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HEAVY-TRAFFIC LIMIT OF THE GI/GI/1 STATIONARY
DEPARTURE PROCESS AND ITS VARIANCE FUNCTION

By Ward Whitt∗, and Wei You∗

Heavy-traffic limits are established for the stationary departure
process from a GI/GI/1 queue and its variance function. The limit
process is a function of the Brownian motion limits of the arrival
and service processes plus the stationary reflected Brownian mo-
tion (RBM) limit of the queue-length process. An explicit expres-
sion is given for the variance function, which depends only on the
first two moments of the interarrival times and service times plus the
previously-determined correlation function of canonical (drift −1, dif-
fusion coefficient 1) RBM. The limit for the variance function here
is used to show that the approximation for the index of dispersion
for counts of the departure process used in our new robust queueing
network analyzer is asymptotically correct in the heavy-traffic limit.

1. Introduction. In this paper we establish a heavy-traffic (HT) limit
for the stationary departure process from the stable GI/GI/1 queue and its
variance function. In doing so, we are primarily motivated by our desire to
develop a new robust queueing network analyzer (RQNA) for open networks
of single-server queues exploiting the index of dispersion for counts (IDC)
for all arrival processes, which we refer to as the RQNA-IDC. The new
RQNA-IDC is a parametric-decomposition approximation (i.e., it treats the
individual queues separately) like the queueing network analyzer (QNA) in
[37]. Instead of approximately characterizing each flow by its rate and a
single variability parameter, we approximately characterize the flow by its
rate and the IDC, which is a real-valued function on the positive halfline,
in particular the scaled variance function; see §6. The need for such an
enhanced version of QNA has long been recognized, as can be seen from
[32, 31, 38, 43].

This paper is a sequel to [40], which developed a robust queueing (RQ) ap-
proximation for the steady-state workload in a G/G/1 queue; see §6.1 here.
That RQ algorithm extends an earlier RQ algorithm by Bandi, Bertsimas
and Youssef [8]. Indeed, a full RQNA is developed in [8], but the RQ approx-
imation in [8] is a parametric RQ formulation, based on a single variability
parameter, as in [37]. In contrast, the new RQ algorithm in [40] involves
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a functional formulation that incorporates the variance of the input over
time. The advantage of the new formulation is demonstrated by simulation
comparisons in [40].

A full RQNA-IDC for open networks of G/GI/1 single-server queues is
outlined in §6 of [40]. There it is noted that the main challenge in devel-
oping an effective RQNA that can better capture dependence in the arrival
processes at the different queues is to be able to approximate the IDC of the
stationary departure process from a G/GI/1 queue. Important theoretical
support for the new RQNA-IDC developed and studied in [42] is provided
by the present paper. Corollary 6.1 here shows that the proposed approx-
imation for the IDC of the stationary departure process is asymptotically
correct for the GI/GI/1 queue in the HT limit.

The HT limit here is also of considerable interest more generally, because
the stationary departure process from a GI/GI/1 queue is remarkably com-
plicated; e.g., it is only a stationary renewal process in the special case of an
M/M/1 model, when it is Poisson, by Burke’s [12] theorem; also see [33] and
references therein. Indeed, explicit transform expressions for the variance
function of the stationary departure process are evidently only available for
the M/GI/1 and GI/M/1 models, due to Takacs [36] and Daley [16, 17];
see [9] and [27] for related results on GI/GI/1. We exploit the GI/M/1
and M/GI/1/ results here to directly establish HT limits for the variance
function in §3 and §4.

The HT limit for the departure process starting empty in the GI/GI/1
model and more general multi-channel models is an old result, being con-
tained in Theorem 2 of [29], but HT limits for associated stationary processes
have proven far more difficult. To the best of our knowledge, we derive the
first HT limits for the stationary departure process and its variance func-
tion for any GI/GI/1 model except M/M/1. The key to the process limit
here is the recent HT limits for the stationary vector of queue lengths in a
generalized Jackson network in Gamarnik and Zeevi [22] and Budhiraja and
Lee [11]. The existence of the HT limit for the scaled variance function is a
relatively direct consequence.

The most interesting and useful contribution here is the explicit form
of the limiting variance function and its connection to basic functions of
reflected Brownian motion (RBM) in [1, 2]. For this step, we exploit the
transform limits in the M/GI/1 and GI/M/1 special cases. We apply time-
space transformations of the underlying Brownian motions in the GI/GI/1
limit to show that the limit with adjusted parameters is the same as for the
M/GI/1 or GI/M/1 special case. Thus, we can identify the explicit form
of the limiting variance function for the GI/GI/1 model by exploiting the
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results for the special cases; see the proof of Theorem 5.3. This same formula
serves as an approximation more generally; see §7.

Here is how this paper is organized: We start in §2 by providing a brief re-
view of stationary point processes, focusing especially on the variance func-
tion. In §3 we use Laplace transforms (LT’s) of the stationary departure
process in the GI/M/1 queue derived by [16, 17] to derive the HT limit
of its variance function. In §4 we use the HT limit for the Palm version of
the mean function derived by [36] to derive the HT limit of the stationary
variance function. (In §2.2 we review the application of the Palm-Khintchine
equation to express the stationary variance in terms of the Palm mean func-
tion.) In §5 we establish the HT limit for the stationary departure process
in the GI/GI/1 queue (Theorem 5.2) and its variance function (Theorem
5.3). In §6 we provide a brief overview of the application of Theorem 5.3 to
support our RQNA-IDC developed in [42], which is briefly outlined in §6 of
[40]. Finally, we discuss extensions in §7.

2. Review of Stationary Point Processes. In this section we review
basic properties of stationary point processes; see [18] and [35] for more back-
ground. In §2.1 we review renewal processes and their Laplace transforms.
In §2.2 we review the Palm-Khintchine equation and use it to express the
variance function of a stationary point process in terms of the mean function
of the Palm version.

2.1. Renewal Processes and the Laplace Transform. We start with a rate-
λ renewal process N ≡ {N(t) : t ≥ 0}. Let F be the cumulative distribution
function (cdf) of the interval U between points (the interarrival time in a
GI arrival process), having mean E[U ] = λ−1 and finite second moment. As
a regularity condition for our queueing application, we also assume that F
has a probability density function (pdf) f , where F (t) =

∫ t
0 f(u) du, t ≥ 0.

Let Fe be the cdf of the corresponding equilibrium distribution, which has
pdf fe(t) = λ(1 − F (t)). Let Ee[·] denote the expectation under the sta-
tionary distribution (with first interval distributed according to Fe) and let
E0[·] denote the expectation under the Palm distribution (with first interval
distributed as F ).

Conditioning on the first arrival, distributed as F under the Palm distri-
bution or as Fe under stationary distribution, the renewal equations for the
mean and second moment of N(t), the number of points in an interval [0, t],
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are:

m(t) ≡ E0[N(t)] = F (t) +

∫ t

0
m(t− s)dF (s)

me(t) ≡ Ee[N(t)] = Fe(t) +

∫ t

0
m(t− s)dFe(s)

σ(t) ≡ E0[N2(t)] = F (t) + 2

∫ t

0
m(t− s)dF (s) +

∫ t

0
σ(t− s)dF (x)

σe(t) ≡ Ee[N2(t)] = Fe(t) + 2

∫ t

0
m(t− s)dFe(s) +

∫ t

0
σ(t− s)dFe(x).

Throughout the paper, we use the Laplace Transform (LT) instead of
the Laplace-Stieltjes Transform (LST). The LT of f(t) and the LST of F ,
denoted by L(f)(s) ≡ f̂(s), are

(2.1) f̂(s) ≡ L(f)(s) ≡
∫ ∞
0

e−stf(t)dt =

∫ ∞
0

e−stdF (t),

so that f(t) = L−1(f̂)(t). Throughout the paper, we add a hat to either a
LT or item that appears in LT. The LT of fe is then

f̂e(s) =
λ(1− f̂(s))

s
and F̂e(s) =

f̂e(s)

s
,

where λ−1 ≡
∫∞
0 tf(t) dt is the mean. Applying the LT to the renewal equa-

tions, we obtain

m̂(s) =
f̂(s)

s(1− f̂(s))
(2.2)

m̂e(s) =
f̂e(s)

s(1− f̂(s))
=

λ

s2
(2.3)

σ̂(s) =
f̂(s) + 2sm̂(s)f̂(s)

s(1− f̂(s))
=
f̂(s)(1 + f̂(s))

s(1− f̂(s))2
(2.4)

σ̂e(s) =
λ

s2
+

2λ

s
m̂(s) =

λ(1 + f̂(s))

s2(1− f̂(s))
(2.5)

From (2.3), we see that

(2.6) Ee[N(t)] = λt, t ≥ 0,

as must be true for any stationary point process.
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Let V (t) ≡ Vare(N(t)) be the variance process of N(t) under time-
stationary distribution. (We omit the e superscript on V (t) because we will
only discuss stationary variance functions.) Combining (2.5) and (2.6), we
have

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=

λ

s2
+

2λ

s

f̂(s)

s
(

1− f̂(s)
) − 2λ2

s3
.(2.7)

The variance function then can be obtained from the numerical inversion
of the Laplace transform, e.g., see §13 of [3], [4] and [41]. Term by term
inversion shows that we can express V (t) in terms of the renewal function
m(t)

(2.8) V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du.

