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Abstract

This paper develops an aggregate stochastic model of an emergency depart-
ment (ED) based on a careful study of data on individual patient arrival times
and length of stay in the ED of the Rambam Hospital in Israel, which was
used in a large-scale exploratory data analysis by Armony et al. (2015). This
data set is of special interest because it has been made publicly available,
so that the experiments are reproducible. Our analysis confirms the pre-
vious conclusions about the time-varying arrival rate and its consequences,
but we also find that the probability of admission to an internal ward from
the ED and the patient length-of-stay distribution should be time varying as
well. Our analysis culminates in a new time-varying infinite-server aggregate
stochastic model of the ED, where both the length-of-stay distribution and
the arrival rate are periodic over a week.

Keywords: emergency departments, nonstationary stochastic models,
queueing models, nonhomogeneous Poisson process, time-varying
length-of-stay distribution, two-time-scale arrival process model

1. Introduction

There is a long history of operations research studies aimed at improving
the quality and efficiency of healthcare, as illustrated by the early study [1]
and the recent surveys [2, 3, 4, 5]. Nevertheless, as emphasized in [6], there
remains a great need for further improvement. Much of this improvement
is likely to come from vastly improved data collection, storage, retrieval and
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analysis. The power of data analysis is illustrated by extensive exploratory
data analysis of the patient flow in the large Rambam Hospital in Israel from
a queueing science perspective conducted by Armony et al. [7]. In addition
to their own analysis of the patient flow data at the level of individual pa-
tients, they arranged to make their data publicly available, thus facilitating
reproducible studies aimed at generating general conclusions of widespread
applicability. In this paper, we respond by analyzing a portion of the pa-
tient flow data provided by [7]. In particular, we focus on the emergency
department (ED), just as in §3 of [7].

Among the many OR studies in healthcare, many have already focused
on the emergency department, e.g., [8, 9, 10, 11, 12]. As those papers il-
lustrate, the customary goal is to improve system design and operations. In
contrast, in this paper, we focus solely on analyzing the patient flow data to
determine what is a good aggregate stochastic model of the emergency de-
partment. This careful analysis is justified because emergency departments
are complicated. The results here are intended to make it possible to more
quickly build better stochastic models that can be used to improve healthcare
design and operations.

As others have discovered before, e.g., see §6.3 of [13], the authors in
§3 of [7] observe significant time dependence in the arrival rate, departure
rate and average occupancy levels of the ED. We confirm those observations
here, but we go further by pointing out significant time dependence in (i)
the probability of admission into an internal ward from the ED and (ii) the
length-of-stay (LoS) distribution of arriving patients. Time dependence in
LoS was also a major theme in the recent study of a Singapore hospital in [14].
We discuss the relation between time dependence and the state dependence
emphasized by [7] in §4.5.

The available ED patient flow data is powerful in that it includes arrival
and departure times of individual patients, but it is also limited in that it does
not contain a detailed account of all the steps and processes that take place
during a patient’s stay. Thus, given the available data, we are only able to
construct a relatively rough aggregate stochastic model, but even that can be
useful and is not easy. Our model has only three components: (i) an arrival
process model, (ii) an admission probability model, and (iii) a LoS model.
All three are complicated, because we find that all three should be regarded
as time-varying. Given those components, our aggregate stochastic model for
system occupancy is a Gt/GIt/∞ time-varying infinite-server queue, which
is much more tractable than the notation suggests. (Gt denotes a general
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(non-renewal, non-Markov) time-varying arrival process, while GIt denotes
mutually independent service times, independent of the arrival process, but
with a time-dependent distribution.) The Mt/Mt/∞ infinite-server model
was proposed for healthcare in 1976 by Collings and Stoneman [15].

Because of the limited data, the possible direct applications of the full
model for operational improvement are limited. However, it can be used to
perform “what if” studies, e.g., to estimate the performance impact of the
arrival rate increasing by 3% per year over the next 5 years. As reviewed
in [16], infinite-server models describe the time-varying load together with
the drivers of that load. Of course, the load can be measured directly by
the census, i.e., the number of patients in the ED as a function of time, but
we expose how that is related to the main drivers, in particular, the patient
arrival process and the length of stay (LoS) of the patients, both of which are
time-varying, and should be regarded as stochastic. We think that the new
model is most useful to provide new useful models of the principal model
components, especially the patient arrival process. Almost any stochastic
model used to model a healthcare system has a component that is a model
of the patient arrival process.

Consistent with §3 of [7], we find that the ED arrival rate should be time
varying, but we emphasize that the proper view is over a week as opposed to
the common daily view. In particular, we think that the arrival rate can be
regarded as periodic over a week. As in [7] and [11] before, we find that there
is moderate overdispersion compared to a non-homogeneous Poisson process
(NHPP). We conclude that it might be reasonable to use an NHPP arrival
process model, but in fact we suggest instead a two-time-scale arrival process
model. We suggest first modelling the daily totals as a discrete-time Gaussian
process and then letting the arrivals during the day, given the daily total, be
distributed as an NHPP. The conditional NHPP means that the arrival times
(not interarrival times!) of the daily total number of arrivals are treated as
i.i.d. random variables on the entire day with a probability density function
(pdf) proportional to the arrival rate function for that day, as discussed in
[17, 18]. This arrival process model is a variant of the model proposed by
[17]. We find that the model is supported by statistical tests in [18, 19]; see
§3.4.

The two-time-scale model is convenient because it supports focusing on
arrivals over successive days and arrivals within days separately. There is
precedent for two-time-scale healthcare models in [14, 20], but these are very
different. The first [20] focuses on the hospital plus the ED, observing that
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the Internal Wards (IW’s) operate on the slower time scale of days, whereas
the ED operates on the faster time scale of hours. The paper [20] proposes
and analyzes a Markov chain (MC) model of that system, using a discrete-
time MC for the days and a continuous-time MC for the transitions within
days. On the other hand, in §3.2 of [14] the authors propose a two-time-
scale model of the LoS. The general thrust of [14] is consistent with our
time-varying LoS distribution, which we discuss next.

We present strong evidence that the LoS distribution needs to be regarded
as time-varying, and find that it suffices to make it time-varying over hours.
Figure 8 here shows that the average occupancy level and departure rate
are not predicted properly by a using the overall LoS distribution. We can
make the connection by applying the theory of infinite-server queues as in
[21] or, equivalently, the time-varying Little’s law [22, 23]. We show how the
time-varying LoS can be efficiently and effectively analyzed by exploiting a
discrete-time model in the time scale of hours. The time dependence in the
LoS may prove useful in studying the scheduled operations in the ED and
the internal wards.

