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a b s t r a c t

Pender, Rand and Wesson recently established a delay differential equation limit for a parallel service
system with routing based on delayed information. We provide an interpretation of their scaling under
which their limit can be regarded as an instance of a law of large numbers in the familiar many-server
heavy-traffic scaling. It requires scaling in the probabilistic routing function. We also obtain related
many-server heavy-traffic delay-differential-equation limits for more general models.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Pender, Rand and Wesson [14] established a delay differential
quation (deterministic fluid) limit for a parallel service system
ith routing based on delayed information about the system
tate. That limit is useful because it helps quantify and under-
tand the impact of the delay. We introduce an interpretation
f the scaling used in [14], which shows that their limit can
e regarded as being consistent with a law of large numbers in
he familiar many-server heavy-traffic scaling in [12] and many
ther papers. With many-server scaling, an additional scaling of
he probabilistic routing function is required. (See (2)–(5) for the
efinition of the routing and (7)–(8) for the proposed scaling.)
emma 3.1 shows that the many-server scaling here with the
caling of the routing in (8) produces the same scaling used
n [14]. Hence, the limit obtained by the scaling here is equiv-
lent to the limit in [14], so we are primarily translating into
he many-server heavy-traffic framework. The paper [14] nicely
hows the implications of the limit by analyzing the limiting delay
ifferential equation.
Related early work involving delayed information can be found

n [4,5] on the study of rate control in communication networks
nd in citations to these papers. More recently, information delay
as played an important role in high-speed financial trading;
.g., [1,7].
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E-mail address: ww2040@columbia.edu.
https://doi.org/10.1016/j.orl.2021.03.001
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In Section 2 we introduce our model, which is a modification
of the model in [14], covering the model with finitely many
servers in each group and customer abandonment (analog of the
Erlang A model). In Section 3 we introduce the scaling. In Sec-
tion 4 we present the limit. In Section 5 we extend the results to
the more general time-varying non-Markov Gt/GI/st + GI model
in [8,9]. In Section 6 we conclude with additional discussion.

2. The model

The queueing model has Poisson arrivals at rate λ, routing to
one of N multi-server service groups based on the queue lengths
(numbers in the service group, either waiting or being served) in
these N service groups in the past. For simplicity, suppose that the
system starts empty at time 0 and was empty in the past before
time 0. A somewhat more general initial condition is considered
in [14]; it is not difficult to treat that extension. Let the total
number of arrivals over the interval [0, t] be denoted by A(t).
Thus A ≡ {A(t) : t ≥ 0} is a Poisson process with rate λ (with
≡ denoting equality by definition).

Let service group i have si servers, 1 ≤ i ≤ N , working
independently in parallel. The special case si = ∞ for all i is
considered In [14], which is an important special case. Let Q (t) ≡

(Q1(t), . . . ,QN (t)) be the vector of queue lengths at time t . Let
customers have i.i.d. exponential service times in each service
group. Let 1/µi denote the mean service time of each customer
served in service group i. Then µi is the service rate of individual
customers in service group i. (In [14] it is assumed that µi = µ
for all i.) We assume that the arrival process and service times
are mutually independent. Let customers waiting in queue have

i.i.d. exponential patience times with mean 1/αi. If the customer

https://doi.org/10.1016/j.orl.2021.03.001
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as not entered service by their patience time, they abandon the
ystem without otherwise influencing the system.
We now turn to the routing, which is a form of probabilistic

outing. Let Xk ≡ (Xk,1, . . . , Xk,N ) represent the routing of arrival
umber k, k ≥ 1. Hence Xk is a vector with all components equal
o 0 except a single component equal to 1, which is the index of
he service group to which the arrival is routed. Each arrival is
outed to the designated service group immediately upon arrival,
fter which it immediately enters service if possible; otherwise
he customer goes to the end of the queue at server group i. Then
e have the arrival process to each queue i resulting from the
outing defined as

i(t) =

A(t)∑
k=1

1{Xk,i=1}, t ≥ 0, 1 ≤ i ≤ N. (1)

