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a b s t r a c t

The functional central limit theorem (FCLT) version of Little’s law (L = λW ) established by Glynn and
Whitt is extended to show that a bivariate FCLT for the number in the system and the waiting times
implies the joint FCLT for all processes. It is based on a converse to the preservation of convergence
by the composition map with centering on the function space containing the sample paths, exploiting
monotonicity.
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1. Introduction

The relation L = λW (Little’s law [12]) states that the aver-
age number of customers (items) waiting in line (in a system), L, is
equal to the arrival rate (throughput) λ multiplied by the average
waiting time (time spent in the system) per customer, W . Under
very general conditions, the relation is valid for both long-run av-
erages of individual sample paths and expected values of stationary
random variables in stochastic models; see [1,5,15–18,21].

1.1. The statistical approach: viewing finite averages as estimates

In applications, L = λW is often applied with measurements
over a finite time interval, as emphasized by Buzen and Denning
[3,4] and Little [13]. Given a time interval that is judged to be
suitably stationary, we may exploit L = λW to make inferences,
e.g., predictions at other times. To do so, we can assume that the
system satisfies the (weak) conditions required for the relation
L = λW to be valid, both for the limits of sample averages and
for the corresponding steady-state quantities associated with
stationary processes. Then we regard the sample averages based
on measurements as estimates of the unknown parameters L, λ
and W .

We consider all customers that are in the system at some
time during a designated interval [0, t]. For customer k, let Tk be
the arrival time, Dk the departure time and Wk ≡ Dk − Tk the
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waiting time, where −∞ < Tk < Dk < ∞, [0, t] ∩ [Tk,Dk]

≠ ∅ and ≡ denotes ‘‘equality by definition’’. Let A(t) count the
total number of new arrivals in the interval [0, t], assuming for
simplicity that A(0) = 0, and let L(t) be the number of customers
in the system at time t . Hence, L(0) is the number of customers
remaining in the system among those that arrived before time
0. The natural estimators of the parameters L, λ and W are the
respective averages over the time interval [0, t], i.e.,

λ̄(t) ≡ t−1A(t), L̄(t) ≡ t−1
 t

0
L(s) ds,

W̄ (t) ≡

A(t)
k=1

Wk

A(t)
.

(1)

If L(0) = L(t) = 0, then L̄(t) = λ̄(t)W̄ (t), but more generally
this finite-sample relation only holds approximately, unless the
definitions are altered, in which case the relation is difficult to
interpret; e.g., see Section 4.6 of [5] and [10].

Following standard statistical practice, it is appropriate to
evaluate the effectiveness of these estimators by also estimating
confidence intervals. As in simulation output analysis in discrete-
event stochastic simulation, it is natural to use themethod of batch
means, e.g., see Section 3.3.1 of [2]. This approach is reviewed and
illustrated with call center data in [10].

Theoretical support for estimating confidence intervals with
ample data, either by independent samples or by batch means,
is provided by an associated central limit theorem (CLT). Under
regularity conditions, there is a joint CLT

(L̂(t), λ̂(t), Ŵ (t)) ⇒ N(0, Σ) in R3 as t → ∞, (2)
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where L̂(t) ≡
√
t(L̄(t) − L), λ̂(t) ≡

√
t(λ̄(t) − λ), Ŵ (t) ≡√

t(W̄ (t) − W ),N(m, Σ) denotes a trivariate normal random
vector with mean vector m ≡ (m1,m2,m3) and 3 × 3 covariance
matrix Σ having variances on the diagonal and covariances off the
diagonal [6–8]. The associated functional CLT (FCLT; see Section 2
and [20]) establishes a limit for the entire stochastic process,
which typically (with Brownian motion limits) implies that the m
batches are asymptotically independent as t → ∞. Because of the
fundamental relation between cumulative processes underlying
L = λW , the joint CLT in (2) is essentially two-dimensional and
takes a special form; see Section 2.