In §2.2 we show that the Palm-Khintchine equation can be used to derive a
generalization of (2.8) for general stationary and ergodic point processes.

2.2. The Palm-Khintchine Equation. We now consider a continuous-time
stationary point process, i.e., having stationary increments. The main idea
is the Palm transformation relating continuous-time stationary processes to
the associated discrete-time stationary processes. An important manifesta-
tion of that relation is the Palm-Khintchine equation; see Theorem 3.4.II. of
[18]. It is important here because it can be applied to generalize the variance
formula discussed in §2.1; see §2.4 of [15] and §3.4 of [18].

We focus on orderly stationary ergodic point processes with finite inten-
sity. (Orderly means that the points occur one at a time.) Let N(s, t] denote
the number of events in interval (s, t], and N(t) ≡ N(0, t].

Theorem 2.1. (the Palm-Khintchine equation) For an orderly station-
ary point process of finite intensity λ such that

P e(N(−∞, 0] = N(0,∞) =∞) = 1,

(2.9)

P e(N(t) ≤ k) = 1− λ
∫ t

0
qk(u)du = λ

∫ ∞
t

qk(u)du, for k = 0, 1, 2, . . . ,

where qk(t) is the probability of exactly k arrivals in (0, t] under the Palm
distribution, i.e.,

(2.10) qk(t) = lim
h↓0

P (N(t) = k|N(−h, 0] > 0)).
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Under ergodicity, the Palm distribution is equivalent to the event stationary
distribution, so that qk(t) = P 0(N(t) = k).

We now apply Theorem 2.1 to generalize (2.8) and (2.7) to the case of
orderly stationary ergodic point process.

Corollary 2.1. (the variance of a stationary ergodic point process)
For a general stationary ergodic point process with rate λ and finite second
moment, the variance function is

(2.11) V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du, t ≥ 0,

where

(2.12) m(t) ≡ E0[N(t)] =
∞∑
k=1

kqk(t), t ≥ 0,

and its LT is

(2.13) V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3

where m̂(s) is the LT of m(t).

Proof. Let

(2.14) pk(t) = P e(N(t) = k), for k = 0, 1, 2, . . .

so that
∑k

i=1 pk(t) = P e(N(t) ≤ k). With Theorem 2.1, we can write

V (t) =

∞∑
k=1

k2pk(t)− λ2t2 =

∞∑
k=1

k2λ

∫ t

0
(qk−1(u)− qk(u))du− λ2t2

= λ

∫ t

0
(1 + 2m(u)− 2λu)du,(2.15)

where m(t) ≡ E0[N(t)] as in (2.12) Taking the Laplace Transform, we obtain

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
.
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3. The Departure Variance in the GI/M/1 Queue. Daley [16, 17]
derived the LST of the variance Vd(t) of the stationary departure process in
a GI/M/1 queue. The associated LT of Vd(t) is
(3.1)

V̂d(s) =
λ

s2
+

2λ

s3

(
µδ − λ+

µ2(1− δ)(1− ξ̂(s))(µδ(1− f̂(s))− sf̂(s))

(s+ µ(1− ξ̂(s)))(s− µ(1− δ))(1− f̂(s))

)

where λ is the arrival rate, µ is the service rate (with λ < µ), f̂(s) = E
[
e−sU

]
is the LT of the interarrival-time pdf f(t), ξ̂(s) is the root with the smallest
absolute value in z of the equation

(3.2) z = f̂(s+ µ(1− z))

and δ = ξ̂(0) is the unique root in (0, 1) of the equation

(3.3) δ = f̂(µ(1− δ)),

which appears in the distribution of the stationary queue length in aGI/M/1
queue.

We now present a useful lemma on properties of ξ̂(s) and δ; see p. 113 of
[36] or Appendix 6 of [13]. (The notation here is slightly different.)

Lemma 3.1. (root lemma from Takacs [36]) If Re(s) ≥ 0, then the root
ξ̂(s) of the equation

z = f̂(s+ µ(1− z))

that has the smallest absolute value is

(3.4) ξ̂(s) =
∞∑
j=1

(−µ)j−1

j!

dj−1

dsj−1

(
f̂(µ+ s)

)j
.

This root ξ̂(s) is a continuous function of s for Re(s) ≥ 0. Furthermore,
z = ξ̂(s) is the only root in the unit circle z ≤ 1 if Re(s) > 0 or Re(s) ≥ 0
and λ/µ < 1. Specifically, δ = ξ̂(0) is the smallest positive real root of the
equation

δ = f̂(µ(1− δ)).

If λ/µ < 1, then δ < 1 and if λ/µ ≥ 1 then δ = 1.

We now establish a HT limit for the departure variance function in the
GI/M/1 model. To do so, we consider a family of GI/M/1 models param-
eterized by ρ, where λ ≡ E[U ] and µ = µρ = E[V ] ≡ λ(1 + (1 − ρ)γρ),
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where γρ are positive constants such that limρ↑1 γρ = γ > 0. Note that if
γρ = 1/ρ, then we come to the usual case of λ/µ = ρ. We allow this general
scaling so that we can gain insight into reflected Brownian motion (RBM)
with non-unit drift. Let the HT-scaled variance function be

(3.5) V ∗d,ρ(t) ≡ (1− ρ)2Vd,ρ
(
(1− ρ)−2t

)
, t ≥ 0.

Throughout the paper, we use the asterisk (*) superscript with ρ subscript to
denote HT-scaled items in the queueing model, as in (3.5), and the asterisk
without the ρ subscript to denote the associated HT limit.

As should be expected from established HT limits, e.g., as in §5.7 and
Chapter 9 in [39], the HT limit of the variance function V ∗d,ρ(t) in (3.5)

depends on properties of the normal distribution and RBM. Let φ̃(x) be
the pdf and Φ̃(x) the cdf of the standard normal variable N(0, 1). (We
use φ̃ for the pdf, because we use φ for the reflection map; see (5.1).) Let
Φ̃c(x) ≡ 1 − Φ̃(x) be the complementary cdf (ccdf). Let R(t) be canonical
RBM (having drift −1, diffusion coefficient 1) and let Re(t) be the stationary
version, which has the exponential marginal distribution for each t with
mean 1/2. Let c∗(t) be the correlation function of Re

c∗(t) ≡ E[Re(0)Re(t)]− E[Re(0)]E[Re(t)]

Var(Re(0))

= 2(1− 2t− t2)Φ̃c(
√
t) + 2

√
tφ̃(
√
t)(1 + t),

= 1−H∗2 (t) ≡ 1− E[R(t)2|R(0) = 0]

E[R(∞)2]

= 1− 2E[R(t)2|R(0) = 0], t ≥ 0;(3.6)

i.e., where H∗2 (t) is the second-moment cdf of canonical RBM in [1], which
has mean 1 and variance 2.5; see Corollaries 1.1.1 and 1.3.4 of [1] and Corol-
lary 1 of [2]. The correlation function c∗(t) has LT

(3.7) ĉ∗(s) ≡ 1

s
− 2

s2

(
1−
√

1 + 2s− 1

s

)
;

see (1.10) of [1]. Equivalently, the Gaussian terms in (3.6) can be reexpressed
as φ̃(

√
t) = e−t/2/

√
2π and Φ̃c(

√
t) = (1 − erf(

√
t/2))/2, where erf is the

error function.
By Corollary 1.3.5 of [1], the correlation function has tail asymptotics

according to

(3.8) c∗(t) = 1−H∗2 (t) ∼ 16√
2πt3

e−(t/2) as t→∞.
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Theorem 3.1. (HT limit for the GI/M/1 departure variance) Consider
the GI/M/1 model with 1/E[U ] = λ and 1/E[V ] = µρ ≡ λ(1 + (1 − ρ)γρ),
where γρ are positive constants such that limρ↑1 γρ = γ > 0. Assume that

E[U3] <∞ so that a two-term Taylor series expansion of the LT f̂(s) about
the origin is valid with asymptotically negligible remainder. Then

(3.9) V ∗d,ρ(t)→ V ∗d (t) as ρ ↑ 1

for V ∗d,ρ(t) in (3.5), where the limit V ∗d (t) is a finite function with LT

(3.10) V̂ ∗d (s) =
λ

s2
+

(
2λ

s2

)(
c2a − 1

c2a + 1

)(
γ

ξ̂∗(s)

)
=
λc2a
s2
− (λc2a − λ)ĥ∗(s),

where

(3.11) ĥ∗(s) ≡ ĥ∗γ,c2a(s) ≡ 1

s2

(
1−

(
2

c2a + 1

)(
γ

ξ̂∗(s)

))
and ξ̂∗(s) is the unique root with non-negative real part of the quadratic
equation

(3.12)

(
c2a + 1

2

)
ξ̂∗(s)2 − γξ̂∗(s)− s

λ
= 0.

