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An algorithm is developed to rapidly compute approximations for all the standard steady-state performance
measures in the basic call-center queueing model M/GI/s/r + GI , which has a Poisson arrival process,

independent and identically distributed (IID) service times with a general distribution, s servers, r extra wait-
ing spaces and IID customer abandonment times with a general distribution. Empirical studies of call centers
indicate that the service-time and abandon-time distributions often are not nearly exponential, so that it is
important to go beyond the Markovian M/M/s/r +M special case, but the general service-time and abandon-
time distributions make the realistic model very difficult to analyze directly. The proposed algorithm is based
on an approximation by an appropriate Markovian M/M/s/r +M�n	 queueing model, where M�n	 denotes
state-dependent abandonment rates. After making an additional approximation, steady-state waiting-time dis-
tributions are characterized via their Laplace transforms. Then the approximate distributions are computed by
numerically inverting the transforms. Simulation experiments show that the approximation is quite accurate.
The overall algorithm can be applied to determine desired staffing levels, e.g., the minimum number of servers
needed to guarantee that, first, the abandonment rate is below any specified target value and, second, that
the conditional probability that an arriving customer will be served within a specified deadline, given that the
customer eventually will be served, is at least a specified target value.
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1. Introduction
In this paper, we aim to contribute to the better
design and management of telephone call centers
and their generalizations to include new media such
as e-mail and chat. The research effort is important
because call centers are a growing part of the econ-
omy and because call centers are quite complicated
(see Gans et al. 2003 for background). One reason
that call centers are complicated is that they often
involve multiple sites with multiple groups of agents
having different skills, serving multiple classes of cus-
tomers with different needs. Another reason call cen-
ters are complicated is that waiting customers may
abandon. Moreover, the probability distributions of
both the service times and abandonment times often
are not nearly exponential, making it inappropriate to
directly apply a simple Markovian model (see Bolotin
1994, Brown et al. 2005).
We focus on the problem of nonexponential service-

time and abandonment-time distributions. In this
paper, we only consider a single call center with a
single group of agents, serving a single group of
callers, but we hope to show in future work that our
approach to the single-site, single-class problem will
help analyze the more general multisite, multiclass
problem. Assuming that waiting customers cannot see

the queue, it is natural to assume that the customer
abandonment times are IID (independent and identi-
cally distributed) with a general distribution. In this
single-site, single-class setting with invisible queues,
it is commonly agreed that a good model is the
M/GI/s/r + GI queue, which has a Poisson arrival
process (the M), IID service times with a general
distribution (the first GI), s servers, r extra waiting
spaces, IID customer abandonment times with a gen-
eral distribution (the final GI) and the first-come–first-
served service discipline. This model ignores the time
dependence almost always found in call arrival pro-
cesses, but the time dependence often tends to be not
too important over short time intervals, such as 15–60
minutes.
A serious problem is that the M/GI/s/r + GI

queue is extremely difficult to analyze. In the special
case of the M/M/s/r +M queue, where the service-
time and abandon-time distributions are exponential,
the number of customers in the system over time
is a birth-and-death process, so the model is rela-
tively tractable (see Palm 1937, Ancker and Gafarian
1963, Whitt 1999, Garnett et al. 2002). However, even
in the M/M/s/r + M model, computing waiting-
time distributions is somewhat complicated. Since the
Laplace transforms of waiting times are not difficult
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to construct in the M/M/s/r + M model, numer-
ical transform inversion is an effective approach
there, as pointed out in Whitt (1999). We will use
numerical transform inversion again here to calcu-
late our approximate waiting-time distributions for
the M/GI/s/r +GI model.
Important work on non-Markovian generalizations

of the M/M/s/r +M queue have been done previ-
ously (see Baccelli and Hebuterne 1981; Brandt and
Brandt 1999, 2002; Mandelbaum and Zeltyn 2004; and
references therein). In particular, much is now known
about the M/M/s/r +GI model. However, there still
seems to be a need for an effective algorithm for
the M/GI/s/r + GI queue. For other studies of cus-
tomer abandonment behavior, see Mandelbaum and
Shimkin (2000) and Zohar et al. (2002).
Our goal in this paper is to develop an efficient

algorithm for calculating effective approximations for
all standard steady-state performance measures in the
M/GI/s/r +GI queue for distributions and parame-
ters commonly occurring in call centers. In particular,
we are particularly interested in the case in which
there is ample waiting room (r might be taken to
be �), the number of servers is relatively large (e.g.,
s = 100 or even s = 1
000) and there is nonnegligible,
but not excessively large, customer abandonment
(e.g., 1–10%). We want to allow realistic nonexpo-
nential service-time and abandon-time distributions.
For example, as observed in Brown et al. (2005), the
service-time distribution might be lognormal with
a squared coefficient of variation (SCV , variance
divided by the square of the mean) between 1 and 2.
Our approach involves two approximations: First,

we approximate the given M/GI/s/r +GI model by
a Markovian M/M/s/r + M�n	 model, which has
IID exponential service times with the given service-
time mean and state-dependent abandonment rates.
Most of the novelty lies in the state-dependent aban-
donment rates. Second, we develop an approximate
solution for all the performance measures in the
approximating M/M/s/r +M�n	 model. Just like for
theM/M/s/r+M model, the steady-state distribution
of the number of customers in the M/M/s/r +M�n	
system at an arbitrary time is easy to compute exactly,
because the process is a birth-and-death process. The
second approximation appears when we describe the
experience of individual customers, e.g., when we
compute the probability that an entering customer
eventually is served or the conditional waiting-time
distribution given that a customer eventually will be
served.
Our two approximations satisfy an important con-

sistency condition: The approximations are all exact
for the special case of the M/M/s/r + M model,
which is sometimes referred to as the Erlang-A model.
Indeed, the computational effort required for our

algorithm is essentially the same as for the Erlang-A
model, which is covered as a special case. The algo-
rithm is very fast, so that it easily can be applied to
determine appropriate staffing levels in M/GI/s/r +
GI systems. It can also serve as a component analysis
tool in more complex systems.
We should also mention that Brandt and Brandt

(2002) previously proposed a state-dependent Marko-
vian approximation for abandonments in the M�n	/
M�n	/s +GI model, but their approximation is quite
different, as we explain at the end of §3. Their primary
focus is on the exact analysis of the M�n	/M�n	/s +
GI model (for which they have considerable success),
rather than on simple engineering approximations.
Here is how the rest of this paper is organized: In

§2, we start by presenting simulation results to show
that it can be important to go beyond the correspond-
ing Erlang-A model, obtained by using exponential
service-time and abandon-time distributions with the
given means. In §3, we introduce the state-dependent
Markovian approximation for the abandonments. In
§4, we present more simulation results to show that
the Markovian approximations for abandonments are
effective for the M/M/s/r + GI model, which has
exponential service times. In §5, we discuss the simple
exponential approximation for the more general GI
service times. In §6, we present additional simulation
results to show that the M/M/s/r+M�n	 approxima-
tion is effective for the M/GI/s/r +GI model. In §7,
we derive the steady-state performance measures in
the M/M/s/r +M�n	 model, most of which require
additional approximations. In §8, we discuss fitting
the model parameters to call-center data. Finally, in
§9, we draw conclusions. Additional material appears
in an online supplement (Whitt 2004b).