1.2. Exploiting L = λW to create alternative estimators

Just as we can use the relation L = λW and knowledge of any
two of the three quantities L, λ and W to compute the remaining
one, so can we use any two of the three estimators in (1) to create
a new alternative estimator for the remaining one, exploiting
L = λW :

L̄λ,W (t) ≡ λ̄(t)W̄ (t),

λ̄L,W (t) ≡
L̄(t)
W̄ (t)

and W̄λ,L(t) ≡
L̄(t)
λ̄(t)

.
(3)

To see that this might be useful, note that we might well have
available the sample path segment {L(s) : 0 ≤ s ≤ t}, but not
have access to the individual waiting times Wk. From that sample
path segment, we can directly observe the arrivals (jumps up) and
departures (jumps down), but in many applications we cannot
determine the time each item spends in the system, because the
items need not depart in the same order that they arrived. Thus,
we may want to use the alternative estimator W̄λ,L(t) in (3).

From the theory about the limits of sample-path averages [5],
we know that all these estimators in (1) and (3) are consistent;
i.e., they converge to the desired value as the sample size grows.
The CLT and FCLT versions of L = λW provide strong support
for assessing the asymptotic efficiency, e.g., estimating associated
confidence intervals. Under the specified conditions, they justify
asymptotic normality as in (2). Moreover, (i) there is a joint CLT for
all these estimators generalizing (2),where the limit ismultivariate
normal, and (ii) the alternative estimators in (3) are asymptotically
equivalent to the natural estimators, i.e.,

|(L̂(t), λ̂(t), Ŵ (t)) − (L̂λ,W (t), λ̂L,W (t), Ŵλ,W (t))| ⇒ 0
as t → ∞, (4)

where | · | denotes the usual norm on R3 and the random
variables are defined as in (2) in terms of the sample averages
in (1) and (3). The limit (4) implies that the random variables
Ŵλ,W (t) and Ŵ (t) not only have the same asymptotic normal
distribution as t grows (i.e., the same variance constant in the CLT,
so that the estimators have the same asymptotic efficiency), but
that the random variables Ŵλ,W (t) and Ŵ take the same value,
asymptotically, as well. (This is much stronger than the obvious
conclusion that the estimators W̄ (t) and W̄λ,L(t) take the same
valueW , asymptotically.)

An advantage in asymptotic efficiency (lower variance) can be
gained when one of the parameters L, λ orW is known in advance,
rather than estimated, as often occurs in simulation [9,11]. Since
the simulator directly constructs the simulation model, the arrival
rate is typically known in advance. The FCLT version of L = λW
also plays a role in determining themore efficient estimator and in
quantifying the advantage.

1.3. The rest of this paper

A theoretical basis for the strong conclusions above is provided
by the FCLT in [6], which we review in Section 2. It shows that
a FCLT for two of the processes implies a joint FCLT for all the

processes, and shows how the limit processes are related. We
extend the FCLT in [6] by adding a new sufficient condition. We
now show that it suffices to start with the bivariate FCLT for
the number in system and waiting time processes. To achieve
that new result, we establish Theorem 2 here, a new converse to
the preservation of convergence for the composition map with
centering, as stated in Corollary 13.3.3 of [20], which exploits the
extra condition of monotonicity. That supporting preservation of
convergence result should be useful for establishing new FCLT’s in
other contexts.

Here is how the rest of this paper is organized. We review and
extend the FCLT from [6] in Section 2.We establish implications for
the natural estimator W̄ (t) in Section 3. We draw corresponding
new implications about the alternative estimators exploiting L =

λW in Section 4.We establish new converses to the preservation of
convergence under the composition map in Section 5. Finally, we
prove the new part of the FCLT version of L = λW in Section 6.

2. The joint functional central limit theorem

Consider the usual framework for stochastic process limits,
as in [20], with D denoting the space of all right-continuous
real-valued functions on the nonnegative real line, Dk the
k-dimensional product space, and C the subspace of continuous
functions. Given the arrival times Tn, the arrival counting process
A(t), the waiting times Wn and the number in system L(t),
construct the following four FCLT-scaled random elements of D:

T̂n(t) ≡ n−1/2 T⌊nt⌋ − λ−1nt

,

Ân(t) ≡ n−1/2 (A(nt) − λnt) ,
(5)

Ŵn(t) ≡ n−1/2


⌊nt⌋
k=1

Wk − Wnt


,

L̂n(t) ≡ n−1/2
 nt

0
L(s) ds − Lnt


,

for t ≥ 0. Tomake a fair comparison, we should use the same data.
If we fix t , then we should look at the sum of the first A(t) waiting
times; if we fix k, then we should look at the time interval [0, Tk].
That leads to considering two additional random elements of D:

Ŵ A
n (t) ≡ n−1/2


A(nt)
k=1

Wk − Lnt


,

L̂Tn(t) ≡ n−1/2
 T⌊nt⌋

0
L(s) ds − Wnt


. (6)

Both L̂n(t) and Ŵ A
n (t) consider the data over the interval [0, nt],

whereas both Ŵn(t) and L̂Tn(t) consider the data over the interval
[0, T⌊nt⌋], so each pair is directly comparable. The two elements in
each pair turn out to be asymptotically equivalent.