Here is how the rest of this paper is organized. In §2 we briefly describe
the Rambam hospital and our data source, referring to [7] for more details.
We analyze and model the ED arrival process in §3; we also discuss the
probability of admission into an internal ward there. In §4, we analyze and
model the LoS. In §5, we examine the departure process, showing that it can
be useful to view the departure process in reverse time. In §6 we compare
our model to simulation. Finally, we draw conclusions in §7. Supplementary
material is provided in an online appendix [24].

2. The Rambam Emergency Department and the Data

As in [7], we study the Rambam hospital, a large 1000-bed hospital with
45 medical units in Haifa, Israel. In particular, as in §3 of [7], we focus on
the emergency internal medicine unit (EIMU), which is the largest unit in a
comprehensive emergency department (ED). That focus is justified because
the different units of the ED are physically separate and share few resources.
About 60% of all new patients enter the hospital through the ED and the
majority of those enter through the EIMU, which we henceforth simply call
the ED. After being examined and treated within the ED, patients are either
admitted to one of the internal wards (IW’s) or released, as depicted in Figure
2 of [7]. About 40% of arrivals to the ED are admitted.
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As directed in Appendix 2 of [7], we obtained the data from the SEELab
data-based research laboratory at the Technion. The available hospital data
was collected from January 2004 to October 2007. We only focus on the
25-week period from December 2004 to May 2005. In particular, we use the
5th, 6th, 13th and 18th columns of the visit table in the database, which are
the entry group, first department, entry time and ED duration. In the raw
data, the time records are rounded to the nearest second.

A total of 58,332 patients visited the comprehensive ED, with 24,317 going
to the EIMU (3955, 4360, 3530, 4324, 3965 and 4183 for each month). Table
1 provides the total number of arrivals to the ED and length-of-stay (LoS)
statistics for each of the sample populations used in successive analyses. The
LoS refers to the LoS within the ED up until the time that a decision is
made to admit the patient to an IW or not. Thus, the LoS does not include
the delay until transfer is completed after the admission decision, commonly
called ED boarding.

From both the database and [7], we know that the ED patients can be
divided into two groups according to the admission decision; we pay attention
to whether or not patients are admitted. Even though the admission decision
cannot be known in advance, we find that the proportion of admitted patients
in successive hours is time-dependent and thus can be exploited in modelling
and analysis.

There are several variables in the database that can be used to help
classify the patients. In this paper we use the ”exit group”, which we find
to be consistent with the ”exit unit”, ”exit department” and ”num dep” in
the visits table. ”exit group=1” means the patient was released from the
Emergency Department and was not admitted to any hospital department;
”exit group=2” means the patient was released from a hospital department,
which means that he was admitted to at least one department from the ED.
So when we focus on patients who entered ED first, this will tell us whether
a patient was admitted to an IW or not. Among the 23, 409 patients that
visited the ED (the EIMU) in the 25-week period, 9, 669 (about 40%) were
admitted and 13, 740 were not.

Below is a detailed description of the datasets in Table 1. Throughout
the paper, we will refer to Table 1 to specify the population.

• Dataset 2: a subset of dataset 1 containing those patients who went to
the EIMU within the comprehensive ED during the 25 week period; we
refer to the EIMU simply as the ED.
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No. Data description Sample Size mean stdv 1st qu. median 3rd qu.
1 Larger ED 58,332 (182 days) 3.08 5.36 1.06 2.16 3.87
2 ED (EIMU) 24,317 (182 days) 4.10 3.49 1.90 3.31 5.26
3 Truncation of 2 23,409 (175 days) 4.10 3.49 1.90 3.31 5.26
4 Truncation of 2 23,421 (175 days) 4.09 3.41 1.90 3.31 5.26
5 Admitted from 3 9,669 (175 days) 4.01 3.26 1.68 3.45 5.53
6 Non-admitted from 3 13,740 (175 days) 4.17 3.65 2.01 3.24 5.05
7 Truncation of 2 23,407 (175 days) 4.10 3.50 1.90 3.31 5.27
8 Admitted from 7 9,668 (175 days) 4.01 3.27 1.68 3.45 5.53
9 Non-admitted from 7 13739 (175 days) 4.17 3.65 2.01 3.24 5.06

Table 1: Sample size (number of arrivals) and LoS statistics (in hours) in different views
of the ED data.

• Dataset 3: a subset of dataset 2 containing those patients that arrived
within the 25 week period. (We use dataset 2 for occupancy statistics.)

• Dataset 4: a subset of the dataset 2 containing those patients who both
entered and departed the system between Dec. 5, 2004, and May 28,
2005, and have LOS less then 48 hours.

• Dataset 5: a subset of dataset 3 containing those patients who were
admitted after visiting the ED (”exit group=1”).

• Dataset 6: a subset of dataset 3 containing those patients who were
not admitted after visiting the ED (”exit group=2”).

• Dataset 7: a subset of dataset 2 containing those patients whose de-
parture times are in the 25-week period (from Dec. 5, 2004, to May 28,
2005).

• Dataset 8: a subset of dataset 7 containing those patients who were
admitted after visiting the ED (”exit group=1”).

• Dataset 9: a subset of dataset 7 containing those patients who were
not admitted after visiting the ED (”exit group=2”).

3. The ED Arrival Process

In this section, we study the arrival process of patients at the ED (by
which we always mean the EIMU). In §3.1 we look at the daily totals; we
briefly discuss dependence among the daily totals in §3.2. In §3.3 we estimate
the hourly arrival rates over a week. We evaluate the stochastic variability in
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the arrival process in §3.4, which leads to proposing the two-time-scale model
involving a conditional nonhomogeneous Poisson process (NHPP). In §3.4.1
we estimate the index of dispersion for counts; in §3.4.2 we report results
of statistical tests of the conditional NHPP property, drawing on [18, 19].
In §3.5 we examine the arrival processes of two separate groups of patients:
those that were ultimately admitted to one of the IW’s and those that were
not. Finally, in §3.6, we summarize the two-time-scale model for the arrival
process that we propose, based on that statistical analysis.

3.1. Daily Totals

Table 2 shows the number of patients that arrived at the ED on each day
from Dec. 5, 2004, to May 28, 2005 (25 weeks). The 25 × 7 = 175 daily
totals vary from 77 to 191, and have mean 133.8 and median 135.

