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Abstract

Pender, Rand and Wesson [1] established a delay differential equation limit
for a parallel service system with routing based on delayed information. We
provide an interpretation of their scaling under which their limit can be
regarded as an instance of a law of large numbers in the familiar many-server
heavy-traffic scaling. It requires scaling in the probabilistic routing function.
We also obtain related limits for more general models.
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1. Introduction

Pender, Rand and Wesson [1] established a delay differential equation
(deterministic fluid) limit for a parallel service system with routing based
on delayed information. That limit is useful because it helps quantify and
understand the impact of the delay. We introduce an interpretation of the
scaling used in [1], which shows that their limit can be regarded as being
consistent with a law of large numbers in the familiar many-server heavy-
traffic scaling in [2] and many other papers. With many-server scaling, an
additional scaling of the probabilistic routing function is required. (See (2)-
(5) for the definition of the routing and (7)-(8) for the proposed scaling.)
Lemma 3.1 shows that the many-server scaling here with the scaling of the
routing in (8) produces the same scaling used in [1]. Hence, the limit obtained
by the scaling here is equivalent to the limit in [1], so we are primarily
just translating into the many-server heavy-traffic framework. The paper [1]
nicely shows the implications of the limit by analyzing the limiting delay
differential equation.

Related early work involving delayed information can be found in [3, 4]
on the study of rate control in communication networks and in citations to
these papers. More recently, information delay has played an important role
in high-speed financial trading; e.g., [5, 6].

In §2 we introduce our model, which is a modification of the model in [1],
covering the model with finitely many servers in each group and customer
abandonment (analog of the Erlang A model). In §3 we introduce the scaling.
In §4 we present the limit. In §5 we extend the results to the more general
time-varying non-Markov Gt/GI/st +GI model in [7, 8]. In §6 we conclude
with additional discussion.

2. The Model

The queueing model has Poisson arrivals at rate λ, routing to one of
N multi-server service groups based on the queue lengths (numbers in the
service group, either waiting or being served) in these N service groups in
the past. For simplicity, suppose that the system starts empty at time 0
and was empty in the past before time 0. A somewhat more general initial
condition is considered in [1]; it is not difficult to treat that extension. Let
the total number of arrivals over the interval [0, t] be denoted by A(t). Thus
A ≡ {A(t) : t ≥ 0} is a Poisson process with rate λ (with ≡ denoting equality
by definition).
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Let service group i have si servers, 1 ≤ i ≤ N , working independently
in parallel. The special case si = ∞ for all i is considered In [1], which is
an important special case. Let Q(t) ≡ (Q1(t), . . . , QN(t)) be the vector of
queue lengths at time t. Let customers have i.i.d exponential service times in
each service group. Let 1/µi denote the mean service time of each customer
served in service group i. Then µi is the service rate of individual customers
in service group i. (In [1] it is assumed that µi = µ for all i.) We assume
that the arrival process and service times are mutually independent. Let
customers waiting in queue have i.i.d. exponential patience times with mean
1/αi. If the customer has not entered service by their patience time, they
abandon the system without otherwise influencing the system.

We now turn to the routing, which is a form of probabilistic routing. let
Xk ≡ (Xk,1, . . .Xk,N) represent the routing of arrival number k, k ≥ 1. Hence
Xk is a vector with all components equal to 0 except a single component
equal to 1, which is the index of the service group to which the arrival is
routed. Each arrival is routed to the designated service group immediately
upon arrival, after which it immediately enters service if possible; otherwise
the customer goes to the end of the queue at server group i. Then we have
the arrival process to each queue i resulting from the routing defined as

Ai(t) =

A(t)
∑

k=1

1{Xk,i=1}, t ≥ 0, 1 ≤ i ≤ N. (1)

We assume that the routing at time t depends on the system history up
to time t only through the history of the queue-length vector {Q(u) : 0 ≤
u ≤ t} at time t. In particular, we assume that there is probabilistic routing
depending upon that history. In general, the way that the arriving customers
could obtain past state information can be quite complex. For example, each
service group might make periodic state estimates and broadcast them to all
potential customers. That is like the emergency department delays discussed
by [9]. In that case the delays are periodically 0 and then increase linearly
over the interval between updates. These updates might or might not be
coordinated and synchronized. See [10] for a study of such systems.