As a regularity condition, we need to control the asymptotic
behavior of the scaled end effects. The end effects at the fixed time
t or the random time Tn are harder to treat than the end effect at
time 0, because they change as t or n increases, whereas the end
effect at time 0 does not change. Any finite initial condition at time
0 necessarily is asymptotically negligible after scaling.

To treat the end effects at the right end of the interval, let R(t)
be the total work in service time in the system after time t among
the first A(t) arrivals up to time t and let Sk be the total work in
service time in the system after time Tk among the first k arrivals.
To give formulas, let Ik(t) equal 1 if customer k is in the system at
time t and 0 if it is not. Then

R(t) ≡

A(t)
j=1


∞

t
Ij(s) ds and Sk ≡

k
j=1


∞

Tk
Ij(s) ds.



Author's personal copy

232 W. Whitt / Operations Research Letters 40 (2012) 230–234

Let the two associated scaled random elements ofD be R̂n(t) ≡

n−1/2R(nt) and Ŝn(t) ≡ n−1/2S⌊nt⌋, t ≥ 0. Let e be the identity
function in D , i.e., e(t) ≡ t, t ≥ 0, so that 0e is the zero
function. A principal technical issue is developing conditions for
the two remainder terms to be asymptotically negligible. That issue
is addressed in [6]; we will simply assume it here.

The following theorem extends [6] by including the new
sufficient condition, the convergence of the final pair (L̂n, Ŵn). We
prove that result in Section 6, drawing on the new converse to
the preservation of convergence by composition with centering in
Corollary 13.3.1 in [20], stated and proved in Section 5.

Theorem 1 (FCLT Version of L = λW from [6]). Suppose that the
relation L = λW is valid as the limit of sample averages, where all
three limits are positive and finite, and either R̂n ⇒ 0e or Ŝn ⇒ 0e in
D . If any one of the following five limits holds in D2:

(Ŵn, T̂n) ⇒ (Ŵ , T̂ ) or (L̂n, T̂n) ⇒ (L̂, T̂ ) where

P(T̂ ∈ C) = 1,
(7)

(Ŵn, Ân) ⇒ (Ŵ , Â) or (L̂n, Ân) ⇒ (L̂, Â), where

P(Â ∈ C) = 1,

(L̂n, Ŵn) ⇒ (L̂, Ŵ ) where

P((L̂, Ŵ ) ∈ C2) = 1 and L̂(0) = Ŵ (0) = 0,

then there is the joint convergence in D8

(Ŵn, L̂n, T̂n, Ân, Ŵ A
n , L̂Tn, R̂n, Ŝn) ⇒ (Ŵ , L̂, T̂ , Â, L̂, Ŵ , 0e, 0e), (8)

where P((T̂ , Â) ∈ C2) = 1 and the limit processes are related by

Â(t) = −λT̂ (λt) and L̂(t) = Ŵ (λt) − LT̂ (λt), t ≥ 0. (9)

Moreover, if one of the five limits in (7) holds with zero-mean two-
dimensional Brownian motion (BM) as a limit, then the limit in (8) is
also a zero-mean multivariate BM. In that case the variance and
covariance terms of T̂ (1), Ŵ (1) and Â(1), L̂(1) are related by

σ 2
A ≡ σ 2

λ = λ3σ 2
T , σ 2

A,L ≡ σ 2
λ,L = λ2(Lσ 2

T − σ 2
T ,W ),

σ 2
L = λ(L2σ 2

T − 2Lσ 2
T ,W + σ 2

W ),

σ 2
W = λ−1σ 2

L − 2λ−2Lσ 2
A,L + λ−3L2σ 2

L .

From (8) and (9), we see that the 8-dimensional limit in (8)
is essentially 2-dimensional. Sufficient conditions for the FCLT to
hold based on regenerative structure are established in [7].

