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Abstract

A nonstationary point process can be efficiently simulated by exploiting a
representation as the composition of a rate-one process and the cumulative
arrival rate function, provided that an efficient algorithm is available for gen-
erating the rate-one process, as is the case for stationary renewal processes,
Markov modulated Poisson processes and many other processes. Overall ef-
ficiency can be achieved by constructing a table of the inverse cumulative
arrival rate function when it is not explicitly available.

Keywords: simulation, nonstationary point process, time-varying arrival
rate, inverse function, queues with time-varying arrival rates, service system

1. Introduction

Since service systems typically have arrival rates that vary strongly by
time of day, e.g., see Figures 1, 8 and 9 in [1], there is interest in developing
stochastic models with time-varying arrival rates. The most common ar-
rival process model for this purpose is the nonhomogeneous Poisson process
(NHPP), but there also is evidence from arrival data that an appropriate
arrival process model with time-varying rates often should not be an NHPP;
see [2, 3, 4, 5, 6, 7] and references therein.

Thus we want to create non-Poisson nonstationary arrival process models
and study the performance of associated queueing models with those arrival
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processes. Recent work developing non-Poisson nonstationary arrival process
models and staffing algorithms to stabilize the performance in an associated
queueing model with that arrival process is contained in [8, 9]. An impor-
tant part of that work was conducting simulation experiments to evaluate
how successful the proposed algorithms are in stabilizing performance at the
designated targets. The purpose of the present note is to communicate how
these simulations can be efficiently conducted.

In this line of research, it has been accepted practice to use stylized arrival
rate functions that capture essential features of arrival rate functions that
can be estimated from data. In particular, it has been standard to use the
sinusoidal arrival rate function

M) = AME A B,y) =M1+ Bsin(yt)) for 0<B<1 and >0, (1)

where ) is the average arrival rate (the spatial scale), 3 is the relative ampli-
tude and 7 is the time scaling factor, determining the associated cycle length
T = 27/7v. (We also typically assume that the mean service time is 1 in the
queueing model, which just fixes the time units.)

To understand how a staffing algorithm performs, we need to consider
a range of the parameters for spatial scale A and temporal scale v in (1).
(These same parameters can be part of any periodic arrival rate function.)
Moreover, we need to consider a range of nonstationary arrival processes with
such an arrival rate function. Here we show that these requirements can be
achieved with remarkable efficiency with an appropriate approach.

We first note that extending the arrival process beyond an NHPP presents
a challenge for the simulation. The standard way to simulate an NHPP is to
apply time-dependent thinning of a homogeneous Poisson process (PP), as
in §2.4 of [10] and [11]. Thinning can be applied to a large class of renewal
processes using hazard rate stochastic ordering, as in §9.3 of [10] and §2.3 of
[12], but extension to non-renewal processes requires additional work.

Our main idea for simulating non-Poisson nonstationary arrival processes
is to exploit the inverse method, as often used in generating non-uniform
random numbers; see §I1.2 and §II1.2 of [13] and §3.8 of [14]. The inverse
method can be used for NHPP’s, but it is even more appealing here because
it allows us to efficiently simulate a large class of non-Poisson nonstationary
arrival processes, not just one.

The first step in this approach is to construct a large class of non-Poisson
nonstationary arrival process models by using the inverse A=! of the cumu-
lative arrival rate function A, which for the sinusoidal arrival rate function



in (1) is
At) = /o A(s)ds = At + (B/7)(1 — cos (yt))], t>0. (2)

The associated inverse function A1 is well defined for (2) and any arrival
rate function for which

0< A <ANt) <Ay <oo forall 0<t<T <o (3)

e.g., we could apply basic properties of inverse functions, as in §13.6 of [15].

