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DECIDING WHICH QUEUE TO JOIN: SOME COUNTEREXAMPLES

WARD WHITT
AT&T Bell Laboratories, Holmdel, New Jersey
(Received January 1984; accepted January 1985)

Consider a queueing system with two or more servers, each with its own queue with infinite capacity. Customers arrive
according to some stochastic process (e.g., a Poisson process) and immediately upon arrival must join one of the queues,
thereafter to be served on a first-come first-served basis, with no jockeying or defections allowed. The service times are
independent and identically distributed with a known distribution. Moreover, the service times are independent of the
arrival process and the customer decisions. The only information about the history of the system available for deciding
which queue to join is the number of customers currently waiting and being served at each server. Joining the shortest
queue is known to minimize each customer’s individual expected delay and the long-run average delay per customer
when the service-time distribution is exponential or has nondecreasing failure rate. We show that there are service-time
distributions for which it is not optimal to always join the shortest queue. We also show that if, in addition, the elapsed
service times of customers in service are known, the long-run average delay is not always minimized by customers joining

the queue that minimizes their individual expected delays.

We often must decide which queue to join, so it
is natural to expect that the question has
been thoroughly analyzed. Unfortunately, however,
queueing theory provides less help than we might
expect. It would be nice if we could always use a
simple rule such as “Join the Shortest Queue,” but the
decision clearly depends on the available information.
Suppose that we want to minimize our individual
expected delay. If we can estimate the service time of
each waiting customer, for example, by looking at the
shopping baskets in a supermarket, then we do not
necessarily want to join the shortest queue. We want
to join the queue with the least work (total ser-
vice time) in front of us, which need not be the
shortest queue.

In some situations, such as waiting for a teller at a
bank, we have little basis for estimating the service
times of waiting customers. Moreover, the customers
need not actually be making the decisions. For ex-
ample, the customers might be jobs in a production
facility or packets in a communication network. Then
system managers want to determine the optimal dy-
namic routing, using an algorithm that may depend
only on the number at each queue.

When we know only the number of customers at
each queue, the shortest-line rule seems like the ob-
vious candidate, but is it optimal? To be more specific:
consider a queueing system with two identical servers,
each with its own queue having unlimited waiting
space. Customers arrive according to some stochastic

process and immediately upon arrival must join one
of the queues, thereafter to be served on a first-come
first-served (FCFS) basis with no jockeying or defect-
ing allowed. The service times are independent and
identically distributed (i.i.d.) and independent of the
arrival process and the customer assignments. The
only information available for deciding which queue
to join is the number of customers being served or
waiting at each server.

In this paper, we prove that the shortest-line rule is
not always optimal. The shortest-line rule may be a
good rule to use, but we show that it need not mini-
mize each customer’s individual expected delay or the
long-run average delay per customer (which is equiv-
alent to the expected equilibrium delay). Moreover,
the shortest-line rule need not maximize the expected
number of departures by a given time. We do not
identify an optimal rule, but we do identify another
rule that is better than the shortest-line rule in a
particular setting.

The difficulty with the model is not the arrival
process, because we also assume a Poisson arrival
process; it is the service-time distribution. Even
though the decision maker does not know the actual
service-times of the customers already in the system
when the decision must be made, there is extra infor-
mation in the general service-time distribution. In fact,
for the purely Markovian model with Poisson arrival
process and exponential service times, Winston (1977)
proved that the shortest-line rule is indeed optimal
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with regard to all these criteria and stronger ones based
on the notion of stochastic order. Weber (1978) sub-
sequently extended this result to service-time distri-
butions with nondecreasing failure rate and arbitrary
arrival processes. The case of an arbitrary arrival proc-
ess was also treated by Ephremides, Varaiya and Wal-
rand (1980). Lehtonen (1981) carried out a sample-
space construction for the purely Markovian model,
which implies stochastic order comparisons for the
entire departure process (the discrete-time analogue
of ordering <, in Whitt 1981a). When trying to obtain
positive results, one discovers that some conditions
on the service-time distribution are evidently neces-
sary, but one also discovers that counterexamples are
hard to construct because it is difficult to describe the
behavior of any policy, e.g., it is hard to calculate the
expected equilibrium delay.