Hence,

(3.13) h∗(t) = t
(
1− w∗(λγ2t/c2x)

)
=

c2x
2λγ2

(
1− c∗(λγ2t/c2x)

)
, t ≥ 0,

and

V ∗d (t) ≡ w∗
(
λγ2t/c2x

)
c2aλt+

(
1− w∗

(
λγ2t/c2x

))
c2sλt, t ≥ 0,(3.14)

where c2x ≡ c2a + c2s with c2a ≡ Var(U)/E[U ]2, c2s = 1 and

(3.15) w∗(t) ≡ 1− 1− c∗(t)
2t

, t ≥ 0,

with c∗(t) being the correlation function of canonical RBM in (3.6). (As t
increases from 0 to ∞, w∗(t) increases from 0 to 1.) Equivalently,

(3.16) 1− w∗(t) =
1− c∗(t)

2t
=
H∗2 (t)

2t
, t ≥ 0,

for H∗2 (t) the RBM second-moment cdf and

V ∗d (t) = c2aλt+
(
1− w∗

(
λγ2t/c2x

))
(c2s − c2a)λt

= c2aλt+
(c2s − c2a)c2x

2γ2
H∗2 (λγ2t/c2x)

= c2aλt+
(c2s − c2a)c2x

2γ2
− (c2s − c2a)c2x

2γ2
c∗(λγ2t/c2x), t ≥ 0.(3.17)
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Proof. We let ρ ↑ 1 by decreasing the service rate, so that 1/E[U ] = λ
is fixed. To allow general drift in the Brownian HT limit, we let 1/E[V ] =
µρ ≡ λ+ (1− ρ)λγρ in system ρ, for positive constants γρ → γ. Under this
setting, we have (λ − µρ)/(1 − ρ) → −λγ as ρ ↑ 1. By (3.1) and (3.5), we
have

V̂ ∗d,ρ(s) = L
(
(1− ρ)2Vd,ρ

(
(1− ρ)−2t

))
= (1− ρ)4V̂d,ρ

(
(1− ρ)2s

)
=

λ

s2
+
λ

s2
Ŵ (s)

where

Ŵ (s) ≡ 2

(1− ρ)2s

µρ(δ − λ

µρ
) +

µρδ
1−f̂((1−ρ)2s)

(1−ρ)2s − f̂
(
(1− ρ)2s

)
(1−ρ)2s+µρ(1−ξ̂((1−ρ)2s))

µρ(1−ξ((1−ρ)2s)) · (1−ρ)
2s−µρ(1−δ)
µρ(1−δ) · 1−f̂((1−ρ)

2s)
(1−ρ)2s

 .

Then, we write

Ŵ (s) =
2µρ

(1− ρ)2s

(
δ − λ

µρ

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s + δ

1−f̂((1−ρ)2s)
(1−ρ)2s − 1

µρ
f̂
(
(1− ρ)2s

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

=
2µρ

(1− ρ)2s

δ
(
Ĥρ(s) + 1

)
1−f̂((1−ρ)2s)

(1−ρ)2s − λ
µρ
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s − 1

µρ
f̂
(
(1− ρ)2s

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

=
1

Ĥρ(s)
1−f̂((1−ρ)2s)

(1−ρ)2s

2µρ
(1− ρ)2s

(
(δ − λ

µρ
)
(
Ĥρ(s) + 1

) 1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

+
λ

µρ

(
1− f̂

(
(1− ρ)2s

)
(1− ρ)2s

− 1

λ

)
+

1

µρ

(
1− f̂

(
(1− ρ)2s

)))

=
2µρ

Ĥρ(s)
1−f̂((1−ρ)2s)

(1−ρ)2s

(
δ − λ

µρ

1− ρ
Ĥρ(s) + 1

(1− ρ)s

1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

+
λ
1−f̂((1−ρ)2s)

(1−ρ)2s − 1

µρ(1− ρ)2s
+

1− f̂
(
(1− ρ)2s

)
µρ(1− ρ)2s


where

Ĥρ(s) ≡

(
1

µρ

(1− ρ)2s

1− ξ̂ ((1− ρ)2s))
+ 1

)(
1

µρ

(1− ρ)2s

1− δ
− 1

)
.
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By Lemma 3.1, we know that δ is positive and real, and δ < 1 if ρ < 1 while
δ = 1 if ρ = 1. Hence, we may restrict the function f̂ to the real axis. Then,
expanding f̂ in a Taylor series about 0, yields

δ = f̂(µρ(1− δ))⇒ δ = f̂(0) + f̂ ′(0)µρ(1− δ) +

(
1

2
f̂ ′′(0)µ2ρ + o(1)

)
(1− δ)2

⇒ 0 = 1− δ − µρ
λ

(1− δ) +

(
1

2
f̂ ′′(0)µ2ρ + o(1)

)
(1− δ)2

⇒ 0 =
1− µρ

λ

1− ρ
+

(
c2a + 1

2

µ2ρ
λ2

+ o(1)

)
1− δ
1− ρ

⇒ 1− δ
1− ρ

= γρ

(
c2a + 1

2ρ
+ o(1)

)−1
(3.18)

This implies that the following limit exist

(3.19) δ∗ ≡ lim
ρ↑1

1− δ
1− ρ

=
2γ

c2a + 1
.

Now, let ξ̂ρ,s ≡ ξ̂
(
(1− ρ)2s

)
= f̂

(
(1− ρ)2s+ µρ(1− ξ̂ρ,s)

)
, then similarly

we have

(3.20) 0 = γρ
1− ξ̂ρ,s
1− ρ

+
s

λ
−
(
c2a + 1

2λ2
+ o(1)

)(
(1− ρ)s+ µρ

1− ξ̂ρ,s
1− ρ

)2

.

Then (3.20) implies that the following limit exist

(3.21) ξ̂∗(s) ≡ lim
ρ↑1

1− ξ̂ρ,s
1− ρ

,

and

(3.22)
c2a + 1

2

(
ξ̂∗(s)

)2
− γξ̂∗(s)− s

λ
= 0.

Recall that ξ̂ρ,s is defined to be the root of z = f̂((1−ρ)2s+µρ(1− z)) with
smallest absolute value. By Lemma 3.1, this root is unique and lies in the
unit circle unless s = 0 and ρ = 1, in which case ξ̂(0) = 1. Furthermore, it
can be proved by Weierstrass Preparation Theorem that ξ̂ρ,s is continuous
in (ρ, s). Hence, we have

Re

(
1− ξ̂ρ,s
1− ρ

)
> 0, for all ρ < 1 and s > 0.
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By taking limit ρ ↑ 1, we have Re(ξ̂∗(s)) ≥ 0 for all s > 0.
As a consequence, we pick the root of (3.22) with non-negative real part.

In particular, for real s, we have

(3.23) ξ̂∗(s) =
γ +

√
γ2 + 2(c2a + 1)s/λ

c2a + 1
.

For complex s, the square root in (3.23) correspond to two complex roots,

which are also the roots of
(
γ −

√
γ2 + 2(c2a + 1)s/λ

)
/(c2a + 1), since the

polynomial in (3.22) is of order 2. Hence, we may use the same expression
(3.23) as in the real case, as long as we pick the one with non-negative real
part.