We cannot add convergence of the pair (Ân, T̂n) to the list of
five sufficient condition in (7), because these two randomelements
provide alternative characterizations of the arrival process alone.
Thus, from these two, we cannot extract any information about the
waiting times, and we cannot extract full information about the
number in system.

3. Natural estimators based on data over [0, t]

We now discuss the implications of Theorem 1 for the estima-
tion. The results for L̂n and Ân apply directly to the natural estima-
tors L̄(t) and λ̄(t), but we have not yet considered Ŵ (t). For that
purpose, let

Ŵ e
n(t) ≡ t

√
n(W̄ (nt) − W ), t ≥ 0, (10)

where W̄ (t) is defined in (1).
We will show that, for the most part, the random elements Ŵ e

n

and Ŵn are asymptotically equivalent after a deterministic space
and time change by the arrival rate. For the statement, let d

= denote

equality in distribution (as processes); let ∥ · ∥t1,t2 denote the
uniform norm over [t1, t2]; let ◦ be the composition function, i.e.,
(x ◦ y)(t) ≡ x(y(t)); and let D0 denote the space D over the open
interval (0, ∞), with the usual topology of uniform convergence
over all bounded subintervals.WeworkwithD0 to avoid problems
in the neighborhood of 0, because there could be division by 0,
since we have divided by A(t), which could be 0 for some t > 0.

Corollary 3.1 (Limit for Ŵ e
n ). Under the conditions of Theorem 1,

∥Ŵ e
n − λ−1(L̂n − WÂn)∥t1,t2 ⇒ 0 for all t2 > t1 > 0, (11)

for Ŵ e
n defined in (10), so that

∥Ŵ e
n − λ−1(Ŵn ◦ λe)∥t1,t2 ⇒ 0 for all t2 > t1 > 0, (12)

and

Ŵ e
n ⇒ Ŵ e

≡ λ−1(L̂ − WÂ) = λ−1(Ŵ ◦ λe) in D0. (13)

For the common case in which Ŵ is a zero-mean BM, Ŵ e d
= λ−1/2Ŵ .

Proof. From the definitions in (5), (6) and (10), we have

Ŵ e
n(t) =

t(Ŵ A
n (t) − WÂn(t))
n−1A(nt)

.

Since n−1/2Ân ⇒ 0 as n → ∞, the relation in (11) is valid.
Theorem 1 then implies (12), which in turn implies (13). The final
relation in (13) follows from (9). The final relation for the Brownian
case follows from the last expression in (13) and the basic scaling
property of BM: Ŵ ◦ ce d

=
√
cŴ for any positive constant c. �

Combining Theorem 1, Corollary 3.1 and the definition in
(10), we obtain the corresponding ordinary CLT by applying the
continuous mapping theorem with projection at t = 1 and letting
n run through a continuous variable.

4. Estimators exploiting Little’s law

Now we turn to the use of the relation L = λW to estimate
each of the three parameters L, λ andW in terms of the other two.
In addition to the three natural estimators in (1) for estimation
using data over [0, t], wehave the alternative estimators exploiting
Little’s law in (3). Paralleling (10), have the associated FCLT-scaled
random elements

L̂λ,W
n (t) ≡ t

√
n

L̄λ,W (nt) − L


= Ŵ A

n (t),

λ̂L,W
n (t) ≡ t

√
n

λ̄L,W (nt) − λ


,

Ŵ λ,L
n (t) ≡ t

√
n

W̄λ,L(nt) − W


. (14)

We next state a corollary establishing the limiting behavior of
λ̂L,W
n and Ŵ λ,L

n ; the proof is essentially the same as for Corollary 3.1
and so is omitted.

Corollary 4.1 (Asymptotic form of λ̂L,W
n and Ŵ λ,L

n ). Under the
conditions of Theorem 1,

(a) ∥λ̂L,W
n − Ân∥t1,t2 ⇒ 0 for all t2 > t1 ≥ 0,

for λ̂L,W
n defined in (14), so that Ŵ λ,L

n ⇒ Â in D .

(b) ∥Ŵ λ,L
n − λ−1(L̂n − WÂn)∥t1,t2 ⇒ 0 for all t2 > t1 > 0,

for Ŵ λ,L
n defined in (14), so that

∥Ŵ λ,L
n − Ŵ e

n∥t1,t2 ⇒ 0 for all t2 > t1 > 0 and

Ŵ λ,L
n ⇒ Ŵ e in D0,

where Ŵ e
n and Ŵ e are as in Corollary 3.1.
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Wecan combine Theorem1 andCorollaries 3.1 and 4.1 to obtain
the ordinary joint CLT and establish (4) by applying the continuous
mapping theorem with projection at t = 1 and letting n run
through a continuous variable.

