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This paper investigates ways to create algorithms to numerically invert Laplace transforms

within a unified framework proposed by Abate and Whitt (2006). That framework approxi-

mates the desired function value by a finite linear combination of transform values, depending

on parameters called weights and nodes, which are initially left unspecified. Alternative pa-

rameter sets, and thus algorithms, are generated and evaluated here by considering power

test functions. Real weights for a real-variable power algorithm are found for specified real

powers and positive real nodes by solving a system of linear equations involving a generalized

Vandermonde matrix, using Mathematica. The resulting power algorithms are shown to be

effective, with the parameter choice being tunable to the transform being inverted. The

powers can be advantageously chosen from series expansions of the transform. Experiments

show that the power algorithms are robust in the nodes; it suffices to use the first n positive

integers. The power test functions also provide a useful way to evaluate the performance of

other algorithms.
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1. Introduction

The Unified Framework. We propose a new class of algorithms for numerically invert-

ing Laplace transforms, called power algorithms, with parameters that are tunable to the

transform being inverted. Our power algorithms are constructed using power test functions

within a unified framework for constructing algorithms to numerically invert Laplace trans-

forms proposed by Abate and Whitt (2006). Many pointers to the literature appear in Abate
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and Whitt (2006), including Zakian (1969, 1970, 1973) and Wellekens (1970), which provided

a basis for the framework, even though they were only concerned with developing a single

algorithm.

The goal of the inversion is to calculate values of a real-valued function f of a nonnegative

real variable from its Laplace transform

f̂(s) ≡ L(f)(s) ≡
∫ ∞

0

e−stf(t) dt . (1)

There are many applications of Laplace transforms and their numerical inversion in opera-

tions research; e.g., in queueing and financial engineering; see Abate et al. (1999), Petrella

and Kou (2004) and references therein.

The classical Bromwich inversion integral expresses f(t) exactly via the contour integral

f(t) =
1

2πi

∫

C

f̂(s)est ds, t > 0 , (2)

where s is a complex variable and C is a contour extending from c − i∞ to c + i∞, falling

to the right of all singularities of f̂ ; see Theorem 24.4 of Doetsch (1974).

For numerical calculation, the unified framework approximates the function f by a finite

linear combination of transform values; specifically,

f(t) ≈ fn(t) ≡ fn,α,ω(t) ≡ 1

t

n∑

k=1

ωkf̂
(αk

t

)
, t > 0 , (3)

where α ≡ (α1, . . . , αn) and ω ≡ (ω1, . . . , ωn) are vectors of complex numbers, called nodes

and weights, respectively. The nodes and weights do not necessarily depend on the transform

f̂ or the function argument t, but typically depend upon n. This is a framework rather than

a single algorithm because the nodes and weights are initially left unspecified.

One way to gain insight into the framework (3) is to make the change of variables z = st,

allowing us to rewrite the contour integral (2) as

f(t) =
1

2πit

∫

C′
f̂(z/t)ez dz, t > 0 , (4)

where C ′ is the same contour as a function of z. From (4), we see that t−1 appears both in

the multiplicative constant and the argument of the transform f̂ . From (4), we anticipate

that appropriate numerical integration applied to the integral in (4) will produce the rep-

resentation (3). Since the contour can be transformed without altering the integral (under

regularity conditions), there should be freedom in choosing the nodes.
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Abate and Whitt (2006) showed that three popular numerical inversion algorithms can

be represented in this framework: (i) the Gaver (1966)-Stehfest (1970) algorithm, which we

denote by G, for which the weights and nodes (and thus the transform arguments) are real,

(ii) the Fourier-series method with Euler summation, from Abate and Whitt (1992, 1995),

which we denote by E because they refer to the algorithm as “Euler,” and (iii) Talbot’s

(1979) algorithm, as modified by Abate and Valko (2004), which we denote by T , which is

based on advantageously deforming the contour in the Bromwich inversion integral.

Abate and Whitt (2006) showed that the three algorithms G, E and T can be combined

in any combination to produce nine different two-dimensional algorithms, and examined the

behavior of each. They showed that it can be advantageous to use different one-dimensional

algorithms in the inner and outer loops.

A key structural property in the framework (3) is the linearity. Given that sequence

acceleration is often applied in constructing inversion algorithms, see Valko and Abate (2004)

and Wimp (1981), the linearity in (3) implies that a linear acceleration method is being used

instead of a nonlinear one. We will strongly exploit the linearity in this paper. Despite

the established power of nonlinear acceleration techniques, the linear methods seem to be

remarkably effective in this inversion context. In support, Valko and Abate (2004) showed

that the linear Salzer scheme exploited by Stehfest (1970) for accelerating convergence of

the sequence of Gaver (1966) functions is remarkably effective compared to several nonlinear

methods. Euler summation has proven to be very effective with the Fourier-series method as

well; see O’Cinneide (1997). We will not directly exploit sequence acceleration here though.

An attractive feature of the power algorithms developed in this paper, like the Gaver-

Stehfest algorithm, is that complex variables need not be considered at all, because our pro-

posed power algorithms are real-variable algorithms. Real-variable algorithms are sometimes

preferred because mathematical software can have difficulties properly evaluating functions

of one or more complex variables. We will be considering the case in which the function

f is real-valued and the weights and nodes are real, so that (3) applies directly in the real

domain. We briefly discuss extensions to complex variables in Section 9.

Creating New Algorithms. Abate and Whitt (2006) suggested that the unified frame-

work could be used to create new one-dimensional inversion algorithms. They suggested

choosing a family of test functions and performing optimization to select nodes and weights

that minimize the error for those test functions. We start to seriously investigate that idea
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here. In doing so, we have two main goals: First, we aim to better understand the process

of numerical inversion and, second, we aim to develop a method to efficiently construct al-

gorithms in the framework with nodes and weights that are ideally suited for the specific

transform to be inverted and/or the function arguments of interest. In this paper we fo-

cus on real power algorithms, so we are especially interested in making comparisons to the

Gaver-Stehfest algorithm.

For the optimization, it is evident that there are many ways to proceed. For example,

let F be a set of test functions and let T be a set of time points (arguments for f). For n

given, we can minimize, over the vectors α and ω, a weighted sum of the rth powers of the

errors for f ∈ F and t ∈ T , defined by

e(α, ω; F, T ) ≡
∑

f∈F

∑
t∈T

c(f, t)|f(t)− fn,α,ω(t)|r , (5)

where c(f, t) > 0 are weights to place more emphasis on certain functions and certain times;

we emphasize the simple special case in which r = c(f, t) = 1.

In general, the optimization problem is quite complicated, because the nodes αk in (3)

appear inside the argument of the transform f̂ . For fixed nodes, optimization over the

weights is much more tractable, because fn,α,ω in (3) is a linear function of the weights.

Thus, in this paper, we only consider systematic optimization over the weights, for specified

nodes. We experimentally investigate the consequence of different node sets.