As in Whitt (1981b, 1984), we use light-traffic
asymptotics to construct our counterexamples. In Sec-
tion 1 we construct a counterexample with two queues
using a service-time distribution having a U-shaped
failure rate. In Section 2 we discuss the issue of break-
ing ties. In Section 3 we change the information
conditions. We assume that the decision maker knows
the length of time each customer in service has been
in service in addition to the queue lengths. (The service
times are realized only through service.) With this
information, it is possible to calculate what each cus-
tomer’s expected delay would be at each queue, using
the conditional distributions of the remaining service
times. A natural rule is to join the queue giving the
shortest expected delay. However, we show in Section
3 that the rule that minimizes each customer’s indi-
vidual expected delay need not minimize the long-run
average delay per customer. This is another queueing
situation in which individual and social optima do
not coincide; see Bell and Stidham (1983) and refer-
ences that they cite.

In Section 4 we consider multiserver teams, where
each team has its own queue with unlimited waiting
space. Immediately upon arrival, customers must join
one of the queues, thereafter to be served on a FCFS
basis by the first available server in the team. This
problem arises when routing telephone calls to groups
of operators and has been studied by Houck (1982).
For the case of i.i.d. exponential service times, Houck
found in numerical examples that the rule that assigns
customers to the team that minimizes their individual
expected delays yields a long-run average delay for all
customers nearly as small as in the combined system
having a single queue and the FCFS rule. Since the
combined system with the FCFS rule provides a lower
bound for the long-run average delay (see Wolff 1977,

Gittins 1978, and Smith and Whitt 1981), this
shortest-expected-delay rule must be at least nearly
optimal given that each team has its own queue, at
least for the cases considered. However, we prove that
this shortest-expected-delay rule in fact does not min-
imize the long-run average delay for multiserver
teams. Unlike the previous two examples for single-
server teams, the service-time distribution in this ex-
ample is exponential.

Houck also had conjectured that the expected equi-
librium delay using the shortest-expected-delay rule
for two teams of exponential servers could be bounded
above by the expected equilibrium delay in a simple
overflow system, in which all arrivals are first routed
to one team which has no extra waiting room (i.e., no
queue), and all overflows are routed to the second
team which has a queue. However, the preferred al-
ternative in our counterexample in Section 4 is such
an overflow system. Hence, the overflow system does
not provide an upper bound on the expected equilib-
rium delay in general.

All the results in this paper are negative (counter-
examples). In addition to previously mentioned pa-
pers, positive control results for related models are
contained in Davis (1977), Larsen (1981), Larsen and
Agrawala (1983), Ramakrishnan (1983) and Hajek
(1984). Stidham (1984) is a more recent survey with
many references.

As in Whitt (1981b, 1984), our counterexamples
are constructed using light-traffic analysis. For early
use of light-traffic analysis, see p. 295 of Benes (1965)
and Bloomfield and Cox (1972). There are many other
recent uses of this method; e.g., Daley and Rolski
(1984), Pinedo and Wolff (1982), and Wolff (1982).
Light-traffic analysis is especially useful in conjunc-
tion with heavy-traffic analysis to generate approxi-
mations; see Burman and Smith (1983a, b) and Rei-
man and Simon (1984a, b).

1. The Shortest-Line Rule

To specify the model, let there be two servers, each
with its own queue with unlimited capacity, and let
the arrival process be a Poisson process. (The arrival
process is not critical, but the Poisson assumption
simplifies the proof.) Let the service-time distribu-
tion be a mixture of a point mass at 0 with proba-
bility 1 — ¢ and a point mass at » with probability e,
where ¢ is small. In this section the decision maker
knows only the queue lengths upon arrival; the rest
of the history is not known. The dominating
alternative decision rule matches the shortest-line
rule when any queue is empty and when the differ-



ence between the numbers is zero or one; but the
dominating rule has customers join the /onger queue
when neither is empty and the difference is two more
more.

