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a b s t r a c t

This paper develops an aggregate stochastic model of an emergency department (ED) based on a careful
study of data on individual patient arrival times and length of stay in the ED of the Rambam Hospital in
Israel, whichwas used in a large-scale exploratory data analysis by Armony et al. (2015). This data set is of
special interest because it has beenmade publicly available, so that the experiments are reproducible. Our
analysis confirms the previous conclusions about the time-varying arrival rate and its consequences, but
we also find that the probability of admission to an internal ward from the ED and the patient length-of-
stay distribution should be time varying as well. Our analysis culminates in a new time-varying infinite-
server aggregate stochastic model of the ED, where both the length-of-stay distribution and the arrival
rate are periodic over a week.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

There is a long history of operations research studies aimed at
improving the quality and efficiency of healthcare, as illustrated by
the early study [1] and the recent surveys [2–5]. Nevertheless, as
emphasized in [6], there remains a great need for further improve-
ment. Much of this improvement is likely to come from vastly im-
proved data collection, storage, retrieval and analysis.

1.1. Publicly available data for reproducible studies

The power of data analysis is illustrated by extensive ex-
ploratory data analysis of the patient flow in the large Rambam
Hospital in Israel from a queueing science perspective conducted
by Armony et al. [7]. In addition to their own analysis of the patient
flow data at the level of individual patients, they arranged to make
their data publicly available, thus facilitating reproducible studies
aimed at generating general conclusions of widespread applicabil-
ity. In this paper, we respond by analyzing a portion of the patient
flow data provided by [7]. In particular, we focus on the emergency
department (ED), just as in §3 of [7].

Among the many OR studies in healthcare, many have already
focused on the emergency department, e.g., [8–12]. As those
papers illustrate, the customary goal is to improve system design
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and operations. In contrast, in this paper, we focus solely on
analyzing the patient flow data to determine what is a good
aggregate stochastic model of the emergency department. This
careful analysis is justified because emergency departments are
complicated. The results here are intended to make it possible to
more quickly build better stochastic models that can be used to
improve healthcare design and operations.

The available ED patient flow data is powerful in that it includes
arrival and departure times of individual patients, but it is also lim-
ited in that it does not contain a detailed account of all the steps
and processes that take place during a patient’s stay. Thus, given
the available data, we are only able to construct a relatively rough
aggregate stochastic model, but even that can be useful and is not
easy. Our model has only three components: (i) an arrival process
model, (ii) an admission probability model, and (iii) a LoS model.
All three are complicated, because we find that all three should
be regarded as time-varying. Given those components, our aggre-
gate stochastic model for system occupancy is a Gt/GIt/∞ time-
varying infinite-server queue, which is much more tractable than
the notation suggests. (Gt denotes a general (non-renewal, non-
Markov) time-varying arrival process, while GIt denotes mutually
independent service times, independent of the arrival process, but
with a time-dependent distribution.) TheMt/Mt/∞ infinite-server
model was proposed for healthcare in 1976 by Collings and Stone-
man [13].

Because of the limited data, the possible direct applications of
the full model for operational improvement are limited. However,
it can be used to perform ‘‘what if’’ studies, e.g., to estimate the
performance impact of the arrival rate increasing by 3% per year
over the next 5 years. As reviewed in [14], infinite-server models
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describe the time-varying load together with the drivers of that
load. Of course, the load can be measured directly by the census,
i.e., the number of patients in the ED as a function of time, but
we expose how that is related to the main drivers, in particular,
the patient arrival process and the length of stay (LoS) of the
patients, both ofwhich are time-varying, and should be regarded as
stochastic. We think that the new model is most useful to provide
new useful models of the principal model components, especially
the patient arrival process. Almost any stochastic model used to
model a healthcare system has a component that is a model of the
patient arrival process.

1.2. Time-dependence

As others have discovered before, e.g., see §6.3 of [15], the au-
thors in §3 of [7] observe significant time dependence in the ar-
rival rate and average occupancy levels of the ED.We confirm those
observations here, but we go further by pointing out significant
time dependence in (i) the probability of admission into an inter-
nal ward from the ED, (ii) the length-of-stay (LoS) distribution of
arriving patients and (iii) the departure rate. Time dependence in
LoS was also a major theme in the recent study of a Singapore hos-
pital in [16].Wediscuss the relation between timedependence and
the state dependence emphasized by [7,17] in Section 4.5.

Consistent with §3 of [7], we find that the ED arrival rate should
be time varying, but we emphasize that the proper view is over
a week as opposed to the common daily view. In particular, we
think that the arrival rate can be regarded as periodic over a week.
As in [7,11] before, we find that there is moderate overdispersion
compared to a non-homogeneous Poisson process (NHPP). We
conclude that itmight be reasonable to use anNHPP arrival process
model, but in fact we suggest instead a two-time-scale arrival
process model. We suggest first modeling the daily totals as a
discrete-time Gaussian process and then letting the arrivals during
the day, given the daily total, be distributed as an NHPP. The
conditional NHPP means that the arrival times (not interarrival
times!) of the daily total number of arrivals are treated as i.i.d.
random variables on the entire day with a probability density
function (pdf) proportional to the arrival rate function for that day,
as discussed in [18,19]. This arrival process model is a variant of
the model proposed by [18]. We find that the model is supported
by the statistical tests in [19,20]; see Section 3.4.

The two-time-scale model is convenient because it supports
focusing on arrivals over successive days and arrivals within days
separately. Modeling the daily totals separately is convenient for
applying time-series methods that can test and capture trends
and stochastic dependence among successive days, but we did
not detect strong evidence of it (beyond the significant day-of-
week effect). There is precedent for two-time-scale healthcare
models in [16,21], but these are very different. The first [21] focuses
on the hospital plus the ED, observing that the Internal Wards
(IW’s) operate on the slower time scale of days, whereas the ED
operates on the faster time scale of hours. The paper [21] proposes
and analyzes a Markov chain (MC) model of that system, using
a discrete-time MC for the days and a continuous-time MC for
the transitions within days. On the other hand, in §3.2 of [16] the
authors propose a two-time-scale model of the LoS. The general
thrust of [16] is consistent with our time-varying LoS distribution,
which we discuss next.

We present strong evidence that the LoS distribution needs
to be regarded as time-varying, and find that it suffices to make
it time-varying over hours. Fig. 8 here shows that the average
occupancy level and departure rate are not predicted properly by a
using the overall LoS distribution. In particular, there is a significant
surge of departures just before midnight on each day as can be
from Figs. 8 (left) and 17. Moreover, these midnight departures
occur for arrivals across a wide range of times, as can be seen from
Table 5. We can make the connection by applying the theory of
infinite-server queues as in [22] or, equivalently, the time-varying
Little’s law [23,24]. We show how the time-varying LoS can be
efficiently and effectively analyzed by exploiting a discrete-time
model in the time scale of hours. The time dependence in the LoS
may prove useful in studying the scheduled operations in the ED
and the internal wards.