5. Converse for convergence preservation with composition

As a basis for completing the proof of the new part of Theorem 1
stating that convergence of (L̂n, Ŵn) in (7) implies the desired
conclusion, we now establish a converse to the preservation of
convergence by composition with centering in Corollary 13.3.1
in [20]. Let x ◦ y and y−1 denote the composition and inverse
functions, respectively, as in Chapter 13 of [20]. A key assumption
for this positive result is the monotonicity of the outer functions
as well as the inner functions, which applies in our case. Let Dm
be the subset of nondecreasing functions in D ≡ D([0, ∞), R);
let Du be the subset of functions in Dm that are nonnegative and
unbounded above.

Theorem 2 (Converse for Composition with Centering). Suppose that

(xn ◦ yn − cne, cn(yn − e)) → (x, y) in D2 as n → ∞, (15)

where xn ∈ Dm, yn ∈ Du for all n, (x, y) ∈ C2, with y(0) = 0 and
cn → ∞ as n → ∞. Then

(xn − cne) → x − y in D as n → ∞. (16)

Proof. By Theorem 13.7.1 of [20], the limit for the second term in
(15) implies that

cn(y−1
n − e) → −y in D as n → ∞. (17)

Then, combining (17) with the first limit in (15), we can apply
Corollary 13.3.1 of [20] to obtain

xn ◦ yn ◦ y−1
n − cne → x − y in D as n → ∞. (18)

We now want to show that, under the stated conditions, (18)
implies (16). That is expected since the limits in (15) and (17) imply
that yn → e and y−1

n → e as n → ∞, so that yn ◦ y−1
n → e, but it is

not immediate because there is the initial factor cn, where cn → ∞.
Let ∥ · ∥t be the uniform norm over the interval [0, t]. For a

function x ∈ D , let ω be the modulus of continuity

wx,T (δ) ≡ sup
0≤t≤u≤t+δ≤T

{|x(u) − x(t)|}.

In the remaining proof, we will use bounds on the uniform
distance over bounded subintervals. We are thus using the fact
that convergence to continuous limit functions in D with domain
[0, ∞) is equivalent uniform convergence of the restrictions to
a bounded interval [0, T ] for all T . To be sure that a bound for
xn ◦ yn ◦ y−1

n has direct implications for xn, we work with the larger
interval [0, T + 1] in intermediate steps. Since the limits x and y
are assumed to be continuous, there are no genuine difficulties.

For given ϵ > 0 and T > 0, choose n0 such that, for all n ≥ n0,

(i) ∥cn(y−1
n − e) + y∥T+1 ≤ ϵ,

(ii) ∥cn(yn − e) − y∥T+1 ≤ ϵ,

(iii) ∥xn ◦ yn ◦ y−1
n − cne − (x − y)∥T+1 ≤ ϵ,

(iv) ωx−y(2ϵ/cn, T + 1) ≤ ϵ. (19)

First, (i), (ii) and (iii) are possible by (15), (17) and (18), respectively.
Then (iv) is possible because x − y ∈ C; e.g., see Theorem 11.6.2
of [20].

We now establish a string of inequalities at different times
t . Let time arguments falling outside the designated interval be
interpreted as the nearest endpoint; i.e., replace any t outside the
interval by the nearest boundary point, e.g., for interval [0, T + 1],

use t ∨ 0 ∧ (T + 1). With that convention, we apply (ii) and then
(i) to conclude that

yn ◦ y−1
n


t +

ϵ

cn


≥ y−1

n


t +

ϵ

cn


−

ϵ + y

t +

ϵ
cn


cn


≥


t +

ϵ

cn


−

ϵ − y

t +

ϵ
cn


cn

−

ϵ + y

t +

ϵ
cn


cn


=


t −

ϵ

cn


. (20)