This service-time distribution captures the essence
of a distribution with a U-shaped failure rate. The
idea, which we will develop further, is that with such
a distribution a queue shorter by more than a single
customer may indicate that a service completion is
more likely to have occurred more recently there, so
that the next service completion is more likely to
occur at the other server with the longer queue. More-
over, the probability mass near the origin may lead to
many other service completions at the same server, so
that the new arrival would wait less and depart sooner
by joining this longer queue. Using this idea, we will
show that the dominating rule is better than the short-
est-line rule for all sufficiently small e.

Note that for any fixed arrival rate, our service-time
distribution puts the system in light traffic as ¢ — 0.
It is not critical that there be any mass at zero in the
service-time distribution. For example, the mass at
zero could be moved to y where v is appropriately
small compared to ¢, e.g., v = €'°. Moreover, the
service-time distribution need not have atoms. For
example, the mass at v could be replaced by a density
over the interval [0, v]. Only minor modification of
the arguments are needed, providing that v is indeed
appropriately small.

Since most of the mass is at 0, with high probability
many customers will depart immediately upon arrival
before anyone stays in service. Eventually, however,
both servers will become busy for the first time and
the queues will begin to grow. We assume that the
shortest line rule is used when one queue is empty or
the difference between the queue lengths is one, and
an unspecified procedure when the queue lengths are
equal, e.g., at random. (See Section 2.) Then one server
will finish and, with high probability, several other
customers will depart since they have zero service
times. In fact, if ¢ is very small, it is very likely that all
customers in that queue will instantaneously depart.
Eventually, however, one of two kinds of events will
occur following such an epoch. Either one of the
customers entering service in the queue with the ser-
vice completion will have nonzero service time or a
new arrival with nonzero service time will occur before
the long queue has a service completion (and with
high probability empties out).

The next arrival after either of these events will be
the first arrival to see a difference in the queue lengths
of more than one. (With small probability, the differ-
ence could be zero or one, in which case the two rules
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are still identical.) Now, with high probability, it is
better for this next arrival to join the longer queue
because the server with the longer queue has been in
service longer and will depart sooner. Moreover, with
high probability, all the other customers in this queue
will depart at the same instant. By this argument, we
see that, if the longer queue is not too long, then the
first customer to see a difference of at least two should
join the longer queue. Moreover, subsequent arrivals
should also join the longer queue as long as the
difference is not too great. (It is obvious that, for any
e and n, there is a cutoff point, but we do not try to
determine it.)

The issue is not entirely settled, however, because
we have only considered the first customers to see a
difference in queue lengths of at least two. Subsequent
departures could lead to the server with the longer
queue having the most recent service completion, in
which case it is clearly better to join the shorter queue.
Moreover, the history is not known when the decision
is made.

We shall consider the expected equilibrium delay,
which is equivalent to the long-run average delay per
customer. As part of our analysis, we will show that
these limiting concepts are well defined for the two
rules under consideration. The key to obtaining con-
crete results is to consider light traffic, which we
achieve by letting ¢ — 0. We analyze the equilibrium
delay by using the regenerative structure and consid-
ering a typical busy cycle. We first sketch the argu-
ment, and then give more details.

A busy cycle is the interval between successive ar-
rivals to an empty system. Since ¢ is small, most busy
cycles are a single interarrival time. For ¢ small, the
probability that k or more customers in a busy cycle
have nonzero service times is of order ¢*. (Since this
point is critical, we give a precise statement and fol-
lowing proof). Hence, the probability of ever having
at least one (two) busy servers in a busy cycle is of
order ¢ (¢?). A customer can find a difference of
at least two in the queue lengths only if there are at
least three nonzero service times in that busy cycle,
which has probability of order ¢®. The important
point is that the first such difference of at least two,
after which customers should usually join the longer
queue, occurs with probability of order €, but
additional nonzero service times, after which the
desirable behavior is unclear, occur with probability
of order ¢*.

The upshot of this analysis is that, as ¢ — 0, the
proportion of those arrivals seeing a difference of at
least two in the queue lengths (who must arrive after
the third nonzero service time) who arrive after a
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fourth nonzero service time is asymptotically negligi-
ble. With very high probability (approaching one as
e — 0), the most recent service completion has oc-
curred at the server with the shorter line when the
difference in queue lengths is at least two.