We assume that the routing at time t specified by (1) depends
on the system history up to time t only through the history of the
queue-length vector {Q (u) : 0 ≤ u ≤ t} at time t . In particular,
we assume that there is probabilistic routing depending upon
that history. In general, the way that the arriving customers
could obtain past state information can be quite complex. For
example, each service group might make periodic state estimates
and broadcast them to all potential customers. That is like the
emergency department delays discussed by [3]. In that case the
delays are periodically 0 and then increase linearly over the
interval between updates. These updates might or might not
be coordinated and synchronized. See [11] for a study of such
systems.

However, following [14], we avoid that complexity and, as-
sume a simplified approximate representation of the probabilistic
routing based on delayed information about the system state. For
t ≥ ∆, where ∆ is a constant time, an arrival at time t is routed
to service group i with probability

pi(t, {Q (u) : t − ∆ ≤ u ≤ t}) ≡
r̃i(t, {Q (u) : t − ∆ ≤ u ≤ t})∑N
j=1 r̃j(t, {Q (u) : t − ∆ ≤ u ≤ t})

,

(2)

here

ĩ(t, {Q (u) : t − ∆ ≤ u ≤ t}) ≡ ri

(
t, θi

∫ ∆

0
Qi(t − u) dGi(u)

)
(3)

or a specified cdf Gi (the cdf of the delay distribution for server
roup i), with ri being a continuous positive real-valued function
ver its domain satisfying

i(t, 0) ≡ ci > 0 for all t and i. (4)

We assume that ri(t, x) is strictly decreasing in x for each t as well.
Hence, the routing to a particular service group gets less likely as
the queue length there increases. Thus, the routing is a proba-
bilistic analog of the join-the-shortest-queue routing. Condition
(4) makes the routing to queue i be with probability ci/

∑N
j=1 cj

when all N service groups are empty. By our assumption that the
system starts out empty, this routing prevails immediately after
time 0.

The routing formulation above is more general than in [14].
First, in [14] the model is a symmetric model in which (µi, θi,Gi)
is independent of the server group i. Second, in [14] the cdf Gi ≡ G
is the unit point mass on ∆, but a randomized delay is studied
in [10] and an asymmetric model is studied in [2]. In [2,10,14] ri
is assumed to take the special form

ri

(
t, θi

∫ ∆

0
Qi(t − u) dGi(u)

)
≡ exp

(
−θi

∫ ∆

0
Qi(t − u) dGi(u)

)
≡ exp (−θ Q (t − ∆)); (5)
i i

317
.e., there is an explicit exponential form, motivated by the multi-
omial logit customer choice model. It is easy to see that (5) is
onsistent with our assumptions.

. Many-server scaling

We now introduce what we regard as a natural many-server
caling. We construct a sequence of parallel-server models in-
exed by positive integers η, as in [14]. For each η, there is a
arallel-server model consisting of N queues with s(η)i servers in
ervice group i, 1 ≤ i ≤ N . Consistent with [12], we let the
rrival rate and number of servers in each service group grow, but
e hold the service-time distribution and the information delay

ixed. In particular, we let the parameters in model η be

(λ(η), s(η)i ) ≡ (ηλ, ηsi),

µ
(η)
i , α

η

i , ∆
(η)
i ,G(η)

i ) ≡ (µi, αi, ∆i,Gi)

1 ≤ i ≤ N, for all η ≥ 1. (6)

n other words, the arrival rate and number of servers in each
ervice group is scaled up by the constant factor η, while the
ervice-time, patience and delay distributions are independent
f η. The idea is that large scale is directly determined by the
ncreasing arrival rate and system capacity (growing together),
hile the service, patience and delay times should be relatively

nsensitive to scale.
Because we are interested in the law of large numbers (LLN)

ielding the deterministic limit, we focus on the scaled queueing
rocess

¯ (η)(t) ≡ η−1Q (η)(t), t ≥ 0, (7)

where Q (η)(t) is the vector queue-length process in model η. (This
is consistent with [12].)