Week Sun. Mon. Tue. Wed. Thu. Fri. Sat. Total Mean

1 150 147 132 107 123 100 99 858 122.57
2 143 147 127 138 121 101 103 880 125.71
3 162 155 147 136 144 94 98 936 133.71
4 186 155 135 136 119 100 131 962 137.43
5 164 171 149 146 142 110 110 992 141.71
6 175 144 157 136 156 115 105 988 141.14
7 181 157 140 109 145 114 107 953 136.14
8 176 145 139 150 126 127 102 965 137.86
9 171 160 125 137 137 77 84 891 127.29
10 134 127 119 115 95 88 82 760 108.57
11 165 117 121 133 154 123 132 945 135.00
12 163 142 135 142 129 115 100 926 132.29
13 173 166 168 136 138 108 108 997 142.43
14 169 155 155 137 143 127 106 992 141.71
15 180 152 132 148 162 111 105 990 141.43
16 159 164 191 128 126 95 111 974 139.14
17 163 135 146 128 138 111 145 966 138.00
18 160 123 168 136 133 119 102 941 134.43
19 132 147 152 138 133 116 101 919 131.29
20 162 150 140 126 113 113 96 900 128.57
21 143 165 153 130 130 111 117 949 135.57
22 151 147 132 114 114 114 96 868 124.00
23 159 135 151 119 107 122 100 893 127.57
24 164 163 153 147 156 111 91 985 140.71
25 165 141 159 138 147 125 104 979 139.86

Total 4050 3710 3626 3310 3331 2747 2635 23409
Mean 162.00 148.40 145.04 132.40 133.24 109.88 105.40 936.36
Var. 191.58 187.08 275.71 139.33 270.44 152.78 196.75 3110.99

Table 2: Number of arrivals at the ED on each day from Dec. 5, 2004, to May 28, 2005,
(25 weeks, Dataset 2).

Some of the fluctuation may be explained by Jewish holidays. In Israel,
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Dec. 8, 2004, to Dec. 12, 2004, in week 1 and 2 was Hanukkah, while Apr.
24, 2005, to Apr. 30, 2005, in week 21 was Passover. We see that the daily
totals are somewhat low during weeks 1 and 2, but not very different in week
21. We also notice that another low period occurred between Feb. 4, 2005,
and Feb. 11, 2005, in weeks 9 and 10, for which we have no explanation. It
is possible that this was due to military hostilities, but we could not verify
that. We do not omit these periods from our data because they represent
unanticipated random events that do occur.

Within a week, Sunday has the largest number of arrivals, which is to be
expected because it is the beginning of the work week in Israel. Then the
average daily totals decrease over the week. Friday and Saturday have much
fewer arrivals, which may be expected because that is the weekend. We also
computed the variance of daily totals for each day of week. By looking at
the dispersion (ratio of the variance to the mean), we see that there is a
moderate level of overdispersion for the daily totals compared to a Poisson
process (where the dispersion is 1).

Figure 1 is a plot of the weekly totals. It confirms our observation above
about the low values in week 10. Table 2 shows that the mean weekly number
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Figure 1: Weekly arrival totals over the 25-week study period. (Use dataset 3.)

of arrivals is 936. Hence, if the arrival process were an NHPP, then the
variance should be same as the mean and the standard deviation of the
weekly total would be about

√
936 ≈ 31. Figure 1 is roughly consistent

with that Poisson property, except for week 10, which is about 5 standard
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deviations below the mean.
We investigated models for the daily totals. We first considered a two-

factor statistical regression model with Gaussian residuals for the daily total
numbers of arrivals; see §§2.7, 3.7 and 6.5 of [25] for background. The daily
total is represented as

T (w, d) ≡ A+Bw + Cd+G(0, σ2), (1)

where ≡ denotes equality by definition, w represents the week and d is the
day-of-week (DoW), while G(0, σ2) is a mean-0 Gaussian random variable
with variance σ2 (to be estimated) and A, B and C are constants. The week
and the DoW are the two factors, so actually we have wi’s as indicators for
each week, dj’s as indicators for each day-of-week and Bi’s, Cj’s accordingly.
Because there is redundancy in model (1) since

∑
i wi = 1 and

∑7
j=1 dj = 1,

we set
∑

Bi ≡ 0 and
∑

Cj ≡ 0, so that A gives the average daily total
number of arrivals for all days.

Table 3 is the usual Analysis of Variance (ANOVA) table for the regres-
sion. From the P -values in the last column of Table 3, we see that both factors

Factor Sum of square df Mean sum of square F statistics P-value
Week 10,666 24 444.4 2.75 1.1× 10−4

DoW 62,893 6 10,482.2 64.89 < 10−12

Residuals 23,262 144 161.5

Table 3: ANOVA table for the two-factor model (1). (Use dataset 3.)

are statistically significant at the 1% level. From the residuals, the estimated
variance is σ̂2 = 161.5 = 12.712. Under this model, the variance-to-mean ra-
tio is 161.5/133.8 = 1.21. The Gaussian two-factor model is supported by
observing that the residuals are consistent with the Gaussian distribution,
as can be seen from the histogram of the residuals and the QQ-plot of the
studentized residuals in the appendix [24].

However, for applications, we would actually prefer the single-factor model
with only the DoW as the single factor, because the DoW effect is known,
whereas the week effect is not, but the results above show the consequence
if we can assume that it can be known or, more generally, if better estimates
of the daily totals can be generated from forecasting. Hence, instead of (1),
we propose the single-factor model

T (d) ≡ A+ Cd+G(0, σ2), (2)
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where again d represents the DoW factor andG(0, σ2) is the Gaussian random
variable, while A and C are constants. Again, we set

∑
Cj = 0 to avoid

redundancy.
Table 4 shows the estimated coefficients for model (2), while Figure 2

shows the histogram and QQ-plot for the residuals. The coefficients Cj quan-
tify the decreasing trend of the daily total arrivals within a week. Figure 2
shows that the normality of the residuals remains good. The ANOVA ta-
ble can be computed from Table 3. The estimated variance and dispersion
(variance-to-mean ratio) are

σ̂2 =
10666 + 23262

24 + 144
= 202.0 and D ≡ σ̂2

m̂
=

202.0

133.8
= 1.51,

where m̂ is the estimated mean, which again represents a moderate level of
overdispersion relative to an NHPP.

Coeffitients Estimate SE
A 133.766 2.842

C.Sun 28.234 4.019
C.Mon 14.634 4.019
C.Tue 11.274 4.019
C.Wed -1.366 4.019
C.Thu -0.526 4.019
C.Fri -23.886 4.019
C.Sat -28.366 4.019

Table 4: Estimated regression coefficients for the single-factor model in (2). (Use dataset
3.)