2. The Need to Go Beyond the
Erlang-A Model

A natural first approximation to try for the
M/GI/s/r + GI queueing model is the more ele-
mentary Erlang-A model, M/M/s/r +M , where we
obtain both the exponential time-to-abandon distribu-
tion and the exponential service-time distribution by
using exponential distributions with the same means
as the given general distributions. Our problem is
interesting, in large part, because that natural sim-
ple approximation procedure often performs badly. In
some cases, however, the Erlang-A model describes
call-center performance quite well (see Brown et al.
2005). Certainly, the Erlang-A model is superior to the
commonly used Erlang-C model �M/M/s/�	.
To see that the Erlang-A model does not provide

a consistently good approximation for the M/GI/s/
r +GI model, consider the M/E2/100/200+ E2 model
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with arrival rate � = 102, individual mean service
time �−1 = 1 and expected time to abandon of 1,
where both the service time and the time to aban-
don have an Erlang-E2 distribution, which is the sum
of two IID exponentials. Since an Ek distribution has
SCV 1/k, the E2 distributions here have mean 1,
SCV = 1/2 and variance 1/2. In all our examples, we
let the mean service time be 1. That is without loss of
generality, because we are free to choose measuring
units for time.
In Table 1 we compare simulations of the M/E2/

100/200 + E2 and M/M/100/200 + M models with
the same arrival rate, mean service time and mean
time to abandon. In this example and throughout this
paper, we choose the waiting room size r sufficiently
large so that blocking is negligible and so not a fac-
tor. All simulation experiments reported in this paper
are based on 10 independent replications of runs each
having five million arrivals. The independent replica-
tions make it possible to reliably estimate confidence
intervals using the t-statistic. For all estimates, we
show the half width of 95% confidence intervals.

Table 1 A Comparison of Steady-State Performance Measures for
the M/E2/100/200+ E2 and M/M/100/200+M Models

M/E2/100/200+ E2 M/M/100/200+M
Performance
measure Sim. Approx. Sim. Exact

P�W = 0� 0�217 0�250 0�4092 0�4083
±0�0021 — ±0�0013 —

P�A� 0�0351 0�0381 0�0498 0�0499
±0�00029 — ±0�00020 —

E	Q� 11�52 11�41 5�073 5�092
±0�075 — ±0�024 —

Var�Q� 112�0 121�9 44�4 44�6
±0�71 — ±0�30 —

E	N� 109�9 109�5 102�0 102�0
±0�092 — ±0�036 —

E	W � S� 0�1115 0�1102 0�0489 0�0490
±0�00071 — ±0�00023 —

Var�W � S� 0�0101 0�0119 0�00418 0�0042
±0�000061 — ±0�000027 —

E	W � A� 0�1508 0�1521 0�0665 0�0666
±0�00042 — ±0�00021 —

Var�W � A� 0�0067 0�0079 0�0031 0�0031
±0�000044 — ±0�000018 —

P�W ≤ 0�1 � S� 0�510 0�528 0�7994 0�7986
±0�0030 — ±0�0012 —

P�W ≤ 0�1 � A� 0�305 0�316 0�7678 0�7671
±0�0014 — ±0�0013 —

P�W ≤ 0�2 � S� 0�795 0�786 0�9648 0�9644
±0�0023 — ±0�00057 —

P�W ≤ 0�2 � A� 0�740 0�726 0�9705 0�9702
±0�0019 — ±0�00054 —

Note. The two models have common arrival rate �= 102, mean service time
�−1 = 1 and mean time to abandon 1�0. The half width of the 95% confidence
interval is given for each simulation estimate.

To define the performance measures we examine,
let S be the event that a typical customer who enters
who system (is not blocked) eventually will be served;
let A be the event that a typical customer who enters
the system abandons before starting service; let W be
the steady-state waiting time (before beginning ser-
vice or abandoning, whichever happens first) for a
typical entering customer (conditional on the arrival
not being blocked); let N be the steady-state number
of customers in the system at an arbitrary time; and
let Q≡max�0
N − s� be the steady-state queue length
at an arbitrary time.
The performance measures we examine are:

P�W = 0	, the probability an entering customer will
not have to wait before beginning service; P�A	,
the probability an entering customer will eventually
abandon; E�Q� and Var�Q	, the mean and variance
of the queue length at an arbitrary time; E�N �, the
expected number of customers in the system at an
arbitrary time; E�W � S� and Var�W � S	, the condi-
tional mean and variance of the waiting time of an
entering customer, given that the entering customer
eventually will be served; E�W � A� and Var�W � A	,
the conditional mean and variance of the waiting time
of an entering customer, given that the entering cus-
tomer eventually will abandon; P�W ≤ t � S	, the con-
ditional probability that an entering customer waits
less than time t, given that the customer eventually
will be served; and P�W ≤ t �A	, the conditional prob-
ability that an entering customer waits less than time
t, given that the customer eventually will abandon.
We usually consider t = 0�1 and t = 0�2, correspond-
ing to 10% and 20% of a mean service time. If the
mean service time is 200 seconds, then t = 0�1 corre-
sponds to 20 seconds; then the performance target of
answering 80% of all answered calls within 20 sec-
onds translates into P�W ≤ 0�1 � S	≥ 0�8.
In Table 1, we also display the numerical approxi-

mation results for the two models. The extremely close
agreement between simulation results and numerical
results for the M/M/s/r +M model is to be expected
because the formulas are exact in that case. Having
both simulation and exact numerical results for the
M/M/s/r + M model provides an important check
on both programs. For the M/E2/s/r + E2 model, the
numerical results reveal the quality of the proposed
approximations in that case. We regard the quality of
the new approximation as excellent, even though one
might want to do even better. For example, there is a
15% error in the approximation for the probability of
no delay, P�W = 0	. However, there would be an 88%
error if we used the Erlang-A model instead.
The simulation results in Table 1 show that per-

formance in the M/E2/100/200+ E2 model is not too
close to performance in the correspondingM/M/100/
200+M model. For example, the mean queue length
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with the Erlang distributions is 11�5, while it is 5�1
with the exponential distributions. Perhaps contrary
to intuition, from the perspective of queue length
and waiting time, the performance in the model with
the less variable Erlang-(E2) distributions is signifi-
cantly worse than in the corresponding model with
exponential (M) distributions. The E2 distribution pro-
duces fewer abandonments than an exponential time-
to-abandon distribution, and thus bigger queues and
bigger delays.
It is also useful to see how the models compare

from a decision perspective. Suppose that our goal is
to determine an appropriate staffing level. Suppose
that we want to determine the minimum number of
servers so that the abandonment probability is less
than 0�05 and the conditional probability of having to
wait less than 0�1, given that the customer eventually
will be served, is at least 0�80 (corresponding to the
classic 80/20 rule mentioned above when the aver-
age call holding time is 200 seconds). Suppose that
we fix the arrival rate at �= 100 and let the remain-
ing parameters be as above. For the M/E2/s/200+ E2
model, we find that the required number of servers is
s = 104, whereas for the M/M/s/200+M model the
required number is 99, a 5% difference. If we use the
M/M/s/200+M model and let the number of servers
be 99, then in the actual M/E2/s/200+ E2 model the
conditional probability of having to wait less than 0�1
mean service times, given that the customer eventu-
ally will be served, is only 0�58 instead of 0�80. More-
over, the mean queue length is 9�9 instead of 4�7, the
value with s = 104. In contrast, our proposed approx-
imation yields exactly the required number of servers
for this M/E2/s/200+E2 example.
Among all distributions on the positive real line,

an Erlang-E2 distribution is not too radically differ-
ent from an exponential distribution. The Erlang-A
model provides an even worse approximation for the
M/GI/s/r+GI model in other cases. For example, see
the results for the M/M/s/r + LN model in Table 4
below.