Turning to the routing, we assume that the routing depends
on Q̄ (η) instead of Q (n). Equivalently, we assume that the routing
constants θ

(η)
i appearing in (3) and (5) scale by

θ
(η)
i ≡ θi/η for all i and η. (8)

This seems to be a reasonable initial assumption in face of in-
creasing scale. (Refined scaling might be considered for refined
diffusion limits.)

With this scaling in (6) and (8), we get a generalization of
equation (5) of [14], but with a different interpretation. The
quantity Q η

i (t) in [14] is replaced by Q̄ (η)
i (t) in (7) and in the

unscaled system θi is replaced by θ
(η)
i ≡ θi/η in (8). Assuming

that Eq. (5) here applies to the unscaled number in system, we
have

θ
(η)
i Q (η)

i (t) = θiQ̄
(η)
i (t) for all η ≥ 1, t and i. (9)

With the interpretation/definitions above, we can apply the re-
sults in [14] to obtain the natural generalization of their stated
limit to the case of finitely many servers.

To state the expression explicitly, let Πa
i , Π s

i and Π l
i be 3N

independent rate-1 Poisson processes. Then, in our notation un-
der the simplifying assumption of starting empty, we have the
following explicit construction. Let x ∧ y ≡ min {x, y} and (x)+ ≡

max {x, 0} for real numbers x.

Lemma 3.1 (Explicit Construction of the Scaled Queue-Length Pro-
cess). Under the assumptions above, for each η ≥ 1 and for each
i, 1 ≤ i ≤ N, the scaled queue-length process at service group i,
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¯ (η)
i (t), has the explicit representation

Q̄ (η)
i (t) ≡ η−1Q (η)

i (t)

η−1Πa
i

(∫ t

0

(
λ(η)ri(u, θ

(η)
i

∫ ∆

0 Q (η)
i (u − v) dGi(v))∑N

j=1 rj(u, θ
(η)
j

∫ ∆

0 Q (η)
j (u − v) dGj(v))

)
du

)

−η−1Π s
i

(∫ t

0
µi(Q

(η)
i (u)

⋀
sηi )du

)
−η−1Π l

i

(∫ t

0
αi(Q

(η)
i (u) − sηi )

+du
)

η−1Πa
i

(
η

∫ t

0

(
λri(u, θi

∫ ∆

0 Q̄ (η)
i (u − v) dGi(v))∑N

j=1 rj(u, θj
∫ ∆

0 Q̄ (η)
j (u − v) dGj(v))

)
du

)
(10)

−η−1Π s
i

(
η

∫ t

0
µi(Q̄

(η)
i (u)

⋀
si)du

)
−η−1Π l

i

(
η

∫ t

0
αi(Q̄

(η)
i (u) − si)+du

)
.

Proof. This construction is justified in §2.1 of [12]. The final
display follows by simple algebra. □

As can be seen from the first line of (10), the many-server scal-
ing involves scaling θ

(n)
i as in (8). The scaling in [14] corresponds

to the second line of (10) in the special case si = ∞ for all i. (That
seems unclear from [14].) In that context, there is scaling inside
both Poisson processes, but no scaling of θ . It is clear that these
representations are equivalent. We are thus only elaborating on
the interpretation.

4. Convergence as η → ∞

As noted in [14], the functional strong law of large numbers
for a Poisson process can be applied to obtain the desired limit.
The first step has

η−1Π (ηt) → t as η → ∞, (11)

niformly in t over bounded intervals with probability 1, where
is a unit-rate Poisson process, as in (10).
Lemma 3.1 with (11) yields the limit in [14], extended to the

ulti-server model. We use function space notation as in [16];
.e., the limit in (12) means that Q̄ (η)(t) → q(t) as η → ∞

uniformly in t in any bounded subinterval of [0, ∞).

