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 LARGE DEVIATIONS OF INVERSE PROCESSES
 WITH NONLINEAR SCALINGS

 BY N. G. DUFFIELD AND W. WHITT

 AT&T Labs

 We show, under regularity conditions, that a nonnegative nondecreas-

 ing real-valued stochastic process satisfies a large deviation principle (LDP)

 with nonlinear scaling if and only if its inverse process does. We also de-

 termine how the associated scaling and rate functions must be related.

 A key condition for the LDP equivalence is for the composition of two of

 the scaling functions to be regularly varying with nonnegative index. We

 apply the LDP equivalence to develop equivalent characterizations of the

 asymptotic decay rate in nonexponential asymptotics for queue-length tail

 probabilities. These alternative characterizations can be useful to estimate

 the asymptotic decay constant from systems measurements.

 1. Introduction. Let (Zt: t > 0) be a real-valued stochastic process and

 v a real-valued function on R+ which increases to infinity. Then the pair
 (Zt, v(t)) is said to satisfy a large deviation principle (LDP) with rate function
 I if, for all Borel subsets B of R+,

 - inf I(x) < liminf log P[Zt E B]
 xE-BO t -*o 00v(t)

 (1) ~~~~~~~~~1
 < lim sup log P[Zt E B] < -inf I(x),
 too V(t) xEB

 where BO is the interior and B the closure of B.

 Now suppose in addition that (Zt: t > 0) is a nonnegative nondecreasing
 stochastic process and define its inverse by

 (2) Tz = inf{t > 0: Zt > Z}, z > 0.

 Glynn and Whitt [11] studied the relation between the LDPs for these inverse

 processes with linear scalings. They showed that (t-1Zt, t) satisfies an LDP
 with convex rate function I if and only if (z-lTz, z) satisfies an LDP with
 convex rate function J(x) = xI(l/x). Russell [22] subsequently produced a
 similar result requiring only a weakened form of convexity of I, but also re-

 quiring a weak mixing condition to be satisfied by Z or T.
 The purpose of this paper is to extend these results beyond linear scalings.

 Suppose for some scaling functions u, v and w increasing on R+ to +oc that
 the pair (u(Zt)/w(t), v(t)) satisfies an LDP with some rate function I. Then
 it is natural to ask under what circumstances there is a corresponding LDP
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 996 N. G. DUFFIELD AND W. WHITT

 involving Tz and how its rate and and scaling functions are related to those
 in the LDP for Zt.

 It turns out that for a nontrivial relation to exist, the composition v o w-I
 must be regularly varying with nonnegative index (see Section 2 for defini-

 tions). The main result of Section 2 is Theorem 1, in which we show that

 (u(Zt)/w(t), v(t)) satisfies an LDP with a suitable rate function I if and only
 if (w(Tz)/u(z), v o w-1 o u(z)) satisfies an LDP with a rate function J(x) =
 f(x)I(1/x), where f(x) = xi(f) with i(f) being the index of the regularly
 varying function v o w-.

 We have two applications in mind for LDPs with nonlinear scalings. The
 first, presented in Section 3, is motivated by the use of scaling functions other

 than the identity in formulating the large deviation properties of queueing
 processes with input exhibiting long-range dependence (LRD). Motivation for

 studying LRD processes comes from empirical traffic studies (see, e.g., [15]).

 In this context, Zt is the work arriving at a buffer during the interval [-t, 0).
 If the queue is served at rate s, then pathwise the queue length (the content
 in an infinite-capacity buffer) Q can be written as

 (3) Q = sup(Zt - st).
 t>O

 It follows from [9] that under a set of conditions which imply that (t-1Zt, v(t))
 satisfies an LDP with some rate function I with v regularly varying (in this

 case u and w are the identity), the asymptotics of the tail probabilities for the
 queue length are

 (4) lim log P[ Q >b]-,
 b-()oo v(b)

 where 8 = infx>O I(x + s)/f(x) with f(x) = xi(f) and i(f) the index of the
 regularly varying function v. Applying the results of Section 2, we are able
 to express the decay constant 8 directly in terms of expectations over sample
 paths of Z or the inverse process T. In Theorem 5 we show that

 6 = sup{ O: v(O) < 0} where

 (5) 1
 v(O) = lim (t log E[exp(Ov(Zt - st)); Zt > st]}

 t--0 V(t)

 when this limit exists. In Theorem 7 we show that

 8 = sup{O: w(O) < 0} where

 (6) 1
 to(H) = lim _ log E[exp(Ov(z - sTz)); sTz < z],

 Z> V (z)

 a limit which is guaranteed to exist through mild conditions on the rate func-

 tion I. The restriction to the events {Zt > st} and {sTz < z} in (5) and (6)
 appear naturally because, for any b > 0, the event {Q > b} has the same

 probability as Ut>0{Zt - st > b} = Uz>of - sTz > b} when Z has station-
 ary increments. In the asymptotic regime b -- oc, one of the elements in the
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 LARGE DEVIATIONS OF INVERSE PROCESSES 997

 union dominates the others in the sense that its probability is overwhelmingly
 greater. Thus, for large deviations, the only events of interest are contained

 within the events {Zt > st} or, equivalently, {sT, < z}.
 The second queueing application is to time-dependent arrival processes. The

 nonlinear scalings make it possible to obtain LDPs for queueing processes

 with time-dependent arrival processes, as we illustrate in our examples in
 Section 5.

 In Section 4 we also briefly discuss the functional (or sample path) large
 deviations principles (FLDPs) with nonlinear scaling. We are able to obtain
 some results directly from a recent paper [20], which establishes FLDPs with
 linear scalings. However, under all the conditions needed to obtain ordinary

 LDPs for the one-dimensional projections in R from the FLDPs, we only obtain

 LDPs in a special case of what we obtain directly for LDPs in R. The approach

 via FLDPs requires that the composition v o w-1 must be regularly varying
 with index 1.

 The proofs of all the main theorems are deferred until Section 6.

 2. Main results. Recall that a rate function on R+ is a lower semicon-
 tinuous function taking values in [0, ox], and a good rate function is one with

 compact level sets (see, e.g., [5]). For any good rate function I on R+ there is
 at least one x > 0 for which I(x) = 0. Following [11], we say that (Wt, a(t))
 satisfies a partial LDP if (1) holds for a proper subclass of Borel subsets.

 We say that a rate function I on (0, oc) has no peaks if the following condi-
 tions are fulfilled:

 1. there exists an xl E [0, oc) such that I(x1) = 0, or limIO, I(x) = 0, in

 which case we say xl = oo;
 2. I is nonincreasing on (0, xl) and nondecreasing on (xl, oo) (when the sets

 are nonempty). We call xl a base of I. Note that xl need not be unique: we
 admit the possibility that I(x) is zero for x in some interval. (We might have

 used the term "unimodal" to describe the no-peaks property, but sometimes
 "unimodal" is used when there is a unique base.)

 We say that a rate function I on (0, oc) has no flat spots if it has no peaks,
 and in addition I is strictly decreasing on (0, xl) and strictly increasing on
 (xI, oc) (when the sets are nonempty). It follows that the base of I, xI, is
 unique if there are no flat spots.

 Let (Zt: t > 0) be a stochastic process on R+ with sample paths that are
 right continuous, nonnegative, nondecreasing and for which limto,0 Zt = ?c.
 We define the inverse process T of Z to be its pathwise left inverse. That is,

 (7) Tz = inf{t > 0: Zt > Z z z > 0.

 Thus (Tz: z > 0) is a stochastic process whose sample paths are left con-
 tinuous, nonnegative and nondecreasing with To = 0 and limz,z Tz = oc.
 Conversely, starting instead with a process T with these properties, we could
 have arrived at Z through the pathwise relation

 (8) Zt = sup{z > 0: Tz < t}, t > 0.
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 998 N. G. DUFFIELD AND W. WHITT

 Such a Z will be called the inverse process of T, and we shall say that the
 pair of processes (Z, T) are inverse processes. (We adopt the convention that
 the first element of the pair is the right-continuous process.) We will exploit
 the following relations:

 (9) {Zt > z} = {TZ < t} and hence {Zt < z} = {T > t}.

 To understand inverse processes it is helpful to consider the completed graphs
 of the sample paths. Let the completed graph of Z be

 (10) F(Z) = {(u, t) E R x R+: u E [Zt- A Zt, Zt- V Z]},

 where [x, x] = {x}, Zt- denotes the left limit, ZO- = 0, A denotes the minimum
 and v denotes the maximum. For inverse processes (Z, T), the completed
 graph F(T) is the completed graph F(Z) with the axes switched, that is,

 (I1) F(T) = F-1(Z) {_ (t, u): (u, t) E F(Z)}.

 Note that (Z, T) are inverse processes if and only if F(T) = F-1(Z), Z is right
 continuous and T is left continuous.

