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Abstract

We study the G/GI/∞ queue from two different perspectives in the same heavy-traffic
regime. First, we represent the dynamics of the system using a measure-valued process that
keeps track of the age of each customer in the system. Using the continuous-mapping approach
together with the martingale functional central limit theorem, we obtain fluid and diffusion
limits for this process in a space of distribution-valued processes. Next, we study a measure-
valued process that keeps track of the residual service time of each customer in the system.
In this case, using the functional central limit theorem and the random time change theorem
together with the continuous-mapping approach, we again obtain fluid and diffusion limits in
our space of distribution-valued processes. In both cases, we find that our diffusion limits may
be characterized as distribution-valued Ornstein-Uhlenbeck processes. Further, these diffusion
limits can be analyzed using standard results from the theory of Markov processes.

1 Introduction

Limit theorems for infinite-server queues in heavy-traffic have a rich history starting with the
seminal paper by Iglehart [20] on the M/M/∞ queue. This work initiated a line of research aiming
to extend Iglehart’s results to additional classes of service time distributions. Whitt [33] studies the
GI/PH/∞ queue, having phase-type service-time distributions, and Glynn and Whitt [14] consider
the GI/GI/∞ queue with service times taking values in a finite set. Furthermore, in [6], [24] and
[31], the G/GI/∞ queue is studied with general service time distributions. [28] gives a survey of
these results.

In this paper, we study the G/GI/∞ queue as a Markov process. This is accomplished using two
different methods. In the first method we construct a process that tracks the age of each customer
in the system and in the second method we construct a process that tracks the residual service
time of each customer in the system. Although analyzing these processes might at first appear
to be a complicated task, one of the themes that runs throughout the paper is that techniques
originally developed for establishing heavy-traffic limits for finite-dimensional state descriptors may
successfully be applied to the somewhat more abstract infinite-dimensional setting. In our first
approach we establish fluid and diffusion limits for a measure-valued process tracking the age of
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each customer in the system using the continuous-mapping approach together with the martingale
functional central limit theorem. In our second approach we establish fluid and diffusion limits
for a measure-valued process tracking the residual service time of each customer in the system.
The representation we use in the second approach was also used by Decreusefond and Moyal [8]
to analyze the M/G/∞ queue. Indeed, many of the results and techniques found in this paper
have been inspired by them. However, our proofs are quite different. In particular, in the second
approach we establish the fluid and diffusion limits using the functional central limit theorem and
the random time change theorem together with the continuous mapping approach. We find that for
both the age and residual service time representations the diffusion limit is a distribution-valued
Ornstein-Uhlenbeck process. We then utilize the highly developed theory of Markov processes in
order to study our limits.

Another paper related to ours is Kaspi and Ramanan [23]. Although this work analyzes many-
server queues with general service time distributions, the measure-valued representation of the
system is similar to our representation. Fluid limits are established for the system in a space of
Radon-measure-valued processes. However, when establishing diffusion limits for such processes,
the limit process evidently falls out of the space of Radon-measure-valued process. Indeed, a
significant challenge in our study was choosing a reasonable infinite-dimensional space to work in.
In the work of [8], the space of test functions used is the Schwartz space, or the space of rapidly
decreasing infinitely differentiable functions. This space has the disadvantage of not containing test
functions that would allow one to obtain corresponding heavy-traffic limits for useful functionals
such as number-in-system and workload. In the present paper, we find that the Sobolev space
of infinite order (see [10], [1]) with respect to L2(µe), where µe is the excess distribution of the
service-time distribution, is the tightest space that has all the properties we need to prove limit
theorems and also enables one to use our results to obtain corresponding limit theorems for useful
functionals.

Besides identifying an appropriate infinite-dimensional space to work in, another major contri-
bution of our work is making a connection between the literature on infinite-dimensional heavy-
traffic limits for queueing systems ([16], [15], [7], [23], [8], [17], [9]) and the vast literature on
infinite-dimensional Ornstein-Uhlenbeck processes motivated by applications to interacting parti-
cle systems ([19], [26], [3], [5], [18], [27], [21], [22], [4]). Our work especially relies on [21] and [22]
to prove continuity of our regulator map.

In the forthcoming paper [29], the authors build on the work of [14] and [24] to prove heavy-
traffic limits for the G/GI/∞ queue in a two-parameter function space. They analyze both age
and residual processes as we do. The main difference between our work and their work is that our
framework, which uses distribution-valued processes, allows one to apply the continuous mapping
approach and other standard techniques to obtain the heavy-traffic limits.

The remainder of the paper is organized as follows. In §2 we derive system equations for both
the ages of customers in the system and the residual service times of customers in the system.
These equations will be the starting point for the main results of the paper. In §3 we present a
regulator map result to be used with the continuous mapping theorem. In §4 we give martingale
results that will be used with the regulator map of §3, to obtain our fluid and diffusion limits. In
§5 and §6 we prove our fluid and diffusion limits, respectively. In §7 we analyze the diffusion limit
for our age process as a Markov process. A corresponding analysis for the limit of residual process
could be conducted similarly.
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1.1 Notation

The set of reals, nonnegative reals and nonpositive reals are denoted by R, R+ and R−, respectively.
We denote by C∞ the set of infinitely differentiable functions from R to R and by ‖·‖L2 the standard
norm on the space L2(µ), where µ is some measure on R, i.e. for f ∈ L2(µ), ‖f‖L2 =

(∫
R |f |

2 dµ
)1/2.

Letting ϕ(i) denote the ith derivative of ϕ ∈ C∞ for i ≥ 0, we denote the Sobolev space of order m
for m ≥ 0 by

Φm ≡

{
ϕ ∈ C∞, ‖ϕ‖m ≡

m∑
i=0

‖ϕ(i)‖L2 <∞

}
. (1)

For each m ≥ 0, this space is known to be a Hilbert space (see §5.2 of [12]). Furthermore, we
denote the projective limit of the spaces (Φm)m≥0 by

Φ ≡
∞⋂
m=0

Φm,

and call Φ a Sobolev space of infinite order (see [10]). It is shown in Lemma 5 of [1] that Φ is
a nuclear Fréchet space with the topology induced by the sequence of seminorms (‖ · ‖m)m≥0.
Furthermore, since for each m ≥ 0, Φm is a Hilbert space, Φ is a countably Hilbertian nuclear space.
Φ is also a Polish space: It is a complete metric space since it is Fréchet and it is separable by
Assertion 11 of [1].

Our primary objects of study are processes that takes values in the topological dual of Φ,
denoted by Φ

′
. To be precise, Φ

′
is the space of all continuous linear functionals on Φ and we refer

to elements of this space as distributions. For µ ∈ Φ
′

and ϕ ∈ Φ we denote the duality product of
µ and ϕ by 〈µ, ϕ〉 ≡ µ(ϕ). For µ ∈ Φ

′
, its distributional derivative, denoted by µ

′
, is the unique

element of Φ
′

such that
〈µ′ , ϕ〉 = −〈µ, ϕ′〉, ϕ ∈ Φ.

It is clear that µ
′

is well-defined by the definition of Φ. For µ ∈ Φ
′

and t ∈ R, we can define τtµ as
the unique element of Φ

′
(when it exists) so that

〈τtµ, ϕ〉 = 〈µ, τtϕ〉, ϕ ∈ Φ,

where τtϕ is the function defined by τtϕ(·) ≡ ϕ(· − t) (when it exists).
For 0 < T ≤ ∞ and Polish space E, we denote by D([0, T ], E) the space of functions from

[0, T ] to E that are right-continuous with left limits everywhere on (0, T ]. We equip this space
with the Skohorod J1 topology (see [2] or [34]). In the sequel we will be concerned with the cases
E = R, E = D ≡ D([0,∞),R) and E = Φ

′
. The quadratic covariation of two martingales M

and N in D([0,∞),R) is denoted by (< M,N >t)t≥0 and the quadratic variation of a martingale
M ∈ D([0,∞),R) is denoted by (< M >t)t≥0 ≡ (< M,M >t)t≥0

In general, nuclear Fréchet spaces are infinite dimensional spaces that possess many desir-
able properties of finite dimensional spaces. For instance, (µt)t≥0 ∈ D([0,∞),Φ

′
) if and only

if (〈µt, ϕ〉)t≥0 ∈ D([0,∞),R) for each ϕ ∈ Φ. In proving our main results we make use of the
following theorem of Mitoma [25].

Theorem 1.1 (Mitoma [25]). Let S be a nuclear Fréchet space and let (µn)n≥1 be a sequence of
elements of D([0, T ],S ′), where S ′ denotes the topological dual of S. Then µn ⇒ µ in D([0, T ],S ′)
if and only if for each ϕ ∈ S, (〈µnt , ϕ〉)t≥0 ⇒ (〈µt, ϕ〉)t≥0 in D([0, T ],R).
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If (µt)t≥0 ∈ D([0,∞),Φ
′
) and t ∈ [0, T ], we can define the distribution

∫ t
0 µs ds as the element

of Φ
′

such that for all ϕ ∈ Φ, 〈∫ t

0
µs ds, ϕ

〉
=
∫ t

0
〈µs, ϕ〉 ds.

Let (Ft)t≥0 be a filtration on an underlying probability space (Ω,F ,P). A process M ∈
D([0,∞),Φ

′
) is a Φ

′
-valued Ft-martingale if for all ϕ ∈ Φ, (〈Mt, ϕ〉)t≥0 is a R-valued Ft-martingale.

For two Φ
′
-valued martingales, M and N in D([0,∞),Φ

′
), their tensor quadratic covariation

(< M,N >t)t≥0 is given for all t ≥ 0 and all ϕ,ψ ∈ Φ by

< M,N >t (ϕ,ψ) ≡< 〈M·, ϕ〉, 〈N·, ψ〉 >t,

and the tensor quadratic variation (<< M >>t)t≥0 of a Φ
′
-valued martingale M ∈ D([0,∞),Φ

′
)

is given by (<< M >>t)t≥0 ≡ (< M,M >t)t≥0. Two Φ
′
-valued martingales, M and N , are said

to be orthogonal if < M,N >= 0 identically. Corresponding notions for the optional quadratic
variation process [M ] are defined analogously.

2 System Equations

In this section, we obtain semi-martingale decompositions of the distribution-valued process A ≡
(At)t≥0, which keeps track of the age of each customer in the system, and the distribution-valued
process R ≡ (Rt)t≥0, which keeps track of the residual service time of each customer in the system.
We begin by treating the age process A in §2.1 and then move on to the residual service time
process R in §2.2.