3.2. Dependence Among Daily Totals and Residuals

We also examined the dependence among the residuals in the single-
factor model. We first directly estimated the autocorrelation function and
found the first seven coefficients were all positive. We then fit and compared
autoregressive AR(p) models, and found that the fitting was not very good,
but positive coefficients again indicate some positive dependence among the
residuals. Nevertheless, when we performed four different statistical tests of
the residuals, we found that none could reject the independence hypothesis.
Finally, we also fit ARMA(p,q) models for the actual daily totals for various
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Figure 2: Supprting detail for model (2): histogram of the residuals (left) and QQ plot of
studentized residuals (right). (Use dataset 3.)

p and q, with p = 7 being a natural choice because of the observed DoW
effect. Overall, we did not find a better model to suggest. Thus the details
are left to the appendix [24].

3.3. Arrival Pattern Within Days

We now estimate the time-varying arrival rate by computing hourly aver-
ages and using a piecewise-linear plot. Unlike most service systems, we find
that it is important to take a week view as opposed to a day view. Thus, we
combine all the 25 weeks and estimate the hourly arrival rate over a week,
as is shown in Figure 3. The vertical dashed lines are at midnight between
successive days. Figure 3 shows that the arrival rate is lowest in the early
morning, about 6am, and increases rapidly to a peak just before noon, after
which it declines irregulary, with a steep decline around midnight. As ex-
pected, the arrival rate is lower at night than during the day. We can also
see that the arrival rate is lower on weekends and has a somewhat different
pattern.

Since we have demonstrated a strong DoW effect on the daily totals, it is
natural to examine the daily pattern without the DoW effect. To do so, we
can normalize the arrival rate by the daily totals; i.e., we divide the arrival
rate in Figure 3 by the average daily total arrivals of each day of week. Figure
4 (left) shows the arrival rate after normalizing, while Figure 4 (right) shows
the corresponding estimated cumulative arrival rate function. Figure 4 shows
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Figure 3: Estimated arrival rate at the ED over a week. (Use dataset 3.)

Figure 4: Estimated normalized arrival rate function over the week (left) and the corre-
sponding estimate cumulative arrival rate function (right). These are both compared to a
piecewise-constant approximation with two pieces divided at 9 am and midnight.
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that the normalized arrival rates still look different for different days, but we
see more regular behavior with the cumulative view. Figure 4 suggests that
it should not be unreasonable to approximate the arrival rate by a lower
constant rate from midnight to 9am and a higher constant rate from 9am
to midnight. This relatively simple arrival rate model is appealing, but we
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found that it did not perform as well in simulation comparisons.

3.4. Stochastic Variability in the Time-Varying Arrival Process

It is commonly accepted that the arrival process to an ED can be modelled
by a nonhomogeneous Poisson process (NHPP), because the arrivals typically
come from the independent medical incidents of many different people, each
of whom uses the ED infrequently. Mathematical support is provided by the
Poisson superposition theorem; e.g., §11.2 of [26], but that should be verified,
as in [18, 19].

Indeed, we have already seen strong stochastic variation in the daily to-
tals that suggests overdispersion relative to a Poisson process. To illustrate
unsuspected bunching of arrival that can occur, anecdotally from New York,
ED employees report surges of arrivals at public transportation arrival times
at the hospital.

Accordingly, we investigated the stochastic variability in the arrival pro-
cess by (i) estimating the index of dispersion for counts, as in [27, 28], and by
performing statistical tests of the NHPP property as in [18, 19]. We briefly
summarize the results of our investigations and refer to the appendix for
more details.

3.4.1. The Index of Dispersion for Counts

The index of dispersion for counts (IDC) is the ratio of the variance to
the mean of the arrival counting process, as a function of time. Let A(t) be
the number of arrivals in interval [0, t], so that {A(t), : t ≥ 0} is the arrival
counting process. Let Λ(t) ≡ E[A(t)] and V (t) ≡ V ar(A(t)) be the mean
and variance functions. Then the IDC is I(t) ≡ V (t)/Λ(t), t ≥ 0.

It is instructive to consider three different views: (i) the week view, (ii) the
day view and (iii) the DoW view. In the week view we take T = 7∗24 = 168
hours, and estimate Λ(t) and V (t) hourly by taking the 25 weeks as samples,
then compute the ratio to estimate I(t). In the day view we take T = 24
hours, and take the 25 ∗ 7 = 175 days as samples. In DoW view we take
T = 24 hours, and take each specific day of week in the 25 weeks, so that
the sample size is 25 for each day of week. Notice that it is natural to regard
successive Tuesdays as i.i.d., but not successive days, so that the DoW view
is likely to have less dependence.

Figure 5 shows estimates of the IDC in all three views. In both the week
and day views IDC is steadily increasing, which reveals dependence over
multiple days. In contrast, in the DoW view the IDC is much more flat,
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Figure 5: The estimated IDC in a week view (top), day view (bottom left) and DoW view
(bottom right). (Use dataset 3.)

at a level that is not much greater than 1 for Poisson. The DoW view in
Figure 5 shows that the average IDC is about 1.5, which coincides with the
regression result for the daily total arrivals in §3.1. Figure 5 provides strong
evidence that the overall arrival process is not too well modelled as an NHPP,
but is quite well modelled as a conditional NHPP, where the arrival process
conditional on the daily total is regarded as an NHPP. As explained in §3.2
of [29], that means that, after we condition on the daily total, those arrival
times can be regarded as i.i.d. random variables over the day, each having a
pdf proportional to the time-varying arrival-rate function.

Our analysis is consistent with the conclusions in [11] and in §3.2 of
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[7], but with very different method showing it. In [7], by exploratory data
analysis, the authors found that the ED hourly arrival rates is time-varying.
[11], which is also cited by [7], observed overdispersion for the arrival process
by looking at empirical coefficients of variation in 4 time resolutions (hourly,
3-hour, 8-hour and daily). Here we go further by showing the time variability
structure through the IDC.

3.4.2. Statistical Tests of the NHPP Property

To statistically test the deviations from the conditional NHPP assump-
tion, we used the statistical tests in [18, 19], in particular, the conditional
uniform Kolmogorov-Smirnov test (CU KS test) and the Lewis KS test. The
test results are shown in the appendix. The results indicate that most in-
tervals passed these KS tests, indicating that it is reasonable to regard the
arrival processes as NHPP within each day. As emphasized in [18], that does
not imply that the arrival-rate function should be regarded as deterministic.
Instead, it supports the conditional NHPP property, because these statisti-
cal tests cannot distinguish between the conditional NHPP and the direct
NHPP when the separate days are analyzed separately, as in the DoW view
in the previous subsection.