3. Markovian Approximation
for Abandonments

The main new idea in this paper is to develop a state-
dependent Markovian approximation for abandon-
ments. With invisible queues, it is natural to assume
at the outset that waiting customers have IID times
to abandon with a general cdf F having a density f ,
with the clock starting the instant the customer joins
the queue. As an approximation, we propose hav-
ing a state-dependent Markovian approximation for
abandonments. Specifically, we will assume that a
customer who is jth from the end of a queue will
abandon at rate  j , independent of the rest of the his-
tory up to that point. We will first develop a way to

define suitable infinitesimal rates  j and then develop
a way to approximately analyze the queue with those
state-dependent rates.
The model with state-dependent Markovian aban-

donment rates arises naturally when customers are
provided information about system state, as dis-
cussed in Whitt (1999). It is significant that we are not
discussing that situation here. We are intending the
state-dependent Markovian abandonments to serve as
an approximation for the GI case that arises natu-
rally with invisible queues, where customers are not
given state information. Thus, from a direct mod-
elling perspective, it is natural to expect that our
approach might not work at all. If it does, in fact,
work, then we may be able to apply the general
Markovian M�n	/M�n	/s/r +M�n	 model with state-
dependent rates to many call-center situations, both
when state information is provided and when it
is not.
When trying to understand the behavior of the

M/GI/s/r +GI model, an important initial insight is
that, in contrast to single-server queues, waiting times
in multiserver queues with a large number of servers
tend to be quite small relative to the mean service
times. This phenomenon is well known in call centers,
and is reflected by the classical 80/20 rule. Since the
mean length of the calls themselves tends to be 200
or 400 seconds or even longer, that implies that the
waiting times tend to be only 10% or 5% of a mean
service time or even less. Often, about half of the cus-
tomers do not have to wait at all, even though there
may be a 5% abandonment rate.
The tendency for waiting times in multiserver

queues to be relatively small is also supported by the
heavy-traffic limit theorems for multiserver queues in
which the number of servers, s, increases along with
the traffic intensity, !, so that

�1−!	
√
s→ " as s→� (3.1)

for some constant ". In that limiting regime, the prob-
ability of delay approaches a proper limit strictly
between 0 and 1 (see Halfin and Whitt 1981; Puhalskii
and Reiman 2000; Garnett et al. 2002; Whitt 2002,
Chapter 10; 2004a, 2005a; Jelenkovic et al. 2004;
Mandelbaum and Zeltyn 2004). For our purposes, the
important limit is for the waiting times; in the limit
as s → �, the waiting times are asymptotically neg-
ligible; specifically, they are of order O�1/

√
s	. Since

waiting times tend to be relatively small, we see that
what matters about the time-to-abandon cdf F is its
behavior for small-time arguments, not its moments
or tail behavior.
If we knew that a customer had been waiting for

time t, then the appropriate infinitesimal rate of aban-
donment for that customer at that time would be
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given by the time-to-abandon hazard (or failure rate)
function

h�t	= f �t	

F c�t	

 t ≥ 0
 (3.2)

where f �t	 is the density and F c�t	 ≡ 1− F �t	 is the
complementary cdf (ccdf) associated with the time-to-
abandon cdf F .
To understand abandonment behavior, the key

quantity is the hazard function h in (3.2) for relatively
small-time arguments. Our experience indicates that
performance is significantly affected by the form of
the abandon-time hazard function h for small values
of t, but the performance evidently is not too sensi-
tive to the fine detail. Thus it may suffice to work
with the first few terms of the Taylor series expan-
sion about 0, e.g., by letting h�t	 ≈ h�0	 + h′�0	t +
h′′�0	t2/2. That has the advantage that it may be eas-
ier to fit to data. It may even suffice to work with the
first nonzero term in this approximation. The main
point is to use the approximate form of the haz-
ard function for small-time arguments. In the pro-
cess of doing this research, we discovered that similar
ideas also have been advanced by Mandelbaum and
Zeltyn (2004).
Given the hazard function h or an approximation to

it, our goal is to produce, as an approximation, aban-
donment rates that depend on a customer’s position
in queue and the length of that queue. However, if the
state is a customer’s position in queue and the length
of that queue, then we clearly do not know how long
the customer has been waiting. What we propose to
do, then is to estimate how long the customer has
been waiting, given the available state information.
Suppose that we look at the number of customers

in the system at an arbitrary time in steady state. Sup-
pose that all s servers are busy and that there are
k customers waiting in the queue. Given that infor-
mation, we want to estimate how long each of the
k customers in queue have been waiting. Suppose that
we focus on the customer that is jth from the end of
the queue, where 1 ≤ j ≤ k. If there were no aban-
donments, then there would have been exactly j − 1
arrivals since the customer in question arrived, and
we would be in the middle of another interarrival
time. Assuming that abandonments are relatively rare
compared to service completions, we estimate that
there have been j new arrival events since the cus-
tomer who is jth from the end of the queue arrived.
(This assumption is reasonable because we are aiming
our approximation for the case of approximately 5%
abandonments. Experience indicates that the approx-
imation performs reasonably well even in the case of
20% abandonments, but it breaks down in extreme
overload, e.g., in case of 50% abandonments.)
We now need to estimate the expected time be-

tween successive arrival events. A simple rough esti-
mate for the average time between arrival events is

1/�, the reciprocal of the exogenous arrival rate. Thus,
we propose as approximate state-dependent Marko-
vian abandonment rates

 j ≡ h�j/�	
 1≤ j ≤ k
 (3.3)

where � is the exogenous arrival rate (not count-
ing retrials) and h is the time-to-abandon hazard rate
function in (3.2). The associated total abandonment
rate from the queue in that state would be

&k ≡
k∑
j=1
 j =

k∑
j=1
h�j/�	� (3.4)

In making the definitions above, we assume that
the time-to-abandon cdf F has a density and that the
density is relatively smooth. If the density were not
smooth, we might instead let

 j ≡ �
∫ j/�

�j−1	/�
h�t	 dt
 1≤ j ≤ k� (3.5)

Then the approximate total abandonment rate would
be

&k ≡ �
∫ k/�

0
h�t	 dt =−� loge F c�k/�	� (3.6)

We close this section by briefly discussing the state-
dependent Markovian approximation for GI aban-
donments in the M�n	/M�n	/s+GI model developed
by Brandt and Brandt (2002). Instead of developing an
approximating rate  j for the jth customer from the
end of a queue of length k, they develop an approxi-
mate abandonment rate )j for the jth customer from
the front of the queue, which is based on detailed
analysis of the M�n	/M�n	/s +GI model. Moreover,
they do not attempt to develop further approxima-
tions to describe customer experience with such state-
dependent abandonment rates, as we do in §7. Brandt
and Brandt (2002) focus much more on exact analysis.

4. Testing the Approximation
for M/M/s/r +GI

In this section, we present simulation results to show
that the Markovian approximation for abandonments
proposed in §3 is effective for the M/M/s/r + GI
model, which has exponential service times. By sep-
arately considering the case of exponential service
times, we separately evaluate the approximations
for the abandon times and the service times. As
we will demonstrate in §6, our experience indicates
that the cruder service-time approximation causes
greater errors. Before proceeding, it should be noted
that many exact results can be computed for the
M/M/s/� + GI model, as shown by Brandt (1999,
2002) and Mandelbaum and Zeltyn (2004). These
papers should be consulted for additional insights.
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Table 2 A Comparison of Approximations for Steady-State Performance Measures with Simulations in
Two Models with Exponential Service Times, Arrival Rate �= 102� and Mean Abandon Time 1

M/M/100/200+ E2 M/M/100/200+ LN�1�1� M/M/100/200+M
Performance
measure Sim. Approx. Sim. Approx. Exact

P�W = 0� 0�246 0�250 0�242 0�247 0�408
±0�0020 — ±0�0026 — —

P�A� 0�0378 0�0381 0�0376 0�0379 0�0499
±0�00032 — ±0�00032 — —

E	Q� 11�75 11�41 11�42 11�02 5�09
±0�075 — ±0�071 — —

Var�Q� 129�2 121�9 115�6 107�2 44�6
±0�94 — ±0�46 — —

E	N� 109�9 109�5 109�6 109�1 102�0
±0�091 — ±0�092 — —

E	W � S� 0�1133 0�1102 0�1094 0�1058 0�0490
±0�00072 — ±0�00067 — —

Var�W � S� 0�0119 0�0113 0�0104 0�0097 0�0042
±0�000083 — ±0�000042 — —

E	W � A� 0�1628 0�1521 0�1788 0�1642 0�0666
±0�00063 — ±0�00026 — —

Var�W � A� 0�0079 0�0076 0�0054 0�0054 0�0031
±0�000061 — ±0�000024 — —

P�W ≤ 0�1 � S� 0�520 0�528 0�518 0�527 0�799
±0�0026 — ±0�0028 — —

P�W ≤ 0�1 � A� 0�273 0�316 0�140 0�204 0�767
±0�0019 — ±0�00064 — —

P�W ≤ 0�2 � S� 0�775 0�786 0�792 0�807 0�964
±0�0023 — ±0�0018 — —

P�W ≤ 0�2 � A� 0�688 0�726 0�644 0�706 0�970
±0�0027 — ±0�00066 — —

Note. The two models have Erlang-E2 and lognormal LN�1�1� abandon-time distributions.