2.1 Ages

Consider a G/GI/∞ queue with general arrival process (Et)t≥0 ∈ D([0,∞),R). We denote by
τi and ηi the arrival time and service time, respectively, of the ith customer to enter the system
after time 0−, for i ≥ 1. These service times are independent and identically distributed (iid) with
cumulative distribution function (cdf) F with mean 1, complementary cumulative distribution
function F̄ ≡ 1− F , probability density function (pdf) f and hazard rate function h ∈ C∞b .

Define (At)t≥0 ∈ D([0,∞), D) so that At(y) denotes the number of customers in the system at
time t ≥ 0 that have been in the system for less than or equal to y ≥ 0 units of time at time t. At
time 0−, we assume that there are A0(y) customers present who have been in the system for less
than y ≥ 0 units of time and we denote by

−τ̃i ≡ inf{y ≥ 0|A0(y) ≥ i}

the “arrival” time of the ith initial customer to the system for i ≥ 1. A0 ≡ A0(∞) denotes the
total number of customers in the system at time 0−. We also denote by η̃i the remaining service
time at time 0 of the ith initial customer in the system. The distribution of η̃i, conditional on the
arrival time τ̃i, is given for x ≥ 0 by

P [η̃i > x|τ̃i] =
1− F (−τ̃i + x)

1− F (−τ̃i)
. (2)
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We denote by fτ̃i and hτ̃i the conditional pdf and hazard rate function associated with this distri-
bution, respectively.

We now derive system equations for a measure-valued process that tracks the age of each
customer in service. First note that by first principles we have for y ≥ 0,

At(y) =
A0∑
i=1

1{t−τ̃i≤y}1{t<η̃i} +
Et∑
i=1

1{t−τi≤y}1{t−τi<ηi}. (3)

Our first result provides an alternative way to write (3).

Proposition 2.1. For each t ≥ 0,

At(y) = A0(y)−
A0∑
i=1

1{η̃i≤t∧(y+τ̃i)} −
A0(y)∑

i=A0(y−t)+1

1{η̃i>y+τ̃i} + Et −
Et∑
i=1

1{ηi≤(t−τi)∧y} −
Et−y∑
i=1

1{ηi>y}.

(4)

Proof. By (3), we have that

At(y) =
A0∑
i=1

1{t−τ̃i≤y}1{t<η̃i} +
Et∑
i=1

1{t−τi≤y}1{t−τi<ηi}

=
A0(y)∑
i=1

1{t−τ̃i≤y}1{t<η̃i} +
Et∑
i=1

1{t−τi≤y}1{t−τi<ηi}

= A0(y) +
A0(y)∑
i=1

(1{t−τ̃i≤y}1{t<η̃i} − 1) + Et +
Et∑
i=1

(1{t−τi≤y}1{t−τi<ηi} − 1). (5)

However,

1{t−τ̃i≤y}1{t<η̃i} − 1 = 1{t−τ̃i≤y}1{η̃i≤t} + 1{t−τ̃i>y} (6)

=
(
1{t−τ̃i≤y}1{η̃i≤t} + 1{t−τ̃i>y}1{−τ̃i+η̃i≤y}

)
+ 1{t−τ̃i>y}1{−τ̃i+η̃i>y}.

and, similarly,

1{t−τi≤y}1{t−τi<ηi} − 1 = 1{t−τi≤y}1{ηi≤t−τi} + 1{t−τi>y} (7)

=
(
1{t−τi≤y}1{ηi≤t−τi} + 1{t−τi>y}1{ηi≤y}

)
+ 1{t−τi>y}1{ηi>y},

Substituting (7) and (6) into (5) and summing over A0(y) and Et completes the proof.

We now provide an intuitive explanation for the terms appearing in (4). The first term represents
the number of customers in the system at time 0− that have been in the system for less than or
equal to y units of time; the second term represents the number of departures by time t of those
initial customers that had total service times less than or equal to y units of time; and the third
term represents the number of initial customers that had been in the system for less than or equal
to y units of time at time 0− but have been in the system for time greater than y units of time at
time t. The fourth, fifth and sixth terms represent similar quantities but for customers that arrive
to the system after time 0−.
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Next, for t, y ≥ 0, define D0 ≡ (D0
t )t≥0 ∈ D([0,∞), D) by

D0
t (y) =

A0∑
i=1

(
1{η̃i≤t∧(y+τ̃i)} −

∫ η̃i∧t∧(y+τ̃i)

0
hτ̃i(u) du

)
, (8)

and define D ≡ (Dt)t≥0 ∈ D([0,∞), D) by

Dt(y) =
Et∑
i=1

(
1{ηi≤(t−τi)∧y} −

∫ ηi∧(t−τi)∧y

0
h(u) du

)
. (9)

It then follows from (4) that

At(y) = A0(y) + Et −D0
t (y)−Dt(y)−

A0∑
i=1

∫ η̃i∧t∧(y+τ̃i)

0
hτ̃i(u) du−

Et∑
i=1

∫ ηi∧(t−τi)∧y

0
h(u) du

−
A0(y)∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} −
Et−y∑
i=1

1{ηi>y}. (10)

To study the age process as a distribution-valued process, we use a Sobolev space of infinite
order ΦA as the test function space, where ΦA is defined as in (1) with µ set to the excess of the
service time distribution:

µ(A) ≡
∫
A
F̄ (y) dy, for A ∈ B(R+) (11)

Since h ∈ C∞b , for each ϕ ∈ ΦA the integrals 〈F , ϕ〉 and 〈Fe, ϕ〉 both exist, where Fe denotes the
distribution associated with Fe, the cdf of the stationary excess distribution of F , i.e. Fe(y) =∫ y

0 F̄ (x) dx.
We associate with the process A defined above the process A taking values in Φ

′
A, as defined

in §1.1, such that for each t ≥ 0 and ϕ ∈ ΦA,

〈At, ϕ〉 =
∫

R
ϕ(y) dAt(y). (12)

We similarly define corresponding processes, D0 and D, associated with D0 and D, respectively.
We also associate with A0 a Φ

′
A-valued random variable A0. It is easy to see that for each t ≥ 0, the

quantities At, D0
t and Dt are well defined elements of Φ

′
A. It is also easy to see by right-continuity

of the sample paths of A, D0 and D that A,D0,D ∈ D([0,∞),Φ
′
A).

By integrating test functions ϕ ∈ ΦA with respect to each of the terms in (10) it follows that

〈At, ϕ〉 = 〈A0, ϕ〉 − 〈D0
t +Dt, ϕ〉 −

A0∑
i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i
ϕ(y)h(y) dy −

Et∑
i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y) dy

−
∫

R+

ϕ(y) d

 A0(y)∑
i=A0(y−t)+1

1{−τ̃i+η̃i>y} +
Et−y∑
i=1

1{ηi>y}

 . (13)

We then have the following two propositions, which allow us to simplify (13):
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Proposition 2.2. For each t ≥ 0,

A0∑
i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i
ϕ(y)h(y) dy +

Et∑
i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y) dy =

∫ t

0
〈As, ϕh〉 ds.

Proof.

A0∑
i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i
ϕ(y)h(y) dy +

Et∑
i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y) dy

=
A0∑
i=1

∫ t

0
1{0≤s≤η̃i}ϕ(s− τ̃i)h(s− τ̃i) ds+

Et∑
i=1

∫ t

0
1{0≤s−τi≤ηi}ϕ(s− τi)h(s− τi) ds

=
∫ t

0

(
A0∑
i=1

1{0≤s≤η̃i}ϕ(s− τ̃i)h(s− τ̃i) +
Et∑
i=1

1{0≤s−τi≤ηi}ϕ(s− τi)h(s− τi)

)
ds

=
∫ t

0
〈As, ϕh〉 ds.

Proposition 2.3. For each t ≥ 0,

−
∫

R+

ϕ(y) d

 A0(y)∑
i=A0(y−t)+1

1{−τ̃i+η̃i>y} +
Et−y∑
i=1

1{ηi>y}

 = Etϕ(0) +
∫ t

0
〈As, ϕ

′〉 ds.

Proof. Integrating by parts, we have that

−Etϕ(0)−
∫

R+

ϕ(y) d

 A0(y)∑
i=A0(y−t)+1

1{−τ̃i+η̃i>y} +
Et−y∑
i=1

1{ηi>y}


=
∫

R+

 A0(y)∑
i=A0(y−t)+1

1{−τ̃i+η̃i>y} +
Et−y∑
i=1

1{ηi≥y}

ϕ′(y) dy

=
∫

R+

(
A0∑
i=1

1{τ̃i≥−y,−τ̃i+η̃i≥y,τ̃i+y≤t} +
Et∑
i=1

1{ηi≥y,τi+y≤t}

)
ϕ′(y) dy

=
A0∑
i=1

∫
R+

1{τ̃i≥−y,−τ̃i+η̃i≥y,τ̃i+y≤t}ϕ
′(y) dy +

Et∑
i=1

∫
R+

1{ηi≥y,τi+y≤t}ϕ
′(y) dy

=
A0∑
i=1

∫ t

0
1{0≤s−τ̃i≤−τ̃i+η̃i}ϕ

′(s− τ̃i) ds+
Et∑
i=1

∫ t

0
1{0≤s−τi≤ηi}ϕ

′(s− τi) ds

=
∫ t

0

(
A0∑
i=1

1{0≤s−τ̃i≤−τ̃i+η̃i}ϕ
′
(s− τ̃i) +

Et∑
i=1

1{0≤s−τi≤ηi}ϕ
′
(s− τi)

)
ds

=
∫ t

0

(∫
R+

ϕ
′
(u)Qs(du)

)
ds
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=
∫ t

0

〈
As, ϕ

′
〉
ds.

Combining Propositions 2.2 and 2.3 with system equation (13), we arrive at

〈At, ϕ〉 = 〈A0, ϕ〉+ 〈Et −D0
t −Dt, ϕ〉 −

∫ t

0
〈As, hϕ〉 ds+

∫ t

0
〈As, ϕ

′〉 ds, (14)

where we define the Φ
′
A-valued process E ≡ E·δ0 so that 〈Et, ϕ〉 = Etϕ(0) for each ϕ ∈ ΦA and

t ≥ 0. In general, we refer to (14) as the semi-martingale decomposition of A for reasons that
become clear in §4.

2.2 Residuals

We next move on to the residual service time process R. As in §2, customers arrive to the system
according to a general arrival process (Et)t≥0 ∈ D([0,∞),R) and we denote by τi and ηi the arrival
time and service time, respectively, of the ith customer to arrive to the system after time 0−.
Customer service times are iid with cdf F . We assume the service-time distribution has a bounded
hazard rate function, but here we make no assumptions on the smoothness of the hazard rate
function as we did in §2.1. Assuming the boundedness of the hazard rate is helpful in defining our
space of test functions. In general, we could drop all assumptions on the service time distribution,
but this would require us to restrict our space of test functions.

