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1. Introduction

We consider the tail probability of the steady-state waiting time W , i.e.,
P (W > t), in the GI/GI/K queue, i.e., in theK-server queue with unlimited
waiting room and service in order of arrival by the first available server, where
the interarrival times and service times come from independent sequences of
independent and identically distributed (i.i.d.) random variables distributed
as U and V with general cumulative distribution functions (cdf’s) F and
G. We are especially interested in exposing the performance impact of the
variability of these underlying cdf’s F and G. To describe the extent of
the variability independent of the mean, we let c2a and c2s be the squared
coefficient of variation (scv, variance divided by the square of the mean) of
U and V .

We focus on in the light-tailed case, where the service-time cdf G has
finite moments of all orders. We then typically have

P (W > t) ∼ αe−θW t as t → ∞, (1)

where f(t) ∼ g(t) as t → ∞ means that f(t)/g(t) → 1, e.g., see [1]. Then we
call θW the (asymptotic) decay rate. Under regularity conditions, the decay
rate θW in (1) is attained as the unique positive real root of an equation
involving the Laplace transforms of U and V , e.g, f̂(z) ≡

∫∞

0
e−zt dF (t). In

particular, the equation for the decay rate is

f̂(z)ĝ(−z) = 1. (2)

In this light-tailed setting, we show that the theory of Tchebycheff (T )
systems from [2], as used in [3, 4, 5, 6, 7, 8], can be applied to determine
extremal models (yielding tight upper and lower bounds) on the asymptotic
decay rate θW above. We propose these extremal models as a way to provide
heuristic set-valued approximations for a variety of performance measures in
the challenging GI/GI/K model given partial information. In [9] we provide
evidence that this heuristic approach is effective for the steady-state mean
E[W ]. Here we start in §2 by giving background on T systems. In §3 we
elaborate on (2) and obtain the extremal distributions for the decay rate.

2. Tchebycheff System Foundations

To put the T system results in perspective, we start in §2.1 by review-
ing the classical moment problem, as in [10]. Then in §2.2 we specify the
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additional conditions needed to get a T system and state the Markov-Krein
theorem. In §2.3 and develop convenient lemmas under smoothness condi-
tions.

2.1. The Classical Moment Problem

Let ui, 0 ≤ i ≤ n, be n + 1 continuous real-valued functions on the
closed interval [a, b]. The expectations of these functions are assumed to be
known, and are called the moments mi, 0 ≤ i ≤ n. The canonical example
is ui(t) ≡ ti, 0 ≤ i ≤ n, the usual moments. We want to draw conclusions
about the unspecified underlying probability measure P on [a, b] such that:

mi ≡ EP [ui] ≡

∫ b

a

ui dP, 0 ≤ i ≤ n. (3)

We assume that u0(t) ≡ 1, a ≤ t ≤ b, and m0 ≡ 1, so that the measure is
necessarily a probability measure.

Let Pn be the set of all probability measures P on [a, b] with n + 1
moments, assumed to be nonempty. Let Pn,k be the subset of probability
measures in Pn that have support on at most k points. The following is a
generalization of a standard result in linear programming (LP), stating that
the supremum (or infimum) is attained at a basic feasible solution or an ex-
treme point. (The notion of extreme point extends to more general spaces;
e.g., see §III.6 of [2].)

Theorem 2.1. (a version of the classic moment problem, §2.1 of [10]) In
addition to the n + 1 functions ui introduced above, let φ : [a, b] → R be
another continuous real-valued function. Assume that Pn is not empty. Then
there exists P ∗ ∈ Pn,n+1 such that

sup {

∫ b

a

φ dP : P ∈ Pn} = sup {

∫ b

a

φ dP : P ∈ Pn,n+1} =

∫ b

a

φ dP ∗.(4)

The same result holds for the infimum.

.
Let σ(P ) denote the cardinality of the support of P . Let P ∗

U and P ∗
L

denote upper and lower extremal distributions, yielding the supremum and
infimum in (4). Theorem 2.1 implies that there exist extremal distributions
with σ(P ∗

U) ≤ n+ 1 and σ(P ∗
L) ≤ n + 1.
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2.2. Tchebycheff Systems and the Markov-Krein Theorem

If we make additional assumptions about the functions ui, then we can
apply T systems to identify concrete extremal distributions P ∗

U and P ∗
L in

(4); see the seminal book [2] and the review papers [7, 11].

2.2.1. Upper and Lower Principle Representations.

We impose a regularity condition involving the moment space Mn, i.e.,
on {(m1, . . . , mn)} in R

n such that there exists P ∈ Pn such that
∫ b

a
ui dP =

mi for all i. If (m1, . . . , mn) is contained in the boundary of Mn, then
the probability measure is uniquely determined. We rule out that case by
assuming that (m1, . . . , mn) is contained in the interior of Mn.

