collapse under WIR with pool-dependent rates)

If (X̂λ(0), Ẑλ(0)) ⇒ (X̂(0), Ẑλ(0)) in RI+I·J and Q̂λ
Σ(0) = 0 for all λ, then we have state-space

collapse:

Q̂λ
i (t)− Q̂λ

Σ(t)pi

(
Q̂λ

Σ(t)
)
⇒ 0 in D as λ →∞, i ∈ I, (A2)

and

Îλ
j (t)− Îλ

Σ(t)vj

(
Îλ
Σ(t)

)
⇒ 0 in D as λ →∞, j ∈ J . (A3)
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In addition, we have

aiŴ
λ
h,i(t)− Q̂λ

i (t) ⇒ 0 in D as λ →∞, i ∈ I. (A4)

Proof: We outline the changes that should be made to the proof of Theorem 4.3 to accommodate the special

features of WIR. Theorem 4.3 itself is proved in §4.3 of [10], as a special case of Theorem 3.1 there. We

will be making frequent references to that section.

First, the definition of the stopping time σλ in equation (54) of [10] should be changed to

σλ := inf{t ≥ 0|B̂λ(t) ≥ 2B̂λ(0) ∨ 1} ∧ σ̃λ,

where

σ̃λ = inf{t ≥ 0 : max
i∈I

|Q̂λ
i (t)− aiŴ

λ
h,i(t)| ≥ ελ},

with ελ → 0 as λ →∞ sufficiently slow (to be precisely defined towards the end of the proof).

Then, the hydrodynamic model equations, (77)-(86) of [10], are augmented by the additional equation

W̃h,i(t) = Q̃i(t)/ai.

The proof of state-space collapse now follows identically the proof of Theorem 4.3 with the exception of

Lemma 4.6 in [10], which should be slightly changed to take care of the new definition of the stopping time

σλ. Specifically, we add the following argument to the proof of Lemma 4.6: First, we claim that, since

state-space collapse holds on [0, T λ] and since Q̂λ
Σ(0) = 0 by assumption, the C-tightness of the sequence

Q̂λ(· ∧ T λ) = (Q̂λ
1(· ∧ T λ), . . . , Q̂λ

I (· ∧ T λ)) follows from that of Q̂λ
Σ(t), which was proved in Lemma

A.1. Indeed, by state-space collapse Q̂λ
i (t ∧ T λ) ≈ Q̂λ

Σ(t ∧ T λ)pi

(
Q̂λ

Σ(t ∧ T λ)
)

with pi(·) being a locally

Hölder continuous function. Consequently, the tightness of Q̂λ
Σ(t) implies that of Q̂λ

i (t).

Now let W λ
i (t) be the virtual waiting time of class-i at time t in the λth system and Ŵ λ

i (t) =
√

λW λ
i (t).

Note that Ŵ λ
i (t) is not necessarily equal to Ŵ λ

h,i(t) as the latter refers to the cumulative waiting time of the

customer at the head of the line. Having the C-tightness of Q̂λ
i (· ∧ T λ), we can apply the corollary in

3



Puhalskii [19] to establish the joint convergence

(
Q̂λ

i (t ∧ T λ)
ai

, Ŵ λ
i (t ∧ T λ); i ∈ I

)
⇒

(
Q̂i(t), Q̂i(t)/ai; i ∈ I

)
in D2I as λ →∞,

where Ŵi(t) = Q̂i(t)/ai; see e.g. Lemma A.2 of Puhalskii and Reiman [20]. The convergence of Ŵ λ
i (t)

implies that the family {Ŵ λ
i (t)} is also stochastically bounded.

Since, by definition,

Ŵ λ
h,i(t) = Ŵi(t−W λ

h,i(t)), (A5)

we have that Ŵ λ
h,i(t) is itself stochastically bounded and the unscaled process W λ

h,i(t) satisfies

W λ
h,i(t ∧ T λ) ⇒ 0 in D as λ →∞.