Let Rt(y) denote the number of customers at time t ≥ 0 that have less than or equal to y ∈ R
units of service time remaining. Note that as in [8], we allow y ≤ 0 so that in addition to keeping
track of customers present in the system at time t, we also keep track of customers who have already
departed the system. We assume that at time 0− there are R0(y) customers in the system that
have less than or equal to y ≥ 0 units of service time remaining. We let R0 ≡ R0(∞) denote the
total number of customers present in the system at time 0−. By first principles, it then follows
that

Rt(y) = R0(t+ y) +
Et∑
i=1

1{ηi−(t−τi)≤y}. (15)

The following Proposition presents an alternative form of (15).

Proposition 2.4. For each t ≥ 0 and y ∈ R,

Rt(y) = R0(y) + (R0(t+ y)−R0(y)) +
Et∑
i=1

1{ηi≤y} +
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}. (16)

Proof. By (15),

Rt(y) = R0(t+ y) +
Et∑
i=1

1{ηi−(t−τi)≤y} = R0(y) + (R0(t+ y)−R0(y)) +
Et∑
i=1

1{ηi−(t−τi)≤y}. (17)

However,
1{ηi−(t−τi)≤y} = 1{ηi≤y} + 1{ηi>y,ηi−(t−τi)≤y}. (18)

Substituting (18) into (17) and summing over Et, completes the proof.
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We now give an explanation for each of the terms appearing in (16). The first term represents
the number of customers in the system at time 0− with less than or equal to y units of service time
remaining. The second term represents the number of customers that arrived to the system with
greater than y units of total service time but at time t have less than or equal to y units of service
time remaining. The third and fourth terms can be explained analogously but for customers that
arrive to the system after time 0−.

For each y ≥ 0 and t ≥ 0, define G ≡ (Gt)t≥0 ∈ D([0,∞), D) by

Gt(y) =
Et∑
i=1

(
1{ηi≤y} − F (y)

)
.

By Proposition (2.4), Rt(y) may then be rewritten as

Rt(y) = R0(y) + (R0(t+ y)−R0(y)) +Gt(y) + EtF (y) +
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}. (19)

To study this residual process as a distribution-valued process, we will use another Sobolev
space of infinite order ΦR as the test function space, where ΦR here is defined as in (1) with
µ ≡ µ− + µ+, where

µ+(A) ≡
∫
A
F̄ (y) dy, for A ∈ B(R+), (20)

and µ− is Lebesgue measure on R−. Notice µ+ here is defined just as µ in (11). The assumption
that h is bounded implies that for each ϕ ∈ ΦR the integrals 〈F , ϕ〉 and 〈Fe, ϕ〉 both exist.

Now associating Φ
′
R-valued processes R, G and F to R, G and F , respectively, as in (12), and

plugging in test functions and integrating each of the terms in (19), we get that for each ϕ ∈ ΦR,

〈Rt, ϕ〉 = 〈R0, ϕ〉+
∫

R
ϕ(y) d(R0(t+ y)−R0(y))

+ 〈Gt, ϕ〉+ Et〈F , ϕ〉+
∫

R
ϕ(y) d

(
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}

)
. (21)

The following proposition now allows us to simplify the form of (21):

Proposition 2.5. For each t ≥ 0,∫
R
ϕ(y) d(R0(t+ y)−R0(y)) +

∫
R
ϕ(y) d

(
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}

)
= −

∫ t

0
〈Rs, ϕ

′〉 ds. (22)

Proof. The proof parallels the proof of Proposition 2.3. Integrating by parts, we have that

−
∫

R
ϕ(y) d(R0(t+ y)−R0(y))−

∫
R
ϕ(y) d

(
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}

)

=
∫

R

(
R0∑
i=1

1{y≤η̃i≤t+y}

)
ϕ
′
(y) dy +

∫
R

(
Et∑
i=1

1{ηi>y,(τi+ηi)−t≤y}

)
ϕ
′
(y) dy

9



=
R0∑
i=1

∫
R

1{y≤η̃i≤t+y}ϕ
′
(y) dy +

Et∑
i=1

∫
R

1{ηi>y,(τi+ηi)−t≤y}ϕ
′
(y) dy

=
R0∑
i=1

∫
R

1{η̃i−t≤y≤η̃i}ϕ
′
(y) dy +

Et∑
i=1

∫
R

1{(τi+ηi)−t≤y<ηi}ϕ
′
(y) dy

=
R0∑
i=1

∫ t

0
ϕ
′
(η̃i − s) ds+

Et∑
i=1

∫ t

0
1{τi≤s}ϕ

′
(τi + ηi − s) ds

=
∫ t

0

(
R0∑
i=1

ϕ
′
(η̃i − s) +

Et∑
i=1

1{τi≤s}ϕ
′
(τi + ηi − s)

)
ds

=
∫ t

0

(∫
R+

ϕ
′
Rs(du)

)
ds

=
∫ t

0
〈Rs, ϕ

′〉 ds.

Substituting (22) into (21),

〈Rt, ϕ〉 = 〈R0, ϕ〉+ 〈Gt, ϕ〉+ Et〈F , ϕ〉 −
∫ t

0
〈Rs, ϕ

′〉 ds. (23)

We refer to (23) as the semi-martingale decomposition of R. In §4, we will prove that the process
G in (23) is a martingale. Note the similarity of (23) with (4) of [8].

3 Regulator Map Result

In this section we show that given a Sobolev space of infinite order Φ, the integral equation asso-
ciated with (ν0, µ) ∈ Φ

′ ×D([0,∞),Φ
′
),

〈νt, ϕ〉 = 〈ν0, ϕ〉+ 〈µt, ϕ〉+
∫ t

0
〈νs, Bϕ〉 ds, (24)

for B a continuous linear operator on Φ and ϕ ∈ Φ, defines a continuous function ΨB : Φ
′ ×

D([0,∞),Φ
′
)→ D([0,∞),Φ

′
) mapping (ν0, µ) to ν, under some mild restrictions on B.

Before we prove our result we need the following definition from [21]:

Definition 3.1. A family (St)t≥0 of linear operators on Φ is said to be a (C0, 1) semi-group if

1. S0 = I, where I is the identity operator, and for all s, t ≥ 0, SsSt = Ss+t.

2. The map t→ Stϕ is continuous for each ϕ ∈ Φ.

3. For each q ≥ 0 there exist numbers Mq, σq and p ≥ q such that

‖Stϕ‖q ≤Mqe
σqt‖ϕ‖p,

for all ϕ ∈ Φ, t ≥ 0.

10



Theorem 3.2. Let B be the infinitesimal generator of a (C0, 1) semi-group (St)t≥0. Then for each
(ν0, µ) ∈ Φ

′ ×D([0,∞),Φ
′
), the equation (24) has a unique solution given by

〈νt, ϕ〉 = 〈ν0, Stϕ〉+ 〈µt, ϕ〉+
∫ t

0
〈µs, St−sBϕ〉 ds. (25)

Furthermore, (24) defines a continuous function ΨB : Φ
′ ×D([0,∞),Φ

′
)→ D([0,∞),Φ

′
) mapping

(ν0, µ) to ν.

Proof. That ΨB is a well-defined function from D([0,∞),Φ
′
) to D([0,∞),Φ

′
) and the form of the

solution (25) follow from Steps 1-3 of the proof of Theorem 2.1 of [21] (see also Corollary 2.2).
To show continuity we adapt the argument in the proof of Proposition 3 of [8] (see also

[22]). By the form of (25), it suffices to show that for each T > 0 the function mapping Φ
′

to
D([0,∞),Φ

′
) defined by ν0 7→ S∗· ν0 and the function mapping D([0,∞),Φ

′
) to D([0, T ],R) defined

by µ 7→
∫ ·

0 B
∗S∗·−sµs ds, where B∗ and S∗t denote the adjoint operators of B and St, respectively,

are continuous. The desired result then follows from Theorem 1.1 and the fact that the addition
map on D([0, T ],R)×D([0, T ],R) is continuous at continuous limits (Theorem 4.1 of [32]).

Let (νn0 )n≥1 be a sequence in Φ
′

converging to ν0. Then by Proposition 0.6.7 of [30], for each
precompact set K ⊂ Φ we have

sup
ϕ∈K
|〈νn0 − ν0, ϕ〉| → 0 as n→∞. (26)

Since the map t → Stϕ is continuous for each ϕ ∈ Φ by the definition of (C0, 1) semigroup and
[0, T ] is compact in R, the set {SuBϕ, u ∈ [0, T ]} is compact in Φ. Thus, applying (26) to the
compact set K ≡ {SuBϕ, u ∈ [0, T ]} gives us

sup
u∈[0,T ]

|〈νn0 − ν0, Suϕ〉| → 0 as n→∞.

By Theorem 1.1, this proves S∗· ν
n
0 ⇒ S∗· ν in D([0, T ],R) as n → ∞ and thus that the map

ν0 7→ S∗· ν0 is continuous.
Now let (µn)n≥1 be a sequence in D([0,∞),Φ

′
) converging to µ. Then there exist increasing

homeomorphisms (λn)n≥1 of the interval [0, T ] such that for each ϕ ∈ Φ∥∥〈µn· − µλn(·), ϕ
〉∥∥

T
→ 0 and ‖λn − e‖T → 0 as n→∞,

where e denotes the identity mapping on [0, T ]. Again, by Proposition 0.6.7 of [30], for each pre-
compact set K ⊂ Φ, we have

sup
t∈[0,T ]

sup
ϕ∈K

∣∣〈µnt − µλn(t), ϕ
〉∣∣→ 0 as n→∞, (27)

Just as above, the set {SuBϕ, u ∈ [0, T ]} is compact in Φ. Thus, applying (27) to the compact set
K ≡ {SuBϕ, u ∈ [0, T ]} gives us

sup
t∈[0,T ]

sup
u∈[0,T ]

∣∣〈µnt − µλn(t), SuBϕ
〉∣∣→ 0 as n→∞.

11



Therefore,

sup
t∈[0,T ]

∣∣∣∣〈∫ t

0
B∗S∗t−s

(
µns − µλn(s)

)
ds, ϕ

〉∣∣∣∣ = sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
µns − µλn(s), St−sBϕ

〉
ds

∣∣∣∣
≤ sup

t∈[0,T ]

∫ t

0

∣∣〈µns − µλn(s), St−sBϕ
〉∣∣ ds

≤ sup
t,u∈[0,T ]

∫ t

0

∣∣〈µns − µλn(s), SuBϕ
〉∣∣ ds

≤ T sup
s,u∈[0,T ]

∣∣〈µns − µλn(s), SuBϕ
〉∣∣→ 0,

as n → ∞. By Theorem 1.1, this proves that the map µ 7→
∫ ·

0 B
∗S∗·−sµs ds is continuous and

completes our proof.