From these papers, we see that we could instead
use the more complicated exact solution of the M/M/
s/r + GI model to approximate performance in the
M/GI/s/r + GI model. However, we believe that
there is not great incentive for doing so, because
the approximation for the M/M/s/r + GI model is
remarkably accurate and because most of the error
in approximating the M/GI/s/r +GI model that we
really want to consider is because of the service-time
approximation.
In Table 2, we show results for the M/M/100/200+

GI model with Erlang and lognormal abandon times,
common arrival rate � = 102, and mean abandon
time 1. By LN�a
 b	, we mean a lognormal distribu-
tion with mean a and SCV b. Thus the lognormal
LN�1
1	 abandon time has SCV = 1 and variance 1.
We also display the exact numerical results for the
corresponding M/M/100/200 + M model for com-
parison. From Table 2, we see that the approxima-
tions agree quite closely with the simulations. For
example, the approximation error for the probabil-
ity of no delay, P�W = 0	, in the M/M/s/r + E2
model is only 2%, compared to 15% in the M/E2/100/
200+ E2 model in Table 1. As in Table 1, the steady-
state performance measures are quite different from
the associated Erlang-A model.

With s = 100 servers each working at rate 1, the
arrival rate � = 102 is a relatively heavy load. We
consider that case in most of our examples through-
out this paper. For each of these examples, we also
performed simulations with arrival rates � = 98 and
� = 90. The quality of the approximation for the
M/M/s/r +GI model at these lighter loads is consis-
tently better. That should be expected because aban-
donments are less frequent. Some results for the case
�= 90 are in the online supplement (Whitt 2004b).
Even though the E2 and LN�1
1	 distributions are

quite different, Table 2 shows that the performance
with these two abandon-time distributions is quite
close. That is easy to understand when we look at
the hazard functions and the approximate total aban-
donment rates &k produced by the approximation in
(3.3)–(3.4). To make that clear, we plot the resulting
function &k for four different abandon-time distribu-
tions in Figure 1. (Since the queue length only rarely
exceeds 40, we plot &k for 0≤ k≤ 40. Since  j = h�j/�	
when k≤ 40, the hazard function is only relevant over
the initial subinterval �0
0�4�.)
For comparison, we include the abandonment

rate &k for the exponential (M) and LN�1
4	 distribu-
tions in Figure 1, in addition to the E2 and LN�1
1	 dis-
tributions used in Table 2. From Figure 1, we see that
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Figure 1 A Comparison of Four Abandon-Time Distributions
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Note. The approximate total abandonment rate �k when there are k customers in the queue in the M/M/s/r +GI model and with four different abandon-time
distributions having mean 1: Erlang E2, lognormal LN�1�1� and LN�1�4�, and exponential M.

for small-time arguments, the hazard function and the
total abandonment rate approximations are quite close
for the E2 and LN�1
1	 distributions, and these two
are quite different from the other two. Consistent with
Figure 1, both the approximations and the simulations
are close for the M and LN�1
4	 abandon-time distri-
butions (not shown here).
To show some other cases, we present two addi-

tional tables. In Tables 3–4, we show results for log-
normal abandon-time distributions with a greater
mean, 4. The first lognormal distribution has SCV 4,
and thus variance 64, while the second has SCV 0�25,
and thus variance 4. Again, the approximations agree
closely with the simulation results. For LN�4
4	 in
Table 3, the performance is similar to that of the
Erlang-A model, but for LN�4
0�25	 in Table 4, the
performance is entirely different from that of the cor-
responding Erlang A (with the same mean service
time and mean abandon time). Since the congestion
is much greater in the LN�4
0�25	 case, we make the
number of waiting spaces larger to avoid significant
blocking, in particular, we let r = 300.
As illustrated by Tables 2–4, simulation results

show that the M/M/s/r + M�n	 approximation for
the M/M/s/r +GI model performs remarkably well.
Overall, we find the weakest part of our approxima-
tion is the approximation for the nonexponential ser-
vice times (see §6).

Table 3 A Comparison of Approximations for Steady-State
Performance Measures with Simulations in the
M/M/100/200+ LN�4�4� Model with Arrival Rate �= 102

M/M/100/200+ LN�4�4� cM/M/100/200+M
Performance
measure Sim. Approx. Exact

P�W = 0� 0�210 0�212 0�226
±0�0019 — —

P�A� 0�0349 0�0353 0�0364
±0�00030 — —

E	Q� 14�90 14�61 14�84
±0�095 — —

Var�Q� 187�0 180�1 214�5
±1�37 — —

E	N� 113�3 113�0 113�1
±0�023 — —

E	W � S� 0�1446 0�1419 0�1455
±0�00091 — —

Var�W � S� 0�0175 0�0169 0�0207
±0�00013 — —

E	W � A� 0�1878 0�1786 0�1429
±0�00048 — —

Var�W � A� 0�0105 0�0105 0�0137
±0�000048 — —

P�W ≤ 0�1 � S� 0�444 0�449 0�469
±0�0025 — —

P�W ≤ 0�1 � A� 0�212 0�248 0�449
±0�0010 — —

P�W ≤ 0�2 � S� 0�680 0�687 0�687
±0�0028 — —

P�W ≤ 0�2 � A� 0�602 0�632 0�737
±0�0023 — —
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Table 4 A Comparison of Approximations for Steady-State
Performance Measures with Simulations in the
M/M/100/300+LN�4�0�25� Model with Arrival Rate �= 102

M/M/100/300+ LN�4�0�25� M/M/100/300+M
Performance
measure Sim. Approx. numerical Exact numerical

P�W = 0� 0�0096 0�0101 0�226
±0�00082 — —

P�A� 0�0206 0�0204 0�0364
±0�00029 — —

E	Q� 118�1 117�0 14�84
±0�75 — —

E	N� 218�0 216�9 113�1
±0�75 — —

E	W � S� 1�154 1�144 0�1455
±0�0073 — —

E	W � A� 1�327 1�288 0�1429
±0�0015 — —

P�W ≤ 0�4 � S� 0�0702 0�0710 0�469
±0�0032 — —

P�W ≤ 0�4 � A� 0�000093 0�0000 0�449
±0�0032 — —

Additional experiments are reported in the online
supplement (Whitt 2004b). There we show that the
approximation still performs quite well with fewer
servers and light loads. There we also show that the
approximation still performs well under heavy loads,
e.g., for s = 100 and �= 120 and for s = 20 and �= 24.
The approximation even performs well when s = 100
and �= 200.