Reasoning the same way in the other direction, we obtain the
relation
yn ◦ y−1

n

 
t −

ϵ

cn


−

ϵ

cn
≤ t ≤


yn ◦ y−1

n

 
t +

ϵ

cn


+

ϵ

cn
(21)

for all t with 0 ≤ t ≤ T + 1. We now substitute t − (ϵ/cn) for t on
the left and t+(ϵ/cn) for t on the right in (21), exploit the assumed
monotonicity of xn for each n and subtract cne, to conclude that
xn ◦ yn ◦ y−1

n

 
t −

2ϵ
cn


− cne

≤ xn(t) − cne ≤

xn ◦ yn ◦ y−1

n

 
t +

2ϵ
cn


− cne (22)

for all t, 0 ≤ t ≤ T +1. Using (iii) and (iv) in (19) with (22), we get

(x − y)(t) − 2ϵ ≤ xn(t) − cne ≤ (x − y)(t) + 2ϵ (23)

for n ≥ n0. That proves (16). �
For the sake of completeness, even though we do not need it

here, we now show that there is a similar result without centering,
which is easier to prove.

Theorem 3 (Converse for Composition without Centering). Suppose
that

(xn ◦ yn, yn) → (x, y) in D2 as n → ∞, (24)

where xn ∈ Dm, yn ∈ Du for all n, (x, y) ∈ C2, y is strictly increasing,
with y(0) = y−1(0) = 0. Then

xn → x ◦ y−1 in D as n → ∞. (25)

Proof. First, we apply Theorems 13.6.1 and 13.2.2 of [20] to get the
convergence y−1

n → y−1, yn ◦ y−1
n → e and xn ◦ yn ◦ y−1

n → x ◦ y−1

from condition (24). We want to show that these limits plus the
other conditions imply (25).

Analogous to (19), for given η > 0 and T > 0, choose ϵ < η ∧ 1
so that

ωx◦y−1(2ϵ, T + 1) < η. (26)

Then for that given ϵ and T , first choose T1 = y−1(T ) and δ > 0
such that δ < ϵ and ωy(δ, T + 1) < ϵ. Then choose n0 such that,
for all n ≥ n0,

(i) ∥y−1
n − y−1

∥T+1 ≤ δ,

(ii) ∥yn − y∥T1+1 ≤ ϵ,

(iii) ∥xn ◦ yn ◦ y−1
n − x∥T+1 ≤ ϵ. (27)

As in the previous proof, we now establish a string of
inequalities at different times t . As before, let time arguments
falling outside the designated interval be interpreted as the nearest
endpoint. Assume that n ≥ n0. Paralleling (20), we can apply (ii),
(i) and then (26) to conclude that

yn ◦ y−1
n (t) ≥ y(y−1

n (t)) − ϵ ≥ y(y−1(t) − δ) − ϵ ≥ t − 2ϵ. (28)
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Reasoning the way on the other side and looking at times t ± ϵ,
paralleling (22), we get

yn ◦ y−1
n (t − 2ϵ) ≤ t ≤ yn ◦ y−1

n (t + 2ϵ) (29)

for all t ∈ [0, T + 1]. Since xn ∈ Dm, from (29) we obtain

(xn ◦ yn ◦ y−1
n )(t − 2ϵ) ≤ xn(t) ≤ (xn ◦ yn ◦ y−1

n )(t + 2ϵ).

Applying (iii) in (27), we then get

(x ◦ y−1)(t − 2ϵ) − ϵ ≤ xn(t) ≤ (x ◦ y−1)(t + 2ϵ) + ϵ.

Finally, from (26), we get

(x ◦ y−1)(t) − 2η ≤ xn(t) ≤ (x ◦ y−1)(t) + 2η

for 0 ≤ t ≤ T + 1 and n ≥ n0. That proves the desired limit
in (25). �

We now give a counterexample showing that the monotonicity
condition for the outer function xn is necessary.

Example 5.1 (CounterexamplewithoutMonotonicity in Theorem3).
Let the interior function be defined by yn(t) = t for 0 ≤ t < 1/2
and for (1/2) + (1/n) ≤ t < ∞, but let yn(t) = (1/2) + (1/n)
for (1/2) ≤ t < (1/2) + (1/n). It is easy to see that yn ∈ Du and
yn → e, but yn has a discontinuity. Let xn(t) = t for 0 ≤ t < (1/2)
and for (1/2) + (1/n) ≤ t < ∞, but let xn((1/2) + (1/2n)) = n
and let xn be defined by linear interpolation in the two subintervals
[(1/2), (1/2)+(1/2n)] and [(1/2)+(1/2n), (1/2)+(1/n)], so that
xn is a continuous function for all n. Clearly, xn((1/2) + (1/2n)) =

n → ∞ as n → ∞, so the sequence {xn : n ≥ 1} does not converge
pointwise. However, xn ◦ yn = yn, so that xn ◦ yn → e in D . Hence,
we have all the conditions of Theorem 3 satisfied except that xn
is not monotone, but we fail to have convergence of xn. The same
example works for Theorem 2 in the common case that cn/n → 0.