3.1 Ages

If we define the linear operator BA on ΦA so that BAϕ = ϕ
′ − hϕ for ϕ ∈ ΦA, we can write (14)

as
A = ΨBA(A0, E − D0 −D). (28)

We now verify that BA generates a (C0, 1) semi-group so that Theorem 3.2 will apply to (14).

Proposition 3.3. BA generates a (C0, 1) semi-group (SAt )t≥0 defined by

SAt ϕ = F̄−1τ−t
(
F̄ϕ
)

for ϕ ∈ ΦA. (29)

Proof. First we check that BA is the infinitesimal generator of the semigroup given by (29). For
all ϕ ∈ ΦA we have

lim
h→0

SAh ϕ− ϕ
h

= lim
h→0

F̄−1F̄ (·+ h)ϕ(·+ h)− ϕ
h

= F̄−1 lim
h→0

F̄ (·+ h)ϕ(·+ h)− F̄ϕ
h

= F̄−1
(
F̄ϕ
)′

= F̄−1
(
F̄ϕ

′ − fϕ
)

= ϕ
′ − hϕ = BAϕ.

Now we check that the semigroup (SAt )t≥0 is a (C0, 1) semigroup. Part 1. of the definition of
(C0, 1) semigroup is clearly satisfied. Part 2. follows from Lemma 2 of [8]. For Part 3., by the
definition of the seminorms inducing the topology on ΦA (1), it is enough to show that for each
n ≥ 0 there exists an Mn such that for each ϕ ∈ ΦA and s ≥ 0,

‖(SAt ϕ)(n)‖L2 ≤Mn

n∑
i=0

‖ϕ(i)‖L2 . (30)
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Using the chain rule and triangle inequality, for each n ≥ 0 we have

‖(SAt ϕ)(n)‖L2 =

∥∥∥∥∥
n∑
i=0

(
n

i

)(
F̄ (·+ t)

F̄

)(n−i)
ϕ(i)(·+ t)

∥∥∥∥∥
L2

≤
n∑
i=0

(
n

i

)∥∥∥∥∥
(
F̄ (·+ t)

F̄

)(n−i)
ϕ(i)(·+ t)

∥∥∥∥∥
L2

=
n∑
i=0

(
n

i

)∥∥∥∥(h− h(·+ t))n−i
F̄ (·+ t)

F̄
ϕ(i)(·+ t)

∥∥∥∥
L2

≤
n∑
i=0

(
n

i

)
2‖h‖n−i∞

∥∥∥∥ F̄ (·+ t)
F̄

ϕ(i)(·+ t)
∥∥∥∥
L2

,

where ‖ · ‖∞ denotes the sup norm. Now focusing on the L2 norm in the expression above,∥∥∥∥ F̄ (·+ t)
F̄

ϕ(i)(·+ t)
∥∥∥∥2

L2

=
∫

R+

(
F̄ (x+ t)
F̄ (x)

ϕ(i)(x+ t)
)2

F̄ (x) dx

=
∫

R+

F̄ (x+ t)
F̄ (x)

ϕ(i)(x+ t)2F̄ (x+ t) dx

≤
∫

R+

ϕ(i)(x+ t)2F̄ (x+ t) dx

≤ ‖ϕ(i)‖2L2 ,

so that finally we have (30) with Mn ≡ max0≤i≤n
{(

n
i

)
2‖h‖n−i∞

}
.

3.2 Residuals

If we define the linear operator BR on ΦR so that BRϕ ≡ −ϕ′ for ϕ ∈ ΦR, then we can write (23)
as

R = ΨR(R0,G + EF), (31)

We now verify that BR generates a (C0, 1) semi-group so that Theorem 3.2 applies to (23).

Proposition 3.4. BR generates the (C0, 1) semi-group (τt)t≥0.

Proof. First we check that BR generates the semigroup (τt)t≥0. For each ϕ ∈ ΦR we have

lim
h→0

τhϕ− ϕ
h

= lim
h→0

ϕ(· − h)− ϕ
h

= −ϕ′ .

We now check that (τt)t≥0 is (C0, 1) semigroup. It clearly satisfies Part 1. of the definition of
(C0, 1) semigroup. Part 2. again follows from Lemma 2 of [8]. To show Part 3. note that it suffices
to show that for all n ≥ 1

‖ϕ(n)(· − t)‖L2 ≤ ‖ϕ(n)‖L2 .

13



Then, we have

‖ϕ(n)(· − t)‖2L2 =
∫

R−
ϕ(n)(x− t)2 dx+

∫
R+

ϕ(n)(x− t)2F̄ (x) dx.

≤
∫

R−
ϕ(n)(x)2 dx+

∫
R+

ϕ(n)(x)2F̄ (x+ t) dx.

≤
∫

R−
ϕ(n)(x)2 dx+

∫
R+

ϕ(n)(x)2F̄ (x) dx.

≤ ‖ϕ(n)‖2L2 .

4 Martingale Results

In this section we show that the processes D0 + D and G defined in §2 are Φ
′
A and Φ

′
R-valued

martingales, respectively. That fact that D0 +D is a martingale will be used with the martingale
functional central limit theorem and the continuous mapping theorem in §5.1 and §6.1 to prove
fluid and diffusion limits, respectively, for our age process. The fact that G is a martingale will
not be needed to prove limit theorems for our residuals process but can be used to show that the
diffusion limit for our residuals process is a Markov process (see §7) and possibly in other future
work.

4.1 Ages

First we first show that the process D + D0 defined in §2.1 is a martingale with respect to the
filtration (FAt )t≥0 defined by

FAt = σ{1{ηi=0},1{ηi≤s−τi}, s ≤ t, i = 1, 2, ..., Et} ∨ σ{Es, s ≤ t} ∨ N .

Proposition 4.1. The process D0+D is a Φ
′
A-valued FAt -martingale with tensor quadratic variation

process given for all ϕ,ψ ∈ ΦA by

<< D0 +D >>t (ϕ,ψ) =
A0∑
i=1

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x) dx+

Et∑
i=1

∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x) dx.

(32)

Proof. We first analyze D. Note that by (9) for t ≥ 0, we have that

Dt(y) =
∞∑
i=1

Di
t(y), y ≥ 0

where for each i ≥ 1

Di
t(y) ≡ 1{ηi≤(t−τi)+∧y} −

∫ ηi∧(t−τi)∧y

0
h(u) du. (33)

We will show for the associated Φ
′
A-valued processes Di, i ≥ 1:

14



1. For each i ≥ 1, Di is a Φ
′
A-valued FAt -martingale.

2. For i 6= j, Di and Dj are orthogonal.

3. For each i ≥ 1, the tensor quadratic variation of Di is given for all ϕ,ψ ∈ ΦA by

<< Di· >>t (ϕ,ψ) =
∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x) dx.

If we can then show that
∑k

i=1

〈
Dit, ϕ

〉
is dominated by an integrable random variable uniformly

over k ≥ 0, it will then follow by Lesbegue’s dominated convergence theorem for conditional
expectations and 1. above that

E [〈Dt, ϕ〉 |Fs] = E

[ ∞∑
i=1

〈
Dit, ϕ

〉 ∣∣∣Fs] =
∞∑
i=1

E
[〈
Dit, ϕ

〉
|Fs
]

=
∞∑
i=1

〈
Dis, ϕ

〉
= 〈Ds, ϕ〉

and hence D will be a Φ
′
A-valued Ft-martingale. Note that for each k ≥ 1, we have that∣∣∣∣∣

k∑
i=1

〈
Dit, ϕ

〉∣∣∣∣∣ =

∣∣∣∣∣
k∑
i=1

∫ (t−τi)+

0
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)∣∣∣∣∣
≤
∞∑
i=1

sup
0≤s≤t

|ϕ(s)|

(
1{ηi≤(t−τi)+} +

∫ ηi∧(t−τi)+

0
h(u) du

)
≤ Et sup

0≤s≤t
|ϕ(s)|(1 + t‖h‖∞).

However, clearly E[Et sup0≤s≤t |ϕ(s)|(1 + t‖h‖∞)|Fs] = sup0≤s≤t |ϕ(s)|(1 + t‖h‖∞)E[Et|Fs] < ∞,
which completes the proof that D is a Φ

′
A-valued FAt -martingale.

Further, a similar dominated convergence argument along with 2. and 3. above shows that the
quadratic variation of the Φ

′
A-valued FAt -martingale D is given for all ϕ,ψ ∈ ΦA by

<< D· >>t (ϕ,ψ) =
∞∑
i=1

<< Di· >>t (ϕ,ψ) =
Et∑
i=1

∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x) dx. (34)

It remains to show 1.-3. We begin with 1. It suffices to show that for each ϕ ∈ S, (〈Dit, ϕ〉)t≥0 is a
real-valued FAt - martingale. First, (〈Dit, ϕ〉)t≥0 is clearly FAt -adapted. To show that the martingale
property holds for (〈Di, ϕ〉)t≥0, it suffices to show that the martingale property holds for Di(y) for
each fixed y ≥ 0. It will then follow that for s ≤ t,

E
[〈
Dit, ϕ

〉
|FAs

]
= E

[∫
R+

Di
t(y)ϕ

′
(y) dy|FAs

]
=
∫

R+

E
[
Di
t(y)|FAs

]
ϕ
′
(y) dy

=
∫

R+

Di
s(y)ϕ

′
(y) dy,

=
〈
Dis, ϕ

〉
15



and so Di will be a Φ
′
A-valued FAt -martingale. Since y ∧ (t− τi) = (t ∧ (τi + y)− τi), we have

Di
t(y) = Di

t∧(τi+y)(y) = Di
t∧(τi+y)(∞).

We know by the proof of Lemma 3.5 of [24] that Di(∞) is an FAt -martingale and it is easy to
see that τi + y is a FAt -stopping time. Therefore, the stopped process (Di

·∧(τi+y)(∞))t≥0, is a
FAt -martingale.