Combining (3.19) and (3.21), we obtain

lim
ρ↑1

Ĥρ(s) = −1,

and

Ĥ∗(s) ≡ lim
ρ↑1

Ĥρ(s) + 1

(1− ρ)s
= lim

ρ↑1

(
1

µρ

1− ρ
1− δ

− 1

µρ

1− ρ
1− ξ̂ ((1− ρ)2s))

+O(1− ρ)

)

=
1

λ

(
c2a + 1

2γ
− 1

ξ̂∗(s)

)
<∞,(3.24)

where ξ̂∗ is defined in (3.21), so that

(3.25) Ĥ∗(s) =
c2a + 1

2λγ
s2ĥ∗(s)

for ĥ∗(s) in (3.11). Moreover, we have

lim
ρ↑1

1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

= −f̂ ′(0) = E[U ] = 1/λ.

and

lim
ρ↑1

1−f̂((1−ρ)2s)
(1−ρ)2s − 1

λ

(1− ρ)2s
= − f̂

′′(0)

2
= −E[U2]

2
= −c

2
a + 1

2λ2
.
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Combining everything into the Laplace Transform of (1−ρ)2Vd,ρ
(
(1− ρ)−2t

)
,

we have

V̂ ∗d (s) ≡ lim
ρ↑1

V̂ ∗d,ρ(s) =
λ

s2
− λ(c2a − 1)

s2

(
2γλ

c2a + 1
Ĥ∗(s)− 1

)
(3.26)

=
λ

s2
− λ(c2a − 1)

s2

(
2γλ

c2a + 1
Ĥ∗(s)− 1

)
(3.27)

=
λ

s2
+

2λ

s2
c2a − 1

c2a + 1

γ

ξ̂∗(s)
.(3.28)

Plugging in (3.23), we obtain

V̂ ∗d (s) =
λ

s2
+

2λ

s2
c2a − 1

c2a + 1

γ

ξ̂∗(s)

=
λ

s2
+
λ

s2
c2a − 1

c2a + 1

√
1 + 2(c2a + 1)s/(λγ2)− 1

s/(λγ2)
,

where we pick the root such that
(√

1 + 2(c2a + 1)s/(λγ2)− 1
)
/(s/(λγ2))

has non-negative real part. We used the fact that Re(z) ≥ 0 if and only if
Re(1/z) ≥ 0 for z 6= 0.

For the explicit inversion, one can exploit the LT of the correclation func-
tion in (3.7) and note that L(f(at))(s), for any constant a 6= 0 and any
function f with LT f̂ . For our case here, we use a = λγ2/(c2a + 1).

Combining (3.8) and (3.17), we obtain the asymptotic behavior of the
departure variance function.

Corollary 3.1. (asymptotic behavior of the departure variance function)
Under the assumptions in Theorem 3.1,

V ∗d (t) = c2aλt+
(c2s − c2a)c2x

2γ2
− (c2s − c2a)c2x

2γ2
c∗(λγ2t/c2x)

∼ c2aλt+
(c2s − c2a)c2x

2γ2
− 8(c2s − c2a)c5x

γ5
1√

2πλ3t3
e
−λγ

2t

2c2x as t→∞,(3.29)

where here c2s = 1.

Figure 1 (left) reports V ∗(t)− λc2at for four sets of parameters such that
the limiting constant (1 − c4a)/2γ2 in Corollary 3.1 will be 1.5, 0.375,−1.5
and −1.5, respectively. Figure 1 (right) confirms Theorem 3.1 by comparing
simulation estimates of the HT-scaled departure variance function V ∗d,ρ(t) ≡
(1 − ρ)2V ((1 − ρ)−2t) − λc2at for ρ = 0.8 and 0.9 from simulation with the
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theoretical limit V ∗(t)−λc2at for the E2/M/1 model, where c2a = 0.5, showing
that the theoretical limit in (3.10) serves as a good approximation of the
HT-scaled variance function.
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Theoretical limit: ( , , c
a
2) = (2, 0.5, 0.5)

Fig 1. On the left is V ∗(t) − c2at for four sets of parameters calculated from numerically
inverting (3.10). On the right is the the HT-scaled variance (1 − ρ)2V ((1 − ρ)−2t) − c2at
for ρ = 0.8 and 0.9 in the E2/M/1 model, estimated by simulation, compared with the
theoretical limit V ∗(t) − λc2at.

4. The Departure Variance in the M/GI/1 Queue. In this sec-
tion, we prove that the HT limit for the stationary departure variance in
(3.14) also holds true for the M/G/1 model. Of course, here we restrict at-
tention to c2a = 1 instead of c2s = 1 before. Theorem 5.3 will show that the
same formula is valid for GI/GI/1 with general c2a and c2s (where both are
not 0).

Recall from (2.13) that the Laplace Transform of the variance function of
a general stationary and ergordic point process is

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
.

In the case of the M/GI/1 model, [36] (on p. 78) derived an expression for
m̂d(s).

Theorem 4.1. (Laplace transform of the Palm mean function) For the
departure process from a M/G/1 queue,

(4.1) m̂d(s) ≡
∫ ∞
0

e−stmd(t)dt =
ĝ(s)

s(1− ĝ(s))

(
1− sΠ(ν̂(s))

s+ λ(1− ν̂(s))

)
,
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where ĝ(s) = E
[
e−sV

]
is the Laplace Transform of the service pdf g(t), ν̂(s)

is the root with the smallest absolute value in z of the equation

(4.2) z = ĝ(s+ λ(1− z))

and

(4.3) Π(z) ≡ E
[
zQ
]

=
(1− λ/µ)(1− z)ĝ(λ(1− z))

ĝ(λ(1− z))− z
.

is the probability generating function of the distribution of the stationary
queue length Q.

Note from (2.2) that the first part in (4.1), i.e.

ĝ(s)

s(1− ĝ(s))
,

is exactly the Laplace Transform of the mean process of the service renewal
process.

Now, we state the HT limit in terms of the HT-scaled variance function
defined in (3.5).

Theorem 4.2. (HT limit for the M/GI/1 departure variance) Consider
an M/G/1 model with 1/E[V ] = µ and E[U ] = λρ ≡ µ(1 − (1 − ρ)γρ),
where γρ are positive constants such that limρ↑1 γρ = γ > 0. Assume that
E[V 3] <∞ so that a two-term Taylor series expansion of the LT ĝ(s) about
the origin is valid with asymptotically negligible remainder. Then

(4.4) V ∗d,ρ(t)→ V ∗d (t) as ρ ↑ 1

for V ∗d,ρ(t) in (3.5), where the limit V ∗d (t) is a finite function with LT

(4.5) V̂ ∗d (s) =
µc2s
s2

+
γµ2(1− c2s)

s3
ν̂∗(s),

where ν̂∗(s) is the unique root with positive real part of the equation

(4.6)
1 + c2s

2
(ν̂∗(s))2 + γν̂∗(s)− s

µ
= 0.

Hence, V ∗d (t) is again given by (3.14), with µ replacing λ, i.e.,

(4.7) V ∗d (t) ≡ w∗(µγ2t/c2x)c2aµt+
(
1− w∗(µγ2t/c2x)

)
c2sµt, t ≥ 0,

with w∗(t) in (3.15).
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Proof of Theorem 4.2. First, we derive the HT limit for the service variance
function. Let µ = 1/E[V ] be the service rate, then

V̂ ∗s (s) = lim
ρ↑1

V̂ ∗s,ρ(s) ≡ lim
ρ↑1
L
(
(1− ρ)2Vs,ρ

(
(1− ρ)−2t

))
= lim

ρ↑1
(1− ρ)4V̂s,ρ

(
(1− ρ)2t

)
= lim

ρ↑1

(
µ

s2
+

2µ

s2
ĝ
(
(1− ρ)2t

)
1− ĝ ((1− ρ)2t)

− 2µ2

(1− ρ)2s3

)

=
µ

s2
+

2µ2

s2
lim
ρ↑1

1

(1− ρ)2s

 ĝ
(
(1− ρ)2t

)
µ1−ĝ((1−ρ)2t)

(1−ρ)2s

− 1


=
µc2s
s2
.

Hence, we have

(4.8) V ∗s (t) ≡ lim
ρ↑1

(1− ρ)2Vs,ρ
(
(1− ρ)−2t

)
= µc2st.

Now, we turn our focus to the departure process. To simplify the proof,
we consider the HT-scaled difference between departure variance function
and service variance function. Let 1/E[V ] = µ and 1/E[U ] = λρ ≡ µ(1 −
(1 − ρ)γρ), where γρ are positive constants such that limρ↑1 γρ = γ > 0.