1.3. Organization

In Section 2 we briefly describe the Rambam hospital and our
data source, referring to [7] formore details.We analyze andmodel
the ED arrival process in Section 3; we also discuss the probability
of admission into an internal ward there. In Section 4, we analyze
andmodel the LoS. In Section 5, we examine the departure process,
showing that it can be useful to view the departure process in
reverse time. In Section 6 we compare our model to simulation.
Finally, we draw conclusions in Section 7. Supplementary material
is provided in an online appendix [25] (see Appendix A).

2. The Rambam Emergency Department and the data

As in [7], we study the Rambam hospital, a large 1000-bed
hospital with 45 medical units in Haifa, Israel. In particular, as
in §3 of [7], we focus on the emergency internal medicine unit
(EIMU), which is the largest unit in a comprehensive emergency
department (ED). That focus is justified because the different units
of the ED are physically separate and share few resources. About
60% of all new patients enter the hospital through the ED and the
majority of those enter through the EIMU, which we henceforth
simply call the ED. After being examined and treated within the
ED, patients are either admitted to one of the internal wards (IW’s)
or released, as depicted in Figure 2 of [7]. About 40% of arrivals to
the ED are admitted.

As directed in Appendix 2 of [7], we obtained the data from
the SEELab data-based research laboratory at the Technion. The
available hospital data was collected from January 2004 to October
2007. We only focus on the 25-week period from December 2004
to May 2005. In particular, we use the 5th, 6th, 13th and 18th
columns of the visit table in the database, which are the entry
group, first department, entry time and ED duration. In the raw
data, the time records are rounded to the nearest second.

A total of 58,332 patients visited the comprehensive ED, with
24,317 going to the EIMU (3955, 4360, 3530, 4324, 3965 and 4183
for each month). Table 1 provides the total number of arrivals to
the ED and length-of-stay (LoS) statistics for each of the sample
populations used in successive analyses. The LoS refers to the LoS
within the ED up until the time that a decision is made to admit
the patient to an IWor not. Thus, the LoS does not include the delay
until transfer is completed after the admission decision, commonly
called ED boarding.

From both the database and [7], we know that the ED patients
can be divided into two groups according to the admission
decision;we pay attention towhether or not patients are admitted.
Even though the admission decision cannot be known in advance,
we find that the proportion of admitted patients in successive
hours is time-dependent and thus can be exploited in modeling
and analysis.

There are several variables in the database that can be
used to help classify the patients. In this paper we use the
‘‘exit_group’’, which we find to be consistent with the ‘‘exit_unit’’,
‘‘exit_department’’ and ‘‘num_dep’’ in the visits table. ‘‘exit_group
=1’’ means the patient was released from the Emergency De-
partment and was not admitted to any hospital department;
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Table 1
Sample size (number of arrivals) and LoS statistics (in hours) in different views of the ED data.

No. Data description Sample size Mean stdv 1st qu. Median 3rd qu.

1 Larger ED 58,332 (182 days) 3.08 5.36 1.06 2.16 3.87
2 ED (EIMU) 24,317 (182 days) 4.10 3.49 1.90 3.31 5.26
3 Truncation of 2 23,409 (175 days) 4.10 3.49 1.90 3.31 5.26
4 Truncation of 2 23,421 (175 days) 4.09 3.41 1.90 3.31 5.26
5 Admitted from 3 9,669 (175 days) 4.01 3.26 1.68 3.45 5.53
6 Non-admitted from 3 13,740 (175 days) 4.17 3.65 2.01 3.24 5.05
7 Truncation of 2 23,407 (175 days) 4.10 3.50 1.90 3.31 5.27
8 Admitted from 7 9,668 (175 days) 4.01 3.27 1.68 3.45 5.53
9 Non-admitted from 7 13,739 (175 days) 4.17 3.65 2.01 3.24 5.06
‘‘exit_group=2’’ means the patient was released from a hospital de-
partment, which means that he was admitted to at least one de-
partment from the ED. So when we focus on patients who entered
ED first, this will tell us whether a patient was admitted to an IW
or not. Among the 23,409 patients that visited the ED (the EIMU) in
the 25-week period, 9669 (about 40%) were admitted and 13,740
were not.

Below is a detailed description of the datasets in Table 1.
Throughout the paper, we will refer to Table 1 to specify the
population.

• Dataset 2: a subset of dataset 1 containing those patients who
went to the EIMU within the comprehensive ED during the 25
week period; we refer to the EIMU simply as the ED.

• Dataset 3: a subset of dataset 2 containing those patients that
arrived within the 25 week period. (We use dataset 2 for
occupancy statistics.)

• Dataset 4: a subset of the dataset 2 containing those patients
who both entered and departed the system between Dec. 5,
2004, and May 28, 2005, and have LOS less then 48 h.

• Dataset 5: a subset of dataset 3 containing those patients who
were admitted after visiting the ED (‘‘exit_group=1’’).

• Dataset 6: a subset of dataset 3 containing those patients who
were not admitted after visiting the ED (‘‘exit_group=2’’).

• Dataset 7: a subset of dataset 2 containing those patients whose
departure times are in the 25-week period (from Dec. 5, 2004,
to May 28, 2005).

• Dataset 8: a subset of dataset 7 containing those patients who
were admitted after visiting the ED (‘‘exit_group=1’’).

• Dataset 9: a subset of dataset 7 containing those patients who
were not admitted after visiting the ED (‘‘exit_group=2’’).

3. The ED arrival process

In this section, we study the arrival process of patients at the ED
(bywhichwe alwaysmean the EIMU). In Section 3.1 we look at the
daily totals; we briefly discuss dependence among the daily totals
in Section 3.2. In Section 3.3 we estimate the hourly arrival rates
over a week. We evaluate the stochastic variability in the arrival
process in Section 3.4,which leads to proposing the two-time-scale
model involving a conditional nonhomogeneous Poisson process
(NHPP). In Section 3.4.1 we estimate the index of dispersion for
counts; in Section 3.4.2 we report results of statistical tests of the
conditional NHPP property, drawing on [19,20]. In Section 3.5 we
examine the arrival processes of two separate groups of patients:
those that were ultimately admitted to one of the IW’s and those
that were not. Finally, in Section 3.6, we summarize the two-time-
scale model for the arrival process that we propose, based on that
statistical analysis.

3.1. Daily totals

Table 2 shows the number of patients that arrived at the ED
on each day from Dec. 5, 2004, to May 28, 2005 (25 weeks). The
Fig. 1. Weekly arrival totals over the 25-week study period. (Use dataset 3.)

25 × 7 = 175 daily totals vary from 77 to 191, and have mean
133.8 and median 135.