To see what is possible, note that if σ(P ) = k, then P is specified by 2k
parameters: the k atoms xi in [a, b] and the k probabilities pi. Given the
n + 1 constraints in (3), a solution P to (4) must have 2k ≥ n + 1. When
n is odd, we must have σ(P ) ≥ (n + 1)/2. When n is even, we must have
σ(P ) ≥ 1+(n/2). The final story under the T -system assumption is different
in these two cases. It is summarized in (5) of [6] and on p. 342 of [8].

The story (the conclusions, not the proof) is relatively simple when n
is even. Then, under the regularity conditions the extremal distributions
have the minimum possible number, k = 1+ (n/2), of points in the support.
But that leaves one extra parameter. Then there is a one-parameter family
of distributions satisfying all the constraints. Then upper (lower) extremal
distributions P ∗

U and P ∗
L (called upper and lower principal representations in

[2]), are the ones that attach mass to the upper (lower) endpoints a (b) of
the interval [a, b]. Given that additional specification, the remaining num-
ber of unknowns matches the number of constraints, so that the extremal
distributions are uniquely determined.

The story is more complicated when n is odd. Now there is a unique
distribution on (a, b) with the least number of points in the support k =
(n+ 1)/2. That distribution turns out to be the lower extremal distribution
P ∗
L. The upper extremal distribution P ∗

U has mass on both endpoints a and
b. That leaves n−1 unknowns. In fact, the remaining (n−1)/2 points inside
the open interval (a, b) are then uniquely determined.

2.2.2. The Markov-Krein Theorem.

The Markov-Krein theorem says that the description above holds if cer-
tain collections of functions constitute a T system. In [2], T system theory
is first developed for continuous functions on a compact interval in Chapters
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I-III and then extended to unbounded intervals and discrete subsets in later
chapters, but a totally ordered set is needed. In this paper we consider the
basic case [a, b].

Definition 1. (T System) Consider the same set of n + 1 continuous real-
valued functions {ui(t) : 0 ≤ i ≤ n} defined on [a, b] introduced in §2.1.
Assume that the moment vector lies in the interior of the moment space.
This set of functions constitutes a T system if the (n+1)st-order determinant
of the (n + 1)× (n + 1) matrix formed by ui(tj), 0 ≤ i ≤ n and 0 ≤ j ≤ n,
is strictly positive for all a ≤ t0 < t1 < · · · < tn ≤ b.

Equivalently, except for an appropriate choice of sign, we could instead
require that every nontrivial real linear combination

∑n

i=0 aiui(t) of the n+1
functions (called a u-polynomial; see §I.4 of [2]) possesses at most n distinct
zeros in [a, b]. (Nontrivial means that

∑n

i=0 a
2
i > 0.)

Theorem 2.2. (Markov-Krein, §III.1 of [2]) In the setting of Theorem 2.1
extended by requiring that the moment vector is in the interior of the moment
space, if {u0, ..., un} and {u0, ..., un, φ} are T systems on the interval [a, b], the
upper and lower extremal distributions P ∗

U and P ∗
L described above uniquely

attain the supremum and infimum of the optimization problem in (4).

2.3. Convenient Sufficient Conditions for Smooth Functions: Wronskians

The major challenge for applications is showing that the two sets of func-
tions in Theorem 2.2 are indeed T systems. However, there is a very tractable
sufficient condition for suitably smooth functions (having continuous deriva-
tives of all relevant orders). This sufficient condition is expressed using the
Wronskian.

Definition 2. (Wronskian) Let u
(j)
i (t) be the jth derivative of ui at the ar-

gument t. The Wronskian of the n + 1 functions {ui(t) : 0 ≤ i ≤ n} is the

determinant of the (n + 1) × (n + 1) matrix {u
(j)
i (t) : 0 ≤ i, j ≤ n} of the

functions and their derivatives

Wn(ui : 0 ≤ i ≤ n) ≡ det(u
(j)
i (t) : 0 ≤ i, j ≤ n). (5)

An example makes it clear. For z > 0, let w3 ≡ w(1, t, t2,−e−zt) be the
Wronskian of the 3 + 1 = 4 indicated functions of t, i.e., the determinant of
the matrix (as a function of t)
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1 t t2 −e−zt

0 1 2t ze−zt

0 0 2 −z2e−zt

0 0 0 z3e−zt









which clearly is 2z3e−zt > 0.
In order to verify the required T system properties, instead of looking at

n+ 1 functions at n+ 1 arguments, we look at the same functions and their
first n derivatives at a single argument. The Wronskian is intimately related
to extended complete T systems or ECT systems, which is a special case of
a T system.

Definition 3. (complete T system, p. 1 of [2]) If each (ordered) subset
{ui(t) : 0 ≤ i ≤ m} for 1 ≤ m ≤ n of the T system of n+1 functions is itself
a T system, then the T system is called a complete T system or CT system
or a Markov system.