Moreover, since the arrival rate and the nonzero
service time are fixed, the probability of the queue
growing very long given any fixed number of nonzero
service times is asymptotically negligible as ¢ — 0.
Hence, the alternative rule is better than the shortest-
line rule for all sufficiently small e¢. This result is
obviously true not only for the expected equilibrium
delay, but for the other criteria as well. (Detailed
calculations for the expected equilibrium delay are
given later.)

We have not identified an optimal rule, however,
because our new rule can be improved too. For any
given e and n, arbitrarily long queue lengths are pos-
sible. If the difference between the queue lengths is
sufficiently great, then it is better to join the shorter
queue even if a service completion is about to occur
in the longer queue. For small ¢, this improvement is
asymptotically negligible compared to the previous
improvement, but it shows that we have not found an
optimal policy.

Now we provide extra details. In particular, we first
show that the probability that at least k customers in
a busy cycle have nonzero service times is indeed of
order ¢ for ¢ sufficiently small. We then indicate
how to express the expected equilibrium waiting time
in powers of ¢, so that the desired comparison can
be made.

Let A(¢) count the number of arrivals in the interval
[0, ¢] for ¢ = 0. We have assumed that A(¢) is a Poisson
process with arrival rate X. Let N(¢) count the number
of arrivals in the interval [0, ¢] that have nonzero
service times, i.e., service times of length n. (These
customers need not begin service in the interval [0, ¢],
however.) Since N(¢) is obtained from A(¢) by Ber-
noulli splitting with probability ¢, N(¢) is a Poisson
process with rate Ae.

Let a busy cycle be the time interval between suc-
cessive arrivals that find the system completely empty;
let C denote the number of customers served in a busy
cycle; and let B denote the number of customers with
nonzero service served in a busy cycle.

Theorem 1. For any positive integer k, there are pos-
itive constants M, and M, such that

M,é < P(B = k) < Myé*

Jorall e,0 < e< 1, and all rules for assigning customers
to the servers.

To establish Theorem 1, we use the following ele-
mentary lemma about a Poisson random variable X
with mean A.

Lemma. For all X = 0 and positive integers k,

N = P(X = k) = e k).

Proof. The lower bound is just P(X = k). The upper
bound calculation is

PX = k)= e ™N/jl =\ Y e N/(j + k)
J=k Jj=0

< MY N/ = Ak,

Jj=0

Proof of Theorem 1. Let D be the event that the first
customer in the busy cycle has a nonzero service time.
Fork =1,

PB = k)= eP(B = k|D),
where

P(N(nyz=k—1)<PB=k|D)
<PN(ntk—1)=k-1)

because, first, if we have kK — 1 more nonzero times in
the interval [0, n], then clearly B = k given that
the first customer has a nonzero service time. Sec-
ondly, if B = k, then clearly there must be at least
k — 1 more nonzero service times in the interval
[0, (k — D)n].

Next we can invoke the Lemma to get

P(N(n(k — 1)) = k — 1) < (Aen(k — 1))*!

and

P(N(n) = k — 1) = (Nen)"'e™/(k — 1)\,

so that the claimed bounds hold with the constants
M, =(n)*'e™™/(k—1)! and M,=(An(k— 1))

We now provide extra details on calculating the
expected equilibrium waiting time. By regenerative
process theory, the expected equilibrium waiting time,
say EW, is the expected waiting time per busy cycle
divided by the expected number of customers served
in a busy cycle, i.e.,

C
EW = E Y, W,/EC,
k=1
where W, = 0 is the waiting time of the initial cus-
tomer who finds the system completely empty. Given
Theorem 1, the following light-traffic asymptotics are
not difficult.



Theorem 2. For both decision rules,
EC =1+ cie + & + 0(e?),

where ¢, and ¢, are independent of the rule. Moreover,
E(Z Wk> = bzéz + b3€3 + 0(63),
k=1

where b, is independent of the rules while by is not.
Hence,

2 3 3
EW = bre? + bse ;I- o(e )2
1 + cie + c2¢* + 0(€?)