We now focus on 2. To prove orthogonality of Di and Dj for i 6= j, it suffices to show that
for all ϕ,ψ ∈ ΦA the process (〈Dit, ϕ〉〈D

j
t , ψ〉)t≥0 is a FAt -martingale. As in 1., it suffices to prove

that for each fixed y ≥ 0 the martingale property holds for the process (Di
t(y)Dj

t (y))t≥0. Again,
this follows from the fact that (Di

t(∞)Dj
t (∞))t≥0 is a martingale, which we know from the proof

of Lemma 3.5 of [24].
We now calculate the tensor-quadratic variation for Di to prove 3. First by (33), for all ϕ ∈ ΦA

we have

〈Dit, ϕ〉 =
∫

R+

ϕ(x) dDi
t(x) =

∫ (t−τi)+

0
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)
. (35)

Therefore, as on page 259 of [24],

<< 〈Dit, ϕ〉 >>t=
∫ (t−τi)+

0
ϕ(x) d

〈
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

〉
=
∫ ηi∧(t−τi)+

0
ϕ(x)2h(x) dx, (36)

so that

<< Di >>t (ϕ,ψ) =< 〈Di· , ϕ〉, 〈Di· , ψ〉 >t

=
1
4
(
<< 〈Di· , ϕ+ ψ〉 >>t − << 〈Di· , ϕ− ψ〉 >>t

)
=

1
4

(∫ ηi∧(t−τi)+

0
(ϕ(x) + ψ(x))2 h(x) dx−

∫ ηi∧(t−τi)+

0
(ϕ(x)− ψ(x))2h(x) dx

)

=
∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x) dx

where the second equality follows from polarization and the third equality follows from (36).
We now analyze D0. First note that

D0
t (y) =

A0∑
i=1

D0,i
t (y), (37)

where for each i ≥ 1,

D0,i
t (y) = 1{η̃i≤t∧(y+τ̃i)} −

∫ η̃i∧t∧(y+τ̃i)

0
hτ̃i(u) du.

Replicating the analysis for D above, we can show that for each i ≥ 1, D0,i ≡ (D0,i
t )t≥0 is a

Φ
′
A-valued martingale and that for i 6= j, D0,i and D0,j are orthogonal. We now calculate the

tensor-quadratic variation for D0. First, for all ϕ ∈ ΦA, we have

〈D0,i
t , ϕ〉 =

∫
R+

ϕ(x) dD0,i
t (x) =

∫ t

0
ϕ(x− τ̃i) d

(
1{η̃i≤x} −

∫ η̃i∧x

0
hτ̃i(u)du

)
. (38)
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This gives us

<< 〈D0,i
t , ϕ〉 >>=

∫ η̃i∧t

0
ϕ2(x− τ̃i)hτ̃i(x) dx,

Using the polarization identity as in the analysis of D, it then follows that

<< D0,i
· >>t (ϕ,ψ) =

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x) dx.

Summing the quadratic variations of each of the terms in (37) and noting the orthogonality of
the martingales in the sum,

<< D0
· >>t (ϕ,ψ) =

A0∑
i=1

<< D0,i
· >>t (ϕ,ψ) =

A0∑
i=1

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x) dx. (39)

Now since D and D0 are both FAt -martingales, D0 + D is a FAt -martingale. Furthermore, D
and D0 are orthogonal since they are independent. Therefore, << D0 +D >>=<< D0 >> + <<
D >>. Plugging (34) and (39) into this equality gives us (32).

4.2 Residuals

We now show that the process G defined in §2.2 is a martingale. This will be useful in future work
where we wish to show that the residual service time process is a martingale. Let FGt be the natural
filtration generated by G. We then have the following result.

Proposition 4.2. The process G is a Φ
′
R-valued FGt -martingale with tensor optional quadratic

variation process given for all ϕ,ψ ∈ ΦR by

[G]t(ϕ,ψ) =
Et∑
i=1

ϕ(ηi)ψ(ηi). (40)

Proof. We first prove the martingale property. Define the filtration (Hk)k≥1 by Hk ≡ σ{Et, t ≥
0} ∨ σ{η1, η2, ..., ηk} ∨ N . Define the discrete-time D-valued process (Gi)i≥1 by

Gk(y) =
k∑
i=1

(
1{ηi≤y} − F (y)

)
, (41)

and let (Gk)k≥1 be the associated ΦR-valued process. It is then clear by the independence of the
service times from the arrival process that for each ϕ ∈ ΦR, the process (〈Gk, ϕ〉)k≥1 is an Hk-
martingale. However, since for each t ≥ 0 we have that Et is a stopping time with respect to
the filtration (Hk)k≥1, it follows that the filtration (HEt)t≥0 is well-defined and, furthermore, by
the optional sampling theorem, we have that for each ϕ ∈ ΦR, (〈Gt, ϕ〉)t≥0 = (〈GEt , ϕ〉)t≥0 is a
HEt-martingale. The result now follows since any martingale is a martingale relative to its natural
filtration.

The form of the tensor optional quadratic variation (40) is immediate by Theorem 3.3 of [28].
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5 Fluid Limits

In this section, we begin proving our weak convergence results. We consider a sequence of G/GI/∞
queues indexed by n ≥ 1, each following the assumptions of §2. We assume that the service time
distribution is held fixed across the systems. We add a superscript n ≥ 1 to all processes and
quantities defined in §2 to indicate association to the nth queue in the sequence. We focus on fluid
limits for the age and residual processes in §5.1 and §5.2, respectively. We move on to diffusion
limits in §6.

5.1 Ages

We start with the age processes of §2.1. Define

Ān ≡ A
n

n
, Ān0 ≡

An0
n
, Ēn ≡ En

n
, D̄n ≡ D

n

n
, D̄0,n ≡ D

0,n

n
, (42)

and Ēn ≡ Ēnδ0 for n ≥ 1. Then by (28) for n ≥ 1 we have

Ān = ΨBA(Ān0 , Ēn − D̄0,n − D̄n).

We now prove convergence of D̄0,n + D̄n jointly with (Ān0 , Ēn):

Proposition 5.1. If (Ān0 , Ēn)⇒ (Ā0, Ē) in Φ
′
A ×D as n→∞, then(

Ān0 , Ēn, D̄0,n + D̄n
)
⇒
(
Ā0, Ē , 0

)
in Φ

′
A ×D([0,∞),Φ

′
)2 as n→∞.

Proof. We first prove

D̄0,n + D̄n ⇒ 0 in D([0,∞),Φ
′
) as n→∞. (43)

For each ϕ,ψ ∈ ΦA, T > 0 and 0 ≤ t ≤ T we have

<< D̄0,n + D̄n >>t (ϕ,ψ)

=
1
n2

 An0∑
i=0

∫ η̃i∧t

0
ϕ(x− τ̃ni )ψ(x− τ̃ni )hτ̃ni (x) dx+

Ent∑
i=0

∫ ηi∧(t−τni )+

0
ϕ(x)ψ(x)h(x) dx


≤ 1
n2

 An0∑
i=0

∫ T

0
|ϕ(x)ψ(x)h(x)| dx+

EnT∑
i=0

∫ T

0
|ϕ(x)ψ(x)h(x)| dx


≤ 1
n

(
Ān0 + ĒnT

)
T sup

0≤s≤T
|ϕ(s)| sup

0≤s≤T
|ψ(s)|‖h‖∞ ⇒ 0,

in D as n→∞ by the assumed convergence of Ān0 and Ēn. Therefore, (43) follows by the martingale
FCLT. Then joint convergence holds by virtue of Theorem 11.4.5 of [34] and the fact that the limit
in (43) is deterministic.

We then have
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Theorem 5.2. If (Ān0 , Ēn)⇒ (Ā0, Ē) in Φ
′
A ×D as n→∞, then

Ān ⇒ Ā in D([0,∞),Φ
′
) as n→∞,

where Ā satisfies the deterministic integral equation

〈Āt, ϕ〉 = 〈Ā0, ϕ〉+ Ētϕ(0)−
∫ t

0
〈Ās, hϕ〉 ds+

∫ t

0
〈Ās, ϕ

′〉 ds, (44)

for all ϕ ∈ ΦA.

Proof. By the assumption and Proposition 5.1, we have(
Ān0 , Ēn, D̄0,n + D̄n

)
⇒
(
Ā0, Ē , 0

)
in Φ

′
A ×D([0,∞),Φ

′
)2 as n→∞.

Then, since Ān = ΨBA(Ān0 , Ēn−D̄0,n−D̄n) and ΨBA is continuous by Theorem 3.2 and Proposition
3.3, the result follows from the continuous mapping theorem (see [2] and [34]) with ΨA and the
addition map. The addition map is convergence preserving here by Theorem 4.1 of [32] since the
limits of D̄0,n and D̄n as n→∞ are continuous.

Remark 5.3. Note that we can now use Theorem 5.2 along with Theorem 3.2 to write an explicit
expression for Ā. Similarly, we can get explicit expressions for R̄, Â and R̂ in Theorems 5.5, 6.5
and 6.7 below.

5.2 Residuals

We now proceed to prove a fluid limit for the residual processes of §2.2. Let

R̄n ≡ R
n

n
, R̄n0 ≡

Rn0
n
, Ḡ ≡ G

n

n
,

for n ≥ 1. Then by (23) we have

R̄n = ΨBR(R̄n0 , Ḡn + ĒnF).

We first prove convergence of Ḡn jointly with (R̄n0 , Ēn):

Proposition 5.4. If (R̄n0 , Ēn)⇒ (R̄0, Ē) in Φ
′
R ×D as n→∞, then(

R̄n0 , Ēn, Ḡn
)
⇒
(
R̄0, Ē , 0

)
in Φ

′
R ×D([0,∞),Φ

′
)2 as n→∞. (45)

Proof. Notice that for each ϕ ∈ ΦR, 〈Ḡn, ϕ〉 can be written as

〈Ḡn, ϕ〉 =

 1
n

bn·c∑
i=1

∫
R+

ϕ(x) d
(
1{ηi≤x} − F (x)

) ◦ Ēn.
The first term above converges to the 0 function by the functional weak law of large numbers. Thus,
by continuity of the composition map at continuous limit points (see page 145 of [2] or Theorem
13.2.1 of [34]), we have 〈Ḡn, ϕ〉 ⇒ 0 in D as n → ∞. Since this limit is deterministic, we get the
full joint convergence (45) by Theorem 11.4.5 of [34].
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We then have

Theorem 5.5. If (R̄n0 , Ēn)⇒ (R̄0, Ē) in Φ
′
R ×D as n→∞, then

R̄n ⇒ R̄ in D([0,∞),Φ
′
) as n→∞,

where R̄ satisfies the deterministic integral equation

〈R̄t, ϕ〉 = 〈R̄0, ϕ〉+ Ēt〈F , ϕ〉 −
∫ t

0
〈R̄s, ϕ

′〉 ds, (46)

for all ϕ ∈ ΦR.