Some of the fluctuationmay be explained by Jewish holidays. In
Israel, Dec. 8, 2004, toDec. 12, 2004, inweek1 and2wasHanukkah,
while Apr. 24, 2005, to Apr. 30, 2005, in week 21 was Passover. We
see that the daily totals are somewhat low during weeks 1 and 2,
but not very different in week 21. We also notice that another low
period occurred between Feb. 4, 2005, and Feb. 11, 2005, in weeks
9 and 10, for which we have no explanation. It is possible that this
was due to military hostilities, but we could not verify that. We
do not omit these periods from our data because they represent
unanticipated random events that do occur.

Within aweek, Sunday has the largest number of arrivals,which
is to be expected because it is the beginning of the work week in
Israel. Then the average daily totals decrease over the week. Friday
and Saturday have much fewer arrivals, which may be expected
because that is the weekend. We also computed the variance of
daily totals for each day of week. By looking at the dispersion (ratio
of the variance to the mean), we see that there is a moderate level
of overdispersion for the daily totals compared to a Poisson process
(where the dispersion is 1).

Fig. 1 is a plot of the weekly totals. It confirms our observation
above about the low values in week 10. Table 2 shows that the
meanweekly number of arrivals is 936. Hence, if the arrival process
were an NHPP, then the variance should be same as the mean
and the standard deviation of the weekly total would be about
√
936 ≈ 31. Fig. 1 is roughly consistentwith that Poisson property,

except forweek 10, which is about 5 standard deviations below the
mean.

We investigatedmodels for the daily totals. We first considered
a two-factor statistical regression model with Gaussian residuals
for the daily total numbers of arrivals; see §§2.7, 3.7 and 6.5 of [26]
for background. The daily total is represented as

T (w, d) ≡ A + Bw + Cd + G(0, σ 2), (1)

where≡denotes equality by definition,w represents theweek and
d is the day-of-week (DoW), while G(0, σ 2) is a mean-0 Gaussian
random variable with variance σ 2 (to be estimated) and A, B and
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Table 2
Number of arrivals at the ED on each day from Dec. 5, 2004, to May 28, 2005, (25 weeks, Dataset 2).

Week Sun. Mon. Tue. Wed. Thu. Fri. Sat. Total Mean

1 150 147 132 107 123 100 99 858 122.57
2 143 147 127 138 121 101 103 880 125.71
3 162 155 147 136 144 94 98 936 133.71
4 186 155 135 136 119 100 131 962 137.43
5 164 171 149 146 142 110 110 992 141.71
6 175 144 157 136 156 115 105 988 141.14
7 181 157 140 109 145 114 107 953 136.14
8 176 145 139 150 126 127 102 965 137.86
9 171 160 125 137 137 77 84 891 127.29

10 134 127 119 115 95 88 82 760 108.57
11 165 117 121 133 154 123 132 945 135.00
12 163 142 135 142 129 115 100 926 132.29
13 173 166 168 136 138 108 108 997 142.43
14 169 155 155 137 143 127 106 992 141.71
15 180 152 132 148 162 111 105 990 141.43
16 159 164 191 128 126 95 111 974 139.14
17 163 135 146 128 138 111 145 966 138.00
18 160 123 168 136 133 119 102 941 134.43
19 132 147 152 138 133 116 101 919 131.29
20 162 150 140 126 113 113 96 900 128.57
21 143 165 153 130 130 111 117 949 135.57
22 151 147 132 114 114 114 96 868 124.00
23 159 135 151 119 107 122 100 893 127.57
24 164 163 153 147 156 111 91 985 140.71
25 165 141 159 138 147 125 104 979 139.86

Total 4050 3710 3626 3310 3331 2747 2635 23409
Mean 162.00 148.40 145.04 132.40 133.24 109.88 105.40 936.36
Var. 191.58 187.08 275.71 139.33 270.44 152.78 196.75 3110.99
Table 3
ANOVA table for the two-factor model (1). (Use dataset 3.)

Factor Sum of square df Mean sum of square F statistics P-value

Week 10,666 24 444.4 2.75 1.1 × 10−4

DoW 62,893 6 10,482.2 64.89 <10−12

Residuals 23,262 144 161.5
C are constants. The week and the DoW are the two factors, so
actually we have wi’s as indicators for each week, dj’s as indicators
for each day-of-week and Bi’s, Cj’s accordingly. Because there is
redundancy in model (1) since


i wi = 1 and

7
j=1 dj = 1, we

set


Bi ≡ 0 and


Cj ≡ 0, so that A gives the average daily total
number of arrivals for all days.

Table 3 is the usual Analysis of Variance (ANOVA) table for the
regression. From the P-values in the last column of Table 3, we see
that both factors are statistically significant at the 1% level. From
the residuals, the estimated variance is σ̂ 2

= 161.5 = 12.712.
Under this model, the variance-to-mean ratio is 161.5/133.8 =

1.21. The Gaussian two-factor model is supported by observing
that the residuals are consistent with the Gaussian distribution, as
can be seen from the histogram of the residuals and the QQ-plot of
the studentized residuals in the appendix [25].

However, for applications, we would actually prefer the single-
factor model with only the DoW as the single factor, because the
DoWeffect is known,whereas theweek effect is not, but the results
above show the consequence ifwe can assume that it can be known
or, more generally, if better estimates of the daily totals can be
generated from forecasting. Hence, instead of (1), we propose the
single-factor model

T (d) ≡ A + Cd + G(0, σ 2), (2)

where again d represents the DoW factor and G(0, σ 2) is the
Gaussian random variable, while A and C are constants. Again, we
set


Cj = 0 to avoid redundancy.

Table 4 shows the estimated coefficients for model (2), while
Fig. 2 shows the histogram and QQ-plot for the residuals. The
coefficients Cj quantify the decreasing trend of the daily total
Table 4
Estimated regression coefficients for the single-factor model in (2). (Use dataset 3.)

Coefficients Estimate SE

A 133.766 2.842
C.Sun 28.234 4.019
C.Mon 14.634 4.019
C.Tue 11.274 4.019
C.Wed −1.366 4.019
C.Thu −0.526 4.019
C.Fri −23.886 4.019
C.Sat −28.366 4.019

arrivals within a week. Fig. 2 shows that the normality of the
residuals remains good. The ANOVA table can be computed from
Table 3. The estimated variance and dispersion (variance-to-mean
ratio) are

σ̂ 2
=

10666 + 23262
24 + 144

= 202.0 and D ≡
σ̂ 2

m̂
=

202.0
133.8

= 1.51,

where m̂ is the estimatedmean,which again represents amoderate
level of overdispersion relative to an NHPP.