In summary, we propose a two-time-scale model that has random daily to-
tals and, conditional on those totals, assumes that the arrival process within
each day is an NHPP. The conditioning feature means that, conditional on
the daily totals, that number of arrivals is modelled as i.i.d. random vari-
ables over the entire day, each having a pdf proportional to the arrival rate
function. We use MT

t to denote this two-time-scale conditonal NHPP arrival
process, where T denotes conditioning on the daily totals. A variant of this
MT

t arrival process model was proposed for appointment-generated arrival
processes in [17]. For appointment-generated arrival processes, the arrival
process tended to be under-dispersed compared to a Poisson process.

3.5. Arrival Processes of the Two Groups: Admitted and Non-Admitted

In §2 we mentioned that the patients in ED can be divided into two
groups according to the admission decision (to the internal ward from the
ED). The non-admitted patients are released after being treated in the ED
while the admitted ones are transferred to the IW’s in the main hospital.
A priori, we judge that these two arrival processes can be regarded as an
independent thinning from the whole arrival process. For managing ED’s,
we wanted to investigate if this thinning might be time-dependent. Figure 6
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shows the estimated arrival rates of the admitted and non-admitted patients
for a week.
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Figure 6: Estimated arrival rates for the admitted and non-admitted patients. (Use
datasets 5 and 6.)

We also looked at the proportion of patients admitted to the internal
ward as a function of their arrival time, denoted by p(t). Figure 7 shows esti-
mates of the proportion of admitted patients by time of day over a single day,
using all 175 days. Figure 7 presents strong evidence that the probability
of admission is indeed time-varying. From a modelling perspective, it is sig-
nificant that time-dependent, but stochastically independent, thinning also
preserves the NHPP property; i.e., if A is an NHPP, then the two separate
arrival processes will be NHPP’s as well; see Proposition 2.3.2 of [30].

Furthermore, we use least squares to fit a quadratic function to p(t) with
a maximum at 2:30 pm. Figure 7 (right) shows fitted function, which is
p̂(t) = −0.001082(x− 13.5)2 + 0.451996, where x = ((t− 1.5) mod 24) + 1.5
and t ∈ [0, 24]. The modulus function is used to treat the data as periodic
with a daily cycle.

3.6. Summary: Full Model of the ED Arrival Process

We combine the analysis in the previous subsections to develop a full
arrival process model that can be used in simulation studies. First, the
daily totals for the number of arrivals are modelled as independent random
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Figure 7: Estimated proportion of admitted patients as a function of the arrival time within
each DoW plus the overall average shown by the black solid line (left) and compared to
the fitted quadratic function (right). (Use datasets 5 and 6.)

0.
25

0.
35

0.
45

0.
55

time of a day

pr
op

or
tio

n 
of

 a
dm

itt
ed

 p
at

ie
nt

s

0 3 6 9 12 15 18 21 24
0.

25
0.

35
0.

45
0.

55
time of a day

pr
op

or
tio

n 
of

 a
dm

itt
ed

 p
at

ie
nt

s
0 3 6 9 12 15 18 21 24

Estimated
Fitted

variables with a Gaussian distribution, as determined by the single factor
Gaussian model in (2). Then, given the daily totals, the arrival process is
modelled as an NHPP, which means that the given random daily number of
arrivals are treated as i.i.d. random variables over the entire day with a pdf
proportional to the estimated arrival rate function for that day. We refer to
that arrival process model as MT

t . Finally, a patient that arrives at time t is
admitted with probability p(t), estimated by the quadratic function above.
We conduct simulation experiments using the model in §6.

However, because we found only moderate overdispersion of the arrival
process within each day and only limited dependence among the successive
daily totals, our statistical analysis can be interpreted as providing support
for an ordinary NHPP (Mt) arrival process model. However, we did ob-
serve significant deviations from an NHPP, as is evident from the means and
variances in Table 2. More importantly, we think that the two-time-scale
arrival-process model introduced here is a useful framework to study poten-
tial deviations from an NHPP model. To directly fit an NHPP is to ignore
the model fit question entirely.

We also point out that the two-time-scale model is easy to use in simula-
tion models. The model has the advantage over the NHPP that it allows sim-
ulation studies of the impact of overdispersion of the daily-total distribution
and dependence among the successive daily totals on the ED performance,
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because these features can be directly included in the model.

4. Length of Stay

In this section, we investigate the patient LoS distribution. We first
find that the LoS distribution should be regarded as time-varying. Then we
introduce a discrete-time analysis to expose the structure in more detail. We
discuss an alternative state-dependent LoS distribution in §4.5.

4.1. Failure of the Gt/GI/∞ Aggregate Model

It is common to directly examine the LoS distribution, as if that should
be a natural primitive. For modelling, that means that the LoS of successive
patients would be modelled as i.i.d. random variables with that distribution.
Given that perspective, we started by estimating the overall LoS distribution;
we refer to the appendix for the details. That was accomplished by looking
at the difference between the exit time and entrance time of each patient. A
more elaborate model of what happens in between arrival and departure was
not possible, because such extra information was not included in the data.

It also turns out to be highly significant that the departure or exit time
was defined as the time that the ED doctor made the decision whether or not
to admit the patient. Thus, for admitted patients, the additional time until
the transfer to the Internal Ward (IW) was not included in the data. Thus,
we were unable to directly study the important problem of ED boarding (the
extra delay between the admission decision and the patient being transferred
to the IW).

Given that perspective, a natural aggregate model for the ED would be an
Mt/GI/∞ or Gt/GI/∞ infinite-server queue, combining an arrival process
with a time-varying arrival-rate function with the patient LoS modelled by
a sequence of independent and identically distributed (i.i.d.) service times
with a general cumulative distribution function (cdf) G.

To see if these models with GI LoS times are approximately appropriate,
we calculated the time-varying departure rate δ(t) and the mean occupancy
level m(t) ≡ E[Q(t)] in the Gt/GI/∞model using Theorem 1 of [21] together
with the estimated arrival-rate function λ(t) and LoS cdf G. (As emphasized
by §5 of [31], these formulas apply to Gt as well as Mt arrivals, and so also
apply to MT

t arrivals, as assumed in §3.6.) Figure 8 compares the directly
estimated departure rate and mean occupancy to the indirect estimator ex-
ploiting the model. Figure 8 shows that the model with GI LoS does not
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nearly approximate the actual departure rate and mean occupancy levels.
Especially striking is the surge in departures at the end of the day, around
midnight, which is totally missed by the Mt/GI/∞ model. In closing, we
remark that Figure 8 parallels Figure 3 in [7]. There it is emphasized that
the peak occupancy lags after the peak arrival rate, which can be seen from
Figure 8 as well.
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Figure 8: A comparison of direct estimates of the time-varying departure rate δ(t) (left)
and the mean occupancy level m(t) (right) at the ED to indirect estimates based on the
Mt/GI/∞ model using the estimated arrival rate and LoS ecdf (Use dataset 3.)