We consider one very natural family of test functions: powers. For real p, the pth power

is the function f(t) ≡ tp, which has well-defined Laplace transform f̂(s) ≡ Γ(p + 1)/sp+1

for all p > −1, where Γ(p) is the gamma function, for which Γ(p + 1) = p! when p is an

integer. (Powers with p ≤ −1 may also be of interest. They correspond to pseudotransforms,

as discussed in Sections 12-14 and the Appendix of Doetsch (1974), and they may capture

asymptotic behavior for large t (and small s) via Heaviside’s theorem, p. 254 of Doetsch

(1974), but we emphasize p > −1 here.)

For any integer n > 1, any n positive real nodes, and any n powers, we are able to find

n real weights that make the inversion exact for those powers for all t > 0; i.e., we are able

to find a weight vector ω such that fn,α,ω(t) = f(t) for all f ∈ F and all t > 0. Moreover,

we are able to find these weights by solving a system of linear equations, which is easily

done to high precision with Mathematica. (A useful reference about transforms related to

Mathematica is Graf (2004).) We call the new inversion algorithms created in this way power

algorithms.
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We show that the power algorithms are effective. They are appealing because they are

real-variable algorithms, like Gaver-Stehfest, but conceptually simple. Both the derivation,

via power test functions, and the creation, via the solution of a system of linear equations,

are easy to understand. As with the Gaver-Stehfest algorithm, the biggest disadvantage is

the high precision that is required, but that is routinely available with mathematical software

such as Mathematica. As in Abate and Valko (2004), it is possible to apply multi-precision

Laplace inversion, working with the precision needed to obtain specified accuracy in the

calculated value; see Section 5.

Organization of the Paper. We start in Section 2 by establishing properties of the power

test functions and developing the power inversion algorithms. In Section 3 we describe ex-

periments conducted to understand how to choose the set of powers. In Section 4 we describe

experiments conducted to understand how to choose the set of nodes. These experiments

show: (i) that the powers can be chosen advantageously depending on the function and (ii)

there is considerable freedom in the choice of the nodes among positive real nodes. In Section

5 we discuss accuracy and precision.

In Section 6 we discuss Zakian’s algorithm, denoted by Z, which can be regarded as a

variant of the power algorithm, having only integer powers, but complex nodes and weights.

Zakian’s algorithm is designed to perform especially well for smooth (analytic, with deriva-

tives of all orders) functions, but as a consequence it can perform poorly for non-smooth

functions, as we will show.

In Section 7 we indicate how the power test functions can be used to evaluate other

algorithms. We “score” the Gaver-Stehfest, Euler, Talbot and Zakian algorithms, obtaining

revealing results consistent with experience. In Section 8 we discuss how to use multiple

algorithms or multiple instances of one algorithm to estimate the inversion error while per-

forming the inversion (of a transform of an unknown function). We mention some extensions

in Section 9, including gamma test functions and complex variables. We draw conclusions

in Section 10. A substantial amount of additional material is contained in an online Supple-

ment, Avdis and Whitt (2006); that provides an important expansion of the story.
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2. Creating Power Algorithms

Power Test Functions. It is natural to consider the first n nonnegative integer powers as

test functions, because accuracy for them implies accuracy for polynomials of degree n−1 by

linearity. By the Weierstrass approximation theorem, all continuous functions on the positive

halfline [0,∞) can be approximated uniformly over bounded subintervals by polynomials.

For continuous functions f(t) that converge to 0 as t →∞, the uniformity can extend over

the entire positive halfline. However, we do not limit attention to nonnegative integer powers.

Through experiments, we found that it can be desirable to include positive fractional powers

and negative powers in the interval (−1, 0). We discuss the choice of powers in Section 3.

The polynomial perspective also indicates that, in general, the specific method and the

accuracy should depend on the function argument t, with the inversion difficulty increasing in

t. That can also be seen from the damping by multiplying f(t) by e−at in the Fourier-series

method; e.g., see Abate and Whitt (1995). Abate and Valko (2004) found that for some

“good” transforms (their set F) the G and T inversion accuracy is largely independent of

t, but for other transforms the accuracy decreases in t (or, equivalently, the computational

complexity increases in t). Our results are consistent with that conclusion. As in Abate

and Valko (2004), we achieve inversion accuracy independent of t for some functions, but

inversion accuracy decreasing in t for other functions. Here we plot inversion numerical

results for 0.5 ≤ t ≤ 10. We show results for a wide range of t – small (0.5 ≤ t ≤ 10),

medium (10 ≤ t ≤ 100) and large (100 ≤ t ≤ 1000) – in the Supplement. The difficulties

with exceptionally large or small arguments can often be addressed by scaling; e.g., see

Choudhury and Whitt (1997).

Since the pth power f(t) ≡ tp has Laplace transform Γ(p + 1)/sp+1 for p > −1, we

see that the framework (3) is exact, using real weights and nodes, for the pth power for

p ∈ P ≡ {p ∈ R : p > −1} if

1

t

n∑

k=1

Γ(p + 1)(
αk

t

)p+1 ωk = tp, (6)

which, by eliminating t > 0, is equivalent to the power relation

n∑

k=1

Γ(p + 1)

αp+1
k

ωk = 1 . (7)

Of course, we can not expect to achieve equality in the power relation (7) when we are

considering a large number of powers. In general, we can select n real weights and n positive
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real nodes by minimizing the error in the power relations, over α and ω, for m powers pj

with −1 < p1 < · · · < pm, by considering the following mathematical program:

min
ω,α,ε

m∑
j=1

cjεj

such that 1− εj ≤
n∑

k=1

Γ(pj + 1)

α
pj+1
k

ωk ≤ 1 + εj, 1 ≤ j ≤ m ,

εj ≥ 0, 1 ≤ j ≤ m ,

α1 ≥ δ, αk − αk−1 ≥ δ, 2 ≤ k ≤ n , (8)

where the parameter δ is a small positive quantity to maintain minimum separation between

successive nodes. The positive numbers cj weigh the violation of the jth power constraint,

1 ≤ j ≤ m.

The mathematical program is a complicated non-convex nonlinear program, because of

the node variables αk appearing in the denominator of the power constraints in (8). With an

additonal assumption, this particular nonlinear program can be regarded as a signomial pro-

gram; see Section 3 of Ecker (1980). To obtain a signomial program, we make the additional

assumption that the weights alternate in sign (which experience indicates is appropriate).

Then the sum in the power relation (7) becomes the difference of two posynomials (positive

sums of powers of ratios). That is a way to attack the problem, but it is not elementary

because of the non-convexity.

We obtain great simplification if we fix the nodes. Then the mathematical program (8)

becomes a linear program (LP). That suggests an iterative algorithm, searching over the node

vectors, using an LP for each. (That is one approach for signomials.) For fixed nodes, the

resulting LP is not large by LP standards, but nevertheless it is challenging because we need

to work with high precision; standard double precision will not suffice. However, we do not

consider the mathematical programs further here. Instead we make further simplification.