The classical CT system is the set of functions ui(t) ≡ ti, 0 ≤ i ≤ n.
Then the determinant is the Vandermonde determinant

det(ui(tj) : 0 ≤ i, j ≤ m) =
∏

0≤i<j≤m

(tj − ti) for all 1 ≤ m ≤ n, (6)

which clearly is strictly positive for all a ≤ t0 < t1 < · · · < tm ≤ b, 1 ≤ m ≤
n.

The direct definition of an extended T system in §I.2 of [2] is somewhat
complicated. Thus, we give an equivalent definition

Definition 4. (extended T system, §I.2 of [2] and Theorem 1 of [12]) An
extended T system or ET system is characterized, except for the sign, by
the property that every nontrivial real linear combination

∑n

i=0 aiui(t) of the
n + 1 functions (called a u-polynomial; see §I.4 of [2]) possesses at most n
zeros in [a, b], counting multiplicities.

The main point is that the definition of an ET system is more restrictive
than the definition of a T system; i.e., every ET system is necessarily a T
system. Completeness is defined the same for ET systems as for T systems.
Hence every ECT system is necessarily an CT system, which in turn is
necessarily a T system.

6



It turns out that an ECT system can be characterized completely by the
Wronskian; see Definition I.2.4 on p. 6 and Theorem XI.1.1 on p. 376 of [2],
Theorem 5 and Corollary 1 of [11], and Theorem 29 of [7].

Theorem 2.3. (Wronskians and ECT systems, p. 376 of [2]) Under the
smoothness condition, the system of n + 1 functions {ui : 0 ≤ i ≤ n} is
an ECT system on [a, b], and thus necessarily a CT system, if and only if
the Wronskians wk of the first k + 1 functions and their first k derivatives
are strictly positive at all of its arguments in the interval [a, b] for all k,
0 ≤ k ≤ n.

For smooth functions, Theorem 2.3 tends to be easy to apply, as illus-
trated by the example above. For one function in addition to the standard
moments, the following lemma applies.

Lemma 2.1. If ui(t) ≡ ti, 0 ≤ i ≤ n, and φ has n+1 continuous derivatives,
then {u0(t), u1(t), . . . , un(t), φ(t)} is an ECT system if and only if the (n+1)st

derivative of φ, φ(n+1)(t), is strictly positive on [a, b].

Proof. The triangular structure of the matrix of functions and their deriva-
tives implies that the kth Wronskian’s take the constant value wk(t) = 1! ×
· · ·×k!, 0 ≤ k ≤ n, while the last Wronskian takes the value wn(t)φ

(n+1)(t).
In this paper we will consider only the limited class of ECT systems

covered by the following lemma (where i, k and m are integers).

Lemma 2.2. (sufficient conditions for this paper) Consider three ordered
sets of continuous real-valued functions on the interval [0,M ]: A1(m) ≡
{tk : 0 ≤ k ≤ m}, A2 ≡ {(−1)m+1e−zit : zi > zi+1 > 0 for all i} and
A3 ≡ {ezit : 0 < zi < zi+1 for all i}. Let F be a finite ordered subset of
A2

⋃

A3 (with the elements of A2 appearing first and the order within each
set). For any m and M , 0 ≤ m < ∞ and 0 < M < ∞, the ordered set
A1(m)

⋃

F constitutes an ECT system over [0,M ] and thus a CT system
over [0,M ].

Before giving the proof, we give an example of an ordered subset of func-
tions in A1(m)

⋃

F . For m = 2 and two elements from each of A2 and A3,
the ordered subset is (1, t, t2,−e−z1t,−e−z2t, ez3t, ez4t) where z1 > z2 > 0 and
0 < z3 < z4, so that −z1 < −z2 < z3 < z4. Here m = 2, so (−1)m+1 = −1.
Overall, the exponential arguments are increasing as in (3.1) on p. 9 of [2]
or Example 6 of [11].
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Proof. These special functions have derivatives of all orders. Moreover, it is
easy to evaluate the Wronskian. The first k derivatives of tj are 0 when k ≥ j.
Thus the first m Wronskians are positive constants. The order (m+1) deter-
minant is a positive constant times (−1)m+1e−s1t > 0. Then, by induction,
all higher-order determinants among the initial functions reduce to positive
constant multiple of the determinant of a matrix of exponential functions.
Finally, the the determinant of the n × n matrix containing elements exiyj ,
1 ≤ i, j ≤ n, is strictly positive for all −∞ < x1 < x2 < · · · < xn < +∞
and −∞ < y1 < y2 < · · · < yn < +∞; see (3.1) in §I.3 on p. 9 of [2] and
Example 6 of [11].

3. Extremal Models for the Asymptotic Decay Rate

In §3.1, we provide technical background on the decay rate for K = 1;
in §3.2 we show that this approach also applies to the GI/GI/K model for
K > 1. In §3.3 we obtain two-point extremal distributions given only the first
two moments of U and V and bounded intervals of support. Then in §3.4 we
obtain more useful (as shown in [9]) three-point extremal distributions when
we are also given the third moment and values of the Laplace transform of
U and V . We give illustrative examples in §3.5. We discuss the extension to
unbounded support in §3.6.