However, following [1], we avoid that complexity and, assume a simplified
approximate representation of the probabilistic routing based on delays. For
t ≥ ∆, where ∆ is a constant time, an arrival at time t is routed to service
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group i with probability

pi(t, {Q(u) : t−∆ ≤ u ≤ t}) ≡
r̃i(t, {Q(u) : t−∆ ≤ u ≤ t})

∑N
j=1 r̃j(t, {Q(u) : t−∆ ≤ u ≤ t})

, (2)

where

r̃i(t, {Q(u) : t−∆ ≤ u ≤ t}) ≡ ri(t, θi

∫ ∆

0

Qi(t− u) dGi(u)) (3)

for a specified cdf Gi, with ri being a continuous positive real-valued function
over its domain satisfying

ri(t, 0) ≡ 1 for all t and i. (4)

We assume that ri(t, x) is strictly decreasing in x for each t as well. Hence,
the routing to a particular service group gets less likely as the queue length
there increases. Thus, the routing is a probabilistic analog of the join-the-
shortest-queue routing. Condition (4) makes the routing to each queue be
with probability 1/N when all N service groups are empty. By our assump-
tion that the system starts out empty, this routing prevails immediately after
time 0.

The routing formulation above is more general than in [1]. First, in [1]
the model is a symmetric model in which (µi, θi, Gi) is independent of the
server group i. Second, in [1] the cdf G is the unit point mass on ∆, but a
randomized delay is studied in [11] and an asymmetric model is studied in
[12]. In [1, 11, 12] ri is assumed to take the special form

ri(t, θi

∫ ∆

0

Qi(t− u) dGi(u)) ≡ exp {−θi

∫ ∆

0

Qi(t− u) dGi(u)}

≡ exp {−θiQi(t−∆)}; (5)

i.e., there is an explicit exponential form, motivated by the multinomial logit
customer choice model. It is easy to see that (5) is consistent with our
assumptions.

3. Many-Server Scaling

We now introduce what we regard as natural many-server scaling. We
construct a sequence of parallel-server models indexed by positive integers η,
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as in [1]. For each η, there is a parallel-server model consisting of N infinite-
server queues. Consistent with [2], we let the arrival rate and number of
servers in each service group grow, but we hold the service-time distribution
and the information delay fixed. In particular, we let the parameters in model
η be

(λ(η), s
(η)
i ) ≡ (ηλ, ηsi),

(µ
(η)
i , αη

i ,∆
(η)
i , G

(η)
i ≡ (µi, αi,∆i, Gi) 1 ≤ i ≤ N, for all η ≥ 1. (6)

In other words, the arrival rate and number of servers in each service group
is scaled up by the constant factor η, while the service-time, patience and
delay distributions are independent of η. The idea is that large scale is di-
rectly determined by the increasing arrival rate and system capacity (growing
together), while the service, patience and delay times should be relatively in-
sensitive to scale.

Because we are interested in the law of large numbers (LLN) yielding the
deterministic limit, we focus on the scaled queueing process

Q̄(η)(t) ≡ η−1Q(η)(t), t ≥ 0, (7)

where Q(η)(t) is the vector queue-length process in model η. (This is consis-
tent with [2].)

Turning to the routing, we assume that the routing depends on Q̄(η)

instead of Q(n). Equivalently, we assume that the routing constants θ
(η)
i

appearing in (3) and (5) scale by

θ
(η)
i ≡ θi/η for all i and η. (8)

This seems to be a reasonable initial assumption in face of increasing scale.
(Refined scaling might be considered for refined diffusion limits.)

With this scaling, we again get a generalization of equation (5) of [1],
but with a different interpretation. The quantity Qη

i (t) in [1] is replaced by

Q̄
(η)
i (t) in (7) above and in the unscaled system θi is replaced by θ

(η)
i ≡ θi/η

in (8). Assuming that equation (5) here applies to the unscaled number in
system, we have

θ
(η)
i Q

(η)
i (t) = θiQ̄

(η)
i (t) for all η ≥ 1, t and i. (9)

With the interpretation/definitions above, we can apply the results in [1] to
obtain the natural generalization of their stated limit to the case of finitely
many servers.
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To state the expression explicitly, let Πa
i , Π

s
i and Πl

i be 3N independent
rate-1 Poisson processes. Then, in our notation under the simplifying as-
sumption of starting empty, we have the following explicit construction. Let
x ∧ y ≡ min {x, y} and (x)+ ≡ max {x, 0} for real numbers x.