A System of Linear Equations For Given Nodes. In addition to fixing the nodes, we

go further by considering n given (distinct) positive real nodes and n distinct powers when

we look for the n weights. Then the power relations in (7) for the n values of p become

a system of n linear equations in n unknowns, where the weights are the unknowns. We

discuss how to select the powers p and the nodes αk in Sections 3 and 4, respectively.
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We can write the linear system in matrix form as

Aω = b ≡
[

1

Γ(p1 + 1)
, . . . ,

1

Γ(pn + 1)

]T

, (9)

where T denotes transpose and A ≡ An,P is the node matrix

A ≡ An,P ≡




(
1

α1

)p1+1

. . .
(

1
αn

)p1+1

(
1

α1

)p2+1

. . .
(

1
αn

)p2+1

...
...(

1
α1

)pn+1

. . .
(

1
αn

)pn+1




(10)

Fortunately, it is not difficult to solve the linear system Aω = b in (9) and (10) with

Mathematica because the node matrix A in (10) is a generalized Vandermonde matrix with

positive real “points” 1/αk and “exponents” pk + 1, k = 1, . . . , n, with pk > −1. Without

loss of generality, we assume that

0 < 1/α1 < . . . < 1/αn and 0 < p1 + 1 < . . . < pn + 1 .

The generalized Vandermonde matrix is nonsingular, even totally positive; see p. 99 of

Gantmacher (1959) or p. 76 of Gantmacher and Krein (2002, p.76). Hence, the linear

system of equations in (9) always has a unique solution.

Even though the generalized Vandermonde matrices are nonsingular, they are notoriously

ill-conditioned (have high matrix condition number). That tends to make the linear system

(9) unsolvable in practice with standard double precision. We circumvent that difficulty by

using Mathematica, which supports high precision. We discuss the required precision for

specified accuracy in the calculation in Section 5.

It is also significant that new efficient methods for solving generalized Vandermonde

linear systems have been developed; see Demmel and Koev (2005). They achieve greater

accuracy with less precision by avoiding subtractive cancellation. In Section 8, they show, by

comparing to a Mathematica 100-digit-precision calculation, that they are able to accurately

solve generalized Vandermonde linear systems with standard double precision. Thus there

is the potential to achieve much greater efficiency with our power algorithms. We do not

consider that approach here, leaving it as an interesting direction for future research. We

emphasize simplicity by showing that our power algorithms are effective by a straightforward

application of Mathematica.
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We summarize our algorithm to construct power algorithms in Figure 1. In the next

two sections we examine how to choose the set of powers P and the set of nodes N . We

will justify the default choices P∗ and N ∗. In Section 5 we discuss accuracy and precision.

From n terms in the sum (3), we expect to get from n/6 to n/2 significant digits in our

computation of f(t), with higher accuracy for smaller values of t.

Constructing A Real-Variable Power Inversion Algorithm

1. Let the number of terms be n; e.g., n = 30.

2. Let the computer precision be 1.5n; e.g., 45 significant digits.

3. Choose n distinct real numbers p > −1 to form the power set P ; e.g., with an
integer n divisible by 5, let

P = P∗ ≡ P
(
−5j

n
;
k

2

)
≡

{
−5j

n
: 1 ≤ j ≤ n

5
− 1

}
∪

{
k

2
: 0 ≤ k ≤ 4n

5

}
.

4. Choose n distinct positive real numbers to serve as the node set N ; e.g.,

N ≡ {αk : 1 ≤ k ≤ n} = N ∗ ≡ {1, . . . , n} .

5. Using the specified computer precision, solve the system of n linear equations

n∑

k=1

Γ(p + 1)

αp+1
k

ωk = 1, p ∈ P ,

to obtain the n real weights ω1, . . . , ωn.

6. Apply the created power inversion algorithm: Using the computer pre-
cision, nodes and weights specified above, calculate the required transform
values f̂(αk/t) and the weighted sum to obtain the real-variable numerical
inversion

fn(t) ≡ fn,α,ω(t) =
1

t

n∑

k=1

ωkf̂
(αk

t

)
.

Figure 1: Algorithm Summary.

We conclude this section by remarking that the approach we have taken to construct

power inversion algorithms within the unified framework via the linear system with the

Vandermonde matrix relates to classic methods; e.g., see Chapter 19 of Bellman (1970),

especially Sections 7-11. To a large extent, these old methods are made effective today by
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the evolution of computer technology and the accompanying mathematical software, allowing

us to rapidly compute with high precision. Such technology changes invite reconsidering old

ideas.

3. Choosing the Powers

A natural initial candidate for the set of n powers is the first n nonnegative integers, because

that yields an exact inversion for all polynomials of degree n − 1. That is also appropriate

for smooth functions (with continuous derivatives of high orders) because matching (n− 1)-

degree polynomials matches the first n coefficients (derivatives at 0) in the Maclaurin series

expansion (Taylor series expansion about 0) for the function f : With f (n)(x) being the nth

derivative of f evaluated at x,

f(t) = f(0) + f (1)(0)t + f (2)(0)
t2

2!
+ · · ·+ f (n−1)(0)

tn−1

(n− 1)!
+ O(tn) as t → 0 . (11)

However, there are situations in which we might want to do something different. The

first involves a smooth function that has some of its derivatives equal to 0. For example, an

odd function like sin(t) has an expansion in odd powers,

sin(t) =
∞∑

j=0

(−1)j

(2j + 1)!
t2j+1 , (12)

while an even function like cos(t) has an expansion in even powers. Thus, to approximate

sin(t), it would be better to fit a degree-(2n− 1) polynomial with only odd powers than to

fit a full degree-(n− 1) polynomial (both using n terms).

The second involves functions that are not smooth. In particular, we often encounter

functions that have series expansions in fractional powers of t, and thus fail to have derivatives

of all orders at the origin. A simple example is e−
√

t. Since

e−t =
∞∑

j=0

(−1)j

j!
tj , (13)

The function e−
√

t has an expansion in half powers. Similarly, by (12), sin(t1/m) for positive

integer m has an expansion in powers of the form (2k − 1)/m for k ≥ 1.

Of course, here we are considering numerical transform inversion, which is usually consid-

ered only when we know the transform f̂ but not the function f . Thus we want to start with

the transform f̂ . Fortunately, starting from the transform f̂ , we are often able to establish
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a series expansion for it, and then obtain a corresponding series expansion of the function f

by doing a term-by-term inversion. Indeed, such concepts are a fundamental part of Laplace

transform theory; see Sections 30-37 of Doetsch (1974).

We suggest exploiting this basic theory for constructing the power set. Starting from the

transform f̂ , we suggest identifying the series representation (expressed as a function of a

real variable s)

f̂(s) =
∞∑

k=1

ak

spk+1
, −1 < p1 < p2 < · · · (14)

or an initial portion for all suitably large real s, thinking of s as large. In establishing (14)

we only aim to identify the powers pk; we do not use the coefficients ak. Laplace transform

theory tells us that, under regularity conditions, we will have an associated series expansion

for f , namely,

f(t) =
∞∑

k=1

akt
pk

Γ(pk + 1)
(15)

for the same powers, thinking of t as small. Theorem 30.2 of Doetsch (1974) provides

theoretical support. Thinking of t as small, we anticipate that the initial powers in (14) and

(15) will be most important to include in our power set.