Exploiting a well known representation, as in §7 in [16] and [8, 12, 17, 18],
we define a nonstationary counting process A for any cumulative arrival rate
function A (such as in (2)) and any rate-1 counting process N that we are
able to simulate by letting

At) = N(A()), t>0. (4)

It is immediate that E[A(t)] = A(t), t > 0, and the arrival times of A and
N, denoted by Ay and N respectively, are related by

A =ANYNy), k>1. (5)

Since the inverse function A~! is often unavailable explicitly, we construct
a suitably accurate approximation of it and apply it by table lookup. In §2
we explain how the possibility of re-use provides remarkable efficiency; in
§3 we develop an algorithm to efficiently construct the approximate inverse
function with specified accuracy; and in §4 we discuss additional application
issues.

2. The Basis for Efficiency Through Re-Use

A main advantage of the inverse function approach is the possibility of re-
use. Since the inverse function satisfies a fixed point equation, an alternative
way to calculate the inverse is to solve the fixed point equation for each
arrival time, perhaps by search, exploiting the monotonicity. That is done
in [19]. However, that search has to be performed at each arrival time. The
search has the advantage that there should usually be far fewer arrivals in
a fixed interval [0,7] than arguments in a tabled inverse function, but the
inverse function has the advantage that it can be constructed once outside
the simulation and re-used. Moreover, the calculation from the table can be
very fast, because it is possible to proceed forward through the table only
once.



2.1. One Cycle for Periodic Arrival Rate Functions

The algorithm can be accelerated if the arrival rate function is periodic,
as for the sinusoidal function in (1), because it suffices to calculate the inverse
only for a single cycle. For example, with the sinusoidal arrival rate function
in (1), A(2kmw/vy) = X2kr/v for all integers k > 0, so that A~1(2kAw/7) =
2km /v for all integers k& > 0. Hence, it suffices to construct the inverse for
0 <t < 2nm/7v. Overall, we get

AU (@hFr/7) +) = (@bnjy)+ATND), 0<t<Aafy,  (6)
so that it suffices to calculate A~! on the interval [0, 27 /~].

2.2. Different Scaling of Time and Space

We also can use one constructed inverse function A=! to obtain inverse
functions for scaled versions of the original function A. This commonly oc-
curs with sinusoidal arrival rate functions A(¢; A, 3,7) in (1). We are often
interested in different spatial and temporal scale parameters A and 7. Since

A(t; X, B,7) = A (yt;1,8,1) /7, (7)

we can apply Lemma 13.6.6 of [15] to express the inverse as

AN BN By) = AN (0t /X1, 8,1) /. (8)

Hence, we can use the constructed inverse function A1(¢; 1,8,1) for A(t;1,8,1)
to construct the inverse function A=1(t; A, 8,7) for A(t; \, B,7); i.e., we can
reduce the three parameters to just one.

2.3. Multiple Non-Poisson Nonstationary Arrival Process Models

In order to evaluate performance approximations and system controls
such as staffing algorithms, we need to consider a variety of models to ensure
that the methods are successful for a large class of models. It is thus signif-
icant that a constructed inverse function A=! can be re-used with different
rate-1 stochastic counting processes N. For any rate-1 counting process N
that we can simulate, we can generate the corresponding nonstationary ar-
rival process with the same arrival rate function A simply by applying the
tabled inverse function to the arrival times of that rate-1 process, as in (5).
Methods for simulating stationary counting processes are well established.



2.4. Multiple Replications to Obtain Accurate Performance Estimates

The tabled inverse function can be re-used in each replication when many
replications are performed to obtain accurate performance estimates. For
example, we might use 10% or more i.i.d. replications.

3. Constructing the Approximation of the Inverse Function

By (5), if we can simulate the arrival times N of the designated rate-1
process, then to simulate the desired arrival times Aj of the nonstationary
point process A, it only remains to compute A~'(NN;) for each k. This is
straightforward if the inverse function is available explicitly. If we use data
to estimate the cumulative arrival rate function, then we can fit a convenient
invertible function A. Indeed, with data there seems to be no reason not
to use an invertible function. For example, it could be a piecewise-linear
function as in [12, 18, 20, 21].