Lemma 3.1. (explicit construction of the scaled queue-length process) Under
the assumptions above, for each η ≥ 1 and for each i, 1 ≤ i ≤ N , the scaled
queue-length process at service group i, Q̄

(η)
i (t), has the explicit representation

Q̄
(η)
i (t) ≡ η−1Q

(η)
i (t)

= η−1Πa
i

(

∫ t

0

(

λ(η)ri(u, θ
(η)
i

∫ ∆

0
Q

(η)
i (u− v) dGi(v))

∑N

j=1 rj(u, θ
(η)
j

∫ ∆

0
Q

(η)
j (u− v) dGj(v))

)

du

)

−η−1Πs
i

(
∫ t

0

µi(Q
(η)
i (u)

∧

sηi )du

)

− η−1Πl
i

(
∫ t

0

αi(Q
(η)
i (u)− sηi )

+du

)

= η−1Πa
i

(

η

∫ t

0

(

λri(u, θi
∫ ∆

0
Q̄

(η)
i (u− v) dGi(v))

∑N
j=1 rj(u, θj

∫ ∆

0
Q̄

(η)
j (u− v) dGj(v))

)

du

)

(10)

−η−1Πs
i

(

η

∫ t

0

µi(Q̄
(η)
i (u)

∧

si)du

)

− η−1Πl
i

(

η

∫ t

0

αi(Q̄
(η)
i (u)− si)

+du

)

.

Proof. This construction is justified in §2.1 of [2]. The final display follows
by simple algebra.

As can be seen from the first line of (10), the many-server scaling involves

scaling θ
(n)
i as in (8). The scaling in [1] corresponds to the second line of (10)

in the special case si = ∞ for all i. (That seems unclear from [1].) In
that context, there is scaling inside both Poisson processes, but no scaling
of θ. It is clear that these representations are equivalent. We are thus only
elaborating on the interpretation.

4. Convergence as η → ∞

As noted in [1], the functional strong law of large numbers for a Poisson
process can be applied to obtain the desired limit. The first step has

η−1Π(ηt) → t as η → ∞, (11)

uniformly in t over bounded intervals with probability 1, where Π is a unit-
rate Poisson process, as in (10).
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That yields the limit in [1], extended to the multi-server model. We use
function space notation as in [13].

Theorem 4.1. (law of large numbers, following [1]) Given the representation
in Lemma 3.1,

Q̄(η) → q as η → ∞ w.p.1 in D([0,∞),RN), (12)

where q is the deterministic vector-valued function with

qi(t) =

∫ t

0

(

λri(u, θi
∫ ∆

0
qi(u− v) dGi(v))

∑N
j=1 rj(s, θj

∫ ∆

0
qj(u− v) dGj(v))

)

du−

∫ t

0

µi(qi(u) ∧ si)du

−

∫ t

0

αi(qi(u)− si)
+du, 1 ≤ i ≤ N. (13)

The expression (13) is equivalent to the N -dimensional delay differential
equation (system of delay differential equations)

q̇i(t) =

(

λri(t, θi
∫ ∆

0
qi(t− u) dGi(u))

∑N
j=1 rj(t, θj

∫ ∆

0
qj(t− u) dGj(u))

)

−µi(qi(t)∧ si)−αi(qi(t)− si)
+

(14)
for 1 ≤ i ≤ N with initial condition qi(0) = 0, 1 ≤ i ≤ N (under our
assumptions).

The expression for the limit in (14) coincides with the delay differential
equation in equation (7) of [1] when the model is symmetric, si = ∞ for all
i and we use the special form for the functions ri in (5) for the special case
(θi, µi) = (θ, µ) for all i. Note that our representation leads to the asymptotic
parameter vector (λ, si, µi, θi,∆, Gi), 1 ≤ i ≤ N . We obtain λ and θi from

λ(n) and θ
(n)
i from (6) and (8).