3.1. Theory for the Asymptotic Decay Rate with K = 1

To increase the level of generality for K = 1, instead of (1), we can let
θW be defined by the critical exponent in the Kingman-Lundberg bound for
the GI/GI/1 queue, as in §XIII.5 of [13], defined by

θW ≡ inf {x ≥ 0 : P (W > t) ≤ e−xt, t ≥ 0}, (7)

so that large waiting times correspond to small values of θW . Under regularity
conditions, θW in (7) coincides with the asymptotic decay rate studied in
large-deviations theory, defined by

θW ≡ lim
x→∞

− logP (W > x)

x
. (8)

We assume that a strictly positive infimum exists in (7) and a strictly
positive limit exists in (8), which requires that the service-time V must have
a finite moment generating function E[ezV ] for some z > 0. (We obtain
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θW = ∞ if P (V − U ≤ 0) = 1 and thus P (W = 0) = 1.) Thus, we are
considering the light-tail case as in the discussion of exponential change of
measure in Chapter XIII in [13], large deviation limits in Corollary 1 in §1.2
of [14] and approximations in [1].

Part of the appeal of this approach is that it extends directly to K > 1,
as we show in §3.2. Moreover, it has been observed that the approximation
P (W > t|W > 0) ≈ e−θW t is quite good for K ≥ 1; see [15]. Indeed, for that
reason, θW is displayed in the tables there (with different scaling, i.e., with
E[V ] = 1).

Under regularity conditions, the asymptotic decay rate θW in (1), (7)
or (8) is attained as the unique positive real root of equation (2) involving
the Laplace transforms of U and V . Equivalently, as in §XIII.1 of [13],
κF (z) + κG(−z) = 0, where κF (z) ≡ log (f̂(z)) is the cumulant generating
function. (The function ĝ(−z) ≡ E[ezV ] for z > 0 is the moment generating
function (mgf).)

Given the simple structure in (2), the extremal result and alternative ones
follow from the theory of T systems, as in §2 above. To state the result, we
impose some technical conditions.

Assumption 1. (finite moment generating function) Assume that there ex-
ists z∗, 0 < z∗ ≤ ∞, such that the service-time cdf G has a finite moment
generating function ĝ(−z) =

∫∞

0
ezx dG(x) for all z, 0 < z < z∗.

In general, we need to impose additional regularity conditions to have the
limit for the decay rate in (8) be well defined, as can be seen from Corollary
1 and Proposition 2 in [14] and Theorems 2.1, 5.5 and 5.3 in Chapter XIII
in [13]. Instead of adding additional assumptions, we allow the decay rate to
be defined by (7). It coincides with (8) when the limit exists.

We still need extra conditions for (2) to have a solution; see Example 5 in
§3 and Theorem 5 in §7 of [1]. However, no extra condition is needed when
G has support in [0,Ms], because then E[etV ] ≤ etMs for all t > 0, so that
z∗ = ∞ in Assumption 1.

3.2. Extension to the GI/GI/K Model.

As indicated in [1], the asymptotic decay rate also is well defined for the
more general GI/GI/K model. We have fixed E[U ] = 1, but instead in [1]
there is fixed E[V ] = 1. In (5) of [1], with θW (K) denoting the decay rate
for the K-server model, θW (K) = KθW (1), where U(K) = U/K to keep ρ
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fixed. Since we fix E[U ] = 1, we get θW (K) = θW (1) ≡ θW . (As a sanity
check, this can easily be verified for the P (W > t|W > 0) = e−θW t in the
M/M/K model; see Theorem 9.1 in §III.9 on p. 108 of [13].) However, we
must adjust the service-time V to maintain ρ = E[V ]/KE[U ]. Thus, we
leave U independent of K, but we let V (K) = KV . Thus the finite support
of V (K) becomes [0, ρKMs], the pth moment of E[V (K)p] = KpE[V p] and
the laplace transforms are related by ĝV (K)(z) = ĝV (Kz). This implies that
we can apply the extremal distributions for K = 1 to directly obtain the
corresponding extremal distributions for K > 1: If V ∗(K) is the extremal
random variable as a function of K, then V ∗(K) = KV ∗.

In [1], it was observed that the extension to K > 1 in (5) there was proved
for the GI/PH/K by [16]. A continuity result implies that result applies to
the general GI/GI/K model.

Theorem 3.1. (extension of decay rate to GI/GI/K) If the decay rate θW
is well defined for the GI/GI/1 model with (U, V ) having cdf’s (F,G) where
E[U ] = 1, then it is well defined in the associated GI/GI/K model with
(U,KV ) with the same cdf F and

θW (K) = θW (1) ≡ θW for K > 1. (9)

Proof. Fix the interarrival-time cdf F and consider a sequence of phase-type
service-time {Gn : n ≥ 1} such that Gn is phase-type for each n and Gn ⇒ G,
where G is the given cdf, which is possible because phase-type distributions
are dense in the family of all distributions. By [16], (9) holds for each n,
as explained above. The convergence in distribution implies the associated
convergence ĝn(z) → ĝ(z) for each z. Since the Laplace transform ĝ(z) is
continuous and strictly decreasing in the real variables z, (9) must hold in
the limit as well.