Such analysis is often not difficult to perform directly, as we will illustrate. To approx-

imately cover a broad range of cases, without any analysis, we propose a standard default

power set of size n. Assuming n to be an integer multiple of 5, we use (n/5) − 1 negative

powers, evenly distributed in the interval (−1, 0) and (4n/5)+1 half powers, extending from

0 up to (2n/5). We call that the default power set and denote it by

P∗ ≡ P
(
−5j

n
;
k

2

)
≡

{
−5j

n
: 1 ≤ j ≤ n

5
− 1

}
∪

{
k

2
: 0 ≤ k ≤ 4n

5

}
, (16)

as in Step 3 in Figure 1.

We will illustrate by describing results from numerical inversion experiments. We com-

pare the performance of these power algorithms to the Gaver-Stehfest algorithm. We chose

Gaver-Stehfest because it also uses real nodes and weights, and because it has been well

studied and is known to work very well in practice, e.g., see Abate and Valko (2004), Valko

and Abate (2004) and Abate and Whitt (2006). We let n = 30. For the power algorithms,

we use the default node set N ∗ = {1, 2, . . . , 30}. In Gaver-Stehfest, the nodes are also evenly

spaced, at k ln (2), 1 ≤ k ≤ n = 30. (The results are essentially the same when we use the

Gaver-Stehfest node set instead of N ∗.)
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A fundamental property of the Gaver-Stehfest algorithm is that its weights alternate in

sign; see (32) of Abate and Whitt (2006). Figure 2 shows that the default (P∗,N ∗) power

algorithm closely mimics this pattern, but does not follow it exactly. Figure 2 depicts the

base-10 logarithm of the absolute value of the weights ωk from G and (P∗, N ∗) for n = 20;

plots for other n appear in the Supplement. The G weights appear as circles, filled in if

ωk > 0 and empty if ωk < 0, whereas the (P∗,N ∗) weights appear as squares, filled in if

ωk > 0 and empty if ωk < 0.

5 10 15 20
k

-5

-2.5

2.5

5

7.5

10

12.5

log10ÈΩk È

Figure 2: The successive weights of G (circles) and P∗ (squares) for n = 20 in a logarithmic
scale. Absolute values are shown, with positive weights filled in (dark) and negative weights
empty.

In our experiments, we consider the following 6 alternatives for the power set, each

containing n = 30 powers:

1. Nonnegative integers: P(k) ≡ {k : 0 ≤ k ≤ n− 1}

2. Nonnegative even integers: P(2k) ≡ {2k : 0 ≤ k ≤ n− 1}

3. Nonnegative odd integers: P(2k + 1) ≡ {2k + 1 : 0 ≤ k ≤ n− 1}

4. Nonnegative integer multiples of 1/2: P(k/2) ≡ {k/2 : 0 ≤ k ≤ n− 1}

5. All integer multiples of 1/2: P((k − 1)/2) ≡ {k/2 : −1 ≤ k ≤ n− 2}

6. The default power set with (n/5) − 1 negative fractional powers and (4n/5) + 1 non-

negative integer multiples of 1/2, i.e., P∗ in (16) .
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Figure 3 shows inversion results for six different transforms for some of these power sets.

In each case we compare to the Gaver-Stehfest algorithm. The six transforms considered in

Figure 3 are chosen to contain cases in which each of the first five power sets performs best.

A list of the transforms we have used appears in the Supplement; the indices correspond to

their listing there. The functions f1, f3, f4 and f5 are the functions with those same indices

from Table 1 of Valko and Abate (2004). (The third function is f3(t) ≡ e−tI0(t), where

I0(t) is the modified Bessel function, as in Section 9.6 of Abramowitz and Stegun (1972).)

The function f9, is the exponential function e−t; the other functions are f12 ≡ cos(t) and

f13 ≡ t−1/2 + f4.

Figure 3 shows the base-10 logarithm of the absolute error |f(t) − fn(t)| between the

function f and the numerical inversion fn as a function of t, 0.5 ≤ t ≤ 10.0, for the six

different transforms f̂ with known inverses f . For clarity, we do not show the performance

of all power sets in each plot.

Since the exponential function f9 has a series expansion in terms of nonnegative integer

powers with all coefficients non-zero, as shown in (13), we should expect the integer power

set P(k) to perform best for f9(t) ≡ e−t, and it does. That can be determined directly from

the series expansion of its transform

f̂9(s) ≡ 1

1 + s
=

∞∑
j=0

(−1)j

sj
, (17)

so that we could apply (14), (15) and (17) to deduce (13).

For f9, the half-power set P(k/2) performs next best; it does not omit any initial integer

powers but the non-integer half powers are largely wasted, because they appear at the

sacrifice of higher integer powers. Similarly, the default power set P∗ performs reasonably

well, but the negative powers and non-integer powers are largely wasted because they appear

at the sacrifice of higher integer powers. In contrast, the even and odd power sets P(2k)

and P(2k + 1) perform quite poorly, because they are missing important low-order integer

powers.

Indeed, the performance of the different power sets for all the examples can be explained,

to a large extent, by the series expansions, which hold for both the function f and the

transform f̂ , in the relation described in (14) and (15) above. First, the odd power set

P(2k + 1) performs best for f1(t) ≡ sin(t), as expected from (12). We can deduce (12)

from the relation between the series expansions in (14) and (15), starting from the series

13
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Figure 3: Comparison of inversion performance for different P with the Gaver-Stehfest
algorithm. The base-10 logarithm of the absolute error is plotted as a function of t for
0.5 ≤ t ≤ 10.0.

expansion of the transform f̂1, namely

f̂1(s) ≡ 1

1 + s2
=

∞∑
j=0

(−1)j

s2j
. (18)

Similarly, the performance for f12(t) ≡ cos(t) can be explained by the series expansion

f̂12(s) ≡ s

1 + s2
=

∞∑
j=0

(−1)j

s2j+1
. (19)
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We deduce that the even power set P(2k) performs best.

Now consider

f̂3(s) ≡ 1√
s(s + 2)

. (20)

We first ignore the square root in the transform f̂3(s), to obtain

f̂3(s)
2 ≡ 1

s(s + 2)
=

(1/2s)

1 + (s/2)
= (1/2s)

∞∑
j=0

(−2)j

sj
= (1/2)

∞∑
j=0

(−2)j

sj−1
. (21)

Next, by exploiting fundamental operations on series, as in 3.6.18 of Abramowitz and Stegun

(1972), we deduce that the form (the powers, but not the coefficients) is preserved by taking

square root of the function. Hence we deduce that f̂3(s) has an asymptotic expansion of

the same form, as a function of s, as does f̂3(s)
2. Thus we expect that the integer power

set P(k) should perform best for f3, and indeed that is true for all sufficiently small t, even

though there is a crossover for larger t.