5. Treating the Service Times
In §3, we developed a state-dependent Markovian
approximation for abandonments, which replaces the
original M/GI/s/r + GI model by the associated
M/GI/s/r +M�n	 model, where M�n	 denotes state-
dependent Markovian abandonments. Unfortunately,
however, when the service-time distribution is not
exponential, the new M/GI/s/r +M�n	 model is also
very difficult to analyze exactly, so we need to make
further approximations. We propose approximating
the given general service-time distribution simply
by an exponential service-time distribution with the
same mean. We thereby obtain the totally Marko-
vian M/M/s/r +M�n	 approximation for the original
M/GI/s/r +GI model. We show how to analyze this
Markovian model in §7.
We primarily make this second model approxima-

tion because it produces a Markovian model that we
can analyze. However, unlike the direct approxima-
tion by the full Erlang-A model, this step also turns
out to be relatively accurate. That may be surprising,
because the same approximation for the classical
single-serverM/GI/1/� model would be terrible. For
example, the mean steady-state waiting time in the
M/GI/1/� model is proportional to 1 + c2s , where

c2s is the SCV of the service-time distribution. When
c2s is not nearly 1, the M/M/1 approximation would
be very bad. However, the situation is very different
when there is a large number of servers.
An important theoretical reference point is the well-

known insensitivity of the Erlang loss model (also
known as the Erlang-B model and M/GI/s/0). In
the Erlang loss model, the steady-state distribution
does not depend on a general service-time distribu-
tion beyond its mean. Thus the approximation we are
making is exact for the M/GI/s/0 special case, which
occurs in the limit as the abandonments get fast.
A second important theoretical reference point is

the M/GI/� model, which also has the service-
time insensitivity property. Under light loads, the
M/GI/s/r +GI model will behave like the associated
M/GI/� model, where the service-time distribution
beyond the mean has no impact on the steady-state
distribution. Hence, as is borne out in simulations,
we should anticipate that our approximations tend
to perform better in light loads. For that reason, our
examples focus more on heavier loads.
On the other hand, it is well known that the insen-

sitivity to the service-time distribution beyond its
mean in the Erlang loss system and the associated
infinite-server system does not hold for the corre-
sponding Erlang delay model (also known as the
Erlang-C model orM/M/s/�) or the associated inter-
mediate finite waiting room models M/M/s/r . How-
ever, the dependence on the service-time distribution
is much less when there are multiple servers. For
smaller numbers of servers, there is ample evidence,
e.g., see Seelen et al. (1985) and Whitt (1993). For the
larger numbers of servers common in call centers, the
impact of the service-time distribution on the perfor-
mance of the M/G/s/� model can be seen from sim-
ulations by Mandelbaum and Schwartz (2002) (there
s = 100). Since the M/GI/s/r +GI model approaches
the M/GI/s/r model as the mean abandon time
increases, we can use those no-abandonment models
to see the limitations of our proposed procedure in
general.
Under heavier loads, the insensitivity we are using

as an approximation becomes much more reasonable
because of the abandonments as well as the large num-
ber of servers, but we recognize that it is a relatively
crude approximation. Assuming that abandonments
are indeed occurring at a sufficient rate, the aban-
donments make the M/GI/s/r +GI model more like
theM/GI/s/0 model instead of theM/GI/s/�model.
As simulations show, when there is a reasonable level
of abandonment, theM/M/s/r+GI model is a reason-
able approximation for theM/GI/s/r+GI model, and
our approximating M/M/s/r +M�n	 model is a rea-
sonable approximation for both the M/GI/s/r +M�n	
and M/GI/s/r +GI models.
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A third relevant theoretical reference point is the
diffusion approximation for the G/GI/s/r model de-
veloped in Whitt (2004a), based on the heavy-traffic
limit for the G/H∗

2 /s/r model established in Whitt
(2005a). The special H∗

2 service times are mixtures of
an exponential distribution and an atom point mass
at zero. The H∗

2 service-time distribution is appeal-
ing because it leads to a one-dimensional Markov
limit process for the number of customers in the sys-
tem, but at the same time, it permits a two-parameter
characterization of the service-time distribution, with
one parameter characterizing the mean and the other
characterizing the variability.
It turns out that in the special case of a Poisson

arrival process (the M/GI/s/r model), the proposed
diffusion approximation does not depend greatly on
the service-time distribution beyond its mean. Indeed,
for the special case of a Poisson arrival process, the
approximate probability of delay and the approximate
conditional distribution of the number of busy servers,
given that all servers are not busy, are indepen-
dent of the service-time distribution beyond its mean.
Moreover, if in addition the service-time distribution
has SCV = 1, then the entire diffusion approxima-
tion is independent of the service-time distribution
beyond its mean. Consistent with that theoretical-
based approximation, our approximations tend to per-
form better when the service-time SCV is close to 1.
A fourth important theoretical reference point is the

heavy-traffic fluid limit for the M/GI/s+GI model in
the overloaded or efficiency-driven (ED) regime, char-
acterized by s → � and �→ � with � = 1 and ! ≡
�/s� > 1 held fixed (see Whitt 2004c, 2005b, c). The
steady-state performance in the ED regime depends
strongly upon the time-to-abandon distribution, but
does not depend upon the service-time distribution
beyond its mean.

6. Testing the General Approximation
We now evaluate the approximation of the general
GI service-time distribution in the M/GI/s/r + GI
model by an exponential distribution with the same
mean. We want to show that the performance in the
M/GI/s/r+GI model tends to depend on the service-
time distribution primarily only through its mean, so
that we can approximate theM/GI/s/r+GI model by
the corresponding M/M/s/r +GI model. Combined
with the Markovian approximation for abandonments
developed in §3, we thus obtain the full approxima-
tion by a M/M/s/r +M�n	 model.
One such test was already performed in Table 1.

There we compared the approximation to simula-
tions of the M/E2/100/200 + E2 model with arrival
rate �= 102, mean service time �−1 = 1 for the case

Table 5 A Comparison of Steady-State Performance Measures in the
M/E2/100/200+E2 andM/M/100/200+M Model with Mean
Time to Abandon= 4�0. and Arrival Rate �= 102

M/E2/100/200+ E2 M/M/100/200+M
Performance
measure Sim. Approx. numerical Exact numerical

P�W = 0� 0�056 0�0764 0�226
±0�0016 — —

P�A� 0�0236 0�0253 0�0364
±0�00036 — —

E	Q� 41�6 41�8 14�84
±0�44 — —

E	N� 141�2 141�2 113�1
±0�39 — —

E	W � S� 0�407 0�409 0�1455
±0�0042 — —

E	W � A� 0�413 0�430 0�1429
±0�0023 — —

P�W ≤ 0�1 � S� 0�133 0�161 0�4688
±0�0032 — —

P�W ≤ 0�1 � A� 0�046 0�050 0�4493
±0�00078 — —

P�W ≤ 0�2 � S� 0�234 0�261 0�6865
±0�0047 — —

P�W ≤ 0�2 � A� 0�166 0�164 0�7366
±0�0025 — —

of mean abandon time = 1. We have also consid-
ered the Erlang model with different mean aban-
don times. Again, the approximation is effective. For
smaller mean abandon times, such as = 0�25, the
results are quite close to the Erlang-A model, but
they are entirely different for larger mean abandon
times. To illustrate, we show the case of mean aban-
don time 4�0 in Table 5.
In the next tables we look at M/GI/s/r + GI

models with common time-to-abandon distributions,
but different service-time distributions having a com-
mon mean. In Table 6, we consider M/GI/100/200+
LN�1
1	 models with common lognormal abandon-
time distribution having mean = 1�0 and SCV =
1�0; and in Table 7, we consider M/GI/100/200+ E2
models with common E2 abandon-time distribution
having mean = 1�0. In each case, we consider sev-
eral different service-time distributions from among:
D (deterministic), E2, M , LN�1
1	, and LN�1
4	. The
results show, first, that the performance is indeed
largely independent of the service-time distribution
beyond its mean and, second, that the approxima-
tion performs remarkably well. However, the approx-
imation is better with M service times than with
the nonexponential service-time distributions. As the
service-time distribution deviates more from the
exponential distribution, the approximation performs
worse. Consistent with the diffusion approximation
for the M/GI/s/r model in Whitt (2004a), the per-
formance degrades as the service-time SCV deviates
more from 1, the SCV of an exponential distribution.
In particular, we see degradation of performance for
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Table 6 A Comparison of Simulation Estimates of Steady-State Performance Measures in
M/GI/100/200+ LN�1�1� Models with Four Different Service-Time Distributions Having
Common Mean 1�0

Service-time distribution
Performance
measure E2 M LN�1�1� LN�1�4� Approx.