Remark 3.1. The GI/Ph/K model is special because P (V − U > 0) > 0,
so that θW is always finite, but that is not the case for the GI/GI/K model.
However, if we consider such a general model with infinite decay rate, then
we will get an infinite limit as we let the phase-type distribution approach the
given distribution.

3.3. Two-Point Extremal Distributions Given Two Moments

We now are able to present our main results. We first consider the classical
case in which we specify two moments. Let P2(m,m2(c2 + 1),M) be the set
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of all cdf’s with mean m, support mM and second moment m2(c2+1), where
c2 is the scv with c2 + 1 < M < ∞. (The last property ensures that the
set P2(m,m2(c2 + 1),M) is non-empty.) The extremal distributions for the
decay rate will be the extremal distributions P ∗

U and P ∗
L for T systems in

§2.2.
In this classical setting, the extremal distributions P ∗

U and P ∗
L are special

two-point distributions.The set of two-point distributions is a one-dimensional
parametric family. In particular, any two-point distribution with mean m,
scv c2 and support mM has probability mass c2/(c2 + (b − 1)2) at mb, and
mass (b− 1)2/(c2 + (b− 1)2) on m(1− c2/(b− 1)) for 1 + c2 ≤ b ≤ M .

Let subscripts a and s denote sets for the interarrival and service times, re-
spectively. Let F0 and Fu (G0 and Gu) be the two-point extremal interarrival-
time (service-time) cdf’s corresponding to P ∗

L and P ∗
U , respectively, in the

space Pa,2(1, c
2
a + 1,Ma) (Ps,2(ρ, ρ

2(c2s + 1),Ms)) from §2.2.1. (Recall our
convention that E[U ] = 1 and E[V ] = ρ. Hence, the support of V is [0, ρMs].)

Consequently, F0 has probability mass c2a/(1 + c2a) at 0 and probability
mass 1/(c2a + 1) at m(c2a + 1), while Fu has mass c2a/(c

2
a + (Ma − 1)2) at the

upper bound of the support, Ma, and mass (Ma − 1)2/(c2a + (Ma − 1)2) on
m(1− c2a/(Ma − 1)).

We are especially interested in the map

θW : Pa,2(1, 1 + c2a,Ma)×Ps,2(ρ, ρ
2(1 + c2s),Ms) → R, (10)

where 0 < ρ < 1 and θW (F,G) ≡ θW is the asymptotic decay rate of the
steady-state waiting time W (F,G) with interarrival-time cdf F ∈ Pa,2(1, 1+
c2a,Ma) and service-time cdf G ∈ Ps,2(ρ, ρ

2(1 + c2s),Ms). We also consider
case in which one cdf is specified, in which case it need not have bounded
support.

Theorem 3.2. (two-point extremal distributions for the decay rate) Let F0,
Fu, G0 and Gu be the two-point extremal cdf’s for the GI/GI/1 queue defined
above.

(a) For any specified G ∈ Ps,2(ρ, ρ
2(c2s +1)) satisfying Assumption 1 such

that there is a root z̄ to equation (2) for the Fu/G/1 model (with service cdf
G) such that 0 < z̄ < z∗, where z∗ is defined in Assumption 1,

θW (F0, G) ≤ θW (F,G) ≤ θW (Fu, G) (11)

for all F ∈ Pa,2(1, c
2
a + 1,Ma).
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(b) For any specified F ∈ Pa,2(1, (c
2
a + 1)),

θW (F,Gu) ≤ θW (F,G) ≤ θW (F,G0) (12)

for all G ∈ Ps,2(ρ, ρ
2(c2s + 1),Ms)

(c) for all F ∈ Pa,2(1, c
2
a + 1,Ma) and G ∈ Ps,2(ρ, ρ

2(c2s + 1,Ms),

θW (F0, Gu) ≤ θW (F,G) ≤ θW (Fu, G0). (13)

Proof. We make extra conditions in part (a) to ensure that equation (2) has
a solution z̄ strictly less than the upper limit z∗, but no extra conditions are
needed in parts (b) and (c) because then G has bounded support, implying
that z∗ = +∞.

We apply (2) to see that order for the Laplace transforms translates into
order for θW , recalling that (i) (2) is equivalent to f̂(z) = 1/ĝ(−z), (ii)
Laplace transforms are continuous strictly decreasing functions of a real vari-
able argument and (iii) large waiting times are associated with smaller θW .
For part (a), we see that

f̂u(z) ≤ f̂(z) ≤ f̂0(z) for z > 0. (14)

From (2) and (14), we see that, for any ĝ, θW is maximized by f̂u in (14).
Hence, (2) holds for all F in Pa,2(1, c

2
a + 1,Ma) if it holds for Fu.