In summary, we have given a careful specification of the scaling and the
resulting interpretation of equation (5) in [1], which serves to justify or ex-
plain the limit there. In particular, we have identified Qη

i (t) in [1] with Q̄(η)(t)
in (7) here. Then the routing probabilities require the scaling in (8). More-
over, our interpretation makes clear that similar many-server limits can be
established for generalizations of the model considered in [1], e.g., such as in
[14, 15, 16].
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5. Extension to Time-Varying Non-Markov Models

In this section we briefly indicate how to obtain corresponding results for
the time-varying non-Markov parallel network of N ·/GI/st + GI models
with a single Gt arrival process by modifying the results in [7, 8]. We first
consider how to treat the extension of the fluid model in [7].

Initially assume that each arrival is routed to each of the N queues with
probability 1/N . Then each of the N queues is a Gt/GI/st + GI model
studied in [7]. For each of these models, the performance of the fluid model is
characterized by a pair of two-parameter functions (B(t, y), Q(t, y)): B(t, y)
is the quantity of fluid in service at time t that has been so for a time less than
or equal to y; Q(t, y) is the quantity of fluid waiting in queue at time t that
has been so for a time less than or equal to y. These key quantities admit
integrable representations as in equation (2) of [7]. The paper imposes several
regularity conditions, which we assume here as well. Under those regularity
conditions, a full algorithm is developed for the performance descriptors of
this model. The full algorithm is outlined in §8 of [7].

In order to treat this more general model, we make an additional as-
sumption about the routing function ri in (3). In particular, we assume that
the randomization of the delay takes place over the interval [δ,∆], where
0 < δ ≤ ∆; i.e., we have

ri(t, θi

∫ ∆

δ

Qi(t− u) dGi(u). (15)

Given definition (15), we can apply the algorithm in [7] with the initially
specified arrival rate functions {λi(t) : 1 ≤ i ≤ N} to compute the perfor-
mance descriptors for each of the N queues. The key observation is that these
performance descriptors are valid for the associated fluid model with delayed
information over the initial interval [0, δ]. The algorithm from [7] will thus
yield the initial candidate N fluid content functions {Qi(t) : 1 ≤ i ≤ N},
which are valid over the time interval [0, δ]. We use these numbers in sys-
tem to compute new routing probabilities, which will produce new arrival
rates that are now valid over the interval [0, δ], because they incorporate the
delayed information.

Then we repeat this calculation to produce new arrival rates and associ-
ated new performance descriptors that are valid over the interval [0, 2δ]. We
iteratively repeat this process to obtain valid performance descriptors over
the interval [0, kδ] for any desired k.
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To establish the associated functional law of large numbers, it suffices to
use the same iteration. For the initial model, that is a direct application of
[8]. Then we apply that same limit theorem iteratively to obtain the limit
over the interval [0, kδ] for any desired k.

6. Discussion

In this final section we discuss the applied relevance.

6.1. The Role of Infinite-Server Service Groups

At first glance, the formulated routing problem in [1] with infinitely many
servers in each service group may not seem very interesting or useful. With
the present formulation, the congestion experienced by each customer is just
their own service-time distribution. If µi = µ for all i as assumed in [1], then
all service-time distributions are i.i.d. Hence, all routing schemes should be
equally good for customers. With infinitely many servers, there should be no
concern about how many other customers are already in service. Of course,
there might well be other associated measures of congestion associated with
a large queue length, but that has not yet been discussed.

Nevertheless, we think that the model with infinite-server groups devel-
oped in [1] can be useful. It can be justified through a series of approxima-
tions. First, suppose that we actually have service groups with large finite
numbers of servers. In that context, it seems natural to regard the customer
goal as being to minimize the expected response time. By using Little’s law,
we see that the expected response time is the expected number in system di-
vided by the arrival rate. So we can translate the goal to minimizing weighted
mean queue lengths. Finally, we can approximate the number in system in
a large finite server group by the number in system in an associated infinite
group. Thus, that is one way that we can employ the infinite-server model
to get useful results for finite-server models.

Alternatively, as shown in §4 above, we can directly treat the Erlang-A
model, but that produces a new delay differential equation.