Proof. By the assumption and Proposition 5.4, we have(
R̄n0 , Ēn, Ḡn

)
⇒
(
R̄0, Ē , 0

)
in Φ

′
R ×D([0,∞),Φ

′
)2 as n→∞.

Then, since R̄n = ΨBR(R̄n0 , ĒnF + Ḡn) and ΨBR is continuous by Theorem 3.2 and Proposition
3.4, the result follows from the continuous mapping theorem with ΨBR and the addition map. The
addition map is convergence preserving here by Theorem 4.1 of [32] since the limit of Ḡn as n→∞
is continuous.

6 Diffusion Limits

We now move on to the diffusion limits. First we define generalized Φ
′
-valued Wiener process

and generalized Φ
′
-valued Ornstein-Uhlenbeck process as in [3]. These notions will be used to

characterize our diffusion limits for the age and residual processes.

Definition 6.1. A continuous Φ
′
-valued Gaussian process W ≡ (Wt)t≥0 is called a generalized

Φ
′
-valued Wiener process with covariance functional K(s, ϕ; t, ψ) ≡ E [〈Ws, ϕ〉〈Wt, ψ〉] if it

has continuous trajectories and for each s, t ≥ 0 and ϕ,ψ ∈ Φ, K(s, ϕ; t, ψ) has the form

K(s, ϕ; t, ψ) =
∫ s∧t

0
〈Quϕ,ψ〉 du,

where the operators Qu : Φ→ Φ
′
, u ≥ 0, have the properties:

1. Qu is linear, continuous, symmetric and positive for each u ≥ 0, and

2. the function u 7→ 〈Quϕ,ψ〉 is in D for each ϕ,ψ ∈ Φ.

If Qu does not depend on u ≥ 0, then the process is a Φ
′
-valued Wiener process.

Definition 6.2. A Φ
′
-valued process X ≡ (Xt)t≥0 is called a (generalized) Φ

′
-valued Ornstein-

Uhlenbeck process if for each ϕ ∈ Φ and t ≥ 0,

〈Xt, ϕ〉 = 〈X0, ϕ〉+
∫ t

0
〈Xu, Aϕ〉 du+ 〈Wt, ϕ〉,

where W ≡ (Wt)t≥0 is a (generalized) Φ
′
-valued Wiener process and A : Φ → Φ is a continuous

operator.
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6.1 Ages

Define

Ân ≡
√
n
(
Ān − Ā

)
, Ân0 ≡

√
n
(
Ān0 − Ā

)
0
, Ên ≡

√
n
(
Ēn − Ē

)
, D̂n ≡

√
nD̄n, D̂0,n ≡

√
nD̄0,n,

and Ên ≡ Ênδ0 for n ≥ 1. Then, centering the system equation (14) by the fluid limit of Theorem
5.2, for n ≥ 1 we have

Ân = ΨBA(Ân0 , Ên − D̂0,n − D̂n).

We now use the following result to approximate D̂0,n + D̂n by a process that is independent of
(Ân0 , Ên) for each n ≥ 1. This is used to prove the required joint convergence in Proposition 6.4.

Lemma 6.3. Define Ď0,n ≡ (Ď0,n
t )t≥0 ∈ D([0,∞), D) so that

Ď0,n
t (y) ≡

nĀ0∑
i=1

(
1{η̃i≤t∧(y+ˇ̃τi)} −

∫ η̃i∧t∧(y+ˇ̃τi)

0
hˇ̃τi

(u) du

)
. (47)

and define Ďn ≡ (Ďn
t )t≥0 ∈ D([0,∞), D) so that

Ďn
t (y) ≡

nĒt∑
i=1

(
1{ηi≤(t−τ̌i)∧y} −

∫ ηi∧(t−τ̌i)∧y

0
h(u) du

)
, (48)

for t ≥ 0, y ≥ 0, where

−ˇ̃τni ≡ inf
{
s|nĀ0(s) ≥ i

}
,

τ̌ni ≡ inf
{
s|nĒs ≥ i

}
,

for i ≥ 0. Let Ďn,0 and Ďn be the D([0,∞),Φ
′
)-valued processes associated with Ď0,n and Ďn,

respectively, for n ≥ 1. Then, if (Ân0 , Ên)⇒ (Â0, Ê) in Φ
′
A ×D as n→∞, then(

D̂0,n + D̂n, Ď0,n + Ďn
)
⇒
(
D̂0 + D̂, D̂0 + D̂

)
in D([0,∞),Φ

′
)2 as n→∞, (49)

where D̂0 + D̂ is a generalized Φ
′
A-valued Wiener process with covariance functional given for each

ϕ,ψ ∈ ΦA and s, t ≥ 0 by

KD̂0+D̂(s, ϕ; t, ψ) =
∫ s∧t

0
〈Āuh, ϕψ〉 du. (50)

Proof. See appendix.

Proposition 6.4. If (Ân0 , Ên)⇒ (Â0, Ê) in Φ
′
A ×D as n→∞, then(

Ân0 , Ên, D̂0,n + D̂n
)
⇒
(
Â0, Ê , D̂0 + D̂

)
in Φ

′
A ×D([0,∞),Φ

′
)2 as n→∞, (51)

where D̂0 + D̂ is given in Proposition 6.3 and is independent of Ê.
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Proof. By Lemma 6.3 we have the joint convergence(
Ân0 , Ên, Ď0,n + Ďn

)
⇒
(
Â0, Ê , D̂0 + D̂

)
in Φ

′
A ×D([0,∞),Φ

′
)2 as n→∞ (52)

since each of the component processes in the prelimit above are independent of each other. Also
by Lemma 6.3 we have,(
Ân0 , Ên, D̂0,n + D̂n

)
−
(
Ân0 , Ên, Ď0,n + Ďn

)
⇒ (0, 0, 0) in Φ

′
A ×D([0,∞),Φ

′
)2 as n→∞.

(53)
Combining (53) with (52) gives us our result.

We then have

Theorem 6.5. If (Ân0 , Ên)⇒ (Â0, Ê) in Φ
′
A ×D as n→∞, then

Ân ⇒ Â in D([0,∞),Φ
′
) as n→∞,

where Â satisfies the stochastic integral equation

〈Ât, ϕ〉 = 〈Â0, ϕ〉+ Êtϕ(0)− 〈D̂0 + D̂, ϕ〉 −
∫ t

0
〈Âs, hϕ〉 ds+

∫ t

0
〈Âs, ϕ

′〉 ds. (54)

for all ϕ ∈ ΦA. If, in addition, Ê is Brownian motion with diffusion coefficient σ, then Â is a
generalized Φ

′
A-valued Ornstein-Uhlenbeck process driven by a generalized Φ

′
A-valued Wiener process

with covariance functional

KÊ−(D̂0+D̂)(s, ϕ; t, ψ) =
∫ s∧t

0
〈σ2δ0 + Āuh, ϕψ〉 du. (55)

Proof. Since Ân = ΨBA(Ân0 , Ên−D̂0,n−D̂n) and ΨBA is continuous by Theorem 3.2 and Proposition
3.3, the convergence follows from Proposition 6.4 and the continuous mapping theorem with ΨBA

and the addition map. The subtraction map is convergence preserving here by Theorem 4.1 of [32]
since the limits of D̂0,n and D̂n as n→∞ are continuous.

If Ê is Brownian motion with diffusion coefficient σ, then Ê is a generalized Φ
′
A-valued Wiener

process with covariance functional KÊ(s, ϕ; t, ψ) = σ2(s ∧ t)ϕ(0)ψ(0). Combining this with (50)
and the fact that D̂0 + D̂ and Ê are independent from Proposition 6.4 gives us (55). Thus, Â is a
generalized Φ

′
A valued Ornstein-Uhlenbeck process.

6.2 Residuals

Define
R̂n ≡

√
n
(
R̄n − R̄

)
, R̂n0 ≡

√
n
(
R̄n0 − R̄

)
, Ĝn ≡

√
nḠn,

for n ≥ 1. Centering the system equation (23) by the fluid limit of Theorem 5.5 we have for all
n ≥ 1,

R̂n = ΨBR(R̂n0 , Ĝn + ÊnF).
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Proposition 6.6. If (R̂n0 , Ên)⇒ (R̂0, Ê) in Φ
′
R ×D as n→∞, then(

R̂n0 , Ên, Ĝn
)
⇒
(
R̂0, Ê , Ĝ

)
in Φ

′
R ×D([0,∞),Φ

′
)2 as n→∞, (56)

where Ĝ is a Φ
′
R-valued Wiener process with covariance functional

KĜ(s, ϕ; t, ψ) = (Ēs ∧ Ēt)Cov(ϕ(η), ψ(η)), (57)

where η is a random variable with cdf F .

Proof. Notice that for each ϕ ∈ ΦR, 〈Ĝn, ϕ〉 can be written as

〈Ĝn, ϕ〉 =

 1√
n

bn·c∑
i=1

∫
R+

ϕ(x) d
(
1{ηi≤x} − F (x)

) ◦ Ēn.
By the functional central limit theorem (see Theorem 16.1 of [2]), the first term above converges to
a Brownian motion with diffusion coefficient

√
Var(ϕ(η)). Thus, our result follows by the random

time-change theorem (see [11]).

We then have

Theorem 6.7. If (R̂n0 , Ên)⇒ (R̂0, Ê) in Φ
′
R ×D as n→∞, then

R̂n ⇒ R̂ in D([0,∞),Φ
′
) as n→∞,

where R̂ satisfies the stochastic integral equation

〈R̂t, ϕ〉 = 〈R̂0, ϕ〉+ 〈Ĝt, ϕ〉+ Êt〈F , ϕ〉 −
∫ t

0
〈R̂s, ϕ

′〉 ds, (58)

for all ϕ ∈ ΦR. If, in addition, Ê is Brownian motion with diffusion coefficient σ, then R̂ is a
generalized Φ

′
R-valued Ornstein-Uhlenbeck process driven by a generalized Φ

′
R-valued Wiener process

with covariance functional

KÊF+Ĝ(s, ϕ; t, ψ) = σ2(s ∧ t)E[ϕ(η)]E[ψ(η)] +
(
Ēs ∧ Ēt

)
Cov(ϕ(η), ψ(η)), (59)

where η is a random variable with cdf F .

Proof. Since R̂n = ΨBR(R̂n0 , ÊnF + Ĝn), and ΨBR is continuous by Theorem 3.2 and Proposition
3.4, the convergence follows from Proposition 6.6 and the continuous mapping theorem with ΨBR

and the addition map. The subtraction map is convergence preserving here by Theorem 4.1 of [32]
since the limit of Ĝ as n→∞ is continuous.