To establish (b), we use

1/ĝu(−z) ≤ 1/ĝ(−z) ≤ 1/ĝ0(−z) for z > 0. (15)

From (2) and (15), we see that, for any f̂ , θW is maximized by 1/ĝ0(−z) in
(15).

To justify all the inequalities, we can apply the T -system theory working
with bounded support sets, as in §2.2 and §2 of [6]. To treat F , we apply
Lemma 2.2 to show that {1, t, t2} and {1, t, t2,−e−zt} are T systems on [0,Ma]
for any z > 0 and Ma > 0; to treat G, we apply Lemma 2.2 again to show
that and {1, t, t2} and {1, t, t2, ezt} is a T -system on [0, ρMs] for any z > 0
and Ms > 0. We obtain the extremal distributions from §2.2.1 the case n = 2
in §2.2.1 or in (5) of [6].

Based on Theorem 3.2, the overall extremal GI/GI/1 models are thus
(F0, Gu) and (Fu, G0). Our assumption that the distributions have bounded
support plays an important role. That is evident from the following elemen-
tary proposition.
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Proposition 3.1. (limits as the support increases) Under the assumptions of
Theorem 3.2, for all F ∈ Pa,2(1, c

2
a + 1,Ma) and G ∈ Ps,2(ρ, ρ

2(c2s + 1),Ms),

θW (F,Gu) → 0 as Ms → ∞, (16)

while
θW (Fu, G) → θW (F1, G) as Ma → ∞, (17)

where F1 is the cdf of the unit point mass on 1, associated with the D/GI/1
model.

Remark 3.2. (the decay rates of other steady-state distributions.) Analogs of
Theorem 3.2 (and the later Theorem 3.3) hold for the steady-state continuous-
time queue length and workload, because there are simple relations among all
these decay rates. That follows from Theorem 6, Proposition 9 and Propo-
sition 2 of [14]. For the workload, the decay rate is the same; for the queue
length, θQ = ĝ(−θW ).

Remark 3.3. (comparison to the mean.) In the GI/GI/1 queues, the ex-
tremal model (F0, Gu) in Theorem 3.2 yielding the smallest decay rate coin-
cides with the frequently conjectured upper bound model for the mean E[W ],
but the extremal model (Fu, G0) in Theorem 3.2 yielding the largest decay rate
does not coincide with the lower bound for the mean; see [17].

3.4. Additional Constraints

We now add additional constraints on the cdf’s F andG. In particular, we
add a third moment and a value of the Laplace transform. With (2) in mind,
we now impose constraints on the Laplace transform f̂(z) at z = µa > 0 and
on the reciprocal of the mgf, 1/ĝ(−z), at z = µs, 0 < µs < z∗, for z∗ in
Assumption 1.

For the new extremal distributions, let Pa,2(1, c
2
a + 1, ma,3, µa,Ma) be

the subset of F in Pa,2(1, c
2
a + 1,Ma) having specified third moment ma,3

and Laplace transform value f̂(µa). Since we are working with the mgf
ĝ(−z) for z > 0, let Ps,2(ρ, ρ

2(c2s + 1), ms,3, µs,Ms) be the subset of G in
Ps,2(ρ, ρ

2(c2s + 1),Ms) having specified third moment ms,3 and mgf value
ĝ(−µs) at µs for 0 < µs < z∗. (Recall that z∗ = +∞ if G has bounded
support.)

Let FL and FU (GL and GU) be the three-point extremal interarrival-time
(service-time) cdf’s corresponding to P ∗

L and P ∗
U , respectively, in the space

13



Pa,2(1, c
2
a + 1, ma,3, µa,Ma) (Ps,2(ρ, ρ

2(c2s + 1), ms,3, µs,Ms)) based on §2.2.1.
(Recall our convention that E[U ] = 1 and E[V ] = ρ.) In particular, FL (FU)
is the unique element of Pa,2(1, c

2
a + 1, ma,3, µa,Ma) with support on the set

{0, x1, x2} (on the set {x1, x2,Ma}) for 0 < x1 < x2 < Ma, while GL (GU) is
the unique element of Ps,2(ρ, ρ

2(c2s +1), ms,3, µs,Ms) with support on the set
{0, x̄1, x̄2} (on the set {x̄1, x̄2, ρMs}) for 0 < x̄1 < x̄2 < ρMs.

Theorem 3.3. (three-point extremal distributions for the decay rate) Let
FL, FU , GL and GU be the three-point extremal cdf’s for the GI/GI/1 queue
defined above.