P�W = 0� 0�211 0�242 0�229 0�286 0�247
±0�0013 ±0�0026 ±0�0015 ±0�0020 —

P�A� 0�0348 0�0376 0�0366 0�0425 0�0379
±0�00021 ±0�00032 ±0�00024 ±0�00021 —

E	Q� 11�40 11�42 11�44 11�55 11�02
±0�039 ±0�071 ±0�051 ±0�048 —

Var�Q� 102�7 115�6 110�6 137�6 107�2
±0�39 ±0�46 ±0�43 ±0�49 —

E	N� 109�9 109�6 109�7 109�2 109�1
±0�053 ±0�092 ±0�062 ±0�071 —

E	W � S� 0�1097 0�1094 0�1098 0�1096 0�1058
±0�00037 ±0�00067 ±0�00047 ±0�00045 —

Var�W � S� 0�0091 0�0104 0�0099 0�0126 0�0097
±0�000030 ±0�000042 ±0�000037 ±0�000047 —

E	W � A� 0�1696 0�1788 0�1753 0�1940 0�1642
±0�00025 ±0�00026 ±0�00025 ±0�00041 —

Var�W � A� 0�0047 0�0054 0�0051 0�0068 0�0054
±0�000031 ±0�000024 ±0�000023 ±0�000048 —

P�W ≤ 0�1 � S� 0�502 0�518 0�511 0�542 0�527
±0�0016 ±0�0028 ±0�0021 ±0�0020 —

P�W ≤ 0�1 � A� 0�157 0�140 0�146 0�117 0�204
±0�00099 ±0�00064 ±0�00067 ±0�00075 —

P�W ≤ 0�2 � S� 0�807 0�792 0�797 0�773 0�807
±0�0011 ±0�0018 ±0�0016 ±0�0011 —

P�W ≤ 0�2 � A� 0�693 0�644 0�661 0�571 0�706
±0�0016 ±0�00066 ±0�0015 ±0�0019 —

Note. E2 with SCV = 0�5, M with SCV = 1�0, LN�1�1� with SCV = 1�0 and LN�1�4� with SCV = 4�0. The
models have common arrival rate �= 102 and LN�1�1� abandon-time distribution.

the LN�1
4	 service time in Table 6 and the D service
time in Table 7, but even in these cases the errors are
not too great.

7. Steady-State Distribution of
the Markovian Model

We now show how to calculate all the standard per-
formance measures for the Markovian M/M/s/r +
M�n	 call-center model. We start by calculating the
steady-state distribution of the basic birth-and-death
process. Then we describe the experience of enter-
ing customers, which requires further approximation.
When we calculate waiting-time distributions, we will
exploit numerical inversion of Laplace transforms,
using the EULER algorithm in Abate andWhitt (1995),
as already done in Whitt (1999). See Abate et al. (1999)
for an overview of the inversion algorithms.

7.1. Steady-State Distribution of the
Birth-and-Death Process

Let N�t	 be the number of customers in the system at
time t. In the M/M/s/r +M�n	 queueing model, the
stochastic process �N �t	/ t ≥ 0� is a birth-and-death
process. The birth rate is the arrival rate �. The death
rate �k is simply the total service rate when all servers
are not busy, but when there is at least one customer

waiting in queue, the death rate is the sum of the
total service rate and the total abandonment rate. In
particular, the death rate in state k is

�k =
{
k�
 1≤ k≤ s


s�+ &k−s
 s+ 1≤ k≤ s+ r

(7.1)

where � is the individual service rate and &k is the
total state-dependent abandonment rate when there
are k customers waiting in queue (obtained from
(3.3)–(3.4) in our approximation of M/GI/s/r +GI).
Because the state space is finite, there is always a

unique proper limiting steady-state distribution. Let
N be a random variable with the limiting steady-state
distribution of N�t	. The steady-state distribution is

pk ≡ P�N = k	≡ lim
t→�P�N �t	= k �N�0	= i	� (7.2)

The steady-state probabilities are determined by the
local balance equations

pk�= pk+1�k+1
 0≤ k≤ s+ r − 1� (7.3)

It is convenient to calculate the steady-state distri-
bution recursively. Since the probability ps is likely to
be near the largest probability pj (assuming that the
number s of servers has been chosen in a reasonable
manner), it is natural to start at s and separately go
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Table 7 A Comparison of Simulation Estimates of Steady-State Performance Measures in
M/GI/100/200+ E2 Models with Four Different Service-Time Distributions Having Common
Mean 1�0

Service-time distribution
Performance
measure D E2 M LN�1�1� Approx.

P�W = 0� 0�180 0�217 0�246 0�233 0�250
±0�0013 ±0�0021 ±0�0020 ±0�0021 —

P�A� 0�0309 0�0351 0�0378 0�0370 0�0381
±0�00017 ±0�00029 ±0�00032 ±0�00027 —

E	Q� 11�08 11�52 11�75 11�74 11�41
±0�042 ±0�075 ±0�075 ±0�063 —

Var�Q� 89�3 112�0 129�2 123�3 121�9
±0�40 ±0�71 ±0�94 ±0�72 —

E	N� 109�9 109�9 109�9 110�0 109�5
±0�049 ±0�092 ±0�091 ±0�72 —

E	W � S� 0�1078 0�1115 0�1133 0�1133 0�1102
±0�00038 ±0�00071 ±0�00072 ±0�00061 —

Var�W � S� 0�0079 0�0101 0�0119 0�0113 0�0113
±0�000032 ±0�000061 ±0�000083 ±0�000061 —

E	W � A� 0�1343 0�1508 0�1628 0�1589 0�1521
±0�00028 ±0�00042 ±0�00063 ±0�00039 —

Var�W � A� 0�0051 0�0067 0�0079 0�0075 0�0076
±0�000028 ±0�000044 ±0�000061 ±0�000047 —

P�W ≤ 0�1 � S� 0�501 0�510 0�520 0�514 0�528
±0�0018 ±0�0030 ±0�0026 ±0�0025 —

P�W ≤ 0�1 � A� 0�358 0�305 0�273 0�283 0�316
±0�0014 ±0�0014 ±0�0019 ±0�00088 —

P�W ≤ 0�2 � S� 0�833 0�795 0�775 0�780 0�786
±0�0013 ±0�0023 ±0�0023 ±0�0020 —

P�W ≤ 0�2 � A� 0�818 0�740 0�688 0�705 0�726
±0�0013 0�0019 ±0�0027 ±0�0018 —

Note. E2 with SCV = 0�5, M with SCV = 1�0, LN�1�1� with SCV = 1�0, and LN�1�4� with SCV = 4�0. The
models have common arrival rate �= 102 and E2 abandon-time distribution.

up and down. For that purpose, let xs = 1,

xs+k+1 =
�xs+k
�s+k+1


 0≤ k≤ r − 1
 (7.4)

and
xk−1 =

�kxk
�


 1≤ k≤ s� (7.5)

We then normalize to get the steady-state probabilities
themselves. To do so, let the sum be

y =
s+r∑
k=0

xk� (7.6)

Then the steady-state probabilities are

pk = xk/y
 0≤ k≤ s+ r� (7.7)

Let Q�t	≡max�0
N�t	− s� be the queue length at
time t and let Q ≡max�0
N − s� be the steady-state
queue length. We obtain the distribution of Q directly
from the distribution of N above.