 We define a scaling function to be any increasing homeomorphism of R+.
 Recall from, for example, Section 1.4 of [1], that a measurable monotone func-
 tion u is said to be (Baire) regularly varying (at infinity) if for all y in a Baire
 subset of (0, oo), limxO u(xy)/u(x) exists, in which case

 (12) lim u(xy)/u(x) - yr
 x-0oo

 for all y > 0, for some r called the index of u. It is worth making clear that
 the subgroup properties of (0, oo) under addition mean that any Baire set will
 suffice: it need not, for example, be dense in the whole interval (0, ox). Let
 ,J denote the set of scaling functions, and /r the set of regularly varying
 scaling functions with indices in [0, oc). We will use i(u) to denote the index
 of a given function u in lr and set u(x) = xi(u). We will find it useful to
 denote the composition of real functions u and v by uv. Thus uv(x) = u(v(x)).
 However, u(x)v(x) and u(x)/v(x) will just be the usual products and quotients.
 Typical scaling functions are positive powers u(x) = -u(x) = xi() and log x,
 which has index 0. In the latter case we must alter the function on some initial

 interval [0, 8] with 8 > 1 in order that it is a homeomorphism of R+. Note that
 log(x) = 1 is not a scaling function. We collect here some useful properties of
 J and /4.

 LEMMA 1. (i) Here u, v E J implies uv E -J.

 (ii) u, v E /4 implies uv E X, with i(uv) = i(u)i(v).
 (iii) Let u E X4 with i(u) E (0, oc). Then u-1 E lr and i(u-1) = l/i(u).

 PROOF. Part (i) is trivial. For (ii), note that for x, y > 0,

 (13) uv(yx) _ u(r(y, x)v(x)) where r(y, x) = v(yx)/v(x).
 uv(x) u(v(x))
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 LARGE DEVIATIONS OF INVERSE PROCESSES 999

 Now limxO r(y, x) = yi(V), so, by the uniformity of the convergence in (12)
 (see Theorem 1.5.2 of [1]),

 (14) lim uv(yx)/uv(x) = yi(U)i(V)

 For (iii), use Theorem 1.5.12 in [1] together with the fact that u is increas-
 ing. D

 We can now state the main theorem on LDPs for inverse processes. The
 proofs of this theorem and the others will be given in Section 6.

 THEOREM 1. Let (Z, T) be an inverse process, and let u, v, w E -J.

 (i) Let vw-1 E 1r. Then (u(Zt)/w(t), v(t)) satisfies an LDP with a rate
 function I which has no peaks if and only if (w(T,)/u(z), vw-1u(z)) satisfies
 an LDP with rate function J which has no peaks. In this case,

 (15) J(x) = vw-l(x)I(l/x) and I(x) = vw-l(x) J(l/x),

 and I and J at 0 are equal to their right limits there. Moreover, xl is a base

 for I if and only if Xj = l/Xl is a base for J (with the convention for bases
 that 1/oc = 0 and 1/0 = oc), and xl is unique if and only if xj is unique.

 (ii) Suppose that (u(Zt)/w(t), v(t)) satisfies an LDP with a rate function I

 which has no peaks, that (w(T,)/u(z), vw-lu(z)) satisfies an LDP with rate
 function J which has no peaks and that there exist bases for I, J satisfying

 Xl = l/Xj. Suppose furthermore that there exist b? with b_ < b+ such that
 I(x) E (0, o) for x E (b, b+) and J(x) E (0, o) for x E (bi1, b-1). Then
 vw- u4

 REMARK 2.1. The second part of Theorem 1 shows that the condition

 vw-1 E lr is not just a technical convenience imposed in order to obtain the
 inverse LDP. Under the conditions of (ii) above, which amount to saying that

 the LDPs are not trivial, the condition vw-1 E l4 is necessary.

 REMARK 2.2. Sufficient conditions for one of the inverse processes to satisfy
 an LDP are provided by the Gartner-Ellis theorem [5]. Assume that for all
 o E R, the limit

 (16) A(0) = lim 1 log E[exp(0v(t)u(Zt)/w(t)]
 t-+oc 0v (t)

 exists, is lower semicontinuous and essentially smooth. We call A the cumulant
 generating function (CGF). [In the usual statement v(t) is replaced by t, but
 that does not alter the result.] Then (u(Zt)/w(t), v(t)) satisfies an LDP with
 rate function I = A* where

 (17) A*(x) _ sup(Ox - A(H))
 0

 is the Legendre transform of A. Then I is automatically convex and lower semi-
 continuous, and hence automatically satisfies the conditions in Theorem 1.
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 1000 N. G. DUFFIELD AND W. WHITT

 That J has no peaks follows a fortiori from Theorem 1 without additional

 assumptions concerning those of I, for example, that I be convex or Y-shaped.

 Actually, one can establish this independently for a class of models in which

 I is convex (as it would be if arising from an application of the Gartner-Ellis

 theorem) and f _ vw-1 is concave; that is, i(f) < 1, as we now show.

 LEMMA 2. Let I be a nonnegative convex function on R+ and f (x) = xi(f)
 for some i(f) E (0, 1]. Then J(x) = f(x)I(1/x) has no peaks.

 PROOF. Note that f-1J(x) = xf -(I(1/x)). Since i(f) E (0, 1), f - is con-
 vex and increasing. Hence f-'I is convex. Since convexity of a function K
 implies convexity of x e-+ xK(l/x), f -J(x) is convex and so clearly J has no
 peaks. D

 The requirement that vw-1 be regularly varying has a consequence that
 the existence of an LDP for (say) Z with a given set of scaling functions is
 equivalent to that for a (scaling) function of Z using a second set of scalings
 which are compatible in the following sense.

 THEOREM 2. Let p, q, r, s, u, v, w, x E E and assume that

 (18) sr- p= xw-1u,

 (19) qs-1 = VX-1.

 (i) If

 (20) up-1 E X with i(up-1) > 0,

 then (u(Zx(t))/w(t), v(t)) satisfies an LDP with rate function I, without peaks
 if and only if (p(ZS(t))/r(t), q(t)) satisfies an LDP with rate function I2 without
 peaks, in which case,

 (21) I2 = I1up-1.

 (ii) Let (u(Zx(t))/w(t), v(t)) and (p(ZS(t))/r(t), q(t)) satisfy LDPs with rate
 functions I1 and 12, which are without peaks. For i = 1, 2, let x- denote the

 greatest lower bound and x+ the least upper bound of bases for Ii. Furthermore,
 assume for some Bi = (bT, b+) with bT < x- < x+ < b+, that Ii is continuous
 on Bi, strictly decreasing on (bT, xT) or strictly increasing on (x+, b+). Then
 up-l E lr and i(up-1) > 0.

 REMARK 2.3. In (ii) above we admit the possibility that xT = 0 or x =
 oc; so by or b+ will not exist, and we simply omit from consideration the
 corresponding open intervals which would have them as boundaries.

 Theorem 2 helps us contrast Theorem 1 with its analog for linear scal-
 ings in [11]. Suppose that the pair (u(Zt)/w(t), v(t)) satisfies an LDP with

 rate function I. Provided vw-1 e lr and i(wv-1) > 0, we can bring the LDP
 into a linear scaling by invoking Theorem 2 with p = vw-1u, s = V-1 and
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1001

 r, q equal to the identity. Setting Z = VW-1u(ZV-l(t)), Theorem 2 then tells

 us that (t-1Zt, t) satisfies an LDP with rate function I = Iwv-1. Return-
 ing to the original LDP, we can instead use Theorem 1 to obtain the LDP

 for (w(TJ)/u(z), vw-lu(z)) with rate function J(x) = vw-1(x)I(1/x), and
 then use Theorem 2 to bring this to a linear scaling of an LDP for the pair

 (zWTZ, z), with rate function J = Jwv-1, where Tz = v(TU lWU l(z)).
 Since, as one can verify, (Z, T) are inverse processes, we also could have

 obtained this last LDP by applying Theorem 1 to the LDP for Z. We can sum-
 marize this relation between the LDPs by the commutative diagram shown in
 Figure 1. In it, the notation (u(Zt)/w(t), v(t), I) is used to denote the state-

 ment that (u(Zt)/w(t), v(t)) satisfies an LDP with rate function I with no
 peaks. On the arrows, we have indicated the theorem used to prove the equiv-
 alence, the conditions for this to hold and the relationship between the rate
 functions for equivalent LDPs.

 The relationship between rate functions in the last line follows from the
 fact that, with I, J as defined,

 (22) I(x) = vw-1(x)J(1/x) X I(x) = xJ(l/x).

 This is just the relationship for linear scalings established in [11]. It is worth
 remarking that, even if I and J are convex I and J need not be convex or
 even Y-shaped (see [22]) in general. From the commutative diagram, we see
 that much of Theorem 1 could be deduced from Theorem 2 and the linear scal-
 ing result in [11]. However, it would be incorrect to conclude from this that
 the theory of large deviations for inverse processes with nonlinear scalings
 reduces to that known for the linear case. There are three reasons for this.

 The first is the necessity of the condition vw-1 E 1r. This is required either
 to apply Theorem 1 to obtain the relation between the LDPs for the inverse
 processes (Z, T), or to use Theorem 2 to convert either of these to an LDP

 with a linear scaling. The second reason is that, even with linear scalings,
 Theorem 1 applies without requiring the rate functions to be convex (as does

 (-(Z), v(t), I) Z Thm. 1: vw- e Sr ,(, vw-'u(z),J)
 I(x) = vw1(x)J(1/x)

 Thm. 2: vw-1 E S, Zt = VWV'u(Zv-1(t)) Tz = v(Tu-iwv-i(z)) Thm. 2: VW-' E Sr
 i(VW-1) > o ~ ~ ~ ~ ~ =i(vw-1) > 0 i(vvu-) > O I =IvJv-l J = Jutv-l ivut

 (Z',t, I) . I(x) = xJ(1/x)
 Thmin.