(a) For any F ∈ Pa,2(1, c
2
a + 1, ma,3, µa,Ma) with µa > 0 and G ∈

Ps,2(ρ, ρ
2(c2s + 1)) satisfying Assumption 1, where equation (2) holds for the

FL/G/1 and FU/G/1 models (with service cdf G), the unique positive solution
of (2), θW (F,G), is well defined. Moreover, if µa ≥ θW , then

θW (FU , G) ≤ θW (F,G) ≤ θW (FL, G); (18)

if µa ≤ θW , then

θW (FL, G) ≤ θW (F,G) ≤ θW (FU , G). (19)

(b) For any F ∈ Pa,2(1, c
2
a + 1) and G ∈ Ps,2(ρ, ρ

2(c2s + 1), ms,3, µs,Ms),
the unique positive solution of (2), θW (F,G), is well defined. Moreover, if
µs ≤ θW , then

θW (F,GU) ≤ θW (F,G) ≤ θW (F,GL); (20)

if θW < µs < z∗, then

θW (F,GL) ≤ θW (F,G) ≤ θW (F,GU). (21)

(c) As a consequence, for all F ∈ Pa,2(1, c
2
a +1, ma,3, µa,Ma) with µa > 0

and G ∈ Ps,2(ρ, ρ
2(c2s + 1), ms,3, µs,Ms) with µs > 0, the unique positive

solution of (2), θW (F,G), is well defined. Moreover, for all (F,G) in these
sets, the following four pairs of lower and upper bounds for θW (F,G) are
valid:

(i) θW (FL, GU) ≤ θW (F,G) ≤ θW (FU , GL) if µs, µs ≤ θW

(ii) θW (FU , GU) ≤ θW (F,G) ≤ θW (FL, GL) if µs ≤ θW ≤ µa (22)

(iii) θW (FU , GL) ≤ θW (F,G) ≤ θW (FL, GU) if θW ≤ µs, µa, µs < z∗

(iv) θW (FL, GL) ≤ θW (F,G) ≤ θW (FU , GU) if µa ≤ θW ≤ µs < z∗.

(d) The bounds on θW get tighter as µa and µs move closer to θW (F,G).
The bounds coincide with θW when µa = θW in (a) and µs = θW in (b).
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Proof. The proof is essentially the same as for Theorem 3.2, but now we have
n = 4 for (a) and (b) instead of n = 2 in §2.2.1 and (5) of [6]. As before,
we apply the T -system theory from §2, but care is needed with the sign of
the exponential arguments when we apply Lemma 2.2. To treat F , we apply
Lemma 2.2 to show, first, that {1, t, t2, t3, e−µat} is a T system on [0,Ma] for
all µa > 0. (Recall that m = 3 now, so that (−1)m+1 = 1.) But we also
need to consider the set {1, t, t2, t3, e−µat, e−zt}. For this second collection of
functions, we require that −µa < −z or µa > z > 0. If instead z > µa > 0,
then the set of functions becomes a T system if we change the order of the
last two functions. But changing the order of two adjacent columns of a
square matrix causes the sign of the determinant to change. That means
that the supremum and infimum get switched.

For part (a), we see that all possible cases for F are covered by the two
cases µa > z > 0 and z > µa > 0. Hence, if the decay rate θW is well defined
for the two models FL/G/1 and FU/G/1 models, it is well defined for all F
with the given constraints. The we get (18) and (19) in the two cases.

To treat G in part (b), the root θW is always well defined because G has
bounded support. We apply Lemma 2.2 to show, first, that {1, t, t2, t3, eµst}
is a T system on [0, ρMs] for all µs > 0, but then we also need to consider the
set {1, t, t2, t3, eµst, ezt}. For this second collection of functions, we require
that µs < z < z∗. If instead 0 < z < µs, then the set of functions becomes
a T system if we change the order of the last two functions. But changing
the order of two adjacent columns of a square matrix causes the sign of the
determinant to change. That means that the supremum and infimum get
switched. For G, the order also gets switched when we consider 1/ĝ(−z)
instead of ĝ(−z). Then combine the conclusions above.

Finally, part (c) is obtained by combining (a) and (b), while (d) follows
easily from (2).

3.5. Illustrative Examples

We now illustrate Theorems 3.2 (c) and Theorem 3.3 (c) (i) by showing
how the extremal models perform for the steady-state mean EW . In doing
so, we are providing a small sample from our companion study [9] to which
we refer for more details and examples. We emphasize that we have not
shown that the extremal models for the decay rate θW necessarily determine
associated bounds for the mean EW . Nevertheless, our study indicates that
we obtain useful estimates of the intervals of likely values for the mean EW .
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Table 1 shows the mean steady-state waiting time EW in four base mod-
els: H2/H2/1 with c2a = c2s = 4.0, E2/E2/1 with c2a = c2s = 0.5, E2/H2/1 with
c2a = 0.5, c2s = 4.0, and H2/E2/1 with c2a = 4.0, c2s = 0.5, all with ρ = 0.7. The
third parameter of the H2 distribution is specified by stipulating balanced
means as in (3.7) on p. 137 of [18]. For each model, the exact values are
shown in the middle columns of Table 1.

Table 1: Comparing bounds and approximations for the steady-state mean E[W ] using
Theorem 3.2 (c) and Theorem 3.3 (c) (i), starting with the base models H2/H2/1 with
c2
a
= c2

s
= 4.0, E2/E2/1 with c2

a
= c2

s
= 0.5, H2/E2/1 with c2

a
= 4.0, c2

s
= 0.5 and E2/H2/1

with c2
a
= 0.5, c2

s
= 4.0, all with ρ = 0.7.

LB Fu/G0 FU/GL exact FL/GU F0/Gu UB
c2a = 4.0, c2s = 4.0 2.92 4.30 6.12 6.61 6.73 8.39 8.44
c2a = 0.5, c2s = 0.5 0.058 0.470 0.704 0.725 0.729 0.982 1.017
c2a = 0.5, c2s = 4.0 2.92 2.92 3.51 3.56 3.68 3.85 3.88
c2a = 4.0, c2s = 0.5 0.058 0.342 3.06 3.37 3.63 5.53 5.58

Theorem 3.3 (c) requires specification of µa and µs. Consistent with case
(i), we let them be θW/20. The lower-bound extremal model is then FU/GL,
while the upper-bound extremal model is then FL/GU . For example, the
decay rates for the FU/GL, exact and FL/GU models were 0.111, 0.106 and
0.100 (0.867, 0.856 and 0.847) for the H2/H2/1 (E2/E2/1) model.

The outer columns of Table 1 refer to bounds based only on the first two
moments of F and G; see §2 of [17]. First LB is the established tight lower
bound, while UB is the conjectured tight upper bound, which is the limit of
EW (F0, Gu) as the upper limit of support Ms approaches infinity. The mean
values EW for the extremal models Fu/G0 and F0/Gu based on Theorem
3.2 require specification of the upper limits of support Ma for F and Ms for
G. The specific values used were M = 39.9 for c2 = 4 and 4.5 for c2 = 0.5.
These were chosen so that

P (V/EV > Ms) ≈ e−θV Ms = ǫ, (23)

where θV is the decay rate of the distribution of V and ǫ = 0.001.
In summary, Table 1 shows that the extremal models FU/GL and FL/GU

obtained from Theorem 3.3 (c) (i) with judiciously chosen parameters provide
a reasonably short range for the mean EW , whereas the Fu/G0 and F0/Gu

models from Theorem 3.2 do not.
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3.6. Extending the Extremal Models to Unbounded Support

The T -system theory and the Markov-Krein theorem extend to unbounded
support intervals as shown by [2] and as indicated in [6] and [8]. The ex-
tension is easy if the extremal distribution places no mass on the upper
endpoint. Then the same extremal distribution holds for all larger support
bounds, including the unbounded interval [0,∞).

First, in the setting of the two-point extremal distributions in Theorem
3.2, the extremal cdf’s F0 and G0 have support on {0, x} for appropriate x
and so remain valid if we increase Ma and Ms. (The x depends on the cdf.)

Similarly, in the setting of the three-point extremal distributions in The-
orem 3.2, the extremal cdf’s FL and GL have support on {0, x1, x2} for ap-
propriate x1 and x2 and so remain valid if we increase Ma and Ms. (Again,
the points x1 and x2 depend on the cdf.)

Consequently, we need to make no adjustments for truncation provided
we use the following special case of (22):

θW (FL, GL) ≤ θW (F,G) for µa ≤ θW ≤ µs < z∗

θW (FL, GL) ≥ θW (F,G) for µs ≤ θW ≤ µa. (24)

This recipe also eliminates the need to consider multiple cases.
We state the result formally in the following corollary. To simplify, we

make the following stronger assumption.

Assumption 2. (uniformly good cdf G) In addition to Assumption 1, assume
that, for the service-time cdf G, equation (2) has a finite solution for all
F ∈ Pa,2(1, c

2
a + 1).

Note that Assumption 2 is satisfied by the M , Hk and Ek distributions
considered here and many others, but we need to avoid pathological examples
like Example 5 of [1].

Corollary 3.1. (extension to unbounded support) Consider the setting of
Theorem 3.3 extended by allowing unbounded support, i.e., Ma = Ms = ∞.

(a) For any G ∈ Ps,2(ρ, ρ
2(c2s+1)) satisfying Assumption 2, the decay rate

θW (F,G) is well defined as the unique positive solution of (2). Moreover, if
µa ≤ θW , then

θW (FL, G) ≤ θW (F,G) (25)

for all F ∈ Pa,2(1, c
2
a + 1, ma,3, µa).
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(b) For any G ∈ Ps,2(ρ, ρ
2(c2s + 1), ms,3, µs) satisfying Assumption 2, the

decay rate θW (F,G) is well defined as the unique positive solution of (2).
Moreover, if θW ≤ µs < z∗, then

θW (F,GL) ≥ θW (F,G) (26)

for all F ∈ Pa,2(1, c
2
a + 1) .

(c) For all (F,G) such that Assumption 2 holds, the decay rate θW (F,G)
is well defined as the unique positive solution of (2) and (24) holds.
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