Finally, the two functions f4 and f13 are examples for which it is best to have non-integer

values in the power set P . First consider f4. It is easy to see that f̂(s) = 1/(s +
√

s) has a

series expansion in half powers starting at s, so that we want exactly the power set P(k/2).

And, indeed, that half power set performs best. Next consider f̂13. From the analysis of f̂4,

we see that f13 will again have an expansion in half powers, but now starting at p1 = −1/2,

so that P((k − 1)/2) should be best, and it is.

If we cannot construct the series expansion of f̂ analytically, then we may be able to pro-

ceed numerically. Anticipating the series expansion (14), we can find p1 and a1 by searching

over p to find when sp+1f̂(s) is approximately constant as a function of positive real s for

large s. We then let that constant limiting value be a1. Given p1 and a1, we can find p2

and a2 by repeating that analysis for f̂(s) − a1s
−(p1+1), and so forth. We make p1 and p2

our first two powers. From the initial powers, we may be able to deduce the entire power

set. For example, we may decide to use only positive multiples of p1 if p1 > 0 and p2 = 2p1.

However, we do not carefully explore this approach here, leaving it as an important direction

for future research.

As a general observation from Figure 3, we see that in each case the best power algorithm

is able to improve upon Gaver-Stehfest for all sufficiently small t and performs similarly for

5 ≤ t ≤ 10. Moreover, we see that the default power set P∗ consistently performs quite well.

We also see that the power set can make a big difference, and we have shown how to choose

it. However, we find that the default power algorithm tends to perform slightly worse than
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Gaver-Stehfest for very large t, of the order 100 ≤ t ≤ 1000; see the Supplement. Overall,

the default power algorithm performs about the same as the Gaver-Stehfest algorithm, which

in turn performs much better than the original Gaver (1966) algorithm (without the Salzer

acceleration added by Stehfest (1970)).

The power algorithms (with appropriate power sets) consistently produce good perfor-

mance for small values of t, as should be expected, but they yield inconsistent performance

for larger values of t. The accuracy as measured by number of significant digits holds for

larger values of t, with t ≥ 10, for the functions f3, f4, and f13, but not for f1, f9 and f12.

The problem with f9 can be remedied by scaling; see Example 4.1 of Choudhury and Whitt

(1997). The other cases can be understood from the analysis of the Gaver-Stehfest algorithm

in Valko and Abate (2004) and Abate and Valko (2004). The good transforms f3, f4, and f13

yielding good performance are in their class F, with all singularities of the transform lying

on the negative real axis and the function being smooth, while the last two transforms f1,

and f12 are not in their class F, because they have singularities off the negative real axis.

All the transforms in Figure 3 have known closed-form inverses, so inversion is not ac-

tually needed for these examples. We note that it is easy to obtain transforms without

closed-form inverses by considering operations on these transforms and others. For exam-

ple, we can consider products of transforms. An m-fold product of Laplace transforms is

the transform of the (m − 1)-dimensional convolution integral of the corresponding time-

domain functions, which is somewhat difficult to compute directly. Similarly, in queueing,

the steady-state waiting-time distribution in the M/G/1 model can be expressed, as a func-

tion of the Laplace transform of the service-time distribution, via the Pollaczek-Khintchine

Laplace transform; see (1.1) of Abate and Whitt (1992). For service-time distributions with

non-rational Laplace transforms, the associated waiting-time distribution is quite compli-

cated, even though the Pollaczek-Khintchine Laplace transform is relatively simple. Many

other probability operators that are advantageously approached via Laplace transforms are

given in Abate and Whitt (1996).

4. Choosing the Nodes

We have just seen that the choice of the power set can make a big difference in the per-

formance of the inversion. In contrast, surprisingly, the node set makes little difference,

provided that the nodes are distinct positive real numbers, specified to high precision, and
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we solve the linear system with high precision to get the weights. In particular, we find that

the default node set N ∗ ≡ {1, 2, . . . , n} used in Step 3 of the algorithm summary in Figure

1 is an excellent choice. In this section we provide justification.

Our starting point for considering possible real node sets was the Gaver-Stehfest algo-

rithm, which has n evenly-space real nodes at k ln (2) ≈ 0.79k. We first did many experiments

with power algorithms based on the Gaver-Stehfest nodes, but then considered modifying

the node set. We found that our default node set N ∗ = {1, 2, . . . , n} produces essentially the

same performance as the Gaver-Stehfest node set.

We conducted several experiments to evaluate the impact of the node set, varying the

nodes in many ways, while using the same default power set P∗. We will describe the

most revealing experiment in detail, and summarize the rest, leaving the details for the

Supplement. We consider node sets of the form

αk = θ + kδ, 1 ≤ k ≤ n = 30 , (22)

as a function of a positive real shift θ and a positive real spacing δ. For each candidate

node set over a wide range of parameters θ and δ, we solve the system of linear equations to

obtain the corresponding weights and examine the resulting inversion error. Figure 4 shows

the surface of the average error (measured in the logarithm to base 10) in the inversion of the

standard exponential transform f̂0, for θ ∈ {0, 0.25, . . . , 4.75} and δ ∈ {0.1, 0.25, . . . , 2.95}.
Surfaces of the average error for other transforms and other values of n (n = 20, 30, 40)

appear in the Supplement.

On one hand, we find that small spacing, such as δ < 0.7, is bad, especially when

combined with zero shift. The performance degradation seems to be due to the largest node

being too small; e.g., having all 30 nodes in the interval [1, 3] produces poor results. On the

other hand, there is little performance difference across the node sets for δ > 0.7, where the

largest node is at least 21. Thus we conclude that the default values θ = 0 and δ = 1.0

associated with N ∗ are fine.

We also carried out several more experiments to examine how the structure of the node

sets affects performance. Since the location of the largest node is important, we explored

that in more depth, by moving the largest node of the set N ∗ = {1, 2, . . . , n} to the right

to n + k for different values of k, k = 0, . . . , n while leaving the rest of the nodes in N ∗

intact. Moving the largest node further out does not yield significant improvement. In

addition, we compared the performance of node sets with nodes linearly and evenly spaced
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Figure 4: The average of the logarithm of the absolute inversion error as a function of the
shift θ and the spacing δ of the nodes in (22) for f0 : f(t) = e−t, f̂(s) = 1/(s + 1).

against the performance of node sets with nodes geometrically spaced in the same interval.

The experiments on a few transforms showed that linear spacing is superior to geometric

spacing.

Furthermore, we performed experiments with randomly generated sets of nodes. We

perturbed one or more nodes by multiplying each by a random number uniformly distributed

in the interval (1− ε, 1+ ε), for various small positive ε. The resulting inversions differ little

from the unperturbed version, provided that we re-solve the system of linear equations to

get new weights. We even used entirely random node sets. We generated 100 independent

replications of node sets with n = 30 i.i.d. nodes, uniformly distributed in the closed interval

[1, 30]. We then applied the solution of the system of linear equations to several transforms.

In each case, we observed a relatively narrow band of performance results across all the

replications.