3.2. Dependence among daily totals and residuals

We also examined the dependence among the residuals
in the single-factor model. We first directly estimated the
autocorrelation function and found the first seven coefficients
were all positive. We then fit and compared autoregressive AR(p)
models, and found that the fitting was not very good, but positive
coefficients again indicate some positive dependence among
the residuals. Nevertheless, when we performed four different
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Fig. 2. Supporting detail for model (2): histogram of the residuals (left) and QQ plot of studentized residuals (right). (Use dataset 3.)
Fig. 3. Estimated arrival rate at the ED over a week. (Use dataset 3.)
statistical tests of the residuals, we found that none could reject the
independence hypothesis. Finally, we also fit ARMA(p, q) models
for the actual daily totals for various p and q, with p = 7 being a
natural choice because of the observed DoW effect. Overall, we did
not find a better model to suggest. Thus the details are left to the
appendix [25].

3.3. Arrival pattern within days

We now estimate the time-varying arrival rate by computing
hourly averages and using a piecewise-linear plot. Unlike most
service systems, we find that it is important to take a week view
as opposed to a day view. Thus, we combine all the 25 weeks and
estimate the hourly arrival rate over a week, as is shown in Fig. 3.
The vertical dashed lines are at midnight between successive days.
Fig. 3 shows that the arrival rate is lowest in the early morning,
about 6am, and increases rapidly to a peak just before noon, after
which it declines irregularly, with a steep decline aroundmidnight.
As expected, the arrival rate is lower at night than during the day.
We can also see that the arrival rate is lower on weekends and has
a somewhat different pattern.

Since we have demonstrated a strong DoW effect on the daily
totals, it is natural to examine the daily pattern without the DoW
effect. To do so, we can normalize the arrival rate by the daily
totals; i.e., we divide the arrival rate in Fig. 3 by the average daily
total arrivals of each day of week. Fig. 4 (left) shows the arrival
rate after normalizing, while Fig. 4 (right) shows the corresponding
estimated cumulative arrival rate function. Fig. 4 shows that the
normalized arrival rates still look different for different days, but
we see more regular behavior with the cumulative view. Fig. 4
suggests that it should not be unreasonable to approximate the
arrival rate by a lower constant rate from midnight to 9 am and a
higher constant rate from 9 am to midnight. This relatively simple
arrival ratemodel is appealing, butwe found that it did not perform
as well in simulation comparisons.
3.4. Stochastic variability in the time-varying arrival process

It is commonly accepted that the arrival process to an ED can be
modeled by a nonhomogeneous Poisson process (NHPP), because
the arrivals typically come from the independentmedical incidents
of many different people, each of whom uses the ED infrequently.
Mathematical support is provided by the Poisson superposition
theorem; e.g., §11.2 of [27], but that should be verified, as in
[19,20].

Indeed, we have already seen strong stochastic variation in
the daily totals that suggests overdispersion relative to a Poisson
process. To illustrate unsuspected bunching of arrival that can
occur, anecdotally from New York, ED employees report surges of
arrivals at public transportation arrival times at the hospital.

Accordingly, we investigated the stochastic variability in the
arrival process by (i) estimating the index of dispersion for counts,
as in [28,29], and by performing statistical tests of the NHPP
property as in [19,20]. We briefly summarize the results of our
investigations and refer to the appendix for more details.

3.4.1. The index of dispersion for counts
The index of dispersion for counts (IDC) is the ratio of the

variance to the mean of the arrival counting process, as a function
of time. Let A(t) be the number of arrivals in interval [0, t], so that
{A(t), : t ≥ 0} is the arrival counting process. Let Λ(t) ≡ E[A(t)]
and V (t) ≡ Var(A(t)) be the mean and variance functions. Then
the IDC is I(t) ≡ V (t)/Λ(t), t ≥ 0.

It is instructive to consider three different views: (i) the week
view, (ii) the day view and (iii) the DoW view. In the week viewwe
take T = 7 ∗ 24 = 168 h, and estimate Λ(t) and V (t) hourly by
taking the 25weeks as samples, then compute the ratio to estimate
I(t). In the day view we take T = 24 h, and take the 25 ∗ 7 = 175
days as samples. In DoW view we take T = 24 h, and take each
specific day of week in the 25 weeks, so that the sample size is 25
for each day of week. Notice that it is natural to regard successive
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Fig. 4. Estimated normalized arrival rate function over the week (left) and the corresponding estimate cumulative arrival rate function (right). These are both compared to
a piecewise-constant approximation with two pieces divided at 9 am and midnight.
Fig. 5. The estimated IDC in a week view (top), day view (bottom left) and DoW view (bottom right). (Use dataset 3.)
Tuesdays as i.i.d., but not successive days, so that the DoW view is
likely to have less dependence.

Fig. 5 shows estimates of the IDC in all three views. In both
the week and day views IDC is steadily increasing, which reveals
dependence over multiple days. In contrast, in the DoW view the
IDC is much more flat, at a level that is not much greater than 1
for Poisson. The DoW view in Fig. 5 shows that the average IDC is
about 1.5, which coincides with the regression result for the daily
total arrivals in Section 3.1. Fig. 5 provides strong evidence that
the overall arrival process is not too well modeled as an NHPP,
but is quite well modeled as a conditional NHPP, where the arrival
process conditional on the daily total is regarded as an NHPP. As
explained in §3.2 of [30], that means that, after we condition on
the daily total, those arrival times can be regarded as i.i.d. random
variables over the day, each having a pdf proportional to the time-
varying arrival-rate function.

Our analysis is consistent with the conclusions in [11] and in
§3.2 of [7], but with very different method showing it. In [7], by
exploratory data analysis, the authors found that the ED hourly
arrival rates is time-varying. [11], which is also cited by [7],
observed overdispersion for the arrival process by looking at
empirical coefficients of variation in 4 time resolutions (hourly,
3-h, 8-h and daily). Here we go further by showing the time
variability structure through the IDC.

3.4.2. Statistical tests of the NHPP property
To statistically test the deviations from the conditional NHPP

assumption, we used the statistical tests in [19,20], in particular,
the conditional uniform Kolmogorov–Smirnov test (CU KS test)
and the Lewis KS test. The test results are shown in the appendix.
The results indicate that most intervals passed these KS tests,
indicating that it is reasonable to regard the arrival processes
as NHPP within each day. As emphasized in [19], that does
not imply that the arrival-rate function should be regarded as
deterministic. Instead, it supports the conditional NHPP property,
because these statistical tests cannot distinguish between the
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Fig. 6. Estimated arrival rates for the admitted and non-admitted patients. (Use datasets 5 and 6.)
Fig. 7. Estimated proportion of admitted patients as a function of the arrival timewithin each DoWplus the overall average shown by the black solid line (left) and compared
to the fitted quadratic function (right). (Use datasets 5 and 6.)
conditional NHPP and the direct NHPP when the separate days are
analyzed separately, as in theDoWview in the previous subsection.