 FIG. 1. Commutative diagram relating LDPs, based on Theorems 1 and 2.
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 1002 N. G. DUFFIELD AND W. WHITT

 [11]) or Y-shaped (as does [22]). The third and most important reason is that
 a "known" LDP, which gives the starting point in the diagram, will not gen-
 erally be one with linear scalings. This becomes evident when one considers
 that LDPs are usually established through use of the Gartner-Ellis theorem.
 The CGF in (16) may be readily calculated for some nonlinear scaling func-

 tions (u, v, w), whereas the corresponding putative CGF for linear scalings

 limt>, t-1 log E[eOZt] may not be easy to determine. The price of linearizing
 the scalings has been to introduce nonlinearity into the processes through the

 relation Zt = vw-1u(ZV-l(t)). We give an example of this in Section 5.
 We now investigate the existence of CGFs in more detail. Given an LDP for

 (u(Zt)/w(t), v(t)) with rate function I satisfying the conditions of Theorem 1,
 it is not a priori clear that the CGF in (16) exists, or that the analogous CGF

 exists for any scaling compatible with u, v, w through Theorem 2. However,
 we are able to demonstrate existence of the CGF for the compatible linear
 scalings, at least on an interval. In the following theorem we will use the
 scaling (vw-lu(Zt)/v(t), v(t)), which differs only by a time rescaling from the
 linear scaling used above.

 THEOREM 3. Let (Z, T) be inverse processes satisfying the hypotheses of
 Theorem 1 with rate functions I and J, respectively, and let i(vw-1) E (0,o o).
 Then we have the following:

 (i) The limit

 (23) v(O) = lim vt(O) where vt(O) = log E[exp(Ovw- u(Zt))],
 t-+ 00 v(t)

 exists for all 0 < J(O) and is equal to (Iwv-l)*(0). If, furthermore, v is essen-

 tially smooth, then Iwv-l is the Legendre transform of v and is hence convex.
 (ii) The limit

 (24) w(0) = lim wt(0) where wt(0) log E[exp( ov(1T))],
 t-~~~oo ~vw1u(z)loE[x(vT)]

 exists for all 0 < I(O) and is equal to (Jwv-l)*(0). If, furthermore, w is essen-

 tially smooth, then Jwv-l is the Legendre transform of w and is hence convex.

 Beyond existence, essential smoothness for v or w is the remaining condition
 of the Gartner-Ellis theorem [5]. Essential smoothness for v, say, requires that

 v is differentiable and either J(O) = oo or J(O) < oc with limo/j(o) v'(0) = oo.
 To conclude this section on the general theory, we note that the underly-

 ing domains for the sample paths of Z and T need not be the whole of R+.
 More generally, we could have unbounded subsets Xi, X2 of R+ with processes
 (Zt: t E Xi) taking values in X2 and conversely (Tz: z E X2) taking values
 in Xi- A simple example is when Xi or X2 is equal to Z+. Russell [22] has
 given a general framework within which such cases can be handled. In this

 paper we will admit a less general extension by allowing also XI and X2 to
 be discrete subsets of R+ containing 0 and without points of accumulation. A
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1003

 simple example is when Xi and/or X2 is equal to Z+. We shall say that that
 ((Zi)ijxl, (Tj)jcx2) are discrete inverse processes if they satisfy all the above
 properties of inverse process apart from right and left continuity. Define for

 all t, z, E R+,

 (25) Lti = sup{i E Xi: i < t} and [zi = inff j E X2: i > Z}

 and extend Z and T to R+ by setting

 (26) Z = ZLtj and T' = T z].
 The following theorem shows that in order to treat LDPs for discrete inverse

 processes (Z, T) it is sufficient to prove the corresponding result for (Z', T').

 We prove the result for linear scalings only; we can reduce any other case to
 this by use of Theorem 2.

 THEOREM 4. Suppose that ((Zi)iGxl, (Tj) jGx2) are discrete inverse processes.

 (i) ((Z't)teR+ (T'Z )ZeR ) are inverse processes.
 (ii) Suppose limtO Lti/t = 1. Then (Zi/i, i)ijxl satisfies an LDP with rate

 function I with no peaks if and only if (Z'tJt, t)t,R+ satisfies an LDP with rate
 function I with no peaks.

 (iii) Suppose limz l [zl/z = 1. Then (Tj/j, j)jcy2 satisfies an LDP with
 rate function I with no peaks if and only if (T'jz, ZGR? satisfies an LDP with
 rate function I with no peaks.

 3. Application to queueing models. We wanted to investigate the re-
 lationship between the LDPs for inverse processes because of the applications

 to single-server queues. For example, let Zt represent the cumulative work ar-
 riving at a queue in the interval (-t, 0]. We suppose that this work is served
 at constant rate s, with the unprocessed excess waiting in a queue with un-

 limited capacity. Let the excess workload be Wt = Zt - st, t > 0, with WO = 0.
 Then the queue length Q of unprocessed work at time 0 can be written as the

 pathwise supremum

 (27) Q = sup Wt;
 t>O

 see Chapter 1 of [2].
 Under very general assumptions, the tail asymptotics of the distribution of

 Q can be related to the large deviation properties of the arrival process Z.
 However, in a given system (model or actual) the large deviation properties
 may be more easily or more accurately determined for the inverse process than

 for the arrival process itself. For this reason, we want to have the option to
 determine the queue tail asymptotics directly from the inverse process itself.
 This relation is already understood for a large class of short-range dependent

 arrival processes; the same cannot be said for long-range dependent arrival
 processes. In this section we will use Theorem 1, along with some additional
 analysis, to supply such a relation. We start with a brief review of the large
 deviation asymptotics for the tail of the queue length distribution.

This content downloaded from 128.59.222.107 on Sat, 08 Jan 2022 17:39:05 UTC
All use subject to https://about.jstor.org/terms



 1004 N. G. DUFFIELD AND W. WHITT

 Suppose that, for some scaling function v, the CGF of the arrival process

 1
 (28) A(O) = lim AJ(O) = lim (t log E[exp(Ov(t)Zt/t)]

 t-+C)o t-Co~ v(t)

 exists as an extended real-valued function of 0. The corresponding CGF for
 the excess workload process when the service rate is s is

 1
 (29) A(s)(0) = lim (t log E[exp(Ov(t)Wt/t)] = A(O) - sO.

 t-+) v(t)

 Suppose also that for an additional scaling function h, the limit

 (30) f (x) = lim h(t)/v(t/x)
 t-+oo

 exists. In [9] it is shown (subject to certain technical conditions) that

 (31) lim h'b) logP[Q > b] = -5 with

 (32) U = inf A*S)(x)/f(x)

 The stability requirement for this queue is that the service rate is sufficiently
 large to have

 (33) A(s)(H) < 0 for some 0 > 0.

 EXAMPLE 3.1. When v is regularly varying, we can choose h = v, and so

 f= V in (30).

 EXAMPLE 3.2. The canonical example of a long-range dependent process

 to which this theory applies is when Z is fractional Brownian motion (see
 [16], although this example falls outside the scope of processes considered

 in this paper since Zt is not nondecreasing). Then Z is a mean-zero Gauss-
 ian process with Var(Zt) = t2H. Then the appropriate scaling functions are
 w(t) = t, v(t) = t2-2H and so from (32) the distribution of Q is asymptotically
 Weibullian. The large deviation lower bound was obtained first in [18].

 We can contrast Example 3.2 with short-range dependent arrival process,
 for example, Markov processes. For these, the appropriate scaling for the ex-
 istence of the CGF in (29) is v(t) = t:

 (34) A(s)(0) = lim t-1 log E[exp(O(Zt - st))]
 t-+Coo

 The large deviation theory in this scaling was previously worked out by a
 number of authors; see [12], the LD heuristic in [14] and [3]. Using those
 results, or applying (32), we can see that the tail of the log queue-length
 distribution is linear.

 Let us review briefly two related results for short-range dependent arrival
 processes. We wish to determine to what extent these can be generalized for
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1005

 long-range dependent processes. First ([3], [6], [12], [14]), the exponential de-

 cay rate 6 can be expressed directly in terms of the CGF A: 6 = infx>o x-A*S)(x)

 can be shown to satisfy

 (35) 8 = supf 0: A*(s)(0) < 0}.

 Second, if we define the CGF for the inverse process

 (36) jL(s)(0) = lim z1 logE[exp(O(z -sTz))], t-+Coo

 then ([11], [22]) under appropriate technical conditions

 (37) A(s)(0) < 0 if and only if L(s))(0) < 0.

 This means that 6 can be found by two different routes:

 (38) 6 = supf0: A(s)(0) < 0} = supf0: IL(s)(0) < 0}.

 We mention some work where these observations have been used to some

 advantage: [10] proposes predicting cell loss ratios for short-range dependent
 traffic on the basis of (32), by sampling an arrival process to measure A(s)
 and hence estimating 8 by means of (35). But (38) shows that an alternative
 strategy is to estimate 8 through measuring the CGF V-(s) due to the inverse
 process. This was proposed in [4] and in some cases found to be more effective
 than estimation through measurement of A(s).

 It is natural to ask, then, to what extent (35) and (38) can be extended to

 the case when the arrival process and its inverse satisfy an LDP with more
 general scalings. The first matter is settled by the following lemma, which
 appeared in a slightly less general context in [7].