Theorem 4.1 (Law of Large Numbers, Following [14]). Given the
representation in Lemma 3.1,

Q̄ (η)
→ q as η → ∞ w.p.1 in D([0, ∞),RN ), (12)

where q is the deterministic vector-valued function with

qi(t) =

∫ t

0

(
λri(u, θi

∫ ∆

0 qi(u − v) dGi(v))∑N
j=1 rj(s, θj

∫ ∆

0 qj(u − v) dGj(v))

)
du

−

∫ t

0
µi(qi(u) ∧ si)du

−

∫ t

0
αi(qi(u) − si)+du, 1 ≤ i ≤ N. (13)

The expression (13) is equivalent to the N-dimensional delay
differential equation (system of delay differential equations)

q̇i(t) =

(
λri(t, θi

∫ ∆

0 qi(t − u) dGi(u))∑N
j=1 rj(t, θj

∫ ∆

0 qj(t − u) dGj(u))

)
− µi(qi(t) ∧ si) − αi(qi(t) − si)+ (14)
318
for 1 ≤ i ≤ N with initial condition qi(0) = 0, 1 ≤ i ≤ N (under
our assumptions).

The expression for the limit in (14) coincides with the delay
differential equation in equation (7) of [14] when the model is
symmetric, si = ∞ for all i and we use the special form for the
functions ri in (5) for the special case (θi, µi) = (θ, µ) for all i.
ote that our representation leads to the asymptotic parameter
ector (λ, si, µi, θi, ∆,Gi), 1 ≤ i ≤ N . We obtain λ and θi from
(n) and θ

(n)
i from (6) and (8).

In summary, we have given a careful specification of the
caling and the resulting interpretation of equation (5) in [14],
hich serves to justify or explain the limit there. In particular,
e have identified Q η

i (t) in [14] with Q̄ (η)(t) in (7) here. Then
the routing probabilities require the scaling in (8). Moreover, our
interpretation makes clear that similar many-server limits can be
established for generalizations of the model considered in [14],
e.g., such as in [6,13,15].

5. Extension to time-varying non-Markov models

In this section we briefly indicate how to obtain corresponding
results for the time-varying non-Markov parallel network of N
·/GI/st +GI models with a single Gt arrival process by modifying
the results in [8,9]. We first consider how to treat the extension
of the fluid model in [8].

Initially assume that each arrival is routed to each of the N
queues with probability 1/N . Then each of the N queues is a
Gt/GI/st + GI model studied in [8]. For each of these models,
the performance of the fluid model is characterized by a pair of
two-parameter functions (B(t, y),Q (t, y)): B(t, y) is the quantity
of fluid in service at time t that has been so for a time less than
or equal to y; Q (t, y) is the quantity of fluid waiting in queue at
time t that has been so for a time less than or equal to y. These
key quantities admit integrable representations as in equation
(2) of [8]. The paper imposes several regularity conditions, which
we assume here as well. Under those regularity conditions, a full
algorithm is developed for the performance descriptors of this
model. The full algorithm is outlined in §8 of [8].

In order to treat this more general model, we make an addi-
tional assumption about the routing function ri in (3). In partic-
ular, we assume that the randomization of the delay takes place
over the interval [δ, ∆], where 0 < δ ≤ ∆; i.e., in (3) we have

r̃i(t, {Q (u) : t − ∆ ≤ u ≤ t}) ≡ ri

(
t, θi

∫ ∆

δ

Qi(t − u) dGi(u)
)

.

(15)

Given definition (15), we can apply the algorithm in [8] with
he initially specified arrival rate functions {λi(t) : 1 ≤ i ≤ N} to
ompute the performance descriptors for each of the N queues.
he key observation is that these performance descriptors are
alid for the associated fluid model with delayed information over
he initial interval [0, δ]. The algorithm from [8] will thus yield
the initial candidate N fluid content functions {Qi(t) : 1 ≤ i ≤

N}, which are valid over the time interval [0, δ]. We use these
numbers in system to compute new routing probabilities, which
will produce new arrival rates that are now valid over the interval
[0, δ], because they incorporate the delayed information.