In summary, we propose a two-time-scale model that has
random daily totals and, conditional on those totals, assumes that
the arrival process within each day is an NHPP. The conditioning
feature means that, conditional on the daily totals, that number
of arrivals is modeled as i.i.d. random variables over the entire
day, each having a pdf proportional to the arrival rate function.
We useMT

t to denote this two-time-scale conditional NHPP arrival
process, where T denotes conditioning on the daily totals. A variant
of this MT

t arrival process model was proposed for appointment-
generated arrival processes in [18]. For appointment-generated
arrival processes, the arrival process tended to be under-dispersed
compared to a Poisson process.

3.5. Arrival processes of the two groups: admitted and non-admitted

In Section 2 we mentioned that the patients in ED can be
divided into two groups according to the admission decision (to
the internal ward from the ED). The non-admitted patients are
released after being treated in the ED while the admitted ones are
transferred to the IW’s in the main hospital. A priori, we judge
that these two arrival processes can be regarded as an independent
thinning from the whole arrival process. For managing ED’s, we
wanted to investigate if this thinning might be time-dependent.
Fig. 6 shows the estimated arrival rates of the admitted and non-
admitted patients for a week.

We also looked at the proportion of patients admitted to the
internal ward as a function of their arrival time, denoted by p(t).
Fig. 7 shows estimates of the proportion of admitted patients by
time of day over a single day, using all 175 days. Fig. 7 presents
strong evidence that the probability of admission is indeed time-
varying. From a modeling perspective, it is significant that time-
dependent, but stochastically independent, thinning also preserves
the NHPP property; i.e., if A is an NHPP, then the two separate
arrival processes will be NHPP’s as well; see Proposition 2.3.2
of [31].

Furthermore, we use least squares to fit a quadratic function
to p(t) with a maximum at 2:30 pm. Fig. 7 (right) shows fitted
function,which is p̂(t) = −0.001082(x−13.5)2+0.451996,where
x = ((t−1.5) mod 24)+1.5 and t ∈ [0, 24]. Themodulus function
is used to treat the data as periodic with a daily cycle.

3.6. Summary: full model of the ED arrival process

We combine the analysis in the previous subsections to develop
a full arrival process model that can be used in simulation studies.
First, the daily totals for the number of arrivals are modeled as
independent random variables with a Gaussian distribution, as
determined by the single factor Gaussian model in (2). Then,
given the daily totals, the arrival process is modeled as an NHPP,
which means that the given random daily number of arrivals are
treated as i.i.d. random variables over the entire day with a pdf
proportional to the estimated arrival rate function for that day.We
refer to that arrival process model as MT

t . Finally, a patient that
arrives at time t is admitted with probability p(t), estimated by
the quadratic function above. We conduct simulation experiments
using the model in Section 6.

However, because we found only moderate overdispersion of
the arrival process within each day and only limited dependence
among the successive daily totals, our statistical analysis can be
interpreted as providing support for an ordinary NHPP (Mt ) arrival
process model. However, we did observe significant deviations
from an NHPP, as is evident from the means and variances in
Table 2. More importantly, we think that the two-time-scale
arrival-process model introduced here is a useful framework to
study potential deviations from an NHPP model. To directly fit an
NHPP is to ignore the model fit question entirely.
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Fig. 8. A comparison of direct estimates of the time-varying departure rate δ(t) (left) and the mean occupancy level m(t) (right) at the ED to indirect estimates based on
the Mt/GI/∞ model using the estimated arrival rate and LoS ecdf. (Use dataset 3.)
We also point out that the two-time-scale model is easy to use
in simulation models. The model has the advantage over the NHPP
that it allows simulation studies of the impact of overdispersion of
the daily-total distribution and dependence among the successive
daily totals on the ED performance, because these features can be
directly included in the model.

4. Length of stay

In this section, we investigate the patient LoS distribution. (In
doing so, recall that the LoS is declared over when the admission
decision is made, i.e., whether or not to admit the patient to
an internal ward; an admitted patient may still be in the ED
waiting to be transferred to an internal ward.) We first find that
the LoS distribution should be regarded as time-varying. Then we
introduce a discrete-time analysis to expose the structure in more
detail. We discuss an alternative state-dependent LoS distribution
in Section 4.5.

4.1. Failure of the Gt/GI/∞ aggregate model

It is common to directly examine the LoS distribution, as if
that should be a natural primitive. For modeling, that means that
the LoS of successive patients would be modeled as i.i.d. random
variables with that distribution. Given that perspective, we started
by estimating the overall LoS distribution;we refer to the appendix
for the details. That was accomplished by looking at the difference
between the exit time and entrance time of each patient. A more
elaboratemodel of what happens in between arrival and departure
was not possible, because such extra informationwas not included
in the data.

It also turns out to be highly significant that the departure or
exit time was defined as the time that the ED doctor made the
decision whether or not to admit the patient. Thus, for admitted
patients, the additional time until the transfer to the InternalWard
(IW)was not included in the data. Thus, wewere unable to directly
study the important problem of ED boarding (the extra delay
between the admission decision and the patient being transferred
to the IW).

Given that perspective, a natural aggregate model for the
ED would be an Mt/GI/∞ or Gt/GI/∞ infinite-server queue,
combining an arrival process with a time-varying arrival-rate
function with the patient LoS modeled by a sequence of
independent and identically distributed (i.i.d.) service times with
a general cumulative distribution function (cdf) G.

To see if these models with GI LoS times are approximately
appropriate, we calculated the time-varying departure rate δ(t)
and the mean occupancy level m(t) ≡ E[Q (t)] in the Gt/GI/∞
model using Theorem1 of [22] togetherwith the estimated arrival-
rate function λ(t) and LoS cdf G. (As emphasized by §5 of [32],
Fig. 9. A box plot of the LoS distribution by hour of the day. The blue diamonds are
themeans, while the black bars are themedians. (Use dataset 3.) (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

these formulas apply to Gt as well as Mt arrivals, and so also
apply to MT

t arrivals, as assumed in Section 3.6.) Fig. 8 compares
the directly estimated departure rate and mean occupancy to
the indirect estimator exploiting the model. Fig. 8 shows that
the model with GI LoS does not nearly approximate the actual
departure rate and mean occupancy levels. Especially striking is
the surge in departures at the end of the day, around midnight,
which is totally missed by the Mt/GI/∞ model. In closing, we
remark that Fig. 8 parallels Figure 3 in [7]. There it is emphasized
that the peak occupancy lags after the peak arrival rate, which can
be seen from Fig. 8 as well.

4.2. The time-varying LoS distribution

To directly see the time-varying structure of the LoS distribu-
tion, we looked at a box-plot of the LoS for each hour; see [33] for
background. The time-varying behavior of the LoS can be seen from
aweek view (see the appendix), but is especially clear in a day view,
as shown in Fig. 9. The boxes show the 25% and 75% percentiles,
while the blue diamonds are the means and the black bars are the
medians. Consistent with intuition, the LoS is longer for patients
arriving after midnight, when there are fewer staff. The LoS also
tends to be somewhat less for arrivals in the evening. This may be
explained by extra effort to release non-admitted patients by mid-
night, which we will discuss soon.