7.2. The Probability of Being Served or
Abandoning

We now start to describe the experience of individ-
ual customers. Since the arrival process is Poisson, the

state seen by arrivals is the same as at an arbitrary
time, by the Poisson-Arrivals-See-Time-Average prop-
erty (see Wolff 1989, §5.16). Thus the probability that
an arrival is blocked and lost is simply P�Loss	= ps+r .
Henceforth we focus on the customers who enter the
system. The probability that an admitted or entering
customer finds k customers in the system is

pak =
pk

�1−P�Loss		 =
pk

1− ps+r
� (7.8)

Our approach is to condition on the state seen by
arrivals that enter the system and then average over
all the possibilities. Let S be the event that a customer
who enters the system eventually receives service and
let A be the event that a customer who enters the sys-
tem eventually abandons. Let W be the waiting time
in queue for a customer who enters the system. First,
the probability that an arriving customer who enters
the system does not wait at all before starting service
is exactly

P�NoWait	≡ P�W = 0	=
s−1∑
k=0

pak� (7.9)

The situation is more complicated when the arrival
must join the queue. To analyze these situations, we



Whitt: Engineering Solution of a Basic Call-Center Model
232 Management Science 51(2), pp. 221–235, © 2005 INFORMS

will make more approximations. Conditional on the
arrival seeing s+ k− 1 customers in the system upon
arrival (s customers in service and k−1 others already
in the queue waiting), customers arriving after that
customer play no role in that customer’s experience.
After that customer arrives, there will be s + k cus-
tomers in the system, with the new arrival at the end
of the queue. Thus it suffices to consider the evolu-
tion of the system starting at level s + k, ignoring all
future arrivals. Accordingly, to do further analysis, we
consider the system starting at level s+ k and ignore
future arrivals.
In that framework, we assume that successive de-

partures (including abandonments) occur according
to the minimum of independent exponential ran-
dom variables. Thus we let the successive identities
of departing customers and the successive intervals
between departures be mutually independent random
variables. Let 4k
 j be the probability that the cus-
tomer initially kth in line abandons in the jth subse-
quent departure event (among the original s+ k cus-
tomers), given that the customer has not abandoned
previously. Let mk
j be the mean time between the
�j − 1	st and jth departure events (where the 0th
departure event occurs at time 0). We approximate
these quantities by

4k
 j ≈
 j

s�+ �&k− &j−1	
(7.10)

and
mk
j ≈

1
s�+ �&k− &j−1	

(7.11)

for 1≤ j ≤ k, where &0 ≡ 0.
Approximation formulas (7.10)–(7.11) require expla-

nation, which we will do below. First, note that for
the M/M/s/r +M model, in which  j =  for all j ,
these approximations are exact. Then

4k
j =
 

s�+�k−j+1	 and

mk
j =
1

s�+�k−j+1	 
 (7.12)

where &0 ≡ 0. Thus our approximate algorithm
produces the exact performance measures for the
M/M/s/r +M model.
We now explain how we derived approximations

(7.10)–(7.11). As indicated above, we start by ignoring
future arrivals. At time 0—the arrival epoch of the
arriving customer of interest (the last customer in the
queue of length k)—we assume that the abandonment
rates are as specified previously, i.e., the abandonment
rate for the customer jth from the end of the queue
is  j ≡ h�j/�	, as in (3.3). There is no difficulty for the
first departure; it is easy to see that formulas (7.10)–
(7.11) are exact for j = 1. We indeed have exactly the

minimum of independent exponential random vari-
ables. However, there are problems when we consider
subsequent departures.
To consider subsequent departures, we need to

consider system dynamics over time: First, as time
evolves, the waiting customers are spending more
time in the system, so that their abandonment rates
should change. To keep within the present frame-
work, we want to work with the abandonment
rates  j defined in terms of the hazard function in
(3.3). Because time is evolving, the hazard function
should apply to a larger time argument. Here is what
we do: As a further approximation, we act in this step
of the approximation as if each successive departure
epoch takes time 1/�. Thus, after m departures, 1 ≤
m ≤ k − j , we let a customer who was jth from the
end of the queue, if he is still present, have an aban-
donment rate that changes from  j = h�j/�	 to  j+m =
h��j+m	/�	. As a consequence, the customer who was
originally last in the queue has abandonment rate  j
for the jth departure epoch.
Even though we have specified the operative rates

at successive departure epochs by the approximation
above, we still need to do more in the approxima-
tion, because the evolution of the system depends on
which customer departs at each departure epoch. We
obtain approximations (7.10)–(7.11) by acting at any
departure epoch as if all previous departures were
service completions. That implies that the remain-
ing total rate before the jth departure event should
be approximately &k − &j−1, where &0 = 0. Here is
more explanation: With the assumption that all pre-
vious departures were service completions, the first
j − 1 customers waiting in queue, which had initial
rates � k−j+1
 � � � 
 k	, have gone into service, while
the remaining k − j + 1 customers, which had ini-
tial rates � 1
 � � � 
 k−j+1	, have had their rate indices
increase by j − 1 to � j
 � � � 
 k	. By that reasoning,
we obtain approximations (7.10)–(7.11). Ultimately,
however, we use these approximations because they
evidently work.
Given the approximations in (7.10)–(7.11), we can

calculate associated performance measures. First, the
probability that customer s + k eventually receives
service is

6k = �1−4k
1	�1−4k
2	 · · · �1−4k
k	 (7.13)

for 4k
 j in (7.10).
We now can (approximately) express the probabil-

ity that a new arrival who enters the system eventu-
ally completes service; it is

P�S	=
(s−1∑
k=0

pak

)
+

r−1∑
k=0

pas+k6k+1 (7.14)

for 6 defined in (7.13), drawing on the approxima-
tions in (7.10).
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Because all customers who enter the system and are
not served must abandon, we can express the steady-
state probability that an arrival who enters the system
eventually abandons as

P�A	= 1−P�S	� (7.15)

7.3. The Waiting Time for Customers Who
Are Served

Let W be the waiting time (until beginning service)
for a customer who enters the system. We want to
differentiate between customers who eventually are
served and customers who eventually abandon, so in
this subsection we consider only entering customers
who are served.
We now compute the first two moments of W

for served customers, i.e., we compute E�W j7 S� =
E�W j1S�, where 1B is the indicator function of the
event B (1B�9	= 1 if 9 ∈ B, and 1B�9	= 0 otherwise).
We exploit the approximations in the last subsection,
acting if the successive intervals between departures
are independent exponential random variables with
the means in (7.11). In using properties of the expo-
nential distribution, we obtain

E�W7S�=
r−1∑
k=0

pas+k6k+1
k+1∑
j=1
mk+1
 j (7.16)

and

E�W 27S�=
r−1∑
k=0

pas+k6k+1�Vk+1+M2
k+1	
 (7.17)

where

Vk+1 ≡
k+1∑
j=1
m2
k+1
 j (7.18)

and

Mk+1 ≡
k+1∑
j=1
mk+1
 j � (7.19)

Then the first and second moments of the conditional
waiting time given that the customer eventually com-
pletes service are

E�W � S	 = E�W7S�

P�S	
and

E�W 2 � S	 = E�W 27S�

P�S	
� (7.20)

The conditional variance is then

Var�W � S	≡ E�W 2 � S	− �E�W � S		2� (7.21)

We can characterize the waiting-time distributions
via their Laplace transforms. Then we can apply
numerical transform inversion to calculate the distri-
butions. For that purpose, let �ws�z	 ≡ E�e−zW1�S
W>0��
be the Laplace transform of W for served customers
who are not served immediately (Laplace-Stieltjes

transform of its cdf). Paralleling (7.16), we have

�ws�z	=
r−1∑
k=0

pas+k6k+1êk+1�z	
 (7.22)

where

êk+1�z	≡
k+1∏
j=1

(
m−1
k+1
 j

m−1
k+1
 j + z

)
� (7.23)

