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We construct G /G /1/k queueing models that fail to have anticipated monotonicity
properties with respect to the capacity k. In one model the long-run average number of
customers in the system is arbitrarily close to the capacity k, but it decreases to an
arbitratly small value when the capacity is increased. In another model the throughput is
arbitrarily close to the arrival rate when the capacity is &, but the throughput decreases to
an arbitrarily small value when the capacity is increased. These examples involving non i.i.d.
service times, which are associated with external arrivals instead of being assigned when
service begins, show that stochastic assumptions and arguments involving more than direct

- sample-path comparisons are essential for obtaining useful bounds and positive comparison
results. : :
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1. Imtroduction

Consider a G/G /s/k queue having s servers, £ — s extra waiting spaces, the
first-come first-served (FCFS) service discipline, a stationary arrival process and
a stationary sequence of service times independent of the arrival process. Let
successive service times be associated with successive (external) arrivals. Let
arrivals finding the waiting space full be blocked (lost) without affecting future
arrivals. In such systems we usually expect the throughput and the long-run
average queue length (number in system) to increase with the capacity k. This is

illustrated by the explicit formulas available for the M /M /s/k and M/GI/1/k

special cases; see Keilson {3] and p. 306 of Tijms [7] for M/GI/1/k and
Miyazawa [4] for extensions involving batches. Positive stochastic comparison
results have also been established for cases in which explicit solutions are not
available. In particular, theorem 1 of Sonderman [5] shows that number of
departures in the interval [0, ¢] is stochastically increasing in k for each ¢ when
the service times are ii.d., so that the throughput (the long-run average
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departure rate) is indeed increasing in & under this condition; see Tsoucas and
Walrand [8] for extensions to networks. Having i.i.d. service times permits
assigning successive service times to customers when they start service, instead
of in order of arrival, without aitering the distribution of the queueing processes.
When service times are assigned in order of service initiation, positive sample-
path comparisons can be made, as shown by the proof of theorem 1 of
Sonderman [5] (and a forthcoming paper by the author and A.W. Berger).
Moreover, theorem 1 of Sonderman [6] and theorems 7 and 10 of Whitt [9]
establish stochastic comparisons for the queue lengths that imply the ordering
for the long-run average queue length with i.i.d. exponential service times.

However, in general, the throughput and the long-run average queue length
are not always increasing with k. The purpose of this paper is to give examples.
These examples involving non-i.i.d. service times are interesting, because they
show that simple sample-path arguments will not work in this case; i.e., the
stochastic assumptions underlying positive results play a crucial role. The
examples are also interesting because these performance measures are typically
difficult to compute.

The first example in section 2 has the long-run average queue length with
capacity & be k, while the long-run average queue length with capacity m >k is
arbitrarily small. The idea is relatively simple. Some customers have very long
service times and others have very short service times. The k-capacity system is
almost always filled with the customers having long service times, whereas the
m-capacity system eventually has only customers with short service times, who
produce just enough congestion to eventually block all the customers with long
service times.

The second example in section 4 has arrival rate 1 and throughputs arbitrarily
close to 1 in the k-capacity system but arbitrarily close to 0 in the m-capacity
system. The example in section 2 has these throughputs reversed. It is significant
-that any throughput between 0 and the arrival rate is possible; i.e., without extra
conditions, there are no crude bounds which restrict the range of possible
throughput values. Moreover, the throughput at one capacity does not restrict
the range of possible throughputs at another capacity.

The example in section 2 here corrects example 4.1 in Heyman and Whitt [2],
which correctly shows that the queue lengths are not ordered for all ¢, but fails
to correctly show that the long-run average queue lengths need not be ordered
in the anticipated way. The comparison here also applies to arbitrary & and m
and yields a more striking comparison. The queue length was not correctly
calculated for the D/A4/1/2 model there. (The queue length there should be
X ()=0for6k+1+e<t<6k+2and6k+6+2e<t<6k+6+1, X,(¢)=
2for 6k +3 <t <6k+4+e€and 6k+5<t<6k+6+e,for k>0, with X,(r)
=1 elsewhere. As given, the example shows that we do not have X () <X,(¢)
for all ¢ (which was the main point in [2]). However, the long run averages there
are X, =1<1+(5¢/6) =X,.)
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The examples we construct in sections 2 and 4 are deterministic, but they are
easily converted into models in the stationary stochastic process framework of
Franken, Konig, Arndt and Schmidt {1], as we show in section 3. Moreover, the
gueue-length process can be made regenerative and aperiodic, so that the queue
length converges in distribution as ¢ — «, while keeping the essential character
of the deterministic examples.

2. A deterministic example for average queue lengths

We start with a deterministic example that shows that the long-run average
queue lengths (number in system) are not increasing in the capacity k. We
consider the case of s =1 server. The number of waiting spaces is thus one less
than the capacity. Let arrivals occur one at a time at each integer j for j = 0, so
that the arrival process is a D process. At any J, if departures can occur, let
them occur before the arrival, so that arrivals are always admitted at departure
points.