We conclude that, given a high-precision solution to the linear system, the power algo-

rithm is robust to the choice of the real node set N , confirming that the default node set

N ∗ is satisfactory.

We also performed a sensitivity analysis to small changes in the weights and nodes.

In contrast to the robustness described above, the power algorithm is not robust to small

changes in the nodes, for given weights. The algorithm breaks down if we perturb any of the

nodes, but do not re-solve the linear system of equations for new weights. The algorithm

also breaks down if we perturb the weights, after having solved the linear system, for any

given node set.

18



5. Accuracy and Precision

In this section we investigate accuracy and precision, measured in the number of digits.

We first investigate how the number n of terms in the sum (3) and the computer precision

affect the precision of the weights obtained by solving the linear system (9) using the default

node set N ∗ and power set P∗. Table 1 shows the minimum precision of the n computed

weights as a function of the computer precision and the number of terms, with each ranging

over several multiples of 10. From Table 1, we see that the required computer precision to

solve the linear system as a function of n is approximately 1.2n. We have used 1.5n as the

precision requirement in Figure 1 to be safe. For any given n, the precision of the weights

increases with the computer precision, as shown in Table 1.

Table 1: Minimum precision of computed weights (number of significant digits, specifically
| log10 |wp+1 − wp|/|wp||, where wp stands for the weight computed with precision p) as a
function of the computer precision (number of significant digits) and the number of terms,
n.

n
precision 20 30 40 50 60
10 0.5 × × × ×
20 13 1.7 × × ×
30 26 14 × × ×
40 35 23 10 × ×
50 44 32 19 7 ×
60 55 42 29 19 2
70 64 52 39 29 19
100 95 81 69 60 47

We find that the precision of the inversion, as measured by the base-10 logarithm of the

absolute error |fn(t) − f(t)| primarily depends on n provided that the computer precision

is above the threshold 1.2n. The performance of the default power algorithm with node set

N ∗ and power set P∗ tends to be similar to Gaver-Stehfest, as described in Section 7 of

Abate and Whitt (2006), but the power algorithm performs slightly better for 0 < t ≤ 10,

significantly so for smaller values of t. The ordering is reversed for larger t, though; see the

Supplement. A specific performance comparison for the transform f̂4 is shown for five values

of n in Figure 5. The precision was set high here, so as not to be a factor. Reduction to

1.2n produces no significant change.
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6. Zakian’s Algorithm

Zakian’s (1969, 1970, 1973) algorithm is described in Section 2 of Abate and Whitt (2006);

also see Wellekens (1970), Singhal and Vlach (1975), Section 3.3 of Davies and Martin (1979)

and references therein. It can be derived by introducing a rational approximation for the

exponential function in the Bromwich inversion integral (2), i.e.,

ez ≈
n∑

k=1

ωk

αk − z
, (23)

where z, αk and ωk are all complex numbers. Zakian chose the complex numbers αk and

ωk to match the first 2n coefficients in the MacLaurin series expansions of the functions in

(23). That is accomplished through a Padé approximation; see Baker and Groves-Morris

(1996) and Saff and Varga (1978). The Padé approximation arises when we apply Gaussian

quadrature to the integral (4). We implemented Zakian’s algorithm based on the ((n−1)/n)

Padé approximant of e−z, following pp. 522 and 523 of Zakian and Edwards (1978).

Zakian’s approach yields the same system of equations as in (7) for the integer power set

P(k), namely,
n∑

k=1

ωkj!

αj+1
k

= 1, j = 0, 1, 2, . . . , 2n− 1 . (24)

Unlike our real power algorithm with n nodes in N ∗, here the nodes and weights are both

variables, so that there are 2n (nonlinear) equations in 2n unknowns. The Padé theory

guarantees that there is a unique solution and provides an efficient algorithm. It is significant

that the nodes and weights from Zakian’s algorithm are complex numbers, not real numbers.
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By considering only integer powers, the Zakian algorithm is especially tuned to poly-

nomials and other smooth functions with derivatives of high orders. Since the nodes and

weights are complex numbers, the Zakian algorithm can be quite different from the real

power algorithms we consider, even for integer powers. The special structure of the Zakian

algorithm (Z) makes it especially effective for such smooth functions. Unfortunately, that

special focus comes at a penalty, because the Zakian algorithm turns out to perform poorly

for non-smooth functions. We illustrate this sharply diverging performance in Figure 6. For

comparison, we show results for the algorithms G, E and T together with Z in Figure 6.

For the smooth function f1 ≡ sin(t), Zakian produces far better accuracy than any of the

other algorithms, but for the non-smooth function f4, Zakian performs worse than the other

algorithms. All the algorithms perform poorly for f1 for large t; see the Supplement.
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Figure 6: Good and Bad Performance of Zakian’s algorithm.

We also exhibit this diverging performance by considering inversions of different functions

only for Z in Figure 7.

7. Evaluating Established Algorithms

We now show how power test functions can be used to evaluate the performance of the

established algorithms: Talbot (T ), Euler (E), Gaver-Stehfest (G) and Zakian (Z). As

shown by Abate and Whitt (2006), these other algorithms all can be expressed in the unified

framework (3) by appropriate node and weight vectors α and ω. Thus the algorithms are

characterized by these vectors α and ω, which are specified in Abate and Whitt (2006). The

Zakian weights and nodes for n = 30 are given in the Supplement. We display all the node

sets in Figure 8.
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Figure 8: All the nodes of the Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z) for
n = 30.

In order to see how well these inversion algorithms perform in the inversion of power

functions, we numerically identify the set of powers p for which the power relation (7) holds

to within a small specified error ε, and the complementary set where it is violated. For

that purpose, let p+
ε (n) to be the smallest nonnegative number p for which the pth power

condition is violated by at least a small positive number ε,

p+
ε (n) ≡ min{p ≥ 0 :

∣∣∣∣∣<
{

n∑

k=1

Γ(p + 1)

αp+1
k

ωk

}
− 1

∣∣∣∣∣ > ε} . (25)

Similarly, let

p−ε (n) ≡ max{p ≤ 0 :

∣∣∣∣∣<
{

n∑

k=1

Γ(p + 1)

αp+1
k

ωk

}
− 1

∣∣∣∣∣ > ε} . (26)

We call these functions of n, p+
ε (n) and p−ε (n), the positive power threshold and the negative
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power threshold, respectively. As candidate powers p, we consider all numbers k/2, −200 ≤
k ≤ 200. As mentioned in Section 1, for p ≤ −1, the powers correspond to pseudofunctions,

as discussed in Sections 12-14 of Doetsch (1974) and the Appendix there, and possibly to

asymptotic behavior for large t, as characterized by Heaviside’s theorem on p. 254 of Doetsch

(1974). We will show that these algorithms, with the exception of Zakian, tend to satisfy

the power relations for negative powers.