However, starting with an explicit non-invertible function A, as in (2),
we want to efficiently construct an approximation of A™! that is (i) easy to
implement, (ii) fast in its implication and has (iii) suitably small specified
accuracy. We could act just as if we had data, and fit a convenient invertible
function, but then it remains to substantiate that the three goals have been
met. To achieve these three goals, we contend that a good approach is to
construct a piecewise-constant approximation. Of course, this construction
can yield multiple points when that is not possible in the counting process A,
but that is easily eliminated if it is deemed important; see §4.4. At some extra
work, we could convert the piecewise-constant approximation to a piecewise-
linear approximation, paralleling [20]. For all these modifications, our error
bound still applies. For the queueing applications, this last refinement step
should usually not be necessary.

We assume that a cumulative arrival rate function A associated with an
arrival rate function \ satisfying (3) is given over a finite interval [0,7]. By
(3), there exists a function r such that A~'(¢) = fotr(s) ds, 0 <t < A(T),
and

Our goal is to efficiently construct an approximation J to the inverse
function A~! mapping the interval [0, A(T)] into [0, T] with specified accuracy

|7 =AY = sup {lJ(t) = AT ()]} <€ (10)

0<t<A(T)



for some suitably small target ¢ > 0. This is a natural way to quantify the
error, because € specified the maximum error in the arrival times.

Our general strategy is to partition the two intervals [0, 7] and [0, A(T)]
into n, and n, evenly spaced subintervals of width n and J, respectively, and
then define J at i to be an appropriate jn, for each ¢, 0 <7 < n,. We extend
J to [0, A(T)] by making J a right-continuous step function, assuming these
constant values specified at id.

Key parameters for our algorithm are

)‘U € /\UE
= =Y — = = 11
p=pa= o n and 0 = \yn T (11)

L L+p
where \;, and Ay are the lower and upper bounds on the arrival rate function
A given in (3) and e the desired error bound in (10). Thus p is the slope ratio
with 1 < p < 0o, while § and 7 are spacings used to achieve the target error
bound € in (10).
To construct J, we first calculate A(z) for each of the n, + 1 points z in
[0, T] by letting

a(j) = Akn), 0 < j <n,. (12)

Then we approximate the A™'(y) value of each of the n, + 1 points y in
[0, A(T)] by a suitable point within the n, points in [0, T}, i.e.,

b(i) =inf{j > 0:a(j) >}, 0<i<n,. (13)

Then J(i0) = b(i)n for all 4, 0 < ¢ < n,. The simple vector representations
in (12) and (13) are the basis for the implementation efficiency.
We can finally get the value of J at any time y in [0, A(T')] by

J(y) = J(ly/6]6), 0 <y < A(T), (14)

where |y] is the floor function, yielding the greatest integer less than or
equal to y. However, this extension is not used directly because we start
by changing Ny to |Ny/d|d, so we only use J defined on the finite subset
{id : 0 < i < ny}. The function J is constructed to be one-to-one on the
finite subset {i0 : 0 <7 < mn,}.

Theorem 3.1. (error bound and computational complexity) Algorithm 1
above constructs a nondecreasing function J on [0, A(T)] approzimating A~!
with the error upper bound € prescribed in (10) using of order O(n, +n,) =
O2T(1 + p)/e) storage (two vectors each of size n, and n,) with computa-
tional complexity of order O(ny, +ny) = O(2T(1 4+ p)/e).



Algorithm 1 Constructing the approximation J of the inverse function A~*
for given time T, function A : [0,7] — [0, A(T")] and error bound e

1:

10:
11:
12:

Set p < Au/AL, n « €/(L+ p), 0 < Ave/(1+ p), ny < T(1+ p)/e,
ny < N(T)/6 /] (five constant parameters)

:Set < (0:m:T),y <+ (0:60:A(T)) //(two equally spaced vectors of

length ny +1 and n, + 1)
Set a <— A(x),b <[] //(two new vectors of length n, +1 and n, + 1 with
b zero vector)
Set i < 1,7 < 1 //(initialize for n, + n, operations)
While j <n,+1 && i<n,+1do
If y(7) > a(j) Then
JjJ+1
Else
b(i) «—j, i<+i+1
End if
End While
//(For 0 < i < n,, J(i6) = b(i)n; J extended to [0, A(T)] by right-
continuity.)