We construct two systems with the same interarrival times and service times,
one with capacity k& and the other with capacity m, where 1 <k <m. Arrivals
finding the waiting room full are lost without affecting future arrivals {e.g., no
retrials). Let both systems start out empty before the arrival at time 0. .

Let O(¢) be the queue length at time ¢ in the system with capacity i. Let Q;
be the long-run average queue length in the system with capacity i, i.e.,

0,= Jim —[ Q,(1) dt. (1)

Recall that our object is to show that we can have @, <@, when k <m. In
particular, for any & < 0, we shall make a construction yielding

0,<8 and Q,=k. (2)

Our eﬁample will depend on two parameters € and n in addition to k and m.
We choose a positive integer n and a small positive € so that

2me<1 and 2m <n. (3)

To obtain the extreme behavior in (2), we will make ¢ small and n large.

Our example is specified by giving the service times. Let the service time of
customer j (the arrival at time j) be v;. For nonnegative integers i, j, and n (as
well as & and m), let

n, 0<j<k—1,
mtk—1+e, j=kn—m 4)
€, 0therwnse J<kn—1.

Uikp+j =
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It is easy to see that
O,(t)=k fortz>k—1, (5)

because customers in +j with 0 <j <k —1 are admitted, but no others; i.e,,
only the customers with the long (n) service times get in and they keep the
k-capacity system full. From (5), it is obvious that Q, = k as claimed in (2).

On the other hand, in the m-capacity system customers with the shorter
service times do get in and they eventually block all the customers with longer
(n) service times. The case of k=3, m=4, n =10 and ¢ = 0.1 is displayed in
tig. 1.

In particular, it is easy to see that

0.(t)y=m form—-1<t<kn. (6)

At time kn (after the departure and arrival then), the m-capacity system
contains m — 1 customers with service time ¢ and the arrival at kn with service
time #. (Since 2m < n, the customer arriving at kn —m did not get in.)

Since the sexvice discipline is FCFS, customer kn cannot start service at time
kn. However, the (m — 1) customers with e service time in the system at time kn
are gone by time kn 4+ (m — 1)e <kn + 1. Hence, customer kn starts service at
time kn +{(m — 1De. At time kn + k — 1, the m-capacity system contains the k
customers kn +j, 0 <j <k —1, all with service time n. Consequently, we have

O.(ty=m or m—1 forkn+m-—1<t<2kn. (7)

Moreover, Q,(2kn) =m and at time 2kn customer kn + k — 1 is in service with
(m — 1)e remaining service time. Hence, customer 2kn is not admitted. (We
have now succeeded in blocking a customer with a long service time.)

At time 2kn, customer kn+k—1 is in service with (m — 1)e remaining
service time, while m — 1 customers are in queue with e service time. Since
2(m — 1)e < 1 by (3), at time 2kn + 2(m — 1)e, and thus also until time 2kn + 1,
the m-capacity system is empty.

From the above, we see that Q(2kn +k —1) =k — 1 with these k — 1 cus-
tomers all having service time #, with the customer in service having remaining
service time n — {k — 2). Consequently, Q((3k — 1)n + 1) = m, where all these m
customers have e service times. Moreover, Q((3k — 1)n + 2) = 1. Indeed,

1, m<j<g<n-2,
OBkn—j)={m—j+1, 0<j<m, (8)
m, ji=0.

In fact, a periodic pattern of period kn begins at time 3kn—n + 2. By (4),
customer 3kn —m departs at 3kn + k — 1 + €. Hence, none.of the k£ customers
3kn +j, 0 <j <k~ 1, are admitted. (We have finally succeeded in blocking all
customers with long service times.) However, the m customers in the system at
time 3kn + k — 1 are all gone by 3kn + k. Hence

QBkn+j)=1, k<j<n-—m,
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Fig. 1. A sample path of Q. (ywhen k=3, m=4, n=10 and ¢ =0.1. Thc service time of the

customer in service is also shown. Customers with long (z = 10) service times are admitted only at
‘times 0, 1, 2, 30, 31, 32, 61 and 62.
and
Q@kn—j)y=m—j+1, 0<j<m, , (9)

with customer 4kn — m being in service in the interval [4kn —m, dkn+k—1+
€). Hence, none of the k& customers 4kn +j, 0 <j <k — 1, are admitted.
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As indicated above, periodic behavior of period kn begins at 3kn —n + 2. For
convenience, we calculate what happens in the intervals [ikn —m, ikn + k] and
likn + k, (i + 1)k — m] for any i > 4. First,