 Let K and f be real functions, with f not necessarily invertible. Then we

 define (Kf l)* to be

 (39) (Kf-l)*(O)= sup (f(x)6-K(x)).
 xGdom(f)

 When f is invertible, one sees by changing variable from x to f1-(x) that this
 coincides with the usual definition of (Kf l)*. Our reason for allowing f to be
 noninvertible is to allow for the case that v is regularly varying within index
 0, for then v3(x) = 1. This happens, for example, when v(x) - log x, a scaling
 which has been used for the large deviation analysis of queues arising from
 fluid processes driven by M/G/oo processes: this was proposed in [19]; see
 also [8] for a further application.

 LEMMA 3. Let K be a function on R+ and f a scaling function on R+. Then

 (40) inf K(x)/f(x) = sup{ 0 > 0: (Kf )*(O) < O},
 x>r

 for (Kf)* as defined in (39).
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 1006 N. G. DUFFIELD AND W. WHITT

 PROOF. Let = infx K(x)/f(x). Then

 0 < 8 X 0 < K(x)/f(x) V x > 0 X Of(x) - K(x)

 < O v x, > X (Kf-')*(O) < O. o]

 Lemma 3 enables us to give an alternate expression for the queue-tail decay
 constant 6 in (31) when the scaling function v in (28) is regularly varying.
 Furthermore, it can be expressed directly in terms of a CGF for a rescaled
 LDP of the arrival process, when the CGF exists.

 THEOREM 5. Suppose that the CGF A in (28) exists with v E /4. Let 8 be

 defined by (31) with h = v and f = v3. Then we have the following:

 (i) 8 = sup{0 > 0: (A(* )vl)*(0) < 0} for A(s) in (29).
 (ii) Assume also that A is essentially smooth, i(v) > 0 and that s lies in the

 interior of the effective domain of A*. Define

 (42) v(s), t (0) = log E[exp(6v(Zt - st)); Zt > st].
 v(t)

 Then the limit v(s) = limt,. v(s) t(() exists for all 0 < J(O), where J(x) =
 v(x)A*(1/x), and is equal to (A*) l>)*(6).

 (iii) Under the assumptions of (ii), a sufficient condition for J(O) to be in-
 finite is that i(v) < 1. A sufficient condition that s lies in the interior of

 the effective domain of A* is that there exists 0 < 01 < 02 < ?c for which

 -o0 < A(s)(01) < 0 < A(s)(02) < o?. In this case,
 (43) 6 = sup{0 > 0: v(s)(0) < 0}.

 REMARK 3.1. When v(t) = t, (i) reduces to (35).

 REMARK 3.2. Fractional Brownian motion with Hurst parameter H E
 [1/2, 1) is an example of a process satisfying an LDP with i(x) < 1 since

 f(x) = v(x) = x2-2H
 We are also able to obtain a relation analogous to (38) for the inverse process

 LDP, and an analog of (43) expressing 6 directly in terms of a CGF for the
 inverse process.

 THEOREM 6. Let I, J and f be functions on (0, oo) with f (x) = xP for some

 p > 0 and I(x) = f(x)J(1/x). For s > 0 set

 Is(x) = I I(s + x), x > 0,
 +oo, otherwise,

 (44)

 Js(x) = I J((1 - x)/S), x E [0, 1),
 +oo, otherwise.

 Then

 (45) sup{0: (Isf -)*(O) < 0} = sup{0: (Jsf-l)*(o) < }.
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1007

 THEOREM 7. Suppose that the following conditions hold:

 (i) (Z, T) are inverse processes.

 (ii) v E lr and (Zt/t, v(t)) satisfies an LDP with rate function I, which has
 no peaks and contains s within the interior of its effective domain.

 Set 6 = infx,o I(S)(x)/lv(x) where I(s)(x) = I(x + s). Then, for all 0, the limit

 C(') (O) = lim ( (s), z(O)
 Z--+ 00

 (46) 1
 = rim log E[exp(Ov(z - sTz)); 0 < sTz < z]

 z-?OO v(z)

 exists and is equal to (Jsv-l)*(0). Hence 8 can be reexpressed as

 (47) 6 = sup{0: o(s()(0) < O}.

 An interesting feature of the CGFs in (42) and (46) is the extra event in

 the expectation, {Zt > st} in (42) and {Tz < z/s} in (46). We now show that
 these extra events can be removed by appropriately extending the scaling
 function v to the entire real line (-oo, oo). We assume that v is extended
 in an arbitrary manner from the increasing homeomorphism on [0, oo) to an
 increasing homeomorphism of (-oo, oc) with v(O) = 0, but we will require that
 v(-t) < -v(t) for t > 0. The CGFs in (5) and (6) correspond to the extension
 in which v(t) = -oo for all t < 0. We will only state the result for Z.

 THEOREM 8. In addition to the conditions of Theorem 5(ii), assume that
 I(a) > 0, for some a with a < s, that 8 < J(O) and that the scaling function v
 is extended to (-oo, oc) with v(O) = 0 and v(-t) < -v(t) for t > 0. Then there
 exists an 8 > 0 for which

 (48) +(S)(0) = v(S)(0) for all 0 > 8 - ,
 so that

 (49) 8 = sup{0 > 0: +(S)(0) < 0},

 where

 (50) ?(S)(0) = tlm v(t) log E[exp(Ov(Zt - st))].

 REMARK 3.3. We cannot expect that (48) will hold for all 0. In particular,
 for 0 = 0, +(o)(0) = 0, but typically

 (51) V(5)(0) = lim vt log P[Zt > st] = -I(s) < 0.
 t-cov(t)

 REMARK 3.4. In applications we anticipate that we will have t-1Zt - m
 for m < s with I(m) = 0 and I(a) > 0 for all a with a > m, which implies the
 condition on I in Theorem 8.
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 REMARK 3.5. Theorem 8 only applies simply in the linear case, because

 then it suffices to have v(t) = t for t E (-oo, oc), which makes the expectations
 relatively easy to compute. In the linear case, the link between (49) and (43)

 is already established by (35) and (43).

 4. Functional large deviations principles. The purpose of this section

 is to consider relations between functional large deviations principles (FLDPs)
 with nonlinear scaling for inverse processes. As mentioned in the introduction,
 we are interested to see to what extent our LDP results can be derived via
 FLDPs. We are able to establish results via FLDPs, but only in a special case.

 We apply relations between FLDPs with linear scalings for inverse processes
 from [20]. We refer to [20] for background.

 The FLDPs hold in the function space D-- D[O, oo) of right-continuous
 real-valued functions on [0, oc) with limits from the left everywhere (except
 at 0). It is customary to consider right-continuous versions of the functions,
 but the topology on D we introduce will be the same for left-continuous and
 right-continuous functions. As in [20], we consider the M' topology, which can

 be characterized in terms of parameterizations of the completed graphs F(x)

 for x c D, defined in (10). (The completed graphs do not depend on the right
 continuity.) We call a pair of continuous functions (u, t) (u(s), t(s)): s > 0)

 such that t(s) is nondecreasing with t(O) = 0 a parameterization of F(x) if

 (52) F(x) = U{(u(s), t(s)): s > 0}.

 A sequence {xn: n > 1} in D converges to x in (D, MI) if there exist parame-

 terizations (ui, tj) of xn and (u, t) of x such that

 (53) sup{f lUn(s) - u(s)l + Itn (s) - t(s)J} -} 0 as n -- oo
 s<T

 for all T > 0. The M' topology on D is metrizable as a separable metric

 space. When x is continuous, xn -> x in D if and only if xn(t) -> x(t) uni-
 formly on bounded intervals. The Borel o-field on D generated by the M'
 topology coincides with the usual Kolmogorov o-field generated by the coordi-
 nate projections.

 We now apply Theorem 3.3 of [20] to obtain a relation between FLDPs with
 nonlinear scaling functions. Let Et be the subset of nonnegative nondecreas-
 ing functions unbounded above in D.

 THEOREM 9. Let (Z, T) be inverse processes, and let u, v, w E J. The ran-
 dom functions

 (54) X71( UZw1wn_ (ZWl(Wl()t)) t > 0

 obey an FLDP in (Et, MI) as n -- oo with rate function I if and only if the
 random functions

 (55) X-l (t) __ w(Tu1-(wv_1(n)t)) t > 0 Xnt = wvl1(n)
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1009

 obey an FLDP in (Et, M') as n oc with rate function J. If these FLDPs
 hold, then

 (56) J(x)= inf I(y) = I(x-1, x E Et
 yeET
 x=y-1

 and

 (57) I(x)= inf J(y) = J(x-), x E Et
 yeEt
 x=y-1

 where x-1 is the right-continuous inverse of x, defined by

 (58) x-1(t) = inf{s > 0: x(s) > t}, t > 0.

 In some special cases we can characterize the rate functions. The following
 is a consequence of Theorem 3.4 of [20].

 THEOREM 10. (a) The process {X, } in (54) obeys an FLDP in (Et, MI) with
 rate function

 (59) I(x) = j I(x(t)) dt

 for all absolutely continuous x with x(O) = 0, and I(x) = oc otherwise, where
 I(O) = oc, if and only if {X77} in (55) obeys an FLDP in (Et, MI) with rate
 function

 (60) J(x)= f J(x(t)) dt

 for all absolutely continuous x with x(O) = 0, and J(x) = oc otherwise, where
 J(O) = oo. If (59) and (60) hold, then

 (61) J(z) = zI(1/z).