Proof. For any 6 > 0 and n > 0, a bound on the error in J is

I/ =AY = sup [J() —=ATH(t)| = sup  sup [J(i0) — AT(t)]

0<t<A(T) 0<i<ny te[id,(i+1)d)
= sup sup |b(i)p — ATH(id) + ATH(id) — ATH(2)]
0<i<ny te[id,(i+1)5)

< sup (Jb(i)n — ATH@0)| + [AT(id) — ATH(( +1)d)])

0<i<n,

< n+6/AL (15)

where the fourth line follows because the point A7'(id) lies in the interval
(b()n, b(i + 1)n].

Next observe that the function J will be one-to-one (have distinct values)

on the set {id : 0 <i <n,}if § > Ayn. Now we choose  such that

Then J is one-to-one on {id : 0 < ¢ < n,} and, by (15) and (16),
Jo A <nto/a < —— 4L~ 17
7= A7 < n 6/ < T R~ (1)



Turning to the computational complexity, we see that four vectors need
to be stored: x, y, a and b, which is of total length 2(n, + n, + 2). To
construct the table of J, the while loop in algorithm 1 searches for b(i) for
each 0 < 4 < n,, which checks each of the (n, + n,) points only once and
takes time O(n, + n,). Finally, by (11) again,

TOANT)_T(+p)  AT)(1+p) 27(1+p)

4] n € Aue€ - €

S w (18)

Ng + Ny =

4. Application Issues

4.1. Generating the Arrival Times

Given Algorithm 1, the algorithm to construct the actual arrival times
Ay, = A7'(N},) given all the rate-1 arrival times Ny can be very simple. If we
apply the floor function and the inverse function in Algorithm 1 in a single
vector operation to all components of the vector of rate-1 arrival times, then
the code can be expressed in a single line.

Algorithm 2 constructing the vector A = {A;} of arrival times in [0, 7]
given Algorithm 1 specified in terms of the triple (0, 7,b) depending on the
error bound € in (10) and the associated nondecreasing vector of nonnegative
rate-1 arrival times N = {Ny : 1 < k < n} with N,, < A(T)
1: Set A < b(|N/d|)n /] (vector application of the floor function and Al-
gorithm 1 term by term)

In the single line of Algorithm 2 we have used (14) and line 12 of Algo-
rithm 1, i.e.,

J([t/8)8) = b([t/8))n or J(i8) =bli)y, 0<i<n, (19

This is important for implementation efficiency, because we make only one
pass through the table to generate all the arrival times Ay.

4.2. Partitioning Into Subintervals

For difficult arrival rate functions, it might be preferable to modify the
representation of the inverse function, e.g., moving closer to a piecewise-linear
approximation. In particular, if the slope ratio p in (11) is large, then it may
be easy to accelerate the algorithm by dividing the original interval [0, 7T



into subintervals. A simple example is a piecewise linear function with two
pieces, one having a flat slope and the other having a steep slope, so that
the ratio p might be very large. If we divide the interval into the two parts
where A is linear, then p is reduced to 1 on each subinterval. Given that we
divide [0, 7] into the two intervals [0,T1] and [T}, T], we can calculate A™*
separately on the two intervals [0, A(T7)] and [A(T1), A(T)).

4.3. Choosing the Error Bound

It is natural to ask how the error bound e should be chosen in practice.
We think it should usually be possible to choose € relatively small compared
to an expected interarrival time of A, which has a time-varying value exceed-
ing 1/\y for Ay in (3). However, for queueing applications that might be
smaller than necessary, because the relevant time scale in a queueing system
is typically of order equal to a mean service time, which depends on the
units used to measure time. Suppose, without loss of generality, we choose
the time units so that the mean service time is 1. Then we think it usually
should suffice to let € be small compared to the maximum of these, e.g.,
e ~ max{1,1/Ay}/100.

