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1. Introduction

In this paper we apply the theory of Tchebycheff (T) systems from Karlin and Studden (1966) to

identify the extremal interarrival-time and service-time distributions with given first two moments

for the mean and higher moments of the steady-state waiting time in the GI/GI/1 queue. Thus,

this paper contributes to a long-standing open problem for the classical GI/GI/1 queueing model:

determining a tight upper bound (UB) for the mean steady-state waiting time, and the distri-

butions that attain them, given the first two moments of the interarrival-time and service-time

distributions; see Daley et al. (1992), Wolff and Wang (2003) and references therein. This paper

is a sequel to Chen and Whitt (2020c) in which we applied T systems to determine interarrival-

time and service-time distributions with given moments and other properties that maximize or

minimize the asymptotic decay rate of the steady-state waiting time in the GI/GI/k queue. The

theory of T systems was previously used for queueing problems in Rolski (1972, 1976), Holtzman
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(1973), Eckberg (1977), Whitt (1984a,b), Johnson and Taaffe (1991, 1993), Denuit et al. (1998),

Gupta and Osogami (2011).

1.1. The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n≥ 1}, each distributed as V with cumulative distribution function (cdf) G, which is inde-

pendent of a sequence of i.i.d. interarrival times {Un : n ≥ 1} each distributed as U with cdf F .

With the understanding that the first customer (customer 1) arrives at time 0, Vn is the service

time of customer n, while Un is the interarrival time between customers n and n+1.

Let ≡ denote equality by definition. Let U have mean E[U ] ≡ 1 and squared coefficient of

variation (scv, variance divided by the square of the mean) c2a; let a service time V have mean

E[V ]≡ τ ≡ ρ and scv c2s, where ρ< 1, so that the model is stable.

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service,

assuming that the system starts with an initial workload W0 having cdf H0 with a finite mean.

The sequence {Wn : n≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 +Vn −Un]
+, n≥ 1, (1)

where x+ ≡ max{x,0}. Let Hn be the cdf of Wn, which is determined by (1). Let W ≡ W∞

(both used) be the steady-state waiting time, satisfying Wn ⇒W∞ as n→∞, where ⇒ denotes

convergence in distribution; see §§X.1-X.2 of Asmussen (2003). The cdf H∞ of W ≡ W∞ is the

unique cdf satisfying the stochastic fixed point equation

W∞

d
= (W∞ +V −U)+, (2)

where
d
= denotes equality in distribution. If P (W0 = 0) = 1, then Wn

d
= max{Sk : 0≤ k≤ n} for

n ≤ ∞, S0 ≡ 0, Sk ≡X1 + · · ·+Xk and Xk ≡ Vk − Uk, k ≥ 1. Under the specified finite moment

conditions, for 1≤ n≤∞, Wn is a proper random variable with finite mean, given by

E[Wn|W0 = 0] =
n∑

k=1

E[S+
k ]

k
<∞, 1≤ n<∞, and E[W∞] =

∞∑
k=1

E[S+
k ]

k
<∞. (3)
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1.2. Classical Steady-State Results: Exact, Approximate and Bounds

For the M/GI/1 special case, when the interarrival time has an exponential distribution, we have

the classical Pollaczek-Khintchine formula

E[W ] =
τρ(1+ c2s)

2(1− ρ)
=

ρ2(1+ c2s)

2(1− ρ)
. (4)

A natural commonly used approximation for the GI/GI/1 model, inspired by (4), which we call

the heavy-traffic approximation, because it is motivated by the early heavy-traffic limit in Kingman

(1961), is

E[W ]≡E[W (ρ, c2a, c
2
s)]≈

ρ2(c2a+ c2s)

2(1− ρ)
. (5)

The heavy traffic limit for the mean states that (1− ρ)E[W (ρ, c2a, c
2
s)]→ (c2a+ c2s)/2 as ρ ↑ 1.

The most familiar UB on E[W ] is the Kingman (1962) bound,

E[W ]≤
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
, (6)

which also satisfies the same heavy traffic limit.

A better UB depending on these same parameters was obtained by Daley (1977). In particular,

the Daley (1977) UB replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ]≤
ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
. (7)

Note that (2− ρ)/ρ< 1/ρ2 because ρ(2− ρ)< 1 for all ρ, 0< ρ< 1.