ikn+k
700 ar
ikn—m
fkn kn+k—1 tkrn+k
=7 0. (1) di+ | Qn(t)dt+ [ Q,(2) dt
ikn—m ikn ikn+k—1
=(1+2+ - +m)+(m(k-1))+(me+(m—1)e+ - +e)
m(m+1 m(m + 1)e
=——( )+m(k—1)+—-—( )
2 2
m
= E[(m +1)(1+¢)+2(k—1)] (10)
and, second,
JEPTT (1) dt=(kn =k —m)e for i > 4. (11)
ikn-k
Thus, the long-run average queue length is
., 711_1310—[ Q,,(t) dt
1 i+ Din—m
= — t) ds
kn ’/;kn—m Qm( )
m [(m+1)(1+¢€)+2(k—1)] N (kn —k —m)e
2 kn kn
3m? 12
<—+
2kn € (12)

Hence, for any given k and m, it is easy to choose ¢ and » to make Qm
arbitrarily small.

It is interesting that the throughputs in these two systems are also quite
different, with a reversed ordering. Let D,(¢) be the number of departures in
the interval [0, ¢] in the system with capacity i. Let the throughput be

= Ilim D,(t)/t. | (13)

For our example, it is easy to see that 8, =n~?, while §, =1—n""'. (For the
system with capacity m, eventually only the X customers with long service times
are blocked in each cycle of kn arrivals.) Consequently, for any k and m, we
may choose n to make @, arbitrarily close to the arrival rate with 8, arbitrarily
small.
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3. The stationary-process framework

Since the arrival times in section 2 are deterministic and the service times are
periodic of period kn, it is easy to comstruct associated stationary input. It
simply suffices to consider the input defined in section 2 with the time origin
placed uniformly in the interval [0, kn]. Then the arrival point process together
with the service times is a stationary marked point process in the sense of
Franken et al. [1].

With this stationary input having the origin at x, where 0 < x € kn, we obtain
the given average queue lengths if we initialize with an empty system at time —x
using the specified input. However, there is not a unique stationary distribution
for the k-capacity system. If we initialize differently, then we may obfain a
different stationary regime. To see this, note that a different periodic stationary
regime prevails in the k-capacity system if we start the system in section 2 empty
at times ¢, 0 <t < kn —m. Then the customers with long (n) service times do
not get in the system. The k-capacity system then behaves like the m-capacity
system. Customers ikn —m cause the customers with large service times to be
blocked.

To obtain a unique stationary distribution for the k-capacity system as well as
the m-capacity system, it suffices to slightly modify the service times in (4) as
follows. We let :

Viknwj =k +€, j=—(m+k), j>1, (14)

and let vy, . ; be defined as in (4) otherwise. The arrival at time ikn — (m + k)
enters service then and stays in service until ikn — m + €. Hence, assuming that
Q(ikn —(mk)) =1, Q(ikn — m) = k, so that customer ikrn — m is admitted in the
m-capacity system, but not in the k-capacity system. Since 2Zm <n by (3),
m+k<n—2, so that (14) does not affect what happens before the periodic
pattern begins at 3kn —n + 2. '

We._ can further make the system regenerative and have queue lengths
converge in distribution as ¢ — o by creating regenerative cycles as follows. We
start each cycle with the input in section 2 for a time interval of length fkn,
where [ is a large positive integer. Then we include kn arrivals at integer time
points with zero service times followed by an independent exponential interval
with mean 1. By choosing ! large, the mean of the stationary (and limiting)
distribution of this regenerative process can be made arbitrarily close to the
average in section 2. (Bounds on the difference are easily computed.)

The starting point of the regenerative cycle above can be taken as the epoch a
customer with non-zero service time arrives after there have been no arrivals for
a period strictly greater than 1. (The exponential idle intervals plus the adjoining
interarrival time are the only interarrival times not equal to one.) This condition
guarantees that the regenerative cycle starts with an empty system immediately
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after the exponential interval. The mean cycle length is obviously (I + 1}kn + 1.
The exponential intervals also remove the periodic behavior.

We remark that with this regenerative modification we do not need the
change in (14).

4. A deterministic example for throughput

We now modify the example in section 2 to achieve throughputs #,, small with
6, near 1. For this purpose, suppose that (3) holds and let the service times be

k+€, ]=O; i>0:
vin+j= n_k-_]-: j:k, 190) (15)
0, - otherwise.

Then Q. (in +k)=Q,(in + k) =k for m > k, so that customer in + k is never
admitted to the k-capacity system but is always admitted to the m-capacity
systemn. All other customers are admitted to the k-capacity system, so that
8, = 1~n"1 In the system with capacity m, customers in +j with 0 <j <m — 1
are admitted and served, while customers in +j with m <j <n — 1 are blocked.
Hence, 0,, = m/n. Hence, for any k& and m, we can choose n so that 6, is
arbitrarily close to 1 while @, is arbitrarily close to 0.

This model is easily converted to the stationary-process framework, just as in
section 3.
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