 (b) If the function I in (59) [respectively, J in (60)] is convex, then the se-

 quence of random variables {Xj(l): n > 1} [respectively, {X71(1): n > 1}]
 obeys an LDP in R with rate function I (respectively, J).

 In Theorem 9 and 10 we can also let n -- oc in a continuous manner. The

 following result relates the FLDPs to the LDPs in Theorem 1.

 THEOREM 11. Let (Z, T) be inverse processes and let u, v, w c J. If {X4I
 in (54) obeys an FLDP in (Et, MI) with rate function I in (59) where the local
 rate functions in I in (59) and J in (61) are convex, then (u(Zt)/w(t), v(t)) and

 (w(Tj)/u(z), vw-1u(z)) obey LDPs in R with rate functions I and J, where
 (61) holds.

 The significant difference between Theorem 11 and Theorem 1, however,
 is that here the rate functions J and I are related by (61), which only holds
 in Theorem 1 for the special case of linear scaling, that is, when vw-1 E 'J1.
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 Evidently the extra conditions here restrict the possible LDPs that can hold
 in R for the projections. Here we require (1) that the FLDP hold, (2) that the
 rate functions I and J on D have the special integral form in (59) and (60)
 and (3) that the local rate functions I and J appearing in (59) and (60) be

 convex. From Theorem 1 we know that we must have vw-1 E /, in order to
 have the LDPs in R. Now we know that we must have vw-' E / in order to
 have both the FLDPs and the associated LDPs for the projections. (We have
 shown that this is a necessary condition.) It still remains to determine what
 forces the relation (61) here.

 5. Examples. In this section we give several examples of LDPs with non-
 linear scaling.

 The supremum of fractional Gaussian noise. Let Bt be fractional Brown-
 ian noise [16], that is, the restriction of fractional Brownian motion to in-

 teger times. In particular Bo = 0 and (Bt)tE~z is a Gaussian process with
 Var Bt = t2H for some H c (0, 1), known as the Hurst parameter. Let Zt be
 the nondecreasing process Zt = supo<S<t Bt. We first establish the large de-
 viation properties of Zt, then use Theorem 1 to establish the LDP associated
 with the hitting time

 (62) Tz = inf{t > 0: Zt > z} = inf{t > 0: Bt > z}.

 PROPOSITION 1. (i) (Zt/t, t2-2H) satisfies an LDP with rate function I(x) =
 x2/2.

 (ii) (T,/z, z2-2H) satisfies an LDP with rate function J(x) = X-2H /2.

 PROOF. (i) The LDP for (Zt/t, t2-2H) follows from the Gartner-Ellis theo-
 rem if we can show that the CGF

 (63) A(0) = lim t2H-2 log E[exp(0Zt)] = 02/2
 t--coo

 exists for all 0 E R. For 0 0 this is trivial. For 0 > 0,

 (64) exp(OBt) < exp(OZt) < L exp(OBs)
 O<s<t

 and hence

 exp(02t2-2H /2) = E[exp(0Bt)] < E[exp(0Zt)] < L E[exp(0Bs)]

 (65) O<s<t
 = L exp(02s2-2H /2) < (s + 1) exp(02t2-2H/2),

 O<s<t

 from which (63) is established for 0 > 0. For 0 < 0,

 (66) <0< <t exp(0Bs) <exp(OZt) < exp(OBt)
 s +I
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 and hence

 exp(02t2-2H /2) _ EO<s<t exp(02s22H /2)
 s+1 - s + 1

 (67) Eo<8<t E[exp( OBR)] < E[exp( Zt)]
 s +1 - ~x(Z)

 < E[exp(OBt)] = exp(O2t2-2H /2),

 from which (63) is established for 0 < 0.

 (ii) Combine (i) with Theorem 1. D1

 Time-transformed stationary processes. As in Section 7 of [17], we can con-

 struct nonstationary processes to serve as models for nonstationary phenom-
 ena by performing a deterministic time transformation to a stationary stochas-

 tic process. Suppose that we have a stationary stochastic process (St: t > 0) for
 which (t-1St, v(t)) obeys an LDP with rate function I. We can then construct
 a nonstationary stochastic process (Zt: t > 0) from St and a scaling function
 w by letting

 (68) Zt = Sw(t)l t > O.

 Given the construction in (68), we see that trivially (Zt/w(t), vw(t)) obeys
 an LDP as T -- oc with rate function I. We now can apply Theorem 1 to
 deduce that the inverse process of Zt obeys an LDP as well. In particular, if
 v cE r, then Theorem 1 implies that (w(T,)/z, v(z)) obeys an LDP as z -- oc
 with rate function J(x) = v(x)I(1/x), where (Ta: z > 0) is the inverse process

 of (Zt: t>0).
 The analysis applies directly if Zt is a nonhomogeneous Poisson process

 with deterministic intensity a(t). If we let

 t

 (69) w(t)=j a(s) ds,

 then (68) holds, where St is a homogeneous Poisson process with rate 1. More-

 over (t-1St, t) obeys an LDP with rate function

 (70) I(x) = x log x-x + 1.

 Let (Ta: z > 0) be the inverse process of the nonhomogeneous Poisson process,
 that is, representing the successive arrival times if Zt is an arrival counting
 process. Then (w(T,)/z, z) obeys an LDP as z -> oc with rate function J(x) =
 xI(1/x) for I in (70).

 Compound processes. In a standard queueing model, the input Zt is often
 a random sum of service times, that is,

 At

 (71) zt Si, t > O,
 i=1
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 where Si is the service time of the ith customer and At counts the number
 of arrivals in [O, t]. We now show how the CGF of (Zt: t > 0) can be obtained
 from CGFs of {Si} and (At: t > 0). The following extends Proposition 7 of [12]
 to nonlinear scalings.

 PROPOSITION 2. Suppose that (Zt: t > 0) has the special form (71) with
 {Si: i > 1} and (At: t > 0) independent. Let u, v and w be scaling functions
 and suppose that

 (72) w ) logE[exp(Ou( Si ))] s s(0) as n -- oc

 for all 0 in a neighborhood of 00 and

 1
 v(t) log E[exp(Ow(A(t)))] > A(0) as t -- oc
 v(t)

 for all 0 in a neighborhood of tds/(Oo), where sfs(0) and tfrA(O) are finite. Then

 v(t) log E[exp(0ou(Zt))] -> tfArfS(0O))-
 v(t)

 PROOF. The assumptions imply that q&s(O) is continuous at 00 and A(M)
 is continuous at qfrs(0o): the functions are convex by H6lder's inequality; then
 apply Theorem 10.1 of [21]. For any 8 > 0, there is an M such that

 E[exp(Oou(Zt))] = E+E[exp Qou(+ Si))] P[A(t) = n]

 00

 < L exp(w(n)[qfs(0o) + e]) P[A(t) = n] + M
 n=1

 < E[exp(w(A(t))[tfS(00) + 8])] + M

 < exp(v(t)[tqA(0S(00) + 8) + 8]) + M

 for t suitably large. Hence

 (75) lim sup log E[exp(Ou(Zt))] < OA(OS(0O) + 8) + 8-
 t-+oo v(t)

 Since 8 was arbitrary and qfrA is continuous at qfs(Oo),

 (76) lim sup 1 log E[exp(0u(Zt))] < frA(S(0O0))
 t-The v(t)

 The reasoning in the other direction is similar. D
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 EXAMPLE. Now we consider the case in which (Zt: t > 0) is a compound
 Poisson process with the Poisson process being nonhomogeneous with intensity

 a(t). As indicated above, (At/v(t), v(t)) obeys an LDP with rate function I in
 (70). Moreover,

 (77) (t) log E[exp(OAt)] -frA(0) = (I*)(0).

 Now suppose that Zt = LAtL Si, where {Si: i > 1} is a sequence of nonnegative
 service times satisfying

 1 [ffl\
 (78) - log E exp (Ou (Si ) ) fs (0)

 Then, by Proposition 2,

 1

 In the standard case with {Si} i.i.d., qds(0) = E[exp(OS1)] and u is the identity
 map.

 Renewal processes. Let (Zt: t > 0) be a (nondelayed) renewal process with

 interrenewal distribution F. In the inverse process (Ta: n E Z+), To = 0 and
 Tn is the time of the nth renewal. (Here we could apply Theorem 4.) The
 independence of the interrenewal times means that an LDP for T is easy to

 obtain. Define bL(O) = log f dF(x)eox. The LDPs for Z and T involve only linear
 scalings, and are proved in [11]. The LDP for T follows directly from Cramer's

 theorem (2.2.3 in [5]) applied to the sums of the i.i.d. random variables T, -
 Ti-1. We include this result here in order to emphasize that the LDP applies
 with a linear scaling, even if the distribution F is long tailed. The CGF uL(O)
 will then be finite for all 0 < 0 but not for 0 > 0. Furthermore, we are able
 classify the qualitative features of the rate functions for Z and T in terms
 of p-.