We can then apply the Random-Time-Change Theorem to equation (A5) to have the joint convergence

(
Q̂λ

i (t ∧ T λ)
ai

, Ŵ λ
h,i(t ∧ T λ); i ∈ I)

)
⇒

(
Q̂i(t)

ai
,
Q̂i(t)

ai

)
in D2I as λ →∞.

By Theorem 11.4.8 in [24] and the continuity of the limit, we then have

max
i∈I

‖Q̂λ
i − aiŴ

λ
h,i‖T λ ⇒ 0 in R as λ →∞,

so that

P

{
max
i∈I

‖Q̂λ
i − aiŴ

λ
h,i‖T λ > ελ

}
→ 0 as λ →∞

as long as {ελ} is such that ελ → 0 sufficiently slowly. Consequently, we have that σ̃λ → ∞. The rest of

the proof follows Lemma 4.6 in [10], allowing us to conclude that σλ → ∞. Hence the adaptation of the

proof of Theorem 4.3 for WIR is complete. ¥

It remains to relate the proof of Theorem 3.3 to that of Theorem 3.1. That is accomplished in the

following proposition, which states that both cost criteria share essentially the same lower bound. For the

following, we say that a family {bλ} is oλ
P (1) if bλ ⇒ 0 as λ →∞.

4



Proposition A.1. If {πλ} ∈ Πe is a sequence of admissible policies, then

Jλ
2 (πλ, T ) ≥

∫ T

0
Ca

i

(
q∗i (Q̂

λ,πλ

Σ (t))
)

dt + oλ
P (1) as λ →∞,

where Ca
i (·) := Ci(·/ai) for all i ∈ I.

Proof: The proof builds on the proof of Proposition 6 in Van Meighem [22]. Since there are some dif-

ferences, we give a detailed proof. Since the family Q̂λ
Σ(t) is C-tight by Lemma A.1, we can choose a

convergent subsequence {Q̂λk

Σ (t), k ∈ N} with λk → ∞ whose limit is continuous. We will show that the

result of the Proposition holds for every convergent subsequence and consequently for the whole sequence.

For simplicity of presentation, we assume that {λk} is the whole family; the reader should remember that

the proof applies to the subsequence.

Denote the limit by Q̂Σ(t). Together with the Functional Strong Law of Large Numbers (FSLLN), we

have the joint convergence

(
Aλ

1(t)
λ

, . . . ,
Aλ

I (t)
λ

, Q̂λ
Σ(t)

)
⇒ (a1t, . . . , aIt, Q̂Σ(t)) in DI+1 as λ →∞ . (A6)

Since the space D with the J1 topology is separable (see §11.5 of [24]), we can use the Skorohod repre-

sentation Theorem, Theorem 3.2.2 in [24], to construct all the processes on an alternative probability space

(Ω̃, F̃, P̃ ) such that the convergence holds for almost every ω ∈ Ω̃. We henceforth fix such a realization ω.

We consider the sequence {tk, k ≥ 0} of stopping times defined recursively as follows:

tk+1 = min{T, inf{tk < t ≤ T : |Q̂Σ(t)− Q̂Σ(tk)| ≥ ε}},

where t0 = 0. Fix ω ∈ Ω. Note that since Q̂Σ(t) is continuous on the compact interval [0, T ] we have that

there exists δ > 0 such that

inf
i

(tk+1 − tk) > δ. (A7)

By Jensen’s inequality,

Jλ
2 (πλ, T ) =

∑
i∈I

1
Aλ

i (t)

∑
k

∫ tk+1

tk
Ci(Ŵ λ

i (s))dAλ
i (s)

≥ ∑
i∈I

∑
k

[
1

Aλ
i (t)

[Aλ
i (tk+1)−Aλ

i (tk)]× Ci

(
[Aλ

i (tk+1)−Aλ
i (tk)]−1

∫ tk+1

tk
Ŵ λ

i (s)dAλ
i (s)