In contrast to the tight UB that we study, the tight lower bound (LB) for the steady-state mean

has been known for a long time; see §5.4 of Stoyan (1983), §V of Whitt (1984a), Theorem 3.1 of

Daley et al. (1992) and references there. The LB is

E[W ]≥
ρ((1+ c2s)ρ− 1)+

2(1− ρ)
. (8)

The LB is attained asymptotically at a deterministic interarrival time with the specified mean

and at any three-point service-time distribution that has all mass on nonnegative-integer multiples

of the deterministic interarrival time. The service part follows from Ott (1987). (All service-time

distributions satisfying these requirements yield the same mean.)
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2. The Main Results

In this section we state our main results. These results will be proved in following sections.

2.1. Sets of Probability Distributions with Specified Moments

Let Pn be the set of all probability measures on a subset of the positive real line [0,∞) with

specified first n moments. The set Pn is a convex set, because the convex combination of two

probability measures is just the mixture; i.e., for all p, 0≤ p≤ 1, pP1 + (1− p)P2 ∈ Pn if P1 ∈ Pn

and P2 ∈Pn, because the nth moment of the mixture is the mixture of the nth moments, which is

just the common value of the components. let Pn,k be the subset of probability measures in Pn

that have support on at most k points.

Let P2(m,c2) be the subset of all cdf’s in P2 with support in the interval [0,∞) having mean m

and second moment m2(c2 + 1) . Let P2(m,c2,M) be subset of P2(m,c2) denoting all cdf’s with

support in the close interval [0,M ], where 1+c2 <M <∞ (The last property ensures that the set is

non-empty.). Let subscripts a and s denote sets for the inter-arrival and service times, respectively.

Therefore, Pa,2(1, c
2
a,Ma) is the set of all interarrival-time cdf’s F with mean 1, scv c2a and compact

support within [0,Ma], while Ps,2(ρ, c
2
s,Ms) is the set of all service-time cdf’s G with mean ρ, scv

c2s and compact support within [0, ρMs].

A special role is played by two-point distributions, which necessarily have finite support. Let

P2,2(m1, c
2,M) be the set of all two-point distributions with mean m1 and second moment m2 =

m2
1(c

2 + 1) with support in [0,m1M ]. The set P2,2(m1, c
2,M) is a one-dimensional parametric

family. Any element is determined by specifying one mass point. Let F
(2)
b be the cdf that has

probability mass c2/(c2 +(b− 1)2) on m1b, and mass (b− 1)2/(c2+ (b− 1)2) on m1(1− c2/(b− 1))

for 1+ c2 ≤ b≤M . The cases b= 1+ c2 and b=M constitute the two extremal distributions.

Since we are only interested in the extremal cdf’s here, we will use different notation. We let

F0 ≡ F
(2)

1+c2
, because it is the unique element that has lower mass point 0 and we let Fu ≡ F

(2)
M ,

because it is the unique element that has upper mass point m1M . We use this definition for both

the cdf’s we consider: F of U and G of V , but recall that our parameter specification with E[U ] = 1

makes the support of Fu be [0,Ma], while the support of Gu is [0, ρMs]. Therefore, with Ma ≥ 1+c2a

for F and Ms ≥ 1+ c2s for G, we have:
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• F0 : c
2
a/(1+ c2a) on 0 and 1/(1+ c2a) on 1+ c2a;

• Fu: (Ma− 1)2/(c2a+(Ma − 1)2) on 1− c2a/(Ma− 1) and c2a/(c
2
a+(Ma − 1)2) on Ma;

• G0 : c
2
s/(1+ c2s) on 0 and 1/(1+ c2s) on ρ(1+ c2s);

• Gu: (Ms− 1)2/(c2s +(Ms − 1)2) on ρ(1− c2s/(Ms− 1)) and c2s/(c
2
s +(Ms − 1)2) on ρMs.

2.2. Extremal Distributions for Higher Moments of W

Ever since Bergmann et al. (1979) (see p. 97 of Stoyan (1983)), it is known that the extremal

theory is quite orderly for higher moments (and cumulants) even though it is challenging for the

mean. Thus, we start by applying the T system theory to the higher moments. To treat higher

moments, we require that the service time V has a finite moment generating function (mgf); that

implies the same is true for the transient and steady-state waiting time; see §3 of Chen and Whitt

(2020c) and references there. For a nonnegative random variable Z, we say that it has a finite mgf

if there exists t∗ > 0 such that

E[etZ ]<∞ for t < t∗. (9)

That implies that all moments of Z are finite. We remark that condition (9) can be relaxed. In

order for E[W k] to be finite for k≥ 1, it suffices to have E[V (k+1)]<∞, e.g., see §10.2 of Asmussen

(2003).