Thus the range (p−ε (n), p+
ε (n)) is the smallest contiguous interval of p among half powers

for which the pth power relation is satisfied within ε. In Figure 9 we show p+
ε (n) and p−ε (n)

for the four algorithms G, E , T and Z for 2 ≤ n ≤ 40 and ε = 0.05. We obtain the points

shown by fixing n and evaluating the power conditions numerically. For p ≥ 0, the points to

the right and under each curve meet the power conditions within ε, while the points to the

left and over do not. Similarly, for p ≤ 0, the points to the right and over each curve meet

the power conditions within ε, while the points to the left and over do not.

The single most striking observation from Figure 9 is that the positive and negative power

thresholds p+
ε (n) and p−ε (n) are linear in n, demonstrating consistent regular behavior as n

changes. Moreover, for p ≥ 0, all four existing algorithms meet the first few power conditions

within ε, although they vary widely in how many they meet. Figure 9 shows that Euler

performs slightly better than Gaver-Stehfest and that Talbot performs much better than

either of them, which is consistent with extensive experience, including numerical inversion

examples for ten transforms by all these methods in the Supplement.

Zakian’s algorithm is the best for p ≥ 0, which translates into the spectacular inversion

for f1 shown in Section 6. On the other hand, for p < 0, Zakian’s algorithm does not satisfy

any power conditions; p−ε (n) = 0 for all n. In contrast, the Gaver-Stehfest, Euler and Talbot

algorithms do meet some power conditions within ε for p < 0 with the same ranking as for

p ≥ 0. Figure 9 helps explain why the Zakian algorithm is fundamentally different from the

other algorithms. The Zakian algorithm evidently is highly tuned for smooth functions (i.e.,

analytic functions, with derivatives of all orders) at the expense of non-smooth functions.

We also observed that when p /∈ (p−ε (n), p+
ε (n)), the pth power conditions rapidly diverge

from 1. Further analysis indicates that the lines in Figure 9 have additional regularity as we

change the error tolerance ε. That is illustrated by Figure 10, which plots p+
ε (n) and p−ε (n)

as functions of ε for the Euler algorithm E . Our experiments lead us to conclude that the

power thresholds are approximately linear in the two variables n and log10(ε). The positive
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Figure 9: Scoring the Gaver-Stehfest (G), Euler (E), Talbot (T ) and Zakian (Z) algorithms
using power test functions in half powers. The error tolerance is ε = 0.05.

power threshold p+
ε (n) has approximately the linear formula

p+
ε (n) ≈ cn · n + cε · log10(ε) + c , (27)

where the three parameters cn, cε and c depend on the algorithm, as indicated in Table 7.

In closing this section, we emphasize that the scoring we have done is based on the power

functions, specifically, the power functions with half powers. We have done experiments

indicating that our results extend to quarter powers, but it remains to consider other test

functions. Thus one should be careful in extrapolating these results to all test functions.
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8. Error Estimates

In this section we briefly discuss a standard practical method to obtain error estimates (but

not bounds) while performing the numerical inversion. We rely on multiple calculations,

using different methods or different parameter settings. In doing so, we want to be sure that

we produce a genuinely different calculation. That is easily achieved by using a different

algorithm. That can easily be achieved with power algorithms by changing the node set,

provided that we re-solve the system of linear equations to get new weights in each case.

Suppose that calculation i produces estimate xi for the desired function value f(t), 1 ≤

Table 2: The positive power threshold p+
ε (n) = cn ·n+cε · log10(ε)+c for different algorithms

Algorithm cn cε c
Gaver-Stehfest 0.47 0.79 0.24
Euler 0.70 2.08 −0.52
Talbot 1.39 0.47 −0.17
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i ≤ m. We then estimate the absolute error, say e(f(t)), by

e(f(t)) ≈ min {|xi − xj| : 1 ≤ i, j,≤ m, i 6= j} . (28)

If the pair (i, j) yields the minimum in (28), then either xi or xj can serve as the final

estimate of f(t). We do this calculation for a low value of m, such as m = 10, to ensure that

small values are prohibitively unlikely to occur by chance.

In many cases we will have additional information about which estimates are likely to be

more accurate. For example, if we use a power algorithm with increasing nodes sets, then

we anticipate that the error will decrease with i. In support, we should thus see that the

minimum is attained for the pair (m − 1,m) and that |xi − xm| decreases in i. We would

then use xm as our estimate of f(t) and |xm−1 − xm| as our estimate of the error. Since

that should actually estimate the error for xm−1, the estimate should be conservative. In

this well-ordered setting we would be suspicious of a minimum obtained for an alternate pair

(i, i + 1).

We performed experiments for several transforms with known inverses in order to verify

that this heuristic procedure is effective, and it is.

9. Extensions

Gamma Test Functions. With probability applications in mind, as in Abate and Whitt

(1995), it is natural to consider gamma probability density functions (pdf’s), because arbi-

trary probability distributions on the positive halfline [0,∞) can be approximated arbitrarily

closely by finite mixtures of gamma distributions. (Gamma distributions can be made ar-

bitrarily close to point masses on the positive halfline, and so finite mixtures of gamma

distributions can be made arbitrarily close to finite mixtures of point masses on the positive

halfline, which in turn are dense in the family of all probability distributions on the posi-

tive halfline, using standard metrics, such as the Prohorov metric; e.g., see p. 77 of Whitt

(2002).)

Gamma test functions are also of interest because they are natural generalizations of the

power test functions we have considered, but for which the function argument t remains in

the picture. Let g(t; µ, λ) be a gamma pdf with rate λ and order µ, and let ĝ(s; µ, λ) be its

Laplace transform, i.e.,

g(t; µ, λ) ≡ λe−λt(λt)µ−1

Γ(µ)
and ĝ(s; µ, λ) ≡

(
λ

s + λ

)µ

. (29)
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In the unified framework, exact inversion of a gamma pdf at t means

g(t; µ, λ) =
1

t

n∑

k=1

ωkĝ
(αk

t
; µ, λ

)
, (30)

which, upon substitution and simplification, becomes

n∑

k=1

Γ(µ)

(λt + αk)µ
ωk = e−λt . (31)

Note that the power relation (7) is obtained from (31) in the special case λ = 0. Moreover,

for the special case µ = 1, we get the partial fraction representation of the exponential

function. From (31), it is apparent that we can develop a real-variable gamma inversion

algorithm just like the real-variable power inversion algorithm that we have considered.

Complex Variables. An attractive feature of the power algorithms we have considered is

that they only involve real variables, but we can consider extensions to complex variables.

The framework (3) also applies if f is a complex-valued function of a nonnegative real

variable. Moreover, whether f is real-valued or complex-valued, the weights and nodes in

(3) can be real or complex. For example, both are complex in Talbot’s algorithm.

If f is complex-valued, then we approximate the real part by

<{f(t)} ≈ <{fn(t)} ≡ 1

t

n∑

k=1

<
{

ωkf̂
(αk

t

)}

=
1

t

n∑

k=1

[
<{ωk}<

{
f̂

(αk

t

)}
−={ωk}=

{
f̂

(αk

t

)}]
. (32)

For the general case of complex weights and nodes, the power conditions are

<
{

n∑

k=1

Γ(p + 1)

αp+1
k

ωk

}
= 1, p ∈ P . (33)

In the case of complex nodes and weights, we can again obtain the system of linear

equations in (9). We fix the nodes αk to complex numbers with positive real parts. We can

again solve the linear system by Mathematica.