 PROPOSITION 3. Let Z be a nondelayed renewal process with -L the interar-
 rival time CGF. Then the following statements hold:

 (i) (Tn/n, n) satisfies an LDP with rate function J = bL*;
 (ii) (Zt/t, t) satisfies an LDP with rate function I(x) = xl*(llx);
 (iii) J(x) = oo for x < x _ inf{x: F(x) > 0};
 (iv) J(x) < oo if and only if F(x) > 0;

 (v) E[T1] is a base for J. If b(O) = oo for all 0 > 0, then I(1/x) = J(x) = 0
 for x > E[T1]

 PROOF. First, (i) follows from Cramer's theorem. Then (ii) follows from
 Theorem 1 here or from Theorem 4 of [11].
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 (iii) bL(O) < xO for 0 < 0, and so for x < x, bL*(x) > sup0<0(Ox - uL(O)) >
 sup0<0 O(X - X) = 00.

 (iv) Since x < E[Tj] = bL'(O-), then Ict*(x) = sup0<0(Ox - /ut(O)). If F(x) > 0
 then jO(O) > Ox + log F(x) for all 0 < 0, and hence

 (80) A* (x) <-log F(x).

 Now for any 8 > 0 and 0 < 0,

 (81) bL(O) < log(F(x + 8) exp(Ox) + FC(x + 8) exp(O(x + 8)))

 = Ox + log(1 + Fc(x + 8)(exp(08)- 1)).

 Hence

 (82) Au*(x) = sup(xO - bL(O)) > lim sup(xO - bL(O)) > -log F(x + 8)
 0<0 0--oo

 by (81). Taking 8 -> 0, then when F(x) > 0, we combine with (80) to conclude
 that bL*(x) = - log F(x). When F(x) = 0, we conclude from the right continuity
 of F that ju*(x) = oo.

 (v) That E[T1] is a base for J (even when infinite) follows from the fact that
 it is the derivative from the left of jut at 0. If x > E[T1], then by convexity of

 bL, Ox - uL(O) < 0 for all 0 < 0, with equality at 0. Since bL(O) = 00 for 0 > O,
 then /*(x) = 0 for such x. w1

 We can also directly bound the CGF of the renewal counting process Z.

 PROPOSITION 4. For any renewal process (Zt: t > 0) and any 8 > 0,

 (P[Tj > 8] exp(08) [tj
 (83) E[exp(OZ -)] 1 - P[T1 < 8] exp(08),)

 PROOF. We bound the renewal process above by the renewal process with
 smaller interarrival times T1, where

 (84) P[T1 = 0] = P[T1 < ]= 1-P[T1 = 8] = 1-P[T1 >8].

 It is easy to see that the displayed formula is E[exp(OZt)] for the renewal

 process (Zt: t > 0) associated with T1. D

 EXAMPLE (Pareto interrenewal times). Consider a renewal process with F
 Pareto, that is, with 1 - F(x) = (1 + X)- some a > 0. We can distinguish two
 cases: a E (0, 1] and a > 1.

 When a > 1, the mean interrenewal time E[T1] is finite and so I(1/x) =
 J(x) = bL*(x) = 0 for x > E[T1], F(O) = 0, and clearly J(x) increases to
 oo as x decreases from E[T1] to 0. But if a E (0, 1], then E[T1] = bL'(O-) is
 infinite and so oo is the only base for J: since E[T1] = bL'(O-) = oo, then
 J(x) = u*(x) > 0 for any x < oo.
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 We conclude this section by pointing out that the usual LDP with linear
 scaling can hold for the input to a standard queue when the interarrival
 times have a long-tailed distribution, but the service times do not. We can
 apply Proposition 2 with scaling functions u, v and w all equal to the iden-
 tity. Assuming that the service times are i.i.d. with a finite moment generating
 function t)(O) = log E[exp(OS1)] for 0 less that some positive 0, then (72) holds

 with d' s = t. We know from [11] that the MGFs qjA and q/ T of the inverse pro-
 cesses (A, T) are related under very general conditions by qJA(0) =-Tl(-O)
 Thus the finiteness of tfT(O) for all 0 < 0 implies the finiteness of qfA(O) for all
 0 > 0. Hence, (74) can hold for the compound net input process Z defined by
 (71). Thus, under regularity conditions, the Gartner-Ellis theorem will hold

 for Z and the queue asymptotics in (4) to (6) will hold with v being the identity
 function. In summary, the long-tailed interarrival time distribution does not
 in itself prevent exponential tails in the queue-length distribution.

 6. Proofs of theorems. The proof of Theorem 1 proceeds via a number
 of subsidiary results. In the following, h(x-) and h(x+) denote the limits from
 the left and right of a function h at x, when these exist.

 THEOREM 12. Let (Z, T) be inverse processes, and let u, v, w, c J with

 vw 1 E 4r.

 (i) We have

 -f + (x+) < lim inf log P [() ' x

 (85) 1 l u(Zt) < lim sup ?~l xj < -f+(x)
 t-*> v(t) iog ()-

 for all x c (0, oo) and some nondecreasing lower semicontinuous function f+
 on (0, oc), if and only if

 log P[w(T,)/u(z) < x]
 -g_(x) < liminf 1

 Zo 00 vw-u(z)
 (86)

 < lim sup log P[w(Tg)/u(z) < x] <-g(x)

 for all x E (0, oc) and some nonincreasing lower semicontinuous function g_
 on (0, oo), in which case,

 (87) g_(x)= vw-(x)f+(1/x).

 (ii) We have

 ( -f _(x-) < lim inf 1 log P[u( () 'xl
 (88)su v(t) l w(t) ] (88) i~ ~~~ Fu(Zt) 1
 < lim sup log P < x j _-(x)

 t-?oo0 v(t) L w (t) j
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 for all x E (0, oo) and some nonincreasing lower semicontinuous function f
 on (0, oc), if and only if,

 log Prw(T,)uz)>x -g+(x+) < liminf lop[ T)Iu(z) > x]
 Z-+o vwu(z)

 (89) logPrw(Tz)/u(z) > x]
 <urn sup l W1u(z) - g(x)

 Z--+00 V UZ

 for all x E (0, oc) and some nondecreasing lower semicontinuous function g+
 on (0, oo), in which case

 (90) g+(x) = vw-1(x)f_(1/x).

 (iii) If, with f as in (ii), (88) holds for all x c (0, oo), then for all x c (0, oo),

 log P[w(Tz)/u(z) > x]
 (91)9+X+ < o liminfz Z--+O 001uZ

 (91) logP[w(Tz)/u(z) > x]
 < urn sup vw-1u(z) g () Z-+*> 00 (Z

 (iv) If, with g+ as in (ii), (89) holds for all x E (0, oc), then for all x E (0, oc),

 1 Fu(Zt 1
 (92) ~ -f - (x-) < lim inf v(t log P [ < t) x] (92) t-?oo0 v(t) L w (t)

 li 1 [u(Zt)

 REMARK 6.1. The role of parts (iii) and (iv) here is to extend the result of
 part (ii) for open semiinfinite intervals to the corresponding closed semiinfinite
 intervals. This is required for Theorem 13 which follows.

 PROOF. We prove (i) in one direction; the reverse is similar. Assume (85).

 Note that f+(x+) exists by assumption that f+ is nondecreasing. The key
 observation is that, for x c (0, oo),

 vwiu(z) [ w(z) _x] = v(t) vw1l(w(t)/x) )log P[(t) > i/x]

 where t = w-1(u(z)x). Then (86) follows upon taking z -- oo (and hence t
 oo) and using (12). Since vw-1 is continuous and f+ lower semicontinuous, g_
 is lower semicontinuous; but it remains to be shown that g is nonincreasing.
 A lower semicontinuous function is discontinuous at most on a meager set
 (i.e., a countable union of nowhere dense sets: see Section 231 of [13]), and so
 is continuous on a dense set A in R+. For x E A the lim inf and lim sup in (86)
 are both equal to -g_(x). So, by construction, the restriction of g_ to A, as

 a limit of the nonincreasing functions -logP[w(T,)/u(z) < x]/vw'u(z), is
 also nonincreasing.
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1017

 We show that g_ is nonincreasing on the whole of R+. Since A is dense, then
 for all x, x' E AC with x < x' there exists y E A with x < y < x'. Thus it suf-
 fices to show for all such x, x', y that g_(x) > g_(y) and g_(y) > g_(x').

 For the first inequality, observe that g_(x) > liminfAa7y g-(a) > g_(y)
 by lower semicontinuity of g_. For the second inequality, since f+ is non-
 decreasing [hence 3 lima.b f +(a) < f +(b)] and lower semicontinuous [hence
 lima/b f+(a) > f+(b)], it is continuous from the left, so that g_ is continuous
 from the right. Hence g(x') > limA,a\,y g (a) = g_ (y).

 The proof of (ii) is similar. For (iii), if (88) holds, then from (ii) we have the

 trivial lower bound

 1 Fw(T_) 1
 (94) lim inf 1 log P[Z > xI >-g+(x+).

 too VW- U(z) u(z)

 To obtain the complementary upper bound, note that for any 8 > 0,

 (95) p (Z) >X [ U(Z) >X8]

 so that

 (96) lim sup 1 log p[WTz xl -g( - 8).
 t(6 -lim o vw u(z) u(z) j

 The result follows on taking 8 -O 0 by the lower semicontinuity of g+. The
 proof of (iv) is similar. D

 THEOREM 13. Let I be a rate function on R+ without peaks. Then (Wt, a(t))
 satisfies an LDP with rate function I if and only if it satisfies a partial LDP

 with rate function I with respect to all semiinfinite intervals [0, Yl] and [Y2, ??)
 with 0 < Yi < XI < Y2 < oc, for some base xI of I.