Given the time-dependence in the LoS distribution, we decided
to do a careful analysis in discrete time. For that purpose, let Xk,j be
the number of arrivals in discrete time period k that have a LoS of
j time periods, i.e., that depart in discrete time period k + j, j ≥ 0.
We let a discrete time period be one hour. We still focus on the
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Table 5
Part of the transpose of the X̄ matrix; i.e., the entry in row j and column k is the average number of arrivals in hour k who had a LoS equal to j hours, so that the bold values
correspond to the surge just before midnight. (Use dataset 4.)

7 8 9 10 11 12 13 14 15

1 0.131 0.246 0.491 0.817 1.069 1.263 1.194 1.006 0.680
2 0.234 0.366 0.709 1.194 1.560 1.543 1.446 1.211 1.114
3 0.314 0.417 0.754 1.177 1.691 1.554 1.286 1.343 1.549
4 0.263 0.337 0.623 1.040 1.114 1.154 1.331 1.257 1.171
5 0.263 0.171 0.320 0.669 0.703 1.257 0.840 1.011 0.874
6 0.189 0.194 0.217 0.411 0.697 0.657 0.583 0.594 0.651
7 0.091 0.120 0.154 0.400 0.394 0.366 0.474 0.423 0.343
8 0.023 0.051 0.171 0.246 0.274 0.257 0.263 0.211 0.211
9 0.029 0.103 0.074 0.131 0.211 0.206 0.211 0.137 0.446

10 0.006 0.051 0.017 0.109 0.149 0.097 0.069 0.383 0.051

11 0.023 0.017 0.023 0.080 0.051 0.086 0.269 0.034 0.051

12 0.017 0.034 0.029 0.029 0.046 0.246 0.051 0.011 0.011

13 0.011 0.017 0.006 0.023 0.366 0.006 0.029 0.011 0.006

14 0.000 0.006 0.000 0.234 0.011 0.023 0.011 0.000 0.000

15 0.006 0.006 0.126 0.006 0.000 0.017 0.000 0.000 0.011

16 0.000 0.057 0.000 0.006 0.006 0.006 0.011 0.017 0.011

17 0.034 0.000 0.000 0.006 0.000 0.006 0.006 0.017 0.011
18 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.017 0.011
time period from Dec. 5, 2004, to May 28, 2005 (25 weeks, 175
days), so we make 00:00-01:00 on Dec. 5 2004 to be discrete time
period k = 1. In order to have the correct number of patients in
the system, we only count patients who entered or left the system
in that time period and have a reasonable LoS; i.e. we use dataset 4
through this part. We have to include 1 extra day (Dec. 4, 2004) at
the beginning to let X include all the patients we focused on. The
longest LoS is less than 37 h after cleaning the data. So our X matrix
has dimension (24 ∗ 176) × 37, i.e. for Xk,j, −23 ≤ k ≤ 24 ∗ 175,
0 ≤ j ≤ 36. The full X matrix is displayed in the appendix.

Let Ak and Dk be the number of arrivals and departures in the
time period k. Then we have

Ak =

36
j=0

Xk,j and Dk =

36
j=0

Xk−j,j,

where we assume Xk,j = 0 for all k, j except −23 ≤ k ≤ 24 ∗ 175,
0 ≤ j ≤ 36.

Now we assume a periodic structure over successive periods
of d discrete times. We assume that we have sufficient data to
estimate averages over n periods, containing nd discrete time
periods. Specifically, if we consider a period to be 1 week, then we
have n = 25 and d = 7 ∗ 24; if we consider a period to be 1 day,
then we have n = 175 = 7 ∗ 25 and d = 24.

In this periodic setting, we construct averages. In particular, let

Āk = n−1
n

m=1

A(m−1)d+k, D̄k = n−1
n

m=1

D(m−1)d+k

and

X̄k,j = n−1
n

m=1

X(m−1)d+k,j,

for 1 ≤ k ≤ d and 0 ≤ j ≤ 36. The X̄ matrix for d = 24 is
shown in the appendix. Table 5 shows part of the transpose of the
X̄ matrix; i.e., the entry in row j and column k is the average number
of arrivals in hour kwho had a LoS equal to j hours, so that the bold
values correspond to the surge just before midnight.

To make the structure more evident, we show some of the cells
shadowed and bold. Those diagonally arranged cells correspond to
the average number of patients that arrived in the column hour
whose row value of LoS made them depart from the ED in the hour
beforemidnight. Table 5 shows thatmany patients depart from the
ED just before midnight. For example, consider the arrival in hour
(column) 10. The average number increases from j = 1 to j = 2, but
then decreases to the low value 0.023 at j = 13 before jumping up
to 0.234 at j = 14, a value 10 times higher, before declining rapidly
toward 0.

Again, we emphasize that the data we used only provides the
entry time and exit time for each patient, where the exit time is
when the ED doctor made the admission decision. Evidently there
is a change in medical staff at midnight that increases the number
of admission decisions just before midnight.

4.3. The LoS of the two groups

Just as for the arrival process, we want to study differences in
the LoS distribution for the admitted and non-admitted patients.
Fig. 10 shows the empirical LoS distribution for the two groups
without time structure. The admitted patients have a smaller
mean LoS but a longer median, because about 7% of the admitted
patients have an extremely low LoS. Evidently, these patients were
transferred immediately to the IW’s. If we omit the admitted
patientswhose LoS is less than 2min (657 patients), then themean
LoS of the admitted group increases to 4.30 h, which is larger than
the non-admitted group.

Then we look at the time-varying feature of the LoS for the two
groups, again using box plots. Fig. 11 shows that the time-varying
LoS distribution is more regular for the non-admitted patients. We
see quite striking differences for admitted patients before and after
midnight.

4.4. The LoS model and occupancy

Our analysis of the LoS data, leads us to model the LoS
distribution as (i) time-dependent and (ii) depending on whether
the patient is admitted or not. If we use the MT

t two-time-scale
arrival process model in Section 3.6 and ignore the distinction
between the admitted andnon-admitted patients, this produces an
MT

t /GIt/∞ infinite-server aggregatemodel. Extending it to the two
types of patients, the model becomes two independentMT

t /GIt/∞
models, again using the arrival process model from Section 3.6,
one for the admitted patients and another for the non-admitted
patients. We would use the separate time-varying LoS distribution
for each group. We remark that this independence assumption is
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(a) LoS of admitted patients. (x-axis limited to 10 h.) (b) LoS of non-admitted patients. (x-axis limited to
10 h.)

(c) Empirical cdf’s for the 2 groups.