6.2. Interpreting the Numerical Examples

In order to understand the numerical examples in [1] and interpret the
applied relevance, it is necessary to understand what parameters we should
look at. The relevant parameters to interpret the conclusions about the de-
terministic limiting model in [1] are the asymptotic parameters (λ, µi, θi,∆).
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It is helpful to think of the process of interest being the scaled queue-
length process Q̄(η)(t) ≡ η−1Q(η)(t). With that understanding, equation (5)
of [1] reduces to the last line in the display in (10) here when si = ∞ for
all i. With that interpretation, the model parameters (λ, µ,∆, θ) do not
change as we increase n (η in [1]), while the behavior of Q̄(n)(t) approaches
the deterministic limit q(t). Thus, the conclusions for the fluid model should
apply directly (as an approximation) to Q̄(n)(t) in the stochastic model. As
η increases from 10 to 100 in the numerical examples, we see the improved fit
of the limiting deterministic model. (According to Pender (private commu-
nication), the numerical examples in §2.3 of [1] all have parameter θ = 1.) In
that setting, the derived critical delay ∆cr in the fluid model applies directly
to the stochastic model as an approximation. This shows an advantage of
the scaling in the second line of (10), which is used by [1]. Lemma 3.1 shows
how to translate the conclusions to the unscaled system. That view forces
us to scale theta in the routing function by (8).

6.3. Differential Delays

The paper [1] provides a nice study of the symmetric model. It remains
to carefully investigate the impact of differential delay information when the
delay cdf Gi varies with i. Progress in that direction has been made by [12].

Acknowledgement. I thank Jamol Pender for helpful comments and sugges-
tions.

References

[1] J. Pender, R. Rand, E. Wesson, A stochastic analysis of queues with
customer choice and delayed information, Mathematics of Operations
Research, published in Articles in Advance, April 10, 2020 (2020).

[2] G. Pang, R. Talreja, W. Whitt, Martingale proofs of many-server heavy-
traffic limits for Markovian queues, Probability Surveys 4 (2007) 193–
267.

[3] K. W. Fendick, M. A. Rodrigues, A. Weiss, Analysis of a rate-based con-
trol strategy with delayed feedback, Performance Evaluation 16 (1992)
67–84.

10



[4] K. W. Fendick, M. A. Rodrigues, Asymptotic analysis of adaptive rate
control for diverse sources with delayed feedback, IEEE Transactions on
Information Theory 40 (6) (1994) 2008–2025.

[5] E. Budish, P. Cramton, J. Shim, The high-frequence trading arms race:
frequent batch auctions as a market design response, The Quarterly
Journal of Economics 130 (4) (2015) 1547–1621.

[6] M. E. Lewis, Flash Boys, A Wall Street Revolt, Norton, 2014.

[7] Y. Liu, W. Whitt, The Gt/GI/st+GI many-server fluid queue, Queue-
ing Systems 71 (4) (2012) 405–444.

[8] Y. Liu, W. Whitt, A many-server fluid limit for the Gt/GI/st + GI
queueing model experiencing periods of overloading, Operations Re-
search Letters 40 (2012) 307–312.

[9] J. Dong, E. Yom-Tov, G. B. Yom-Tov, The impact of delay announce-
ments on hospital network coordination and waiting times, Management
Science 65 (5) (2018) 1969–1994.

[10] S. Novitzky, J. Pender, To update or not to update: queues with infor-
mation updates, Cornell University, Ithaca NY 14853 (2020).

[11] S. Novitzky, J. Pender, Queues with delayed information: a probabilistic
perspective, Cornell University, Ithaca NY 14853 (2020).

[12] P. Doldo, J. Pender, R. Rand, Breaking the symmetry in queues with
delayed information, Cornell University, Ithaca NY 14853 (2020).

[13] W. Whitt, Stochastic-Process Limits, Springer, 2002.

[14] I. Gurvich, W. Whitt, Scheduling flexible servers with convex delay costs
in many-server service systems, Manufacturing and Service Operations
Management 11 (2) (2009) 237–253.

[15] G. Pang, W. Whitt, Two-parameter heavy-traffic limits for infinite-
server queues, Queueing Systems 65 (2010) 325–364.

[16] X. Sun, W. Whitt, Delay-based service differentiation with many servers
and time-varying arrival rates, Stochastic Systems 8 (3) (2018) 230–263.

11