Theorem 1. (higher steady-state moments) Consider the GI/GI/1 model where F ∈Pa,2(1, c
2
a)

and G ∈Ps,2(ρ, c
2
s).

(a) Let the service-time cdf G be fixed satisfing (9). Then

E[W (Fu,G)k]≤E[W (F,G)k]≤E[W (F0,G)k] (10)

for all F ∈Pa,2(1, c
2
a,Ma) and k≥ 2. For each and k≥ 2, these extrema are unique.

(b) Let the interarrival-time cdf F be fixed. Then

E[W (F,G0)
k]≤E[W (F,G)k]≤E[W (F,Gu)

k] (11)

for all G∈Ps,2(ρ, c
2
s,Ms) and k≥ 2. For each and k≥ 2, these extrema are unique.
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(c) Suppose that neither F nor G is fixed. Then

E[W (Fu,G0)
k]≤E[W (F,G)k]≤E[W (F0,Gu)

k] for all k≥ 2 (12)

for all F ∈Pa,2(1, c
2
a,Ma) and G ∈Ps,2(ρ, c

2
s,Ms) with Ms <∞. For each and k≥ 2, these extrema

are unique.

We prove Theorem 1 in §4 by first establishing results for the transient mean and then taking

limits. We apply stochastic comparison results from Rolski (1976) and Denuit et al. (1998), which

are intimately related to T systems. We apply a variant of Theorem 1 in §6 to establish a natural

condition for the continuity of the mean steady-state waiting time in the GI/GI/1 queue. This

provides an extension of the continuity theorem in §X.6 of Asmussen (2003). We do so by applying

the bounds to establish uniform integrability.

Given Theorem 1, it is natural to expect that corresponding results also hold for the steady

mean E[W ]. However, the proof does not apply to that case. Moreover, counterexamples to the

natural analogs of Theorem 1 (a) and (b) above (without additional conditions) were provided,

respectively, in §8 of Wolff and Wang (2003) and in §V of Whitt (1984a). Indeed, counterexamples

for (b) are provided by Theorem 2 (b) in §2.3 below. However, we conjecture that the analog

of Theorem 1 (c) is valid. Accordingly, we directly studied the distribution of W (F0,Gu) and its

limiting behavior as Ms →∞ in Chen and Whitt (2020a). Theorem 2 there provides a tractable

bound for the limit of E[W (F0,Gu)] as Ms →∞, which serves as an excellent approximation of

the conjectured tight upper bound.

2.3. Extremal Distributions for the Steady-State Mean

We now turn to the more challenging problem of the mean E[W ]. To obtain corresponding com-

parison results for the steady-state mean approaching Theorem 1, we will exploit stochastic-order

properties for cdf’s of nonnegative random variables; e.g., see §1 of Muller and Stoyan (2002) and

Ch. 1 of Szekli (1995). Recall that a hyperexponential (Hk, mixtures of k exponentials) distribution

is completely monotone (CM), which in turn has strictly decreasing failure rate (DFR), which has

a strictly decreasing pdf, which has a strictly concave cdf; i.e., we have the implications

Hk 7→CM 7→DFR 7→ strictly concave cdf. (13)
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To show the dependence of random variables on the cdf assigned to them, we will include the

cdf in parentheses, so we write U(F ) (V (G)) for an interarrival time U with cdf F (service time

V with cdf G). Let W (F,G) denote the steady-state waiting time when the pair (U,V ) have the

pair of cdf’s (F,G). When we write sums of random variables as occurs in the Lindley recursion

(1), we assume that the random variables are independent.

We prove part (a) of the following theorem in §5 and then apply the same methods to prove

parts (b) and (c) in later sections.

Theorem 2. (extremal distributions for the steady-state mean) Consider the class of GI/GI/1

queues with F ∈Pa,2(1, c
2
a) and G ∈Ps,2(ρ, c

2
s), 0<ρ< 1, where Pa,2 and Ps,2 are nonempty.

(a) If the service-time cdf G∈Ps,2 is completely monotone and 1+ c2a ≤Ma ≤∞, then

W (Fu,G)≤icx W (F,G)≤icx W (F0,G) for all F ∈Pa,2(1, c
2
a,Ma) (14)

so that

E[W (Fu,G)]≤E[W (F,G)]≤E[W (F0,G)] for all F ∈Pa,2(1, c
2
a,Ma). (15)

The extrema in (14) and (15) are uniquely attained.

(b) If the interarrival-time cdf F ∈Pa,2 is strictly concave and 1+