6. Proof of Theorem 1 for the new sufficient condition

Given that the scaled remainder terms R̂n and Ŝn are asymptot-
ically negligible by assumption, ∥L̂n − Ŵ A

n ∥T ⇒ 0 as n → ∞ for
L̂n in (5) and Ŵ A

n in (6). Hence, we can replace the new condition
with (Ŵ A

n , Ŵn) ⇒ (L̂, Ŵ ) inD2.Wenowwant to apply Theorem2,
but we see that it is not in the right form, because here the inner
process is An, for which we have no given limit. To put this in the
setting of Theorem 2, we invert these processes, using the fact that
both are in Du.

In particular, let Ān(t) ≡ n−1A(nt), W̄n(t) ≡ n−1⌊nt⌋
k=1 and

W̄ A
n (t) ≡ n−1⌊A(nt)⌋

k=1 . Then let B̄n ≡ Ā−1
n , V̄n ≡ W̄−1

n and V̄ A
n ≡

(W̄ A)−1
n . (B̄n is intimately related to the average of the interarrival

times T̄n; see Section 13.88 of [20].) Since we assume that the
relation L = λW is valid, there are SLLN’s, so that Ān and W̄n are
elements of Du. Hence,

V̄ A
n ≡ (W̄ A)−1

n = (W̄n ◦ Ān)
−1

= B̄n ◦ V̄n. (30)

In (30), B̄n, the inverse of Ān, appears as the outer process, putting
us in the setting of Theorem 2.

Since Ŵn ≡
√
n(W̄n − We) ⇒ Ŵ , Corollary 13.7.3 of [20]

implies that
√
n(V̄n − W−1e) ⇒ −W−1(Ŵ ◦ W−1e). Multiplying

through byW yields
√
n(WV̄n − e) ⇒ −Ŵ ◦ W−1e. (31)

Next, exploiting (30), since Ŵ A
n ≡

√
n(W̄n◦ Ān−Le) ⇒ L̂, Corollary

13.7.3 of [20] implies that
√
n(B̄n ◦ V̄n − L−1e) ⇒ −L−1(L̂ ◦ L−1e).

We then can rewrite this limit as

(
√
nLB̄n) ◦ W−1e ◦ WV̄n −

√
ne ⇒ −L̂ ◦ L−1e. (32)

We can now apply Theorem 2 with (31) and (32) to obtain

(
√
nLB̄n) ◦ W−1e −

√
ne ⇒ −L̂ ◦ L−1e + Ŵ ◦ W−1e.

Transforming time by W , dividing by L and exploiting L = λW
yields

B̂n ≡
√
n(B̄n − λ−1e) ⇒ B̂ ≡ −L−1(L̂ ◦ λ−1e) + L−1Ŵ . (33)

Applying corollary Theorem 13.7.3 of [20] once again, now to (33),
yields

Ân ≡
√
n(Ān − λe) ⇒ Â ≡ λL−1L̂

− λL−1(Ŵ ◦ λe) = W−1L̂ − W−1(Ŵ ◦ λe).

From this limit, we see that L̂ = Ŵ ◦ λe + WÂ, which agrees
with (9). �

7. Extensions

The references show that there are other conservation laws
closely related to L = λW , notably H = λG. The seemingly minor
extension to H = λG is surprisingly far-reaching; see Remark
6.6 of [18] and [19] and references therein. Under appropriate
regularity conditions, both the FCLT and the statistical analysis
extend to these related settings. In particular, Theorem1extends to
the formulation of H = λG in Theorem 6.1 of [18], because the
instantaneous cost rate of customer k at time t, fk(t), is assumed
to be nonnegative. That monotonicity is an important condition in
the theorems in Section 5. In view of Remark 6.6 of [18] and [19],
the paper [14] is relevant.
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