Under this setting, we have (λρ − µ)/(1 − ρ) → −µγ as ρ ↑ 1. Let V̂ ∗d,ρ(s)
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and V̂ ∗s,ρ(s) be the LT of V ∗d,ρ(s) and V ∗s,ρ(s), respectively. By (4.1), we have

V̂ ∗d (s)− V̂ ∗s (s) = lim
ρ↑1

(
V̂ ∗d,ρ(s)− V̂ ∗s,ρ(s)

)
= lim

ρ↑1
(1− ρ)4

(
V̂d,ρ

(
(1− ρ)2s

)
− V̂s,ρ

(
(1− ρ)2s

))
= lim

ρ↑1

(
λρ − µ
s2

+
2(λρ − µ)

s2
ĝ
(
(1− ρ)2s

)
1− ĝ ((1− ρ)2s)

−
2(λ2ρ − µ2)
(1− ρ)2s3

)

− lim
ρ↑1

(
2λρ
s2

ĝ
(
(1− ρ)2s

)
1− ĝ ((1− ρ)2s)

(1− ρ)2sΠ
(
ν̂
(
(1− ρ)2s

))
(1− ρ)2s+ λρ (1− ν̂ ((1− ρ)2s))

)

= lim
ρ↑1

λρ − µ
s2

1− 2(λρ + µ)
1

(1− ρ)2s

1−
ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s


+ lim

ρ↑1

2λρ
s2

ĝ
(
(1− ρ)2s

)
1−ĝ((1−ρ)2s)

(1−ρ)2s

· 1

1− ρ

γρ
s
−

Π
(
ν̂
(
(1− ρ)2s

))
(1− ρ)s+ λρ

1−ν̂((1−ρ)2s)
1−ρ


= F̂ (1)

ρ (s) +
2λρµ

s2
ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s

1

(1− ρ)s+ λρ
1−ν̂((1−ρ)2s)

1−ρ

· F̂ (2)
ρ (s)

where

F̂ (1)
ρ (s) ≡ λρ − µ

s2

1− 2(λρ + µ)
1

(1− ρ)2s

1−
ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s


and

F̂ (2)
ρ (s) ≡ γρ

1− ρ

(
1− ρ+

λρ
s

1− ν̂
(
(1− ρ)2s

)
1− ρ

− 1

γρ
Π
(
ν̂
(
(1− ρ)2s

)))
.

One can easily show that F̂
(1)
ρ (s) converges to 0 as ρ ↑ 1. Note also that

ĝ(0) = 1 and ĝ′(0) = −E[V ] = −1/µ, then

lim
ρ↑1

ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s

= 1.
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Furthermore, a Taylor series expansion around s = 0 yields

ν̂
(
(1− ρ)2s

)
− 1

1− ρ
=
ĝ
(
(1− ρ)2s+ λρ

(
1− ν̂

(
(1− ρ)2s

)))
− 1

1− ρ

= −1− ρ
µ

s+
λρ
µ

ν̂
(
(1− ρ)2s

)
− 1

1− ρ

+
ĝ′′(0) + o(1)

2(1− ρ)

(
(1− ρ)2s+ λρ

(
1− ν̂

(
(1− ρ)2s

)))2
,

which implies that

lim
ρ↑1

ν̂
(
(1− ρ)2s

)
= 1(4.9)

and

0 = − s
µ

+
1− λρ

µ

1− ρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

+
ĝ′′(0) + o(1)

2(1− ρ)2
(
(1− ρ)2s+ λρ

(
1− ν̂((1− ρ)2s)

))2
= − s

µ
+ γρ

1− ν̂
(
(1− ρ)2s

)
1− ρ

+
ĝ′′(0) + o(1)

2

(
(1− ρ)s+ λρ

1− ν̂((1− ρ)2s)

1− ρ

)2

= − s
µ

+ γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

+
λ2ρ
µ2
c2s + 1

2

(
1− ν̂((1− ρ)2s)

1− ρ

)2

+ o(1),

where we used the fact that ĝ′′(0) = E[V 2] = (c2s + 1)/µ2. Hence,

lim
ρ↑1

1− ν̂((1− ρ)2s)

1− ρ
= ν∗ (s) ,

where

(4.10)
1 + c2s

2
(ν̂∗(s))2 + γν̂∗(s)− s

µ
= 0.

With essentially the same argument as in the proof of Theorem 3.1, one
can also show that ν∗(s) is the only root of (4.10) with positive real part,
furthermore

(4.11) ν∗(s) =
−γ +

√
γ2 + 2(1 + c2s)s/µ

1 + c2s
.

It remains to show that F̂
(2)
ρ (s) converges (pointwise) to a proper limit.
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To this end, we write

F̂ (2)
ρ (s) =

γρ
1− ρ

(
1− ρ+

λρ
s

1− ν̂
(
(1− ρ)2s

)
1− ρ

− 1

γρ
Π
(
ν̂
(
(1− ρ)2s

)))

= γρ + γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

1

1− ρ

(
λρ
s
− 1

γρ

(1− λρ/µ)(1− ρ)ĝ
(
λρ
(
1− ν̂

(
(1− ρ)2s

)))
ĝ(λρ(1− ν̂ ((1− ρ)2s))− ν̂ ((1− ρ)2s)

)

= γρ + γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

1

1− ρ

(
λρ
s
−

(1− ρ)2ĝ
(
λρ
(
1− ν̂

(
(1− ρ)2s

)))
ĝ(λρ(1− ν̂ ((1− ρ)2s))− ν̂ ((1− ρ)2s)

)
Note that

ĝ
(
λρ(1− ν̂

(
(1− ρ)2s

))
− ν̂

(
(1− ρ)2s

)
= ĝ

(
λρ(1− ν̂

(
(1− ρ)2s

))
− ĝ

(
(1− ρ)2s+ λρ(1− ν̂

(
(1− ρ)2s

))
= (1− ρ)2

s

µ
− ĝ′′(0)(1− ρ)2sλρ

(
1− ν̂

(
(1− ρ)2s

))
+O((1− ρ)4),

one can easily show that

(4.12) lim
ρ↑1

F̂ (2)
ρ (s) = γ − γν̂∗(s)µ

s

(
1 + c2s ν̂

∗(s)
)
.

Plugging everything into the Laplace Transform of the heavy-traffic scaled
difference of the variance functions, we have

V̂ ∗d (s) = V̂ ∗s (s) +
2µ2

s2
1

µν̂∗(s)

(
γ − γν̂∗(s)µ

s

(
1 + c2s ν̂

∗(s)
))

=
µc2s
s2

+
γµ2(1− c2s)

s3
ν̂∗(s)(4.13)

where we apply (4.10) to obtain the simplified expression in (4.13).
To obtain the explicit inversion, we write

V̂ ∗d (s) =
µc2s
s2

+
γµ2(1− c2s)

s3
−γ +

√
γ2 + 2(1 + c2s)s/µ

1 + c2s
.

Then, one exploit the LT of the correclation function in (3.7) and note that
L(f(at))(s) = f̂(t/a)/a, for any constant a 6= 0 and any function f with LT
f̂ . For our case here, we use a = µγ2/(1 + c2s).

With the same technique as in Corollary 3.1, one can prove the following
corollary, which yields exactly the same asymptotic behavior.

Corollary 4.1. (asymptotic behavior of the departure variance curve)
Under the assumptions in Theorem 4.2, we have the limit in (3.29), except
now c2a = 1 and c2s is general.
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5. Heavy-Traffic Limit for the Stationary Departure Process.
In this section, we establish an HT limit for the stationary departure process
in a GI/GI/1 queue. To do so, we apply the recent HT results for the
stationary queue length (number in system) in [22] and [11] together with the
HT limits for the general single-server queue in §9.3 of [39] and the general
reflection mapping with non-zero initial conditions in §13.5 of [39]. As in
[39], a major component of the proof is the continuous mapping theorem.