4.2. The Time-Varying LoS Distribution

To directly see the time-varying structure of the LoS distribution, we
looked at a box-plot of the LoS for each hour; see [32] for backgound. The
time-varying behavior of the LoS can be seen from a week view (see the
appendix), but is especially clear in a day view, as shown in Figure 9. The
boxes show the 25% and 75% percentiles, while the blue diamonds are the
means and the black bars are the medians. Consistent with intuition, the
LoS is longer for patients arriving after midnight, when there are fewer staff.
The LoS also tends to be somewhat less for arrivals in the evening. This may
be explained by extra effort to release non-admitted patients by midnight,
which we will discuss soon.

Given the time-dependence in the LoS distribution, we decided to do a
careful analysis in discrete time. For that purpose, let Xk,j be the number of
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Figure 9: A box plot of the LoS distribution by hour of the day. The blue diamonds are
the means, while the black bars are the medians (Use dataset 3.)

arrivals in discrete time period k that have a LoS of j time periods, i.e., that
depart in discrete time period k + j, j ≥ 0. We let a discrete time period
be one hour. We still focus on the time period from Dec. 5, 2004, to May
28, 2005 (25 weeks, 175 days), so we make 00:00-01:00 on Dec. 5 2004 to be
discrete time period k = 1. In order to have the correct number of patients
in the system, we only count patients who entered or left the system in that
time period and have a reasonable LoS; i.e. we use dataset 4 through this
part. We have to include 1 extra day (Dec. 4, 2004) at the beginning to let
X include all the patients we focused on. The longest LoS is less than 37
hours after cleaning the data. So our X matrix has dimension (24∗176)×37,
i.e. for Xk,j, −23 ≤ k ≤ 24 ∗ 175, 0 ≤ j ≤ 36. The full X matrix is displayed
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in the appendix.
Let Ak and Dk be the number of arrivals and departures in the time

period k. Then we have

Ak =
36∑

j=0

Xk,j and Dk =
36∑

j=0

Xk−j,j,

where we assume Xk,j = 0 for all k, j except −23 ≤ k ≤ 24∗175, 0 ≤ j ≤ 36.
Now we assume a periodic structure over successive periods of d discrete

times. We assume that we have sufficient data to estimate averages over n
periods, containing nd discrete time periods. Specifically, if we consider a
period to be 1 week, then we have n = 25 and d = 7 ∗ 24; if we consider a
period to be 1 day, then we have n = 175 = 7 ∗ 25 and d = 24.

In this periodic setting, we construct averages. In particular, let

Āk = n−1
n∑

m=1

A(m−1)d+k , D̄k = n−1
n∑

m=1

D(m−1)d+k

and

X̄k,j = n−1
n∑

m=1

X(m−1)d+k,j ,

for 1 ≤ k ≤ d and 0 ≤ j ≤ 36. The X̄ matrix for d = 24 is shown in the
appendix. Table 5 shows part of the transpose of the X̄ matrix; i.e., the
entry in row j and column k is the proportion of all arrivals in hour k who
had a LoS equal to j hours, so that the bold values correspond to the surge
just before midnight

To make the structure more evident, We show some of the cells shadowed
and bold. Those diagonally arranged cells correspond to the proportion of
patients that arrived in the column hour whose row value of LoS made them
depart from the ED in the hour before midnight. Table 5 shows that many
patients depart from the ED just before midnight. For example, consider
the arrival in hour (column) 10. The discrete LoS probability mass function
increases from j = 1 to j = 2, but then decreases to the low value 0.023 at
j = 13 before jumping up to 0.234 at j = 14, a value 10 times higher, before
declining rapidly toward 0.

Again, we emphasize that the data we used only provides the entry time
and exit time for each patient, where the exit time is when the ED doctor
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7 8 9 10 11 12 13 14 15
1 0.131 0.246 0.491 0.817 1.069 1.263 1.194 1.006 0.680
2 0.234 0.366 0.709 1.194 1.560 1.543 1.446 1.211 1.114
3 0.314 0.417 0.754 1.177 1.691 1.554 1.286 1.343 1.549
4 0.263 0.337 0.623 1.040 1.114 1.154 1.331 1.257 1.171
5 0.263 0.171 0.320 0.669 0.703 1.257 0.840 1.011 0.874
6 0.189 0.194 0.217 0.411 0.697 0.657 0.583 0.594 0.651
7 0.091 0.120 0.154 0.400 0.394 0.366 0.474 0.423 0.343
8 0.023 0.051 0.171 0.246 0.274 0.257 0.263 0.211 0.211
9 0.029 0.103 0.074 0.131 0.211 0.206 0.211 0.137 0.446

10 0.006 0.051 0.017 0.109 0.149 0.097 0.069 0.383 0.051
11 0.023 0.017 0.023 0.080 0.051 0.086 0.269 0.034 0.051
12 0.017 0.034 0.029 0.029 0.046 0.246 0.051 0.011 0.011
13 0.011 0.017 0.006 0.023 0.366 0.006 0.029 0.011 0.006
14 0.000 0.006 0.000 0.234 0.011 0.023 0.011 0.000 0.000
15 0.006 0.006 0.126 0.006 0.000 0.017 0.000 0.000 0.011
16 0.000 0.057 0.000 0.006 0.006 0.006 0.011 0.017 0.011
17 0.034 0.000 0.000 0.006 0.000 0.006 0.006 0.017 0.011
18 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.017 0.011

Table 5: Part of the transpose of the X̄ matrix; i.e., the entry in row j and column k is
the proportion of all arrivals in hour k who had a LoS equal to j hours, so that the bold
values correspond to the surge just before midnight (Use dataset 4).

made the admission decision. Evidently there is a change in medical staff
at midnight that increases the number of admission decisions just before
midnight.

4.3. The LoS of the Two Groups

Just as for the arrival process, we want to study differences in the LoS dis-
tribution for the admitted and non-admitted patients. Figure 10 shows the
empirical LoS distribution for the two groups without time structure. The
admitted patients have a smaller mean LoS but a longer median, because
about 7% of the admitted patients have an extremely low LoS. Evidently,
these patients were transfered immediately to the IW’s. If we omit the ad-
mitted patients whose LoS is less than 2 minutes (657 patients), then the
mean LoS of the admitted group increases to 4.30 hours, which is larger than
the non-admitted group.