To illustrate, consider an example of a moderately large call center in
which the mean service time is about 5 minutes, while the arrival rate is 600
per hour or 1/6 per second, as in §3.1 of [5], which makes Ay = 600/12 =
50 in units of mean service times. The rough guideline above yields € ~
max {1,0.02}/100 = 0.01 mean service times or 300/100 = 3 seconds, which
seems reasonable.

Assuming that time is measured in mean service times and Ay > 1 in that
scale, the computational complexity from Theorem 3.1 becomes 27'(1 4 p) x
102. In the call center example, if we let T' = 24 x 12 = 288 corresponding to
one 24-hour day measured in units of 5 minute-calls, then the computational
complexity of the algorithm to calculate the inverse function is 57, 600(1+ p).

4.4. Breaking Ties: Ensuring an Orderly Point Process

We have constructed the approximate inverse function J to be one-to-one
in the finite subset {id : 0 < ¢ < n,}. However, that does not prevent multiple
points in A, because all points from the rate-1 process N in the interval
40, (1 +1)d) are mapped into the same point b()n, for each i, 0 < i <n, —1.

First, we can easily identify multiple points by looking for the zeros in the
vector B, where By, = A, — Ai_1. Then we can easily remove them if we want.
Suppose that Ay_1 < Ay = Apyj < Apyjyr for some £ > 1 and 7 > 1. Then
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replace Apy; by A +ie/(j+ 1), 1 <i < j. We could further randomize by
using Ap + (i + Ugyi)e/(j + 1)+, 1 <i < j, where {Uy : k > 1} is a sequence
of i.i.d. uniform random variables on [0,1]. However, these adjustments
should not be required for queueing applications if we are satisfied with the
“measurement error” of €, as discussed in §4.3.

4.5. Selecting the Rate-One Stochastic Process N

In applications, a key remaining problem is actually identifying an appro-
priate non-Poisson nonstationary arrival process. Assuming that ample data
are available to estimate the cumulative arrival rate function, the question
about choosing A is roughly equivalent to the question about choosing the
rate-1 process N for given cumulative arrival rate function A.

As discussed in [8, 16], it is natural to specify the functional central limit
theorem behavior of N, by the asymptotic index of dispersion for the arrival
process A, i.e., we use measurements of A to estimate

Var(A(t)) Var(N(t))

ca=lm pray T A RN (20)

It is then easy to choose stationary renewal processes N with this ¢ [22].
However, while this should yield an appropriate ¢4, this does not nearly
specify the processes N and A fully. However, heavy-traffic limit theorems
indicate that this may be sufficient; see §4 of [8].

4.6. Random-Rate Arrival Processes

As discussed in [23], [6] and references therein, it may be desirable to
represent the arrival rate over each day as random. For example, the model
of the arrival process on one day of length 7" might be

A(t) = N(XA(t)), 0<t<T, (21)

where N is a rate-1 stochastic processes, perhaps Poisson, while A is a deter-
ministic cumulative arrival rate function and X is a positive random variable.
The overall cumulative arrival rate of A is

E[A()] = B[N(XA(t)] = E[X]A(t), 0<t<T. (22)

With this structure, we can exploit the scaling properties in §2.2 to accel-
erate simulations. In particular, the representation (22) can be viewed as a

10



variant of our model in which the cumulative arrival rate function is the ran-
dom function A(t) = XA(¢). Fortunately, the inverse of A can be expressed
directly in terms of the inverse A~! and the random variable X by

ANty =A"Nt/X), 0<t< XA(T) (23)

For any single realization of the random variable X above, we can sim-
ulate the stochastic process A in the manner described in previous sections.
However, to assess the system performance, we would need to consider the
values of X over successive days, but these random variables X over suc-
cessive days k are likely to be dependent with distributions depending on
the day of the week and the week of the year. Nevertheless, the inverse in
(23) can be efficiently calculated for each of these these days using the single
inverse function A~!. However, by sampling sufficiently many days, we may
capture the impact of this random variable X.
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