The corresponding limit starting out empty is contained in Theorem 2 of
[29]. There has since been a substantial literature on that case; see [23, 30,
39]. As can be seen from §9.3 and §13.5 of [39], for the queue length, the key
map is the reflection map φ applied to a potential net-input function x,

(5.1) φ(x)(t) ≡ x(t)− ζ(x)(t), t ≥ 0,

where

(5.2) ζ(x) ≡ inf {x(s) : 0 ≤ s ≤ t} ∧ 0, t ≥ 0,

with a ∧ b ≡ min {a, b}, so that ζ(x) ≤ 0 and φ(x)(t) ≥ x(t) for all t ≥ 0.
The key point is that we now allow x(0) 6= 0,

5.1. A General Heavy-Traffic Limit for the G/G/1 Model. For the gen-
eral G/G/1 single-server queue with unlimited waiting space and service
provided in order of arrival, we consider a family of processes indexed by
the traffic intensity ρ, where ρ ↑ 1. Let Qρ(t) be the number of customers in
the system at time t; let Aρ(t) count the number of arrivals in the interval
[0, t]; let Sρ(t) be a corresponding counting process for the successive service
times, applied after time 0, to be applied to the initial Qρ(0) customers and
to all new arrivals; let Bρ(t) be the cumulative time that the server is busy
in the interval [0, t]. Then the queue-length process can be expressed as

(5.3) Qρ(t) ≡ Qρ(0) +Aρ(t)− Sρ(Bρ(t)), t ≥ 0,

where the three components are typically dependent. (For simplicity, we
assume that Aρ(0) = Sρ(0) = Bρ(0) = 0 w.p.1.)

We have in mind that the system is starting in steady-state. Thus the
triple (Qρ(0), Aρ(·), Sρ(·)) is in general quite complicated for each ρ. Even
in the relatively tractable GI/GI/1 cases, which we shall primarily treat,
the residual interarrival time and service time at time 0 will be complicated,
depending on ρ and Qρ(0). We will need to make assumptions ensuring that
these are uniformly asymptotically negligible in the HT limit.
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By flow conservation, the departure (counting) process can be represented
as

(5.4) Dρ(t) ≡ Aρ(t)−Qρ(t) +Qρ(0), t ≥ 0.

Directly, or by combining (5.3) and (5.4),

(5.5) Dρ(t) ≡ Sρ(Bρ(t)), t ≥ 0.

Let

(5.6) Xρ(t) ≡ Qρ(0) +Aρ(t)− Sρ(t), t ≥ 0,

be a net-input process, acting as if the server is busy all the time, and
thus allowing Xρ(t) to assume negative values. As a consequence of the
assumptions above, Xρ(0) = Qρ(0). Roughly,

(5.7) Qρ(t) ≈ φ(Xρ)(t), t ≥ 0,

for φ in (5.1), but the exact relation breaks down because the service process
shuts down when the system becomes idle, so that a new service time does
not start until after the next arrival. While (5.7) does not hold exactly for
each ρ, it holds in the HT limit, as shown in Theorem 9.3.4 of [39]. It would
hold exactly if we used the modified system in which we let the continuous-
time service process run continuously, so that equation (5.7) holds as an
equality, as done by [10] and then again in §2 of [28]. Because the modified
system has been shown to be asymptotically equivalent to the original system
for these HT limits in [10] and [28], that is an alternate approach.

We now introduce HT-scaled versions of these processes, for that purpose,
let

X∗ρ(t) ≡ (1− ρ)Xρ((1− ρ)−2t),

Q∗ρ(t) ≡ (1− ρ)Qρ((1− ρ)−2t),

A∗ρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2t],

S∗ρ(t) ≡ (1− ρ)[Sρ((1− ρ)−2t)− (1− ρ)−2t/ρ],

B∗ρ(t) ≡ (1− ρ)[Bρ((1− ρ)−2t)− (1− ρ)−2t],

D∗ρ(t) ≡ (1− ρ)[Dρ((1− ρ)−2t)− (1− ρ)−2t],(5.8)

Let D be the function space of all right-continuous real-valued functions
on [0,∞) with left limits, with the usual J1 mode of convergence, which re-
duces to uniform convergence over all bounded intervals for continuous limit
functions. Let Dk be the k-fold product space, using the product topology
on all product spaces. Let ⇒ denote convergence in distribution. Let e be
the identity function in D, i.e., e(t) ≡ t, t ≥ 0.
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Theorem 5.1. If

(5.9) (Q∗ρ(0), A∗ρ, S
∗
ρ)⇒ (Q∗(0), A∗, S∗) in R×D2 as ρ ↑ 1,

where A∗ and S∗ have continuous sample paths with A∗(0) = S∗(0) = 0
w.p.1., then
(5.10)
(A∗ρ, S

∗
ρ , B

∗
ρ , X

∗
ρ , Q

∗
ρ, D

∗
ρ)⇒ (A∗, S∗, B∗, X∗, Q∗, D∗) in D6 as ρ ↑ 1,

where

B∗ ≡ ζ(X∗) < 0, X∗ ≡ Q∗(0) +A∗ − S∗ − e,
Q∗ ≡ φ(X∗) = X∗ − ζ(X∗) and

D∗ ≡ X∗ + e+ ζ(X∗)

= Q∗(0) +A∗ −Q∗(t) = Q∗(0) +A∗ − φ(X∗).(5.11)

for φ and ζ in (5.1) and (5.2).

Proof. First, note that

(5.12) X∗ρ(t) = Q∗ρ(0) +A∗ρ(t)− S∗ρ(t)− t/ρ, t ≥ 0,

because A∗ρ and S∗ρ have different translation terms in (5.8), ensuring that
the potential rate out is 1/ρ, which exceeds the rate in of 1, consistent
with a stable model for each ρ, 0 < ρ < 1. Hence, under the assumption,
X∗ρ ⇒ X∗ = Q∗(0) + A∗ − S∗ − e in D. The limits for Q∗ρ and D∗ρ then
follow from the continuous mapping theorem after carefully accounting for
the busy and idle time of the server; see the proof of Theorem 9.3.4 and
preceding material in [39].

5.2. A Heavy-Traffic Limit for the Stationary Processes. Theorem 5.1 is
not easy to apply to establish HT limits for stationary processes because
condition (5.9) is not easy to check and the limit in (5.10) and (5.11) is not
easy to evaluate.

In order to establish a tractable HT limit for the stationary departure
process, we apply the recent HT limits for the stationary queue length in
[22] and [11]. Their HT limits are for generalized open Jackson networks
of queues, which for the single queue we consider reduce to the GI/GI/1
model. Following [11], we assume that the interarrival times and service
times come from independent sequences of i.i.d. random variables with uni-
formly bounded third moments (2 + ε would do).



DEPARTURE VARIANCE IN HT 23

Theorem 5.2. For the GI/GI/1 model indexed by ρ, assume that (i)
the interarrival-time cdf has a pdf as in §2.1 and (ii) the interarrival times
and service times have means 1 and 1/ρ, scv’s c2a and c2s, without both being
0, and uniformly bounded third moments. Then, for each ρ, 0 < ρ < 1,
the process Q∗ρ can be regarded as a stationary process, the process D∗ρ can
be regarded as a stationary point process (with stationary increments), and
condition (5.9) holds with

(5.13) A∗ ≡ caBa and S∗ ≡ csBs,

where Ba and Bs are independent standard (mean 0, variance 1) Brownian
motions (BM’s) that are independent of Q∗(0), which is distributed as Re(0)
with Re being a stationary RBM with drift −1 and variance c2x ≡ c2a + c2s,
and so an exponential marginal distribution, i.e.,

(5.14) P (Q∗(0) > x) = e−2x/c
2
x , x ≥ 0.

As a consequence, the limits in Theorem 5.1 hold, where

(5.15) X∗(t) ≡ Q∗(0) + caBa(t)− csBs(t)− t, t ≥ 0,

with Q∗(0), Ba and Bs being mutually independent, so that

D∗ ≡ S∗ + e+ ζ(X∗)

= csBs + e+ ζ(Q∗(0) + caBa − csBs − e)(5.16)

for ζ in (5.2) or

D∗(t) = caBa(t) +Q∗(0)−Q∗(t)
= caBa(t) +Q∗(0)− φ(Q∗(0) + caBa − csBs − e)(t), t ≥ 0.(5.17)

for φ in (5.1).

Proof. First, recall that the HT limit as ρ→ 1 starting empty is the RBM
which converges as t→∞ to the exponential distribution in (5.14). We will
be applying [22] and [11] to show that the two iterated limits involving ρ→ 1
and t → ∞ are equal. Toward that end, we observe that, by §§X.3-X.4 of
[7], the queue-length process has a proper steady-state distribution for each
ρ. As in [22] and [11], we add the residual interarrival times and service
times to the state description for Qρ(t) to make it a Markov process that
has a unique steady-state distribution for each ρ. These residual interarrival
and service times are asymptotically negligible in the HT limit. The associ-
ated departure process Dρ(t) then necessarily is a stationary point process
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for each ρ. We then can apply [22] and [11] to have a limit for the scaled
stationary distributions, so that condition (5.9) holds with (5.13). Hence,
we can apply Theorem 5.1 with these special initial distributions to get the
associated process limits in the space D.