Then we look at the time-varying feature of the LoS for the two groups,
again using box plots. Figure 11 shows that the time-varying LoS distribu-
tion is more regular for the non-admitted patients. We see quite striking
differences for admitted patients before and after midnight.
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Figure 10: Estimated LoS distributions of the admitted and non-admitted patients trun-
cated to [0, 10]. (Use datasets 5 and 6.)

4.4. The LoS Model and Occupancy

Our analysis of the LoS data, leads us to model the LoS distribution as (i)
time-dependent and (ii) depending on whether the patient is admitted or not.
If we use the MT

t two-time-scale arrival process model in §3.6 and ignore the
distinction between the admitted and non-admitted patients, this produces
anMT

t /GIt/∞ infinite-server aggregate model. Extending it to the two types
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Figure 11: Box plots of the LoS distribution as a function of the arrival time for admitted
(left) and non-admitted (right) patients. (Use datasets 5 and 6.)

of patients, the model becomes two independent MT
t /GIt/∞ models, again

using the arrival process model from §3.6, one for the admitted patients and
another for the non-admitted patients. We would use the separate time-
varying LoS distribution for each group. We remark that this independence
assumption is an approximation because in fact the two groups are necessarily
dependent because they use the same resources.

Even though an infinite-server model was not suggested in [7], the infinite-
server model is consistent with several observations in it. First, in §3.1 [7]
the authors emphasize that the bed capacity of the ED is highly flexible,
so that there is effectively unbounded. Second, in Figures 4 and 5 in §3.2.2
of [7] the authors observe that a time-varying Gaussian distribution fits the
occpancy data well, but that is consistent with the theoretical time-varying
Poisson distribution in the time-varying Mt/GI/∞ model and the heavy-
traffic Gaussian approximations for infinite-server models in [33].

4.5. Time Dependence Versus State Dependence

We have proposed a time-dependent LoS distribution in contrast to the
state-dependent LoS distribution proposed in [7, 34] and in references cited
there. Because there is strong time-dependence in the occupancy level, these
two forms of dependence are intimately linked and not easy to separate.

To substantiate that claim, we provide a state-dependent analog of Figure
9 in Figure 12. Figure 12 provides a box plot of the LoS distribution by
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state, i.e. the number of patients in the ED. We also plot the sample size
as a function of the state, shown on the right axis, which shows that there
are fewer arrivals when the state is either low or high. From either the mean
values (purple diamonds) or the medians (black bars), we see the that the
LoS is an increasing function of the ED occupancy.
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Figure 12: A box plot of the LoS distribution by state, i.e. the number of patients in
the ED. The purple diamonds are the means, while the black bars are the medians (Use
dataset 3.)

Which model is preferred may depend on the ease of analysis. The state-
dependent LoS model might be considered to be more tractable, because
it produces a stationary model. Nevertheless, state-dependent models, es-
pecially non-Markovian state-dependent models, are not easy to analyze. In
fact, a good case can be made that models with time dependence are actually
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easier to analyze; there is now a substantial literature, e.g., [13, 16, 31, 35].
Both views provide important insight. State dependence shows that ED

congestion increases the patient LoS, while time dependence make it easier
to connect the results to ED operations and hospital routines, which tend
to be driven by the clock much more than the load. In particular, hospital
routines usually dictate that hospital admission and release decisions tend to
be made at prescribed times.

5. The Departure process

In this section, we investigate the departure process from the ED. As
a theoretical reference point, for an the Mt/GIt/∞ model, the departure
process is also an NHPP. We find it useful to look at the departure process and
the entire ED in reverse time, so that we can think of the departure process
as an arrival process and use the same methods we have used in previous
sections. That reverse-time perspective is especially revealing to look at
the time-varying proportion of admitted patients and the time-varying LoS,
where the time refers to the departure time instead of the arrival time.

5.1. Daily Totals

Paralleling §3.1, we first look at the daily totals of departures, but we
provide only a brief overview; see the appendix for the tables and figures.

The reverse-time perspective forces us to change the data a little. Now
we consider the patients that left the from Dec. 5, 2004, to May 28, 2005,
which is 23,407 patients in total (see Table 1). The mean values for each
week and each DoW are almost the same as for the arrivals, but there is a
significant difference in the variances. The variance of the total numbers of
departures by DoW is higher than for the arrivals. Evidently, there is less
regularity in departures than in arrivals.

Again, we fit the Gaussian regression models in (1) and (2) in §3.1 for
the departures. The parameters have the same meaning as before. Table 6
shows the ANOVA results. As before, both the Week factor and the DoW

Factor Sum of square df Mean sum of square F statistics P-values
Week 10661 24 444.2 2.19 <0.01
DoW 56146 6 9357.6 46.22 <0.01

Residuals 29156 144 202.5

Table 6: ANOVA table for the two-factor model (1) for the departures. (Use dataset 7.)
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factor are statistically significant, but the DoW factor explains most of the
variance. For the two-factor model, the mean sum of square for the residuals
is σ̂2 = 202.5 = 14.232, which is higher than that of the arrival process. The
variance-to-mean ratio is 202.5/133.8 = 1.51. If we omit the Week factor
and consider the single factor model. Then the mean sum of square for the
residuals is (10661 + 29156)/(24 + 144) = 237.0 and the variance-to-mean
ratio is 237.0/133.8 = 1.77.

5.2. Departure Pattern Within Each Day

Now we turn to the time structure of departure rate within days. Figure
13 shows the reverse-time view. Paralleling and amplifying Figure 8, Figure
13 shows clearly that the departure rate has midnight surges and that the
peaks are increasing over the week.
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Figure 13: Estimated departure rate at the ED in reverse time. (Use dataset 7.)

As before, we divided the patients into two groups according to the ad-
mission decision. (See Table 1 for basic statistics.) Figure 14 shows the
time-varying proportion of admitted patients as a function the departure
time. We see that the proportion of admitted patients is extremely low at 7-
8 a.m. of each day. Evidently, admission decisions at that time are postponed
until new doctors arrive after morning staff changes.

Figure 15 presents box plots of the LoS distribution as a function of the
departure time (in reverse-time perspective) for admitted (left) and non-
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Figure 14: Estimated time-varying proportion of admitted patients as a function of the
departure time from the ED over a day, for each DoW and overall, combining all days
together (black solid line). (Use datasets 8 and 9.)

admitted (right) patients. We see that the midnight surge is caused by the
non-admitted patients, and that the LoS of non-admitted patients are more
influenced by time of the day.

6. Comparison with Simulation

In this section we conduct simulations to substantiate our model.