We can still formulate an LP that will produce weights that minimize the violation of

each equation. For two complex numbers s1 and s2, s2 6= 0, we have

<
{

s1

s2

}
=

1

|s2|2 (<{s1}<{s2}+ ={s1}={s2}) (34)
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Let ω<k and ω=k be the decision variables for the real and imaginary part of ωk. The real

LP that relaxes the constraints and minimizes the violation of each constraint in (8) here

becomes the LP with variables ω<k , ω=k and εj:

min
ω<,ω=,ε

m∑
j=1

cjεj

such that 1− εj ≤
n∑

k=1

Γ(pj + 1)∣∣∣αpj+1
k

∣∣∣
2

(
<{αpj+1

k }ω<k + ={αpj+1
k }ω=k

)
≤ 1 + εj, 1 ≤ j ≤ m ,

εj ≥ 0, 1 ≤ j ≤ m ,

<{α1} ≥ δ, <{αk} − <{αk−1} ≥ δ, 2 ≤ k ≤ n, (35)

where as before the positive numbers cj weigh the violation of the jth row of system (35).

10. Conclusions

Summary. In Section 2 we developed new real-variable power inversion algorithms within

the unified framework (3) proposed by Abate and Whitt (2006). The algorithm for con-

structing power inversion algorithms is summarized in Figure 1. The algorithm is created

by solving the linear system (9), involving the generalized Vandermonde matrix A in (10) to

obtain the weights. For given nodes and weights, the algorithm itself is simply the sum (3),

typically involving only n = 30 terms, but high computer precision is required, e.g., 1.5n.

In Section 3 we showed how the powers can be advantageously chosen starting from a

series expansion of the transform, as in (14). In Sections 3 and 4 we developed an effective

default power set P∗, displayed in (16), and an effective default node set N ∗ ≡ {1, 2, . . . , n}.
The default power algorithm behaves about the same as the Gaver-Stehfest algorithm, pro-

viding significant improvement for small t, but performing slightly worse for large t.

In Section 4 we showed that the power algorithm is robust to changes in the positive real

node set, provided that the linear system is re-solved to get new weights. In Section 5 we

discussed accuracy and precision requirements of the power algorithms.

In Section 6 we discussed the original Zakian (Z) algorithm, which served as motivation

for the unified framework. We observed that Z can be regarded as a special power algo-

rithm, using only integer powers and complex nodes and weights. The nonlinear system

of 2n equations in 2n unknowns (the n nodes and n weights) can be efficiently solved by

Padé approximation, which is easily carried out via Mathematica. We showed that Z has
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inconsistent performance, performing spectacularly well for smooth functions, but poorly for

non-smooth functions.

In Section 7 we showed that the power test functions can be used to evaluate the perfor-

mance of other algorithms within the unified framework (3). Consistent with experience, this

scoring shows the ranking: T > E > G. That is confirmed by detailed inversions of several

transforms by all the algorithms in the Supplement, Avdis and Whitt (2006). In Section

8 we discussed how to estimate the error in numerical inversion calculations. In Section 9

we mentioned two possible extensions: (i) gamma test functions and (ii) complex-variable

power algorithms, where the function f , the node vector α and/or the weight vector ω can

be complex-valued.

Directions for Future Research. There are many promising directions for future re-

search, which we hope to pursue. First, we still seek theoretical explanation for many of

the experimental results reported here: How can we explain the linear structure in equation

(27) with the algorithm-dependent coefficients, as illustrated in Figure 10? How can we

better explain the poor performance of the Zakian algorithm for non-smooth functions, as

illustrated in Figures 6 and 7? Can we better understand the performance of the power

algorithm as a function of t, gaining insight into when there is degradation in performance

for large t, extending the initial work of Abate and Valko (2004)? And what special methods

can we develop to treat the difficult functions for large t?

It would also be desirable to make the power algorithms more effective. Toward that end,

we need to develop a systematic algorithm to determine the series expansions in (14) and (15).

The proposed method in the fourth paragraph from the end of Section 3 is being explored. It

would also be of interest to apply the new methods by Demmel and Koev (2005) for solving

linear systems with generalized Vandermonde matrices without subtractive cancellation, to

solve the linear systems in the power algorithms more efficiently. It would be of interest to

further consider the application of mathematical programming to create power algorithms,

e.g., via (8). For fixed nodes, that means linear programming, but with high precision. For

variable nodes with weights of alternating signs, that means signomial programming.

Here we have restricted attention to real-valued power algorithms. We have begun to

consider analogous complex-valued power algorithms, starting with complex nodes, such as

the nodes in T , E and Z. The general approach is outlined in Section 9. Preliminary

experimental results show, first, that it is possible to improve the power algorithms by using
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complex nodes instead of real nodes and, second, it is possible to improve the other algorithms

for some transforms by using their complex-valued nodes but new weights obtained from a

power algorithm. In particular, it is possible to dramatically improve the performance of

Zakian’s algorithm for non-smooth functions by using the Zakian nodes but replacing the

Zakian weights by those obtained from the default power algorithm, based on the Zakian

nodes and the default power set P∗.
Finally, it would also be of interest to consider other families of test functions, such as

the gamma test functions mentioned in Section 9, and to apply similar methods to other

transforms.

Acknowledgments

The authors thank Joseph Abate for his many contributions to this line of research and for

helpful discussions related to this paper. The authors also thank the referees for helpful

suggestions. Ward Whitt was partially supported by NSF grant DMI-0457095.

References

Abate, J., G. L. Choudhury and W. Whitt. 1999. An introduction to numerical inversion

and its application to probability models. In Computational Probability, W. Grassman

(ed.), Kluwer, 257–323.

Abate, J. and P. P. Valko. 2004. Multi-precision Laplace inversion. Int. J. Numer. Meth.

Engng. 60, 979-993.

Abate, J. and W. Whitt. 1992. The Fourier-series method for inverting transforms of

probability distributions. Queueing Systems 10, 5–88.

Abate, J. and W. Whitt. 1995. Numerical inversion of Laplace transforms of probability

distributions. ORSA Journal on Computing 7, 36–43.

Abate, J. and W. Whitt. 1996. An operational calculus for probability distributions via

Laplace transforms. Adv. Appl. Prob. 28, 75–113.

Abate, J. and W. Whitt. 2006. A unified framework for numerically inverting Laplace

transforms. INFORMS Journal on Computing 18, 408–421.

Abramowitz, M. and I. A. Stegun. 1972. Handbook of Mathematical Functions, National

30



Bureau of Standards, Washington, D.C.

Avdis, E. and W. Whitt. 2006. Supplement to ”Power algorithms for inverting Laplace

transforms.” Available at http://columbia.edu/∼ww2040.

Baker, G. A. and P. Graves-Morris. 1996. Padé Approximants, second edition, Encyclopedia
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