Fig. 10. Estimated LoS distributions of the admitted and non-admitted patients truncated to [0, 10]. (Use datasets 5 and 6.)
Fig. 11. Box plots of the LoS distribution as a function of the arrival time for admitted (left) and non-admitted (right) patients. (Use datasets 5 and 6.)
an approximation because in fact the two groups are necessarily
dependent because they use the same resources.

Even though an infinite-server model was not suggested in [7],
the infinite-server model is consistent with several observations
in it. First, in §3.1 [7] the authors emphasize that the bed capacity
of the ED is highly flexible, so that there is effectively unbounded.
Second, in Figures 4 and 5 in §3.2.2 of [7] the authors observe that
a time-varying Gaussian distribution fits the occupancy data well,
but that is consistent with the theoretical time-varying Poisson
distribution in the time-varying Mt/GI/∞ model and the heavy-
traffic Gaussian approximations for infinite-server models in [34].

4.5. Time dependence versus state dependence

We have proposed a time-dependent LoS distribution in
contrast to the state-dependent LoS distribution proposed in
[7,17] and in references cited there. Because there is strong time-
dependence in the occupancy level, these two forms of dependence
are intimately linked and not easy to separate.

To substantiate that claim,weprovide a state-dependent analog
of Fig. 9 in Fig. 12. Fig. 12 provides a box plot of the LoS distribution
by state, i.e. the number of patients in the ED. We also plot the
sample size as a function of the state, shown on the right axis,
which shows that there are fewer arrivals when the state is either
low or high. From either the mean values (purple diamonds) or
the medians (black bars), we see the that the LoS is an increasing
function of the ED occupancy.

In general, which model is preferred may depend on the ease
of analysis. The state-dependent LoS model might be considered
to be more tractable, because it produces a stationary model.
Nevertheless, state-dependent models, especially non-Markovian
state-dependent models, are not easy to analyze. In fact, a good
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Table 6
ANOVA table for the two-factor model (1) for the departures. (Use dataset 7.)

Factor Sum of square df Mean sum of square F statistics P-values

Week 10661 24 444.2 2.19 <0.01
DoW 56146 6 9357.6 46.22 <0.01
Residuals 29156 144 202.5
case can be made that models with time dependence are actually
easier to analyze; there is now a substantial literature, e.g., [14,15,
32,35].

Both views provide important insight. State dependence
shows that ED congestion increases the patient LoS, while time
dependence make it easier to connect the results to ED operations
and hospital routines, which tend to be driven by the clock much
more than the load. In particular, hospital routines usually dictate
that hospital admission and release decisions tend to be made at
prescribed times.

In particular, for the ED data, we have presented strong
evidence for time-dependence as opposed to state-dependence,
because of the surge of departures just before midnight on each
day, as can be from Figs. 8 (left) and 17. Table 5 shows that these
midnight departures occur for patients that arrive across a wide
range of times. Nevertheless, it can be captured by a time-varying
LoS distribution.

It remains to carefully examine state-dependent models.
Evidently, a state-dependent LoS cannot capture the midnight
departure surge, but there are a variety of state-dependent models
that might be considered. Presumably, proper state-dependence
should take account of the occupancy throughout a patient’s LoS,
not just at arrival, but that is not easy to implement.

5. The departure process

In this section, we investigate the departure process from the
ED. As a theoretical reference point, for the Mt/GIt/∞ model, the
departure process is also an NHPP. We find it useful to look at the
departure process and the entire ED in reverse time, so that we
can think of the departure process as an arrival process and use
the samemethodswe have used in previous sections. That reverse-
time perspective is especially revealing to look at the time-varying
proportion of admitted patients and the time-varying LoS, where
the time refers to the departure time instead of the arrival time.

5.1. Daily totals

Paralleling Section 3.1, we first look at the daily totals of
departures, butwe provide only a brief overview; see the appendix
for the tables and figures.

The reverse-time perspective forces us to change the data a
little. Nowwe consider the patients that left the from Dec. 5, 2004,
toMay 28, 2005, which is 23,407 patients in total (see Table 1). The
mean values for each week and each DoW are almost the same as
for the arrivals, but there is a significant difference in the variances.
The variance of the total numbers of departures by DoW is higher
than for the arrivals. Evidently, there is less regularity in departures
than in arrivals.

Again, we fit the Gaussian regression models in (1) and
(2) in Section 3.1 for the departures. The parameters have the
same meaning as before. Table 6 shows the ANOVA results. As
before, both the Week factor and the DoW factor are statistically
significant, but the DoW factor explains most of the variance. For
the two-factor model, the mean sum of square for the residuals is
σ̂ 2

= 202.5 = 14.232, which is higher than that of the arrival
process. The variance-to-mean ratio is 202.5/133.8 = 1.51. If we
omit the Week factor and consider the single factor model. Then
themean sumof square for the residuals is (10 661+29 156)/(24+
144) = 237.0 and the variance-to-mean ratio is 237.0/133.8 =

1.77.
Fig. 12. A box plot of the LoS distribution by state, i.e. the number of patients in
the ED. The purple diamonds are the means, while the black bars are the medians.
(Use dataset 3.) (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

5.2. Departure pattern within each day

Nowwe turn to the time structure of departure ratewithin days.
Fig. 13 shows the reverse-time view. Paralleling and amplifying
Figs. 8, 13 shows clearly that the departure rate has midnight
surges and that the peaks are increasing over the week.

As before, we divided the patients into two groups according
to the admission decision. (See Table 1 for basic statistics.)
Fig. 14 shows the time-varying proportion of admitted patients
as a function the departure time. We see that the proportion
of admitted patients is extremely low at 7–8 a.m. of each day.
Evidently, admission decisions at that time are postponed until
new doctors arrive after morning staff changes.

Fig. 15 presents box plots of the LoS distribution as a function
of the departure time (in reverse-time perspective) for admitted
(left) and non-admitted (right) patients. We see that the midnight
surge is caused by the non-admitted patients, and that the LoS of
non-admitted patients are more influenced by time of the day.

6. Comparison with simulation

In this section we conduct simulations to substantiate our
model.

6.1. Comparing alternative LoS models

We conduct simulation experimentswith ourmodel to see how
it represents the data. First, we focus on the LoS model. To do so,
we use the original arrival data. We repeat the 25 weeks 40 times,
so that the sample size is 1000 weeks. To examine alternative
LoS models, we treat them in three different ways: (A) The first
option is GI , i.e., we assume that the LoS distribution is not time-
varying; we use the overall estimated cdf; (B) The second option is
GIt but with a day view; i.e., we assume that the LoS distribution
is time-varying over each day; we use the estimated time-varying
cdf depending on the arrival timewithin a day; (C) The third option
is also GIt but with a week view; i.e., we assume that the LoS
distribution is time-varying over each week; we use the estimated
time-varying cdf depending on the arrival time within a week.
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Fig. 13. Estimated departure rate at the ED in reverse time. (Use dataset 7.)
Fig. 14. Estimated time-varying proportion of admitted patients as a function of
the departure time from the ED over a day, for each DoW and overall, combining all
days together (black solid line). (Use datasets 8 and 9.)