If Ê is Brownian motion with diffusion coefficient σ, it is easily checked that ÊF is a Φ
′
R-valued

Wiener process with covariance functional

KÊF (s, ϕ; t, ψ) = σ2(s ∧ t)E[ϕ(η)]E[ψ(η)]. (60)

Combining (60) with (57) gives us (59).

Remark 6.8. Notice that in the special case when the arrival process to the nth system is Poisson
with rate λn, Ē = λ· and Ê is Brownian motion with diffusion coefficient λ. Thus, KÊF (s, ϕ; t, ψ) =
λ(s ∧ t)E[ϕ(η)ψ(η)] and Theorem 6.7 gives us a version of Theorem 3 of [8].
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7 Markov Process Results

In this section we prove that under extra conditions on the arrival process and the fluid limit of
the initial conditions, the limiting age process Â of Theorem 6.5 is a time-homogeneous Markov
process. We then identify the generator of Â, which enables us to determine its transient and
stationary distributions using results from Markov process theory (see [11]). One could also follow
the same program to analyze the diffusion limit of the residual-service time process in Theorem
6.7.

We begin with the following result about the stationary solution to the fluid equation (44) when
Ē = λ·. This assumption holds, for example, when the arrival process is a renewal process (as is
the case for that GI/GI/∞ queue).

Proposition 7.1. If Ē = λ·, then Ā· = λFe is a stationary solution to the fluid equation (44).

Proof. Plugging Ā· = λFe and Ē = λ· into (44) we see that it suffices to verify that

λ

∫
R+

ϕ(y) dFe(y) = λ

∫
R+

ϕ(y) dFe(y) + λtϕ(0)− λt
∫

R+

h(y)ϕ(y)− ϕ′(y) dFe(y).

But this follows since

λt

∫
R+

h(y)ϕ(y)− ϕ′(y) dFe(y) = λt

∫
R+

h(y)ϕ(y)− ϕ′(y)F̄ (y) dy

= λt

∫
R+

f(y)ϕ(y)− F̄ (y)ϕ
′
(y) dy

= −λt
∫

R+

(
F̄ (y)ϕ(y)

)′
dy

= λtϕ(0).

The next proposition shows that Â has a simpler form when Ē = λ·, Ê is Brownian motion
and Ā0 = λFe. For each ϕ ∈ ΦA, define the function Fϕ : ΦA → C by

Fϕ(µ) = ei〈µ,ϕ〉 for µ ∈ Φ
′
A,

and define the set E(ΦA) to be the smallest algebra containing the set {Fϕ, ϕ ∈ ΦA}. We will use
E(ΦA) to determine the generator of Â. Let Cb(Φ

′
A,C) denote the space of bounded continuous

functions from Φ
′
A to C. We then have the following result.

Lemma 7.2. E(ΦA) is dense in Cb(Φ
′
A,C).

Proof. The result follows by an application of the Stone-Weierstrass theorem for complex-valued
functions (see Theorem 4.51 of [13]).

Proposition 7.3. If Ē = λ·, Ê is Brownian motion with diffusion coefficient σ, and Ā0 = λFe,
then Â is a Φ

′
A-valued Ornstein-Uhlenbeck process driven by a Φ

′
A-valued Wiener process with

covariance functional

KÊ−(D̂0+D̂)(s, ϕ; t, ψ) = (s ∧ t)〈σ2δ0 + λF , ϕψ〉. (61)
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Furthermore, Â is a Markov process with generator GA satisfying

(GAFϕ) (µ) =
(
i〈µ, ϕ′ − hϕ〉 − σ2

2
ϕ2(0)− λ

2
〈F , ϕ2〉

)
Fϕ(µ), (62)

for each ϕ ∈ ΦA, µ ∈ Φ
′
A.

Proof. Since Ê is Brownian motion with diffusion coefficient σ, the covariance functional of Ê is
given by

KÊ(s, ϕ; t, ψ) = (s ∧ t)〈σ2δ0, ϕψ〉. (63)

We now show
KD̂0+D̂(s, ϕ; t, ψ) = λ(s ∧ t)〈F , ϕψ〉. (64)

By Proposition 7.1, since Ā0 = λFe, Ā· = λFe solves the fluid equation (44). Therefore, by
Proposition 6.4, for each ϕ,ψ ∈ ΦA, we have

KD̂0+D̂(s, ϕ; t, ψ) =
∫ s∧t

0

〈
Āu, ϕψh

〉
du

=
∫ s∧t

0

∫
R+

ϕ(x)ψ(x)h(x) dĀu(x) du

= λ(s ∧ t)
∫

R+

ϕ(x)ψ(x)h(x)F̄ (x) dx

= λ(s ∧ t)
∫

R+

ϕ(x)ψ(x)f(x) dx.

(61) then follows by combining (63) and (64) and using the fact that Ê and D̂0 + D̂ are independent
by Proposition 6.4.

Since Êϕ(0) is a Brownian motion with infinitesimal variance σ2ϕ(0)2 and 〈D̂0 + D̂, ϕ〉 is a
Brownian motion with infinitesimal variance λ〈F , ϕ2〉, it follows that 〈Ât, ϕ〉 is a semimartingale
and hence by Itô’s formula we have for each ϕ ∈ ΦA and t ≥ 0,

ei〈Ât,ϕ〉 = ei〈Â0,ϕ〉 + iϕ(0)
∫ t

0
ei〈Âs,ϕ〉 dÊs − i

∫ t

0
ei〈Âs,ϕ〉 d〈D̂0

s + D̂s, ϕ〉+ i

∫ t

0
ei〈Âs,ϕ〉〈Âs, ϕ

′ − hϕ〉 ds

− σ2

2
ϕ2(0)

∫ t

0
ei〈Âs,ϕ〉 ds− λ

2

∫ t

0
ei〈Âs,ϕ〉〈F , ϕ2〉 ds. (65)

Now, plugging in (62) we can write (65) for each ϕ ∈ ΦA and t ≥ 0,

Fϕ(At)− Fϕ(Â0)−
∫ t

0
GAFϕ(Â)ds =

∫ t

0
Fϕ(Â)d〈Ês − D̂0

s − D̂s, ϕ〉. (66)

Since Ê−D̂0−D̂ is a martingale, the stochastic integral on the right-hand side of (66) is a martingale.
Thus the expression on the left-hand side of (66) is a martingale for each ϕ ∈ ΦA. Since every
element of E(ΦA) is a linear combination of elements of {Fϕ, ϕ ∈ ΦA} and (66) holds for every
Â0 ∈ Φ

′
A, Lemma 7.2 then implies that Â satisfies the martingale problem for GA. Applying

Theorem 4.4.1 of [11] then gives us our result.
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We now wish to calculate the stationary distribution of Â. Assuming Â has a stationary
distribution, denote it by πÂ and let Â∞ denote a random variable with distribution πÂ. Recall
that by the basic adjoint relationship (see Proposition 4.9.2 of [11]) the stationary distribution πÂ
of Â is uniquely determined by the equations,∫

Φ
′
A

GAFϕ(µ)πÂ(dµ) = 0, (67)

for Fϕ ∈ E(ΦA).

Proposition 7.4. Under the assumptions of Proposition 7.3, Â∞ is a Φ
′
A-valued Gaussian random

variable with mean 0 and covariance functional given by

E[〈Â∞, ϕ〉〈Â∞, ψ〉] = 〈Fe,
(
λF + σ2F̄

)
ϕψ〉,

for ϕ,ψ ∈ ΦA.

Proof. By Proposition 7.3, Lemma 7.2 and (67) it suffices to show that for each ϕ ∈ ΦA

i

∫
Φ
′
A

Fϕ(µ)〈µ, ϕ′ − hϕ〉πÂ(dµ) =
(
σ2

2
ϕ2(0) +

λ

2
〈F , ϕ2〉

)∫
Φ
′
A

Fϕ(µ)πÂ(dµ). (68)

Notice the left hand side of (68) is of the form EieiXY , where (X,Y ) is bivariate normal with mean
(0, 0) and covariance matrix Σ = (Σij)i,j=1,2 with

Σ11 =
∫

R+

ϕ(x)2
(
λF̄ (x)F (x) + σ2F̄ (x)2

)
dx (69)

Σ12 = Σ21 =
∫

R+

ϕ(x)
(
ϕ
′
(x)− h(x)ϕ(x)

) (
λF̄ (x)F (x) + σ2F̄ (x)2

)
dx (70)

Σ22 =
∫

R+

ψ(x)2
(
λF̄ (x)F (x) + σ2F̄ (x)2

)
dx.

Thus, if we denote the characteristic function of this bivariate distribution by φ(t) ≡ Eeit·(X,Y ) =
e−

1
2
tTΣt, then we can write the left hand side of (68) as

EieiXY =
∂

∂t2
φ(1, 0) = −Σ12e

− 1
2

Σ11 . (71)

Plugging (69) and (70) into (71) gives us

i

∫
Φ
′
A

Fϕ(µ)〈µ, ϕ′ − hϕ〉πÂ(dµ) (72)

=
∫

R+

ϕ(x)
(
h(x)ϕ(x)− ϕ′(x)

) (
λF̄ (x)F (x) + σ2F̄ (x)2

)
dx

∫
Φ
′
A

Fϕ(µ)πÂ(dµ).
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Finally,∫
R+

ϕ(x)
(
h(x)ϕ(x)− ϕ′(x)

) (
λF̄ (x)F (x) + σ2F̄ (x)2

)
dx

=
∫

R+

ϕ2(x)f(x)
(
λF (x) + σ2F̄ (x)

)
dx−

∫
R+

ϕ(x)ϕ
′
(x)
(
λF (x) + σ2F̄ (x)

)
F̄ (x) dx

=
∫

R+

ϕ2(x)f(x)
(
λF (x) + σ2F̄ (x)

)
dx− 1

2

∫
R+

(
ϕ(x)2

)′ (
λF (x) + σ2F̄ (x)

)
F̄ (x) dx

=
σ2

2
ϕ2(0) +

1
2

∫
R+

ϕ2(x)f(x)
(
λF (x) + σ2F̄ (x)

)
dx+

1
2

∫
R+

ϕ(x)2(λ− σ2)f(x)F̄ (x) dx

=
σ2

2
ϕ2(0) +

λ

2
〈F , ϕ2〉. (73)

The second equality above follows by integrating the second integral on the left-hand side by parts.
Combining (72) and (73) gives us (68) and completes the proof.