6.1. Comparing Alternative LoS Models

We conduct simulation experiments with our model to see how it rep-
resents the data. First, we focus on the LoS model. To do so, we use the
original arrival data. We repeat the 25 weeks 40 times, so that the sample
size is 1000 weeks. To examine alternative LoS models, we treat them in
three different ways: (A) The first option is GI, i.e., we assume that the
LoS distribution is not time-varying; we use the overall estimated cdf; (B)
The second option is GIt but with a day view; i.e., we assume that the LoS
distribution is time-varying over each day; we use the estimated time-varying
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Figure 15: Box plots of the LoS distribution as a function of the departure time (in reverse
time) for admitted (left) and non-admitted (right) patients. (Use datasets 5 and 6.)

cdf depending on the arrival time within a day; (C) The third option is also
GIt but with a week view; i.e., we assume that the LoS distribution is time-
varying over each week; we use the estimated time-varying cdf depending on
the arrival time within a week.

Figures 16 and 17 compare the indirect model estimates to direct simu-
lation estimates of the time-varying expected occupancy m(t) and the time-
varying departure rate δ(t), respectively, based on each of these three LoS
models.

The top plots of Figures 16 and 17 show the consequence of ignoring the
time-varying LoS distribution. Consistent with Figure 8, Figure 16 shows
that the GI LoS model significantly underestimates the occupancy at the
end of the day, before midnight, and overestimates it at the beginning of the
day, after midnight, while Figure 17 shows that the GI LoS model completely
misses the midnight surge of departures.

The middle plots (B) of Figures 16 and 17 show that the GIt LoS model
with a day view does much better than the GI model, capturing the midnight
surge in departures. Nevertheless, there is a clear gap between the mean
occupancy curves. Remarkably, the bottom plots (C) of Figures 16 and 17
show that the GIt LoS model with a week view show near-perfect agreement.

6.2. Evaluating the Full Model

We obtain a full ED model when we (i) incorporate the MT
t arrival model

summarized in §3.6, (ii) divide the arrivals into the two groups, admitted
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Figure 16: Simulation estimates of the time-varying expected occupancy m(t), based on
the arrival data plus three LoS models: (A) GI (top), (B) GIt with day view (middle)
and (C) GIt with week view (bottom)
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Figure 17: Simulation estimates of the time-varying departure rate δ(t) based on the
arrival data plus three LoS models: (A) GI (top), (B) GIt with day view (middle) and
(C) GIt with week view (bottom)
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and non-admitted, using independent thinning according to the time-varying
probability p(t) estimated in §3.5, and (iii) when we use a separate LoS model
for each group.

We repeated the three experiments Figures 16 and 17 using the full model.
We applied the three LoS models to each group separately. The new simu-
lation results look virtually identical to Figures 16 and 17, and so they are
only shown in the appendix.

6.3. The Time-Varying Little’s Law

The spectacular agreement between the simulation estimates for case (C)
were initially puzzling. However, we find that this can be explained in large
part by the time-varying Little’s law (TVLL), as in [22, 23]. The TVLL
Little’s law applies to a Gt/Gt/∞ model and thus to our MT

t /GIt/∞ model.
The discrete-time study in this paper motivated us to also consider a discrete-
time version of the TVLL. We intend to discuss the discrete-time TVLL and
the implications of the TVLL in [36].

7. Conclusions

We studied a 25-week portion of the ED data used in the patient flow
study by Armony et al. [7]. We carefully studied the arrival process to the
ED and the patient LoS distribution, reaching several important conclusions.

First, for the arrival process, we think that it is helpful to use the two-
time-scale approach, in which we first look at daily totals and then look at
the arrival process within each day conditional on the daily totals, which
leads to the arrival process model summarized in §3.6. In §3.1 we examined
factor regression models for the daily totals, and adopted the single-factor
model in (2), which expresses the daily totals as an expected value depend-
ing on the day of the week (DoW) plus a mean-0 Gaussian distribution with
a variance that is determined by the regression. This directly leads to a
model of independent daily totals with a Gaussian distribution depending
on the DoW. The two-time-scale model is useful, because it provides a useful
framework for future research. It is natural to next look for improvements to
the model of daily totals by exploiting (i) time-series models, (ii) forecasting
methods and (iii) more context knowledge to capture the dependence in suc-
cessive daily totals. Preliminary investigation revealed positive dependence
among the residuals, as indicated in §3.2 and expanded upon in the appendix
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[24]. With further work, it may be possible to capture the dependence over
multiple days shown in Figure 5 (first two plots).

We studied the time-varying arrival rate in §3.3. We concluded that it
is important to take a week view, as shown in Figure 3, rather than the
common day view. An important new finding is the dependence of decision
to admit a patient from the ED into an internal ward upon the time of arrival,
discussed in §3.5. (It still remains to find a good explanation.) Even though
the admission decision cannot be known in advance for individual patients,
we can exploit the time-dependence in the observed admission decisions to
model these two groups of patients differently. Finally, we examined the
stochastic variability in the arrival process in §3.4 and found support for
the two-time-scale model, where conditional on the daily totals, the arrival
within the day can be modelled as an NHPP. We denote this arrival process
as MT

t .
Second, we analyzed the patient length-of-stay (LoS) distribution in §4.

We concluded that this too should depend on the arrival time. (We discuss
alternative state-dependent models as in [7] in §4.5.) Figures 8, 16 and 17
dramatically show the consequence of ignoring this time-varying feature. Of
course, it is desirable to do a more detailed modell ing of the flow within
the ED, presumably with a queueing network model, so that the overall LoS
distribution can be analyzed through its component parts, but the available
data did not permit that. Even after that is done, an aggregate model should
be helpful for comparison.

Combining the arrival process model in §3 and the LoS model in §4,
we obtain the proposed MT

t /GIt/∞ time-varying infinite-server aggregate
model of the ED. This model becomes expanded to two independent such
infinite-server models if we separately model the admitted and non-admitted
patients, with independence following from the independent thinning of an
NHPP. This model can be used for capacity planning and for comparison in
more detailed queueing network models of the ED.

We think it is also important to analyze the departure process from the
ED, which we do in reverse time in §5. The departure rate function in Figure
13 clearly shows the midnight surge, which can be missed from other views.
Figures 14 and 15 show that the admission decision and the LoS both depend
on the departure time as well as on the arrival time.

Finally, we compared our model to simulation in §6. We found remark-
able agreement in the average occupancy level and the departure rate, but
discovered that these high-quality approximations can largely be explained
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by the time-varying Little’s law in [22, 23], as we plan to discuss in [36].
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