We now establish an HT limit for the variance of the stationary departure
process. The form of that limit is already given in Theorem 3.1.

Theorem 5.3. (limiting variance) Under the conditions of Theorem 5.2
plus the usual uniform integrability conditions, for which it suffices for the
interarrival times and service times to have uniformly bounded fourth mo-
ments,

V ∗d,ρ(t) ≡ Var(D∗ρ(t)) = E[D∗ρ(t)
2]

→ E[D∗(t)2] = Var(D∗(t)) ≡ V ∗d (t) as ρ ↑ 1,(5.18)

where

V ∗d (t) = c2at+
c4x
2

(
1− c∗(t/c2x)

)
− 2Cov(caBa(t), Q

∗(t)),

= w∗(t/c2x)c2at+ (1− w∗(t/c2x))c2st,(5.19)

with c2x = c2a + c2s, c
∗(t) is the correlation function in (3.6) and w∗(t) is the

weight function in (3.15); i.e., V ∗d (t) is given in (3.14) with λ = γ = 1, but
allowing general c2s. Moreover, we have the covariance formulas:

Cov(caBa(t), Q
∗(t)) =

c2ac
2
x

2

(
1− c∗(t/c2x)

)
,

Cov(csBs(t), Q
∗(t)) =

−c2sc2x
2

(
1− c∗(t/c2x)

)
and

Cov(X∗, Q∗(t)) =
c4x
4

(
2− c∗(t/c2x)

)
= 2Var(Q∗(0))−Cov(Q∗(0), Q∗(t)), t ≥ 0.

Proof. By combining Theorems 2.1 and 4.2 in Chapter X of [7], we de-
duce that the kth moment of the steady-state queue length in finite if the
(k + 1)st moment of the service time are finite. We add the extra uniformly
bounded fourth moment to provide the uniform integrability needed to get
convergence of the moments in the HT limit. We use (5.4) to obtain the
corresponding result for the departure process.

To get (5.19), combine (5.18) and (5.16). Note that

Var(Q∗(t)) = Var(Q∗(0)) = c2x/4,
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so that

(5.20) Var(D∗(t)) = c2at+
c4x
2
−2Cov(Q∗(0), Q∗(t))−2Cov(caBa(t), Q

∗(t)),

where

(5.21) Cov(Q∗(0), Q∗(t)) =
c4x
4
c∗(t/c2x), t ≥ 0;

see §2 of [2] or Theorem 5.7.11 of [39]. Inserting (5.21) into (5.20) yields the
first line in (5.19) above. To establish the second limit, we do a space-time
transformation of the limit, so that the limit is the same as one of the models
analyzed directly.

Let us rescale space and time so that the general result is in terms on Ba
instead of caBa (assuming that ca > 0), so that we can apply the established
result for the M/GI/1 model. (Essentially the same argument works for
GI/M/1.) The first step is to observe that the HT limit for the departure
process {D∗(t) : t ≥ 0} can be written as a function Ψ : R×D2 → D of the
vector process {(Q∗(0), caBa(t), csBs(t),−t) : t ≥ 0}; i.e.,

(5.22) D∗ = Ψ((Q∗(0), caBa, csBs,−e))

or, by (5.16),

{D∗(t) : t ≥ 0} = {Ψ((Q∗(0), caBa, csBs,−e))(t) : t ≥ 0}
= {Q∗(0) + caBa(t)− φ(Q∗(0) + caBa − csBs − e)(t) : t ≥ 0}.(5.23)

If we replace the basic vector process (Q∗(0), caBa, csBs,−e) by another
that has the same distribution as a process, then the distribution of D∗ ≡
{D∗(t) : t ≥ 0} will be unchanged.

By the basic time and space scaling of BM, for ca > 0, the stochastic
processes have equivalent distributions as follows

{Q∗(0), caBa(t), csBs(t),−t}
d
= c2a

{
Q∗(0)

c2a
, Ba(t/c

2
a),

cs
ca
Bs(t/c

2
a),−

t

c2a

}
≡ c2a

{
Q∗(0)

c2a
, Ba(u),

cs
ca
Bs(u),−u

}
,(5.24)

where u = t/c2a. After this transformation, to describe the system at time u =
c2at, the associated RBM has drift −1 and variance coefficient 1 + (c2s/c

2
a) =

c2x/c
2
a. Note that the mean of the steady-state distribution associated with

the new RBM is the diffusion coefficient divided by twice the absolute value
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of the drift, which is c2x/(2c
2
a). As a result, Q∗(0)/c2a is exactly the steady-

state distribution needed for the new RBM. From above, we see that

D∗(t)
d
= Ψ

(
c2a
{
Q∗(0)/c2a, Ba(u), (cs/ca)Bs(u),−u

})
, for u = t/c2a

= c2aΨ
({
Q∗(0)/c2a, Ba(u), (cs/ca)Bs(u),−u

})
,

≡ c2aD̃∗(u) = c2aD̃
∗(t/c2a).

where D̃∗(u) ≡ Ψ
({
Q∗(0)/c2a, Ba(u), (cs/ca)Bs(u),−u

})
, corresponding to

the M/GI/1 model with service scv c2s/c
2
a. Now, let w̃∗(t) denote the asso-

ciated weight function in (4.7) with (µ, γ, c̃2x) = (1, 1, c2x/c
2
a), so that

w̃∗(t) = w∗∗(c2at/c
2
x).

We now turn to the variance. By applying (4.7), we obtain

V ∗d (t) = c4aṼ
∗
d (u) = c4aṼ

∗(t/c2a)

= c4a

(
w̃∗(t/c2a)

t

c2a
+ (1− w̃∗(t/c2a))

c2s
c2a

t

c2a

)
= w∗∗(t/c2x)c2at+ (1− w∗∗(t/c2a))c2st.

which agrees with the GI/GI/1 formula in (5.19). Thus, we have proved the
variance formula for GI/GI/1.

Finally, it remains to establish the covariance formulas. First, by compar-
ing the two lines in (5.19), we must have

Cov(caBa(t), Q
∗(t)) =

c2ac
2
x

2

(
1− c∗(t/c2x)

)
.

Let B̃s(t) = −Bs(t), then we have

(Q∗(0), caBa, csBs)
d
= (Q∗(0), caBa, csB̃s),

so

Cov(caBa(t), Q
∗(t)) = Cov(caBa(t), φ(Q∗(0) + caBa + csB̃s − e)(t))

= Cov(caBa(t), φ(Q∗(0) + caBa + csBs − e)(t)),

and

Cov(csBs(t), Q
∗(t)) = Cov(−csB̃s(t), φ(Q∗(0) + caBa + csB̃s − e)(t))

= −Cov(csBs(t), φ(Q∗(0) + caBa + csBs − e)(t))
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By symmetry, we thus have

Cov(csBs(t), Q
∗(t)) = −c

2
sc

2
x

2
(1− c∗(t/c2x)).

Then

Cov(X∗(t), φ(X∗)(t)) = Cov(X∗(t), Q∗(t))

= Cov(Q∗(0) + caBa(t)− csBs(t), Q∗(t))

=
c4x
4
c∗(t/c2x) +

c2ac
2
x

2
(1− c∗(t/c2x)) +

c2sc
2
x

2
(1− c∗(t/c2x))

=
c4x
4

+
c4x
4

(1− c∗(t/c2x)).

Remark 5.1. (the quasireversible case) The limit process (A∗, S∗, X∗, Q∗, D∗),
where

(A∗, S∗, X∗) = (caBa, csBs, Q
∗(0) + caBa − csBs − ηe),

as in Theorem 5.2, can be called the Brownian queue; see [24, 25, 26, 33].
The Brownian queue is known to be quasireversible if and only if c2a = c2s. In
that case, the stationary departure process is a BM and the departures in
the past are independent of the steady-state content. Consistent with that
theory, V ∗d (t) = c2at, t ≥ 0 in (5.19) if and only if c2a = c2s.

6. Application to a Robust Queueing Network Analyzer. We
conclude by explaining the important role that Theorem 5.3 plays in our
Robust Queueing Network Analyzer (RQNA) based on the index of disper-
sion for counts (IDC), which we refer to as RQNA-IDC. In §6.1 we briefly
review the robust queueing (RQ) approximation for the mean steady-state
workload at a G/GI/1 queue developed in [40], which requires the IDC of
the arrival process as model data. Then, in §6.2 we review the approxima-
tion for the IDC of the departure process that we propose in [42], which is
supported by this paper.