= b262 + (b3 — b2)63 + 0(64). (l)

As a consequence of Theorem 2, it suffices to con-
sider the leading non-identical coefficient in the ex-
pansion of EW in powers of e, i.e., b3 — ¢;b, in (1).
The coefficients ¢; and b, are independent of the rule,
but b, is smaller with the alternative decision rule.

2. Breaking Ties

In this section we discuss rules for breaking ties, i.e.,
rules for assigning customers to single-server queues
when only the queue lengths are known and some of
the queue lengths are equal. Since all such rules can
be regarded as being consistent with the shortest-line
rule, we did not consider this aspect in Section 1.

One possible rule is an ordered-selection rule. This
rule assumes that the queues can be numbered. Then
the customer joins the lowest numbered queue among
those with equal queue lengths. Note that this rule
does not use any information about past assignments,
which we have assumed is not available.

For the example in Section 1, it is easy to see that
the ordered-selection rule for breaking ties provides
the basis for a significant improvement. Of course, the
rule does not matter until both servers are busy, but
with the ordered-selection rule, when both servers
are busy, we know that with very high probability, as
e — 0, server 1 will have a service completion first.
This is so because, with high probability as ¢ — 0,
these are the only nonzero service times in the current
busy cycle. This observation allows us to improve the
coefficient b, in (1). Moreover, there is opportunity
for further improvement. The new rule using the
ordered-selection rule until both servers are busy fol-
lowed by all customers joining queue 1 is better than
the rule developed in Section 1 for that example for
all sufficiently small e. The rule in Section 1 still
dominates the shortest-line rule and is valid if either
the servers are indistinguishable or if ties must be
broken by the random-assignment rule.
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It also appears that the ordered-selection rule should
be used to break ties with increasing failure rate (IFR)
service-time distributions if the ages are not known
and the servers are distinguishable, but we have not
yet proved this result. Remark (i) on p. 412 of Weber
might be construed as missing this point, but Weber
is claiming optimality only under the condition that
the random-assignment rule must be used to break
ties. It is easy to see that the ordered-selection rule to
break ties can improve the shortest-line rule for IFR
distributions. We expect that this rule is usually nearly
optimal, but we would be surprised if it were
always optimal.

For decreasing failure rate (DFR) distributions, it is
natural to use ordered-selection rule to break ties
among idle servers and then reverse the order when
the servers are busy.

3. The Shortest-Expected-Delay Rule

When the service-time distributions are not exponen-
tial, it is natural to consider the shortest-expected-
delay (SED) rule, in which customers join the queue
that will minimize their individual expected delays.
However, if the residual service-time distributions are
not known, then the individual expected delays de-
pend on the rules used by other customers, which
suggests a game-theoretic approach (that we will not
investigate in this paper).

Suppose that the ages (times in service) are known,
so that it is possible to compute each customer’s
individual expected delay at each queue. It is simply
the expected remaining service time of the customer
in service given the age plus the product of the number
of customers waiting and the expected service time.
Weber showed that if the service-time distribution is
IFR then the SED rule minimizes the expected equi-
librium delay. We now show that this is not true for
all service-time distributions.

Here is our example: Let the service-time distribu-
tion be a two-point distribution assuming the values
1 and 5 each with probability Y. Let there be two
servers and a Poisson arrival process with arrival rate
¢, so that the traffic intensity is p = 1.5¢. (Counterex-
amples are even easier to construct with other arrival
processes.) Consider an arrival epoch when both serv-
ers are busy but nobody else is waiting. Let the ages
be 1 — ¢ and 3, so that the expected residual service
times are 2 + & and 2, respectively. The SED rule
dictates joining the first queue with age 3 for all 6 and
ewith0 << 1and 0 < e< . (We need ¢ < %3 only
for stability.) We will now show that the other action
can be better for sufficiently small e and é.
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First, note that if there is only one arrival in the
next interval of length 10, then it is necessary to
consider only the current customer and the following
one; the current decision can have no further effect
because then the system is completely empty either
before the next arrival or before the subsequent arrival.
(The length 10 is somewhat more than necessary.) The
probability of having two or more arrivals in such an
interval is of order ¢, while the probability of having
one is of order . Hence, for all sufficiently small e, it
suffices to assume that there is at most one arrival in
this interval. Given any small ¢, so that ¢ is negligible
compared to ¢, we then choose & so that é is also
negligible compared to e.