Then we repeat this calculation to produce new arrival rates
and associated new performance descriptors that are valid over
the interval [0, 2δ]. We iteratively repeat this process to obtain
valid performance descriptors over the interval [0, kδ] for any
desired k. Thus we are applying the ‘‘method of steps’’ for solving
a delay differential equation.

To establish the associated functional law of large numbers, it
suffices to use the same iteration. For the initial model, that is a
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irect application of [9]. Then we apply that same limit theorem
teratively to obtain the limit over the interval [0, kδ] for any
esired k.

. Discussion

In this final section we discuss the applied relevance of the
esults and extensions.

.1. The role of infinite-server service groups

At first glance, the formulated routing problem in [14] with
nfinitely many servers in each service group may not seem very
nteresting or useful. With the present formulation, the conges-
ion experienced by each customer is just their own service-time
istribution. If µi = µ for all i as assumed in [14], then all service-
ime distributions are i.i.d. Hence, all routing schemes should
e equally good for customers. With infinitely many servers,
here should be no concern about how many other customers are
lready in service. Of course, there might well be other associated
easures of congestion associated with a large queue length, but

hat has not yet been discussed.
Nevertheless, we think that the model with infinite-server

roups developed in [14] can be useful. It can be justified through
series of approximations. First, suppose that we actually have
ervice groups with large finite numbers of servers. In that con-
ext, it seems natural to regard the customer goal as being to
inimize the expected response time. By using Little’s law, we
ee that the expected response time is the expected number in
ystem divided by the arrival rate. So we can translate the goal
o minimizing weighted mean queue lengths. Finally, we can
pproximate the number in system in a large finite server group
y the number in system in an associated infinite group. Thus,
hat is one way that we can employ the infinite-server model to
et useful results for finite-server models.
Alternatively, as shown in Section 4, we can directly treat

he Erlang-A model, but that produces a new delay differential
quation.

.2. Interpreting the numerical examples

In order to understand the numerical examples in [14] and
nterpret the applied relevance, it is necessary to understand
hat parameters we should look at. The relevant parameters to

nterpret the conclusions about the deterministic limiting model
n [14] are the asymptotic parameters (λ, µi, θi, ∆).

It is helpful to think of the process of interest being the scaled
ueue-length process Q̄ (η)(t) ≡ η−1Q (η)(t). With that understand-

ing, equation (5) of [14] reduces to the last line in the display in
(10) here when si = ∞ for all i. With that interpretation, the
model parameters (λ, µ, ∆, θ ) do not change as we increase n (η
in [14]), while the behavior of Q̄ (n)(t) approaches the determin-
istic limit q(t). Thus, the conclusions for the fluid model should
apply directly (as an approximation) to Q̄ (n)(t) in the stochastic
model. As η increases from 10 to 100 in the numerical examples,
we see the improved fit of the limiting deterministic model.
(According to Pender (private communication), the numerical
examples in §2.3 of [14] all have parameter θ = 1.) In that
setting, the derived critical delay ∆cr in the fluid model applies
directly to the stochastic model as an approximation. This shows
an advantage of the scaling in the second line of (10), which is
319
used by [14]. Lemma 3.1 shows how to translate the conclusions
to the unscaled system. That view forces us to scale theta in the
routing function by (8).

6.3. Differential delays

The paper [14] provides a nice study of the symmetric model.
It remains to carefully investigate the impact of differential delay
information when the delay cdf Gi varies with i. Progress in that
direction has been made by [2].

6.4. Relaxing condition (15) and further study of the non-Markov
models

For practical engineering applications, the approach to non-
Markov time-varying models in Section 5 based on assumption
(15) and the method of steps seems adequate, given the al-
gorithms for non-Markovian time-varying fluid models in [8].
However, it remains to relax condition (15) and derive analogs of
the results in [8]. It also remains to expose the practical impact
of the delayed information in this more complex setting. How do
the new model features combine with the delays to determine
performance?
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