6.1. The Mean Steady-State Workload at a G/GI/1 Queue. In this sec-
tion we review the RQ approximation for the mean steady-state workload
at a G/G/1 queue developed in [40]. We start with a rate-1 stationary ar-
rival process A ≡ {A(t) : t ≥ 0}, having stationary increments. Thus, for
a renewal arrival process, we work with the associated equilibrium renewal
process. We also start with an stationary and ergodic sequence of mean-1
service times {Vk : k ≥ 1}, possibly correlated with the arrival process. Each
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service time is distributed as a random variable V with cdf G having mean
E[V ] ≡ µ−1 and finite scv c2s. Let Y (t) be the associated rate-1 total input
process, defined by

(6.1) Y (t) ≡
A(t)∑
k=1

Vk, t ≥ 0,

which also has stationary increments. To specify associated queueing pro-
cesses, we introduce the traffic intensity ρ, 0 < ρ < 1. We keep the service
rate at 1, but we make the arrival rate equal to ρ in model ρ by letting

(6.2) Aρ(t) ≡ A(ρt), t ≥ 0, so that Yρ(t) ≡ Y (ρt), t ≥ 0.

Let Zρ(t) be the workload at time t in model ρ with arrival rate ρ and service
rate 1, then

Zρ(t) = φ(Yρ − e)(t) = Yρ(t)− t− inf
s≤t
{Yρ(s)− s}

= sup
s≤t
{Yρ(t)− Yρ(s)− (t− s)}.

As in §3.1 of [40], we can apply a reverse-time construction to write the
steady-state workload Zρ as a simple supremum.

For the RQ approximation, we assume that the rate-1 arrival process A
is partially characterized by its index of dispersion for counts (IDC) Ia(t),
where

(6.3) Ia(t) ≡
Var(A(t))

E[A(t)]
, t ≥ 0;

see §4.5 of [14]. Hence,

(6.4) Ia,ρ(t) = Ia(ρt), t ≥ 0.

For the RQ approximation of the mean steady-state workload, we use
the associated index of dispersion for work (IDW) Iw ≡ {Iw(x) : x ≥ 0}
introduced by [19], which is defined by

(6.5) Iw(t) ≡ Var(Y (t))

E[V ]E[Y (t)]
=

Var(Y (t))

t
, t ≥ 0;

see §4.3 of [40] for key properties.
Let Zρ ≡ Z(ρ, Ia, c

2
s) denote the steady-state workload in the G/GI/1

model when the arrival rate is ρ, the (rate-1) arrival process IDC is Ia as in
(6.3) and service times are i.i.d. with mean 1 and scv c2s. In this context,

(6.6) Iw(t) = Ia(t) + c2s, t ≥ 0,
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as noted in §4.3.1 of [40], and the RQ approximation (based on this partial
model characterization) is

(6.7) E[Zρ] ≡ E[Z(ρ, Ia, c
2
s)] ≈ Z∗ρ ≡ sup

x≥0
{−(1− ρ)x/ρ+

√
2xIw(x)},

for the IDW in (6.6). The approximation (6.7) comes from (28) of [40], as-
suming that we set the parameter bf =

√
2, which makes the approximation

asymptotically correct for the GI/GI/1 model in both the heavy-traffic and
light-traffic limits; see Theorem 5 of [40]. Notice that the approximation
in (6.7) is directly a supremum of a real-valued function, and so can be
computed quite easily for any given triple (ρ, Ia, c

2
s).

6.2. The IDC of a Stationary Departure Process. The main challenge
in developing a full RQNA-IDC involving a decomposition approximation
is calculating or approximating the required IDC for the arrival process at
each queue. For a renewal arrival process, the IDC Ia can be computed by
inverting the LT V̂ (s) in (2.7) using the LT m̂(s) of the renewal function
m(t) in (2.2), which only requires the LT f̂(s) of the interarrival-time pdf in
(2.1). Numerical algorithms for calculating and simulations algorithms for
estimating the IDC are discussed in [41].

As discussed in §6 of [40], this approximation is not difficult for the net-
work operations of superposition and independent splitting. Hence, the main
challenge becomes approximating the IDC of a departure process from a
G/GI/1 queue, partially specified by the triple (ρ, Ia, c

2
s). As in §6 of [40],

we propose approximating the IDC of the departure process, Id,ρ(t) by the
weighted average of the IDC’s of the arrival and service processes, i.e.,

(6.8) Id,ρ(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), t ≥ 0,

where we assume that Ia has been determined. However, we now need to
know the IDC of the service process in addition to the triple (ρ, Ia, c

2
s).

Thus, for the G/GI/1 model we assume that we have the full-service-time
cdf G, and consider the model data to (ρ, Ia, G), from the cdf G we can then
calculate the IDC of the associated renewal process generated by the service
times to get Is. For a more general G/G/1 queue, we would assume that
the service process is independent of the arrival process and that the IDC
Is were given directly.

Based on initial study, a candidate weight function wρ(t) was suggested in
(43) of [40], but based on further study we propose the new weight function

(6.9) wρ(t) ≡ w∗((1− ρ)2t/c2x), t ≥ 0,
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where c2x ≡ c2a + c2s and w∗ is given in (3.15) with c∗ in (3.6); i.e., w∗

is obtained from the heavy-traffic limit of the HT-scaled variance of the
stationary departure process from the GI/GI/1 queue in Theorem 5.3.

Thus to support the new RQNA-IDC, we can apply the following corollary
to Theorem 5.3.

Corollary 6.1. (asymptotically correct in HT) The IDC approxima-
tion for Id(t) in (6.8) with the weight function wρ(t) in (6.9) is asymptoti-
cally correct as ρ ↑ 1; i.e.,

(6.10) Id,ρ((1− ρ)−2t)→ w∗(t/c2x)c2a + (1− w∗(t/c2x))c2s as ρ ↑ 1,

consistent with Theorem 5.3.

Proof. By the IDC definitions in (6.3) and (6.4),

Id,ρ((1− ρ)−2t) =
Vd,ρ((1− ρ)−2t)

(1− ρ)−2t

=
V ∗d,ρ(t)

t
→

V ∗d (t)

t
= w∗(t/c2x)c2a + (1− w∗(t/c2x))c2s as ρ ↑ 1.(6.11)

applying Theorem 5.3 in the second line.
Hence, for ρ not too small,

(6.12) Id,ρ((1− ρ)−2t) ≈ w∗(t/c2x)c2a + (1− w∗(t/c2x))c2s for all t

and

(6.13) Id,ρ(t) ≈ w∗((1− ρ)2t/c2x)c2a + (1− w∗((1− ρ)2t/c2x))c2s for all t.

Results of simulation experiments to evaluate the approximation are re-
ported in [42].

7. Extensions. The approximation for the departure IDC Id(t) in (6.8)
and (6.9) should be good for much more general models than GI/GI/1, with
the independence conditions relaxed and more than 1 server. We also con-
jecture that the HT limit of the variance function in Theorem 5.3 extends
to a larger class of models as well. Indeed, we conjecture that the limits es-
tablished for GI/GI/1 extend in that way. First, Theorem 5.1 extends quite
directly by exploiting [28, 29]. For the extension of Theorem 5.2, there is a
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large class of models for which the HT-scaled arrival and service processes
have the limits

(7.1) A∗ ≡ caBa and S∗ ≡ csBs,

where Ba and Bs are independent standard (mean 0, variance 1) Brownian
motions (BM’s) that are independent of the initial queue length. What is
needed is the extension of [22] and [11] to more general models. We con-
jecture that can be done for GI/GI/s and other models with regenerative
structure in the arrival and service processes. For GI/GI/s the queue-length
process again becomes a Markov process if we append the s elapsed service
times as well as the elapsed interarrival time, but it remains to do the hard
technical analysis leading to an appropriate Lyapunov function.

It is also of interest to establish related results for departure processes in
models with non-renewal arrival processes, as in [20] and references therein.
It also remains to establish new HT limits for stationary departure processes
from a queue within a network, obeying the HT FCLT in [34].

The relevant approximation for the stationary departure process from a
many-server GI/GI/s queue evidently is quite different, being more like
the service process than the arrival process. We conjecture that the rele-
vant many-server heavy-traffic limit for the stationary departure process is
a Gaussian process with the covariance function of the stationary renewal
processes associated with the service times, as in the CLT for renewal pro-
cesses in Theorems 7.2.1 and 7.2.4 of [39]. Partial support comes from [5],
Appendix F of [6] and [21].
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