 Note that if xI = 0 or oc, only one of the sets of intervals enters.

 PROOF. This follows from Theorem 3 in [11], modifying the scaling func-
 tions as appropriate throughout. The hypotheses of closedness, convexity
 stated there are not used in the proof, and the condition used there that I
 has no flat spots can be weakened to I having no peaks. E

 LEMMA 4. (i) Let h+ be a nondecreasing nonnegative function on R+ and
 h_ a nonincreasing nonnegative function on R+ and suppose that for some
 x E [0, oc],

 (97) h_(x)-O if x > x-; h+(x) = O if x < x.

 Then h = h& + h+ has no peaks and x is a base for h; h is lower semicontinuous
 if h? are lower semicontinuous.
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 (ii) Let h be a function on R+ which has no peaks and which is lower semi-
 continuous. Then h = h+ + h_ where

 (98) h_(x) = inf h(y) and h+(x) = inf h(y)

 are lower semicontinuous functions.

 PROOF. The proof of (i) follows by inspection. The proof of (ii) follows from
 (i) since, because h has no peaks,

 h'-(x fo, if X >Xh,
 h(x), if X<Xh,

 (99)
 h (? if x < Xh, h+ (x) = fox, if xh

 lhx, if X> Xh,

 where Xh is a base for h. E

 PROOF OF THEOREM 1. (i) This follows by combining Theorems 12, 13 and
 Lemma 4. We show this in the forward direction; the reverse is similar. As-

 suming the LDP with rate function I and base xI for (u(Zt)/(w(t), v(t)), then
 in Theorem 12 we take

 (100) f_(x) = inf I(y) and f+(x) = inf I(y).

 Then with Xj = 1/x1, we get

 g_(x) = vw-l(x) inf I(y)
 y>1/x

 (101) J0, if x > xj,

 vw-l(x)I(l/x) = J(x), if 0 < x < XJ,

 while

 g+(x)= vw'1(x) inf I(y)
 Y<1/X

 (102) J0, if 0 < x < Xj,

 vw-'(x)I(1/x) = J(x), if x > XJ.

 Thus Xj is a base for J, which by Lemma 4 and Theorem 12 is the rate

 function for the restricted LDP for (w(T,)/u(z), vw-lu(z)) and hence also for
 the full LDP which then holds by Theorem 13. Since g_ is nonincreasing, we
 are free to extend J to zero by taking the limit from above. The symmetry

 of the relation (15) is due to vw-l being a power. Finally, for the uniqueness

 property, note that (I(x) = 0 X x = xI) X (J(x) = 0 X Xj = 1/xI).
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1019

 (ii) Without loss of generality we can suppose that either xI > b+ or xI < b_.
 We give a proof for the former case: the proof for the latter is similar. Denote

 (b_, b+) by B and set

 (103) A, = {x E B: I continuous at x},
 Aj = {x E B: J continuous at l/x}.

 Consider the relation (93) with x E A,q n A\j. Then, taking the limit t -> oo (and
 hence z -> oc), using the LDPs for Z and T, and that x < xI and l/x > XJ,
 we find that

 (104) - I(x) = -J(l/x) lim vw'w(t)
 t-+-COo vw-'(w(t)/x)'

 where this limit must now exist since I(x) and J(1/x) lie in (0, oo). But B\\A,
 and B \ ANj are meager, and hence so is (B \ A,) U (B \ Aj) = B \ (CI n CJ).
 Thus CI n Cj, being the complement of a meager set in a open set, is Baire.
 To summarize, limt O(vw-'w(t)/vw-'(w(t)/x)) exists for all x in a Baire set,
 and so we are done. E

 PROOF OF THEOREM 2. (i) We establish the proof in one direction only; the
 proof in the reverse direction is similar. Assume that (u(YX(t))/w(t), v(t)) sat-

 isfies an LDP with rate function I,. By Theorem 13 it is enough to establish
 the partial LDP for (p(YS(t))/r(t), q(t)) with rate function I2 on sets of the
 form [0, Yi] and [Y2, oo) with 0 < Yi < XI2 < Y2 < oo, where xj, is a base
 for I2. We perform the proof for sets of the form [0, y] only; the proof for sets
 [y, oc) is similar. That '2 is a rate function follows simply the continuity of

 up-1 and I1 being a rate function. If x1l is a base for I1 then x12 = pu-'(xI1)
 is a base for I2.

 One shows that

 1 logPFP(Y(t))

 (105) q(t) Lr(t) -
 1 FU(YX(t')) -1(rs'1x (tY)y1

 - ~~log P I UP wt)
 qs'lx(t') l[ w (t') W(tI) J

 where s(t) = x(t'). By (20) and (18), up-'(rs-1x(t')y)/w(t') converges to

 up-'(y) as t' oo. Then by the assumed LDP, for 0 < 8 < y < x,2

 1 [ p(Y(
 (106) - inf I2(b) < liminf (t logP ( 8()) y

 b<y-e t-+oo q (t) L r(t) I

 (107) < lim sup 1 logP < Y < - inf I2(b).

 To complete the proof we must obtain these same bounds with 8 replaced by
 zero. For the lower bound we can just take 8 -* 0. For the upper bound we do
 the same, but additionally invoke the lower semicontinuity of I2*
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 (ii) Suppose b E (bL, xl); the proof for b E (x4, b ) is similar. From (18) and
 (19) it follows that

 ____ FU(ZX'(t')) 1 p(ZS(t)) 1
 (108) 1logPI <b I= logPI < ht4b)I v(t') Lw (t') - q(t) L (t) j

 where

 (109) x(t') = s(t) and ht(b) = P -(wx'-1s(t)b)
 pu-'wx-'s(t)

 Since I, is continuous on B1, we have the existence of the limit

 1 F U(ZX'(t)) 1

 -Il(b) = lim log P < b]

 1 F p(ZS(t)) 1
 =lim 1~ log P[(t) < ht(b)2
 -t-+oo0 q(t) L r (t) J

 Suppose we can show that, as t -- oc, the possible limit points of ht(b) lie
 in (by, x2). Let c be any such limit point. Then by the assumed continuity of

 I, and I2, we have Il(b) = 12(c). Since I2 is strictly monotonic on (by, x2),
 then c is uniquely determined, and is hence the only possible limit point.

 Thus limt,, ht(b) exists in (0, oo) on a interval, and hence pu-1 E $r with
 i(pu-1) > 0. Reversing the roles of I, and I2, we get up-1 E Sr with i(up-1) >
 0, and so, using Lemma 1, we find that i(up-1) = 1/i(pu-') E (0, oc).

 It remains to establish the required boundedness property of the limit

 points of ht(b). First, ht(b) cannot have a limit point c > x2, for then we
 would have, for small enough 8 < c - x2, that

 1 p(ZS(t)) 1
 -Il(b)=liminf log P1 < ht(b)I

 (111) t-+oo ~~q(t) Lr(t)j
 1 p(ZS(t))

 > lim inf lPl lgPp c < - =0,
 t+oq(t) Lr(t)

 where the limit is taken on a subsequence of t along which ht(b) converges to
 c. But then I(b) = 0, in contradiction with b 4 xl1.

 Finally, suppose ht(b) has a limit point c < b- + 8 for some arbitrarily
 small 8 > 0. Then, by an argument similar to that used for (111), we find

 that Il(b) > I2(b-) > 0. But since I, is continuous, then by replacing B1 with
 some open subinterval also containing [xl, xl], we can get a contradiction for
 b close enough to xl. E

 PROOF OF THEOREM 3. We prove (i) only; the proof of (ii) is the same.
 We first prove the existence of a finite limit v(O) for 0 < J(0). The existence

 of v(H) for 0 < 0 follows by Theorem 4.3.1 in [5] since lim supt, vt (0) < 00
 for all 0 < 0. If J(0) = 0, we are done. So assume now J(0) > 0 and hence
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 that the smallest base Xj for J is strictly positive. We need only consider
 0 E (0, J(O)). We first show that

 (112) lim sup vt(0) < oo
 t-?oo

 for 0 < J(O). Using Lemma 1 in [11], then for any 8 > 0,
 00

 (113) E[exp(Ovw-'u(Zt))] = 1 + Hf dx exp(Ox)P[vw-1u(Zt) > x]
 ,00

 (114) = 1 + 0 dx exp(Ox)P[Tu-lwv-l(X) < t]

 vw-1(w(t)/r)

 (115) < 1?+ H dx exp(Ox)

 00

 + Hf dx exp(Ox) exp(-x(J(r) -8)),
 vw-1(w(t)1r)

 for r < Xj and t sufficiently large, by the LDP for T. Then (112) follows for
 any 0 < J(0) on taking t ->. o and choosing r small enough.

 From the above bound, it follows, using Theorem 4.3.1 of [5], that, for 0 <
 J(O),

 (116) lim lim sup log E[exp(Ovw-u(Zt)); vw-l u(Z) Mu(t)] = - oo
 M-+o0 t-+o0 v(t)

 and hence that

 (117) lim sup vt(O) < lim lim sup vtm(O)
 t-+oo MAoo to-+O

 where

 (118) vM(O) - 1 log E[exp(Ovw-'u(Zt)); vw-lu(Z) < Mu(t)] tm() v(t) UZ)<M()
 (119) 1 1g1-(M)

 (119) 10v(t) lo Pl1(zt)/w(t)(dx) exp(Ov(t)gt(x)),

 where Pu(Zt)/w(t) is the distribution of

 u(Zt)/w(t) and gt(x) = vw-l(w(t)x)/v(t).