We can now calculate the cdf by numerical trans-
form inversion. Specifically, we obtain the cdf P�0 <
W ≤ t7 S	 for any desired t by numerically invert-
ing its Laplace transform �ws�z	/z, e.g., by using the
Fourier-series method described in Abate and Whitt
(1995). The associated conditional waiting-time cdf is

P�W ≤ t � S	= P�W = 0	+P�0<W ≤ t7 S	

P�S	
� (7.24)

7.4. The Time to Abandon
As in (7.15), let A be the event that an entering cus-
tomer eventually abandons and let W be the time
spent in queue by an entering customer. Let Wk be the
time to abandon for a customer who starts in position
k in queue. Then, reasoning as before,

P�A	=
r−1∑
k=0

pas+k�1− 6k+1	
 (7.25)

E�W1A�=
r−1∑
k=0

pas+kE�Wk+11A�
 (7.26)

and

E�W 21A�=
r−1∑
k=0

pas+kE�W
2
k+11A�
 (7.27)

where

E�Wk1A� = 4k
1mk
1+�1−4k
1	4k
2�mk
1+mk
2	

+�1−4k
1	�1−4k
2	4k
3�mk
1+mk
2+mk
3	

+···+�1−4k
1	·���·�1−4k
k−1	
·4k
k�mk
1+···+mk
k	 (7.28)

and

E�W 2
k 1A� = 4k
12m

2
k
1+�1−4k
1	4k
2

·�m2
k
1+m2

k
2+�mk
1+mk
2	
2	

+···+�1−4k
1	�1−4k
2	·���·�1−4k
k−1	4k
k
·�m2

k
1+···+m2
k
k+�mk
1+···+mk
k	

2	�

(7.29)

The associated conditional moments are

E�W �A	 = E�W1A�
P�A	

and

E�W 2 �A	 = E�W 21A�
P�A	

(7.30)

for P�A	 in (7.25). Finally, the conditional variance is

Var�W �A	= E�W 2 �A	− �E�W �A		2� (7.31)
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Now let â�z	≡ E�e−zW1A� be the Laplace transform
ofW for entering customers who abandon. Paralleling
(7.22) and (7.28), we have

â�z	=
r−1∑
k=0

pas+kâk+1�z	
 (7.32)

where

âk�z	 = 4�k
1	
(

m−1
k
1

m−1
k
1+ z

)
+

k∑
j=2
4k
 j

(
m−1
k
 j

m−1
k
 j + z

)

·
j−1∏
==1

[
�1−4k
=	

(
m−1
k
=

m−1
k
=+ z

)]
� (7.33)

Paralleling P�0 < W ≤ t7 S	 above, we can compute
P�W ≤ t7A	 by numerically inverting its Laplace
transform â�z	/z. Then the conditional cdf of the time
to abandon given that the customer does, in fact,
abandon is

P�W ≤ t �A	= P�W ≤ t7A	

P�A	
� (7.34)

We can easily combine the results in this section
with the results in the last section to determine the
waiting-time distribution of all customers, regardless
of whether they abandon or are served:

P�W ≤ t	 = P�W = 0	+P�0<W ≤ t7 S	

+P�W ≤ t7A	
 t > 0� (7.35)

8. Fitting the Model Parameters
Given the M/GI/s/r +GI model, it is natural to try
to estimate the general service-time and abandon-
time distributions directly, which is somewhat diffi-
cult because they involve censored data. We do not
directly observe abandon times, because some cus-
tomers are served before they would abandon (see
Brown et al. 2005 for discussion).
We have shown how to derive the appropriate

Markovian abandonment approximation from the
abandon-time hazard function and the arrival rate �,
but an attractive alternative, which avoids directly
estimating the abandon-time distribution or its haz-
ard rate, is to directly fit a M/M/s/r +M�n	 model,
or the more general M�n	/M�n	/s/r +M�n	 model,
to available system data, be the data from a simula-
tion or an actual operating call center.
We can directly estimate the total abandonment

rate &k by the estimator &̂k, defined as the number of
abandonments by customers from a queue of length k
in the time interval �0
 t� divided by the length of
time in the time interval �0
 t� that the queue was of
length k. Since  j = &j − &j−1, we can also estimate  j
by the estimator  ̂2
 j = &̂j − &̂j−1.

This alternative statistical approach is investigated
in Pierson and Whitt (2005) and found to be effective.
The simulation experiments show that the approx-
imate abandonment rates produced by the method
of §3 agree closely with the exact abandonment rates
estimated from simulations when there is ample data.

9. Conclusions
The queueing model M/GI/s/r + GI has long been
regarded as appropriate for call centers, but it is diffi-
cult to analyze directly. We find that the steady-state
behavior of the M/GI/s/r + GI model is primarily
affected by the service-time distribution through its
mean. In contrast, the steady-state behavior of the
M/GI/s/r + GI model is primarily affected by the
time-to-abandon distribution by its hazard function
near the origin, and not its mean or tail behavior. That
is perhaps the major insight about the M/GI/s/r+GI
model to be drawn from this work.
We have shown that the Markovian M/M/s/r +

M�n	 model with state-dependent abandonment rates
often can serve as an excellent approximation for the
relatively intractable M/GI/s/r + GI model. More-
over, in §§3 and 5 we have identified a simple way to
construct the approximating M/M/s/r+M�n	 model,
given the arrival rate and the abandon-time hazard
function.
We can exploit birth-and-death processes to analyze

the approximating M/M/s/r +M�n	 model, but it is
not easy to describe the customer experience in this
model. In §7, we introduced further approximations,
making it possible to calculate approximate solutions
for all the standard steady-state performance mea-
sures in the M/M/s/r +M�n	 model. The algorithm
exploits numerical transform inversion in addition to
the approximations.
We have performed computer simulations to evalu-

ate the performance of the approximations. The exam-
ples we have examined, which are typical for call
centers, indicate that the approximations are remark-
ably accurate. The weakest part of the approximation
seems to be the treatment of nonexponential service-
time distributions that are not close to exponential, as
illustrated by the lognormal LN�1
4	 case in Table 6
and the deterministic �D	 case in Table 7, but even in
these cases the performance is not too bad. When the
mean abandon time is large, the M/GI/s/r + GI
model will behave much like the associatedM/GI/s/r
model, for which we already know much about the
impact of the service-time distribution beyond its
mean. Hence, some limitations of the approximation
are known. However, we have not nearly explored all
possible cases. For contemplated new scenarios, the
approximation should be validated by comparing it
with computer simulations.



Whitt: Engineering Solution of a Basic Call-Center Model
Management Science 51(2), pp. 221–235, © 2005 INFORMS 235

As indicated in §8, once it is recognized that a state-
dependent Markovian model might serve as a good
approximation for the original M/GI/s/r+GI model,
it is natural to directly fit the Markovian M/M/s/r +
M�n	 model to system data, which is investigated
by Pierson and Whitt (2005). Moreover, it is natu-
ral to go beyond the first Markovian model with
state-dependent abandonment rates to consider new
Markovian models with state-dependent arrival rates
and service rates as well. From a practical engineer-
ing perspective, our work suggests that the canon-
ical model for (single-site, single-group) call centers
should perhaps be the M�n	/M�n	/s/r +M�n	 model
instead of the M/GI/s/r +GI model. To some extent,
that point of view already is expressed by Brandt and
Brandt (1999, 2002).
The approximations for service times and abandon

times proposed for the M/GI/s/r +GI model in this
paper can immediately be applied to more compli-
cated models of the same kind, e.g., as occur with
skill-based routing when there are multiple classes of
calls and agents. It remains to determine how effec-
tive these approximations will be in other settings.
An online supplement (Whitt 2004b) to this

paper is available at http://mansci.pubs.informs.org/
ecompanion.html.
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