We can also verify the transient distributions of Â using GA. Instead of using (67), one may
use the following generalization (see Proposition 4.9.18 of [11]). Let Pt denote the distribution of
Ât for t ≥ 0. Then, (Pt)t≥0 is uniquely determined by the equations∫

Φ
′
A

Fϕ(µ) Pt[dµ]−
∫

Φ
′
A

Fϕ(µ) P0[dµ] =
∫ t

0

∫
Φ
′
A

GAFϕ(µ) Ps[dµ] ds, (74)

for Fϕ ∈ E(ΦA) and t ≥ 0. We then have the following result:

Proposition 7.5. Under the assumptions of Proposition 7.3, for each t ≥ 0, Ât is a Φ
′
A-valued

Gaussian random variable with mean

E[〈Ât, ϕ〉] =
〈
A0, F̄

−1τ−t
(
ϕF̄
)〉
, (75)

for ϕ ∈ ΦA and covariance functional given by

E[〈Ât, ϕ〉〈Ât, ψ〉] = λ
〈
Fe, F̄−1τ−t

(
ϕψF̄

) (
1− F̄−1τ−tF̄

)〉
+
∫ t

0
ϕ(u)ψ(u)

(
λF (u) + σ2F̄ (u)

)
F̄ (u)du,

(76)

for ϕ,ψ ∈ ΦA.

Proof. We verify the Gaussian distributions defined by (75) and (76) solve the equation (74) for
each Fϕ. Plugging the proposed transient distributions into the left-hand side of (74) and using
the characteristic function of a Gaussian distribution gives us

ei〈A0,F̄−1τ−t(ϕF̄)〉−λ2 〈Fe,F̄−1τ−t(ϕψF̄)(1−F̄−1τ−tF̄)〉− 1
2

R t
0 ϕ

2(y)(λF (y) dy+σ2F̄ (y))F̄ (y) dy − ei〈A0,ϕ〉 (77)

Plugging the generator (62) into the right-hand side of (74) gives us∫ t

0

∫
Φ
′
A

(
i〈µ, ϕ′ − hϕ〉 − σ2

2
ϕ2(0)− λ

2
〈F , ϕ2〉

)
ei〈µ,ϕ〉 Ps[dµ] ds. (78)
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Next, plugging the proposed transient distributions into (78) and using the characteristic function
of a bivariate Gaussian distribution as in the proof of Proposition 7.4 gives us∫ t

0

(
i
〈
Â0, F̄

−1τ−s

(
ϕ
′
F̄ − ϕf

)〉
− λ

〈
Fe, F̄−1τ−s

(
ϕ
′
F̄ − ϕf

) (
1− F̄ τ−sF̄

)〉
(79)

−
∫ s

0
ϕ(u)

(
ϕ
′
(y)F̄ (y)− ϕ(u)f(y)

) (
λF (y) + σ2F̄ (y)

)
du− σ2

2
ϕ2(0)− λ

2
〈F , ϕ2〉

)
ei〈A0,F̄−1τ−s(ϕF̄)〉−λ2 〈Fe,F̄−1τ−s(ϕψF̄)(1−F̄−1τ−sF̄)〉− 1

2

R s
0 ϕ

2(y)(λF (y)+σ2F̄ (y))F̄ (y) dy ds.

It now suffices to show that the first factor in the integral of (79) is the derivative of the power of
the exponential factor. The desired equality (74) will then follow by the fundamental theorem of
calculus.

It is easy to see by inspection that the derivative of the first term in the power of the exponential
in (79) gives us the first term in the first factor of (79). The derivative of the rest of the power of
the exponential is given by

−λ
∫

R+

ϕ(s+ y)
(
ϕ
′
(s+ y)F̄ (s+ y)− ϕ(s+ y)f(s+ y)

)(
1− F̄ (s+ y)

F̄ (y)

)
dy (80)

+
λ

2

∫
R+

ϕ2(s+ y)f(s+ y) dy − 1
2
ϕ2(s)

(
λF (s) + σ2F̄ (s)

)
F̄ (s)

Using the fundamental theorem of calculus, we can write the last term of (80) as

−
∫ s

0
ϕ(y)

(
ϕ
′
F̄ (y)− ϕ(y)f(y)

) (
λF (y) + σ2F̄ (y)

)
dy − σ2

2
ϕ2(0)− λ

2

∫ s

0
ϕ2(y)f(y) dy. (81)

Combining (80) and (81) gives us the rest of the first factor of the integrand of (79) and concludes
the verification of (74).

A Proof of Lemma 6.3

Proof. We first prove

D̂0,n + D̂n ⇒ D̂0 + D̂ in D([0,∞),Φ
′
) as n→∞. (82)

By Proposition 4.1 we have

<< D̂0,n + D̂n >>t (ϕ,ψ)

=
1
n

 An0∑
i=1

∫ η̃ni ∧t

0
ϕ(u− τ̃ni )ψ(u− τ̃ni )hτ̃ni (u) du+

Ent∑
i=1

∫ ηi∧(t−τni )

0
ϕ(u)ψ(u)h(u) du


=
∫ t

0

〈
Āns , ϕψh

〉
ds⇒

∫ t

0

〈
Ās, ϕψh

〉
ds
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in D as n → ∞. The third equality follows from Proposition 2.2 with y > T and ϕ there set to
ϕψh and the convergence follows from Theorem 5.2 and continuity of the integral mapping on D.
Now by the martingale FCLT, D̂0 + D̂ is a Gaussian martingale with quadratic variation

<< D̂0 + D̂ >>t (ϕ,ψ) =
∫ t

0

〈
Āsh, ϕψ

〉
ds. (83)

Then, (50) can be proven using (83) and the fact that 〈D̂0 + D̂, ϕ〉 has independent increments for
each ϕ ∈ ΦA.

Repeating the argument for Ď0,n + Ďn shows that

Ď0,n + Ďn ⇒ D̂0 + D̂ in D([0,∞),Φ
′
)2 as n→∞.

It remains to show that the joint convergence (49) holds. To show (49), it is sufficient to show
that for each ϕ ∈ ΦA and t ≥ 0,

E
∣∣∣〈D̂0,n + D̂nt , ϕ

〉
−
〈
Ď0,n + Ďnt , ϕ

〉∣∣∣2 → 0 as n→∞. (84)

This is because since D̂0,n + D̂n ⇒ D̂0 + D̂ and Ď0,n + Ďn ⇒ Ď0 + D̂ individually in D([0,∞),Φ
′
)

as n → ∞, the sequences (D̂0,n + D̂n)n≥1 and (Ď0,n + Ďn)n≥0 are both tight, so that ((D̂0,n +
D̂n) − (Ď0,n + Ďn))n≥0 is tight. Then, by Chebyshev’s inequality (84) implies convergence of
finite-dimensional distributions to 0 so that

(D̂0,n + D̂n)− (Ď0,n + Ďn)⇒ 0 in D([0,∞),Φ
′
) as n→∞. (85)

Combining (85) with (82) and using Theorem 11.4.7 of [34] gives us (49).
We will now show that

E
∣∣∣〈D̂nt , ϕ〉− 〈Ďnt , ϕ〉∣∣∣2 → 0 as n→∞. (86)

Then, the limit

E
∣∣∣〈D̂0,n

t , ϕ
〉
−
〈
Ď0,n
t , ϕ

〉∣∣∣2 → 0 as n→∞ (87)

can be proven analogously and the previous two limits imply (84).
Just as in the proof of Proposition 4.1, for t ≥ 0, we have that

Dn
t (y) =

Ent∑
i=1

Di,n
t (y), y ≥ 0,

where for each n, i ≥ 1

Di,n
t (y) ≡ 1{ηi≤(t−τni )+∧y} −

∫ ηi∧(t−τni )∧y

0
h(u) du,

We then have

E
∣∣∣〈D̂nt , ϕ〉− 〈Ďnt , ϕ〉∣∣∣2 =

1
n

E

 Ent∑
i=1

∫ t−τni

0
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)
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−
bnĒtc∑
i=1

∫ t−τ̌ni

0
ϕ(x)d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)2

=
1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

〈
Dn,it , ϕ

〉

−
bnĒtc∑
i=1

∫ t−τ̌ni

t−τni
ϕ(x)d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)2

≤ 1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

〈
Dn,it , ϕ

〉2

+
1
n

E

bnĒtc∑
i=1

∫ t−τ̌ni

t−τni
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)2

(88)

Focusing on the first term in (88), we have

1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

〈
Dn,it , ϕ

〉2

=
1
n

E

<< bnĒt∨Ent c∑
i=dnĒt∧Ent e

〈
Dn,it , ϕ

〉
>>


=

1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

<<
〈
Dn,it , ϕ

〉
>>


=

1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

∫ ηi∧(t−τi)+

0
ϕ(x)2h(x) dx


≤ 1
n

E

 bnĒt∨Ent c∑
i=dnĒt∧Ent e

∫ t

0
ϕ(x)2h(x) dx


=
∫ t

0
ϕ(x)2h(x) dxE

[
|Ēnt − Ēt|

]
→ 0,

as n→∞. Focusing on the second term in (88), we have

1
n

E

bnĒtc∑
i=1

∫ t−τ̌ni

t−τni
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

))2

=
1
n

E

<< bnĒtc∑
i=1

∫ t−τ̌ni

t−τni
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)
>>


=

1
n

E

bnĒtc∑
i=1

<<

∫ t−τ̌ni

t−τni
ϕ(x) d

(
1{ηi≤x} −

∫ ηi∧x

0
h(u) du

)
>>


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=
1
n

E

bnĒtc∑
i=1

∫ ηi∧(t−τ̌ni )

ηi∧(t−τni )
ϕ(x)2h(x) dx


≤ 1
n

E

bnĒtc∑
i=1

‖ϕ2h‖t|τni − τ̌ni |


≤ Ēt‖ϕ2h‖tE

[
sup

0≤i≤bnĒtc
|τni − τ̌ni |

]
.

Now, noticing that

τni = inf
{
s|Ēns ≥

i

n

}
=
(
Ēn
)−1

(
i

n

)
,

τ̌ni = inf
{
s|Ēs ≥

i

n

}
= Ē−1

(
i

n

)
,

we have

sup
0≤i≤bnĒtc

|τni − τ̌ni | = sup
0≤i≤bnĒtc

∣∣∣ (Ēn)−1
(
i

n

)
− Ē−1

(
i

n

) ∣∣∣
≤ sup

0≤ i
n
≤Ēt

∣∣∣ (Ēn)−1
(
i

n

)
− Ē−1

(
i

n

) ∣∣∣
≤ sup

0≤u≤Ēt
|
(
Ēn
)−1 (u)− Ē−1(u)| → 0,

by Theorem 13.7.2 of [34]. Since {sup0≤i≤bnĒtc |τ
n
i − τ̌ni |}n≥1 is uniformly integrable since it is

bounded by t, we have proven our result.
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