 Since i(vw-1) > 0, i(wv-1) < oo and so according to Theorem 1.5.2 in [1],
 g-(M) converges to M = wv-1(M). In particular, g-l(M) is bounded as
 t -> oc and so, by the same theorem, gt(x) converges uniformly to the contin-

 uous function g(x) = vw-1(x) on UtJt,[O, g-l(M)] for any to. Combining the
 uniform convergence with the extension of Varadhan's theorem in Exercise
 4.3.11 of [5], we then find that

 lim sup vt(O) < lim sup (Ovw-'(x) - I(x))

 (120) xe[0,M]

 - sup(Ovw-(x) - I(x)) = (Iwv-1)*(O).
 x>0
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 The complementary lower bound follows, since by the same argument,

 (121) liminfvt(0)> lim liminfvim(0)> lim sup (Ovw-'(x) - I(x))
 t-+oo M-+oo t-+oo xs(, M- M)oo

 (122) = sup(Ovw-'(x) - I(x)) = (1wv-1)*(O),
 x>O

 the last equality by continuity of I at zero. This concludes the proof of the
 existence and finiteness of v(O) for 0 < J(O).

 Since (u(Zt)/w(t), v(t)) satisfies an LDP with rate function I, then applying
 Theorem 2 with p = vw- u, r = q = v and x, s the identity map, tells us that

 (vw-'u(Zt)/v(t), v(t)) satisfies an LDP with rate function Iwv-'. When v is
 essentially smooth, we conclude from the Gartner-Ellis theorem that v* is

 the rate function for this LDP and is hence equal to Iwv-'. As a Legendre

 transform, Iwv-l is convex. E

 PROOF OF THEOREM 4. (i) By using the definitions of Li] and FH1, it is easy
 to see that F(T') = F-'(Z') and that Z' and T' have appropriate right and left
 continuity. The proof of (ii) and (iii) is essentially by the same arguments as
 used in the proof of Theorem 2 if one observes, for instance, that (i) implies that

 for all k > 1 and t sufficiently large, kZi/i < Z'lt < Zi/i where i = Lti. E

 PROOF OF THEOREM 5. Part (i) is a direct corollary of Lemma 3.

 (ii) Since A satisfies the conditions of the Gartner-Ellis theorem, (Zt/t, v(t))
 satisfies an LDP with good rate function I = A*. Since I is good, it achieves
 its infimum, 0, at some finite xI. Since I is convex, it has no peaks and xI
 is a base for I. The rest of the proof now follows Theorem 3(i) applied to the

 case that u(x) = w(x) = x. Thus the existence of the v(s)(0) for 0 < J(O)
 follows since i(v) > 0. This is because v(s), t(0) < Vt(O), and so conclude that
 lim supt- o0v(s), t(0) < limsupt,,vt(0) for 0 < J(O). The form of the limit
 also follows by use of Varadhan's theorem as in the proof of Theorem 3(i),

 replacing the l.h.s. of (119) by (1/v(t)) log fot (M)Pzt/t(dx) exp(0v(t)gt(x - s)).
 Repeating the steps from the proof of Theorem 3 we find

 sup(0 0u(x - s) - A* (x)) < lim inf v(sX), t (0) < lim sup v(5), t (0)
 (123) X>S t- +oo0 --)0

 '3 sup(Ov^(x - s) - A*(x)).
 X>S

 The equality of the bounds follows from Theorem 10.1 of [21] by observing
 that s, being in the interior of the effective domain of A*, is a continuity point
 of A*. Thus

 v(s)(0) = sup(0v(x - s) - A*(x)) = sup(0Ov(x) -A(S)(x))
 (124) X>S X>S

 = (A* v)-l)*(0).

 (iii) We have seen that I = A* has finite base xI. Since I is also convex, for
 some k > 0, I(x) > kx for sufficiently large x. Thus J(O) = limx,o v(x)I(l/x) =
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 oc when i(v) < 1. Since A(S) is convex, bounded below (by -sO) on [0, 02] and

 A(s)(0) = 0, we have for any x E [xl, x2] [where xi = A(s)(Oi)/0i, i = 1, 2] that

 A()(x) = sup (Ox - A(S)(0)) < o0.
 0< 0 <02

 Hence 0 lies in the interior of the effective domain of A* The form (43) then

 follows from (i) and (ii). O

 PROOF OF THEOREM 6. Note that

 (125) (Jsf l)*(Q) < 0

 (126) X f(x)O-I(x+s)-<0 forallx>0

 (127) X f(x)O-f(x+s)J(1/(x+s)) <0 forallx >0

 (128) X f (x + s)(Of(x/(x + s)) - JS(x/(x + s))) < 0 for all x > 0

 (129) Of(y) - JS(y) < 0 for all y E (0, 1)

 (130) X (JFf-l)*(o) ? . o

 PROOF OF THEOREM 7. By (ii) we can adapt Theorem 3 in the same man-

 ner as we did during the proof of Theorem 5, replacing w(T,)/u(z) = T,/z
 by 1 - sTz/z. But in this case there is a simplification, since (1 - sT,/z) is
 automatically bounded on {Tz: 0 < sT, < z} as z -* oC. This enables us to
 conclude that lim supz,z co(s), 40) < oo for all 0 E R and so

 1 1/s
 (131) w(), )t(0) = log/ PT/z(dx) exp(Ov(z)gz(l - sx)),

 where PTz/z is the distribution of Tz/z and gz(l - xs) = v(z(l - xs))/v(z),
 which converges uniformly on (0, lls) to v(1 - xs) even if i(v) = 0. Now
 J(x) is by definition continuous as x \, 0, while since s lies in the interior
 of the effective domain of I, I is continuous at s and since f, being a power,
 is continuous, J is continuous at l/s. Thus using the uniform convergence of

 gz, Varadhan's Theorem and the continuity of the rate function as before, we
 conclude ,u(s)(O) exists for all 0 E R and

 @(S)(H) = sup (V^(1 - Xs) - J(x)) = sup (v^(x) - JS(x))
 (132) xE(o, 1/S] xE[o, 1)

 - (Js ^-l)*(O).

 The expression for 8 then follows from Lemma 3 and Theorem 6. E

 PROOF OF THEOREM 8. Note that

 (133) E[exp(Ov(Zt - st))] = E[exp(Ov(Zt - st)); Zt > st]

 (134) + E[exp(Ov(Zt - st)); at < Zt < st]
 + E[exp(0v(Zt - st)); Zt < at],
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 where, for any 8' > 0, i(( )v) > 8" > 0 and K > 1. Then for sufficiently large t,

 (135) E[exp(Ov(Zt - st)); at < Zt < st] < P[Zt > at] < exp(-Ov(t)(I(a) - 8'))

 and

 (136) E[exp(Ov(Zt - st)); Zt < at] < exp(Ov((a - s)t))
 < exp(-Gv((s - a)t))

 < exp(-Ov(t)[v((s - a)t)/v(t)])

 ( 137) < exp(-Ov(t)K(s-a)'(() -8//)

 because v E Sr (The second estimate uses Potter bounds: Theorem 1.5.6 in

 [1].) On the other hand, by Theorem 5, for any 8"'. > 0, then for t sufficiently
 large,

 (138) E[exp(Ov(Zt - st)); Zt > st] > exp(v(t)[v(s)() - 8"]).

 Since 8 < J(0), v(s) is finite, convex and hence continuous in a neighborhood
 of 8 (see Theorem 10.1 in [21]). So by choosing 0 close enough to 8, we have

 (139) E[exp(Ov(Zt - st)); Zt > st] > exp(-v(t)8)

 for arbitrary 8. Hence this last term exponentially dominates the other two
 terms, so that the limit (50) exists and (48) holds. D

 PROOF OF THEOREM 9. We apply the inverse map x-1 defined in (58),
 which is continuous on (Et, MI) and the contraction principle. Note that we
 can write

 (140) Xn(t) =(02n ? Yn ? Obln)(t)

 and

 (141) Xn 1(t)-- (Oln ? Yn1 ? 02-n )(t)
 (142) -1( y )-l(t) (X )-l(t)

 where

 (143) y (t) = bt Y'-1(t)= ba"t

 (144) ~ b1n(t) n b~)~ V() w(w'nt
 an n

 (144) (b2n(t) = u(t) ) ?-nl(t) W- (wv-'(n)t)

 (145) ~02n(t) =wv 1(n)' ?D-1(t) = u (w ()t
 2nt anandbn rbirar.n

 with an and bn arbitrary. D-
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 LARGE DEVIATIONS OF INVERSE PROCESSES 1025

 PROOF OF THEOREM 11. The conditions here imply the conditions of both
 Theorems 9 and 10. Hence both

 (u(ZV-1(t))/wv-'(t), t)

 and

 (w(TU lwV l(t))1wv-l(t), t)

 obey LDPs in R. By transforming time, these are equivalent to (u(Zt)/w(t),

 v(t)) and (w(T,)/u(z), vw-'u(z)) obeying LDPs as t -- oc and z -> oc, re-
 spectively, just as in Theorem 1. 0
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