)]

5



Since (A6) holds almost surely on Ω̃ and by our choice of the realization ω, we have that

[Aλ
i (tk+1)−Aλ

i (tk)]/λ = ai(tk+1 − tk) + oλ(1) as λ →∞ ,

where the approximation is uniform on [0, T ]. Thus,

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
[(tk+1 − tk) + oλ(1)]× Ci

(
[λ(tk+1 − tk + oλ(1))]−1

∫ tk+1

tk

Ŵ λ
i (s)dAλ

i (s)
)]

.

(A8)

We now use Proposition 4 of [22], which - with the appropriate modification to our setting - states the

following: Fix 0 ≤ a < b ≤ T , then

1
λi(b− a)

∫ b

a
Ŵ λ

i (s)dAλ
i (s)− 1

b− a

∫ b

a
Q̂λ

i (s)ds → 0, as λ →∞,

with the convergence holding almost surely. The proof of this result is identical to the proof in [22], so it is

omitted. Using (A7) and recalling that ai := λi/λ, we have

[λ(tk+1 − tk + oλ(1))]−1

∫ tk+1

tk

Ŵ λ
i (s)dAλ

i (s)− 1
ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s) → 0 as λ →∞.

Plugging this back into (A8), we then have

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
[(tk+1 − tk) + oλ(1)]× Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s) + oλ(1)

)]
. (A9)

Since Q̂λ
i (t) ≤ Q̂λ

Σ(t) and Q̂λ
Σ(t) is bounded by its continuity on [0, T ], we have that Q̂λ

i (t) is bounded. The

continuity of Ci, then implies that (A9) can be written as

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
(tk+1 − tk)× Ci

(
1
ai

∫ tk+1

tk

Q̂λ
i (s)d(s)

)]
+ oλ(1) as λ →∞.

The C-tightness of Q̂λ
Σ(t) now implies that

Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s)

)
≥ Ca

i

(
q∗i (Q̂

λ
Σ(tk))

)
+ oλ(1) + O(ε), (A10)

where Ca
i := Ci(·/ai) and {q∗i (x), i ∈ I} is the optimal solution for (11) with the cost functions Ca

i

6



replacing Ci. Finally, O(ε) → 0 as ε → 0. To establish (A10), note that

Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

Q̂λ
i (s)d(s)

)
≥ Ci

(
1

ai(tk+1 − tk)

∫ tk+1

tk

q̃λ
i (s)

)
,

where q̃λ
i (s) is a solution to

minimize
∑

i∈I Ci

(
1

ai(tk+1−tk)

∫ tk+1

tk
qλ
i (s)ds

)
,

s.t.
∑

i∈I qλ
i (s) = Q̂λ

Σ(s), s ∈ [tk, tk+1],

qλ
i (s) ≥ 0, i ∈ I, s ∈ [tk, tk+1].

However, the C-tightness of Q̂λ
Σ(t) and the definition of the stopping times tk implies that, for all λ large

enough, |Q̂λ
Σ(s)− Q̂λ

Σ(tk)| ≤ 2ε for all s ∈ [tk, tk+1] so that (A10) follows from the continuity of Ci.

Consequently,

Jλ
2 (πλ, T ) ≥

∑

i∈I

∑

k

[
(tk+1 − tk)× Ca

i

(
q∗i (Q̂

λ
Σ(tk))

)]
+ oλ(1) + O(ε).

Since ε was arbitrary we may invoke the definition of the Rieman integral to obtain the result for almost

every ω ∈ Ω̃. Translating this back into the original probability space yields the claimed statement. ¥

Proof of Theorem 3.4: Using Proposition A.1 and the state-space collapse result in Theorem A.1, the

proof now follows exactly as the proof of Theorem 3.1 with the exception of the oλ
P (1) term - whose treat-

ment is trivial - and the replacement of Π1 by Πe. ¥
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