Figs. 16 and 17 compare the indirect model estimates to direct
simulation estimates of the time-varying expected occupancym(t)
and the time-varying departure rate δ(t), respectively, based on
each of these three LoS models.

The top plots of Figs. 16 and 17 show the consequence of
ignoring the time-varying LoS distribution. Consistent with Figs. 8,
16 shows that the GI LoS model significantly underestimates
the occupancy at the end of the day, before midnight, and
overestimates it at the beginning of the day, after midnight,
while Fig. 17 shows that the GI LoS model completely misses the
midnight surge of departures.

The middle plots (B) of Figs. 16 and 17 show that the GIt LoS
model with a day view does much better than the GI model,
capturing the midnight surge in departures. Nevertheless, there is
a clear gap between the mean occupancy curves. Remarkably, the
bottom plots (C) of Figs. 16 and 17 show that the GIt LoS model
with a week view show near-perfect agreement.
6.2. Evaluating the full model

We obtain a full ED model when we (i) incorporate the MT
t

arrivalmodel summarized in Section 3.6, (ii) divide the arrivals into
the two groups, admitted and non-admitted, using independent
thinning according to the time-varying probability p(t) estimated
in Section 3.5, and (iii) when we use a separate LoS model for each
group.

We repeated the three experiments Figs. 16 and17using the full
model. We applied the three LoS models to each group separately.
The new simulation results look virtually identical to Figs. 16 and
17, and so they are only shown in the appendix.

6.3. The time-varying Little’s law

The spectacular agreement between the simulation estimates
for case (C) were initially puzzling. However, we find that this can
be explained in large part by the time-varying Little’s law (TVLL),
as in [23,24]. The TVLL Little’s law applies to a Gt/Gt/∞model and
thus to ourMT

t /GIt/∞model. The discrete-time study in this paper
motivated us to also consider a discrete-time version of the TVLL.
We intend to discuss the discrete-time TVLL and the implications
of the TVLL in [36]. Briefly, the implications are that we should
regard the accurate prediction of the average occupancy given the
Gt/GI/∞ aggregate model as a data consistency check rather than
a genuine prediction, when we estimate the average occupancy
from the same data used to fit the model.

7. Conclusions

We studied a 25-week portion of the ED data used in the patient
flow study by Armony et al. [7]. We carefully studied the arrival
process to the ED and the patient LoS distribution, reaching several
important conclusions.
Fig. 15. Box plots of the LoS distribution as a function of the departure time (in reverse time) for admitted (left) and non-admitted (right) patients. (Use datasets 5 and 6.)
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Fig. 16. Simulation estimates of the time-varying expected occupancy m(t), based on the arrival data plus three LoS models: (A) GI (top), (B) GIt with day view (middle)
and (C) GIt with week view (bottom).
First, for the arrival process, we think that it is helpful to use the
two-time-scale approach, in which we first look at daily totals and
then look at the arrival process within each day conditional on the
daily totals, which leads to the arrival process model summarized
in Section 3.6. In Section 3.1 we examined factor regression
models for the daily totals, and adopted the single-factor model
in (2), which expresses the daily totals as an expected value
depending on the day of the week (DoW) plus a mean-0 Gaussian
distribution with a variance that is determined by the regression.
This directly leads to a model of independent daily totals with
a Gaussian distribution depending on the DoW. The two-time-
scale model is useful, because it provides a useful framework
for future research. It is natural to next look for improvements
to the model of daily totals by exploiting (i) time-series models,
(ii) forecasting methods and (iii) more context knowledge to
capture the dependence in successive daily totals. Preliminary
investigation revealed positive dependence among the residuals,
as indicated in §3.2 and expanded upon in the appendix [25]. With
further work, it may be possible to capture the dependence over
multiple days shown in Fig. 5 (first two plots).

We studied the time-varying arrival rate in Section 3.3. We
concluded that it is important to take a week view, as shown
in Fig. 3, rather than the common day view. An important new
finding is the dependence of decision to admit a patient from
the ED into an internal ward upon the time of arrival, discussed
in Section 3.5. (It still remains to find a good explanation.) Even
though the admission decision cannot be known in advance
for individual patients, we can exploit the time-dependence in
the observed admission decisions to model these two groups of
patients differently. Finally, we examined the stochastic variability
in the arrival process in Section 3.4 and found support for the two-
time-scale model, where conditional on the daily totals, the arrival
within the day can be modeled as an NHPP. We denote this arrival
process as MT

t .
Second, we analyzed the patient length-of-stay (LoS) distribu-

tion in Section 4. We concluded that this too should depend on
the arrival time. We discuss alternative state-dependent models
as in [7,17] in Section 4.5. Figs. 8, 16 and 17 dramatically show the
consequence of ignoring this time-varying feature. Of course, it is
desirable to do a more detailed modeling of the flow within the
ED, presumably with a queueing network model, so that the over-
all LoS distribution can be analyzed through its component parts,
but the available data did not permit that. Even after that is done,
an aggregate model should be helpful for comparison.

Combining the arrival process model in Section 3 and the
LoS model in Section 4, we obtain the proposed MT

t /GIt/∞
time-varying infinite-server aggregate model of the ED. This
model becomes expanded to two independent such infinite-server
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Fig. 17. Simulation estimates of the time-varying departure rate δ(t) based on the arrival data plus three LoS models: (A) GI (top), (B) GIt with day view (middle) and (C)
GIt with week view (bottom).
models if we separately model the admitted and non-admitted
patients, with independence following from the independent
thinning of an NHPP. This model can be used for capacity planning
and for comparison in more detailed queueing network models of
the ED.

We think it is also important to analyze the departure process
from the ED, which we do in reverse time in Section 5. The
departure rate function in Fig. 13 clearly shows themidnight surge,
which can be missed from other views. Figs. 14 and 15 show that
the admission decision and the LoS both depend on the departure
time as well as on the arrival time.

Finally, we compared our model to simulation in Section 6.
We found remarkable agreement in the average occupancy level
and the departure rate, but discovered that these high-quality
approximations can largely be explained by the time-varying
Little’s law in [23,24], as we plan to discuss in [36].

There are many remaining problems for future research. First,
it remains to carefully examine the surge of departures before
midnight each day and its cause. Second, it remains to examine
the ability of the model to predict the future. Third, it remains to
find and examine more extensive data sets that include: (i) the full
LoS until the patient secures a bed in the internal ward, (ii) the
operational steps within the ED, and (iii) the use and availability of
additional resources, such as doctors and nurses. Finally, it remains
to compare and contrast state-dependent and time-dependent
models more generally.
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