It is now easy to calculate the expected delay for the
next customer given the SED rule and its alternative.
First suppose that the SED rule is used for both the
current customer and the next customer. Let 1,(u) be
the indicator function of the set A4, i.e., 1,(u) = 1 if
u € A and 0 otherwise. Given exactly one arrival in
the next time interval [0, 10] which occurs at u, the
conditional expected delay for the next customer is

(4+5—u

> 15,3 (1)

Sw) = 2+ 6 — u)lps(u) +

4+06—u
+ (_‘—4_—) 13,44(10).

Next suppose that the alternative rule is used for the
current customer, but the SED rule is used for the
next customer. The conditional expected delay is then

£ = @ = Wliorno@ + 3 T 1w
and
Si(u) = fo(u)
)
=6 1j0)(1) + (_-+2-_u_) Lo, 146)(1)
242 4 -
+ (—+‘j—+i) s (t) + (_ig_u) Lp2,3(14)
4 —_
+ g‘i%_u—) Lg3,a45)(14)
=0

for all i, 0 < u < 10. Since the conditional distribution
of the next arrival, given that there is exactly one
arrival in [0, 10], is uniform over [0, 10], the sum of
the expected delays always using the SED rule is

greater by

€ l LAi(w) = f(w)] du — O().

Hence, by choosing e so that we can neglect O(e2), we
see that the alternative is strictly better.

There are two remaining details. First, we have
established that there is a situation in which it is better
not to use the SED rule, but any specific pair of ages
will be realized with probability zero. However, the
example remains valid for ages in the intervals [1 — §,
1) and (3 — 6, 3], respectively, for appropriate small
positive 6. Hence, even though the situation we have
analyzed is rare, it will occur with probability one,
and affects the expected equilibrium delay.

Next, the second customer arriving in the interval
[0, 10] could find ages in the interval [1 — 6, 1)] and
(3 — 4, 3], which would mean that the SED rule should
not be used with our alternative rule, contrary to our
assumption for calculating f,(u), but the probability of
these ages occurring is of order 6, so we can disregard
it by choosing 6 sufficiently small.

4. Teams of Exponential Servers

We now consider two teams of exponential servers,
with each team having its own queue and operating
according to the FCFS rule. We show that the SED
rule does not minimize the expected equilibrium delay
even with i.1.d. exponential service times. We consider
two teams of different sizes with a Poisson arrival
process. Then, even though the individual service-
time distributions are identical, the delay distributions
can be quite different at the two queues. The key is to
consider teams of very different sizes in light traffic.

Our alternative to the SED rule is an overflow (OF)
rule. With this rule, all arriving customers are routed
to the first team and served there if there are any free
servers. All customers finding no free servers at the
first team are routed to the second team, where there
is a queue. The SED rule evidently is typically better
than the OF rule, but we show that this is not always
the case.

Let the first team have a single server and let the
other team have » servers, where » is large. Let the
arrival rate and the individual service rate equal one,
so that p = 1/(n + 1) in the combined system. Note
that the SED rule and the OF rule coincide until all
servers are busy and there are » customers waiting in
addition to » in service at the second team at an
arrival epoch. Then the expected delay before begin-
ning service for this arrival would be 1 at the first team



and (n + 1)/n at the second team. Also note that the
delay distribution at the first team is exponential with
mean 1 and, by the law of large numbers, at the
second team it is almost deterministic. The SED rule
dictates sending this arrival to the first team. How-
ever, it is easy to see that the OF rule is better in
this situation.

First, at the time of the next arrival, with all but
negligible probability, there will be many departures
from the second team, so that we need not consider
the possibility of any future arrivals going to team 1
unless team 1 is empty. Moreover, the effect of an
additional customer at the second team on the ex-
pected delay of any future customer is at most 1/x.
The issue is how the current assignment affects the
probability that team 1 is empty. If the OF rule is
used, then team 1 will be empty for the next arrival
with probability %. If the SED rule is used, then the
probability is Y. (Two service completions must occur
at the first team before the next arrival.)

Suppose that the first customer uses the OF rule
and joins the second team. Approximately, ignoring
terms that are asymptotically negligible as n — , the
second customer will have delay O with probability
(1 + ¢7?)/2 and will join the second team and have
delay 1 — ¢ with density e, 0 < ¢ < 1. The expected
delay for the second customer is thus (1 + ¢7%)/4 =
0.284. On the other hand, suppose that the first cus-
tomer uses the SED rule and joins the first team. Then
the second customer will have delay 0 with probability
(1 + 5¢72)/4 and will join the second team and have
delay 1 — ¢ with density e™ + te™, 0 < ¢ < 1. The
expected delay for the second customer is thus (1 +
4e72)/4 = 0.385. There is clearly a significant impact
on the next arrival and could be on future arrivals as
well (in the same direction). On the other hand, the
cumulative impact on the expected delays of all future
customers of an extra customer at the second team is
of order 1/n.

It is of course possible that the SED rule would
begin to dominate the OF rule as more arrivals are
sent to the second team when it has at least 2n
customers, but with the OF rule, ever having n + k
+ 1 customers is asymptotically negligible compared
to having n + k for any k. (The arrival rate is 1 and
the departure rate is n.) Hence, the comparison of the
expected equilibrium delays has been established.

5. Concluding Remarks and Directions
for Research

1. The example in Section 4 is easily modified to
cover two single-server teams with different exponen-
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tial service-time distributions. For the example, one
server at rate # is essentially the same as » servers at
rate one. Ephremides, Varaiya and Walrand comment
that the SED rule is not optimal for two heterogeneous
exponential servers, but they do not prove that SED
does not minimize the long-run average delay. Var-
iants of this model are also treated by Davis, Larsen,
Larsen and Agrawala, Ramakrishnan, and Hajek.

2. We have shown that several natural selection
rules are not optimal in various situations, but we
have not identified any optimal rules. Identifying op-
timal rules in these situations would obviously be
interesting, but appears to be difficult. Moreover,
knowing an optimal rule might not be so useful be-
cause the optimal rule may be very complicated.

3. We conjecture that the positive results for single-
server teams extend to multiserver teams all having
the same number of servers.

4. Even though we have shown that certain natural
simple rules are not optimal, we have not shown that
they are typically bad. In fact, they may be nearly
optimal; see Houck. It would be nice to quantify and
perhaps even bound the degree of non-optimality
under various modeling assumptions. Natural simple
rules such as the threshold in Larsen and Agrawala
are obviously worth additional study even if they are
not optimal. It should be possible to make useful
comparisons and establish heuristic design principles;
see Whitt (1985).

S. A possible refinement of the shortest-expected-
delay rule is to assign customers to servers so that the
expected sum of the delays of that customer plus the
next one or two customers is minimized or approxi-
mately minimized. This strategy requires calculating
the delay distributions at the servers.

6. In contrast to our light-traffic examples, King-
man (1961), Foschini and Salz (1978) and Reiman
(1983) have shown that in heavy traffic the shortest-
line rule in the setting of Section 1 behaves as well as
the combined system with the FCFS discipline, so that
the shortest-line rule is asymptotically optimal in
heavy traffic. (Reiman first treats general service-time
distributions.)

7. In Section 3 we showed that the expected equi-
librium waiting time is not minimized by having each
customer minimize his expected waiting time upon
arrival, given the model specification, the queue
lengths and the ages. However, if we do not know the
ages, then it is not possible to compute such expected
waiting times without knowing the other customers’
rules. It is thus natural to look for a noncooperative
equilibrium rule, such that when all customers follow
it, none is motivated to deviate. There are many
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questions: When does such an equilibrium rule exist?
When is it unique? What is its structure? When does
it yield the minimum equilibrium waiting time? In
Section 1 we have shown that the shortest-line rule is
not such an equilibrium rule (for some service-time
distributions).

8. As we have seen, much depends on the infor-
mation available. It would be interesting to systemat-
ically investigate the impact of different kinds of in-
formation. Then we could compare the benefits of
different kinds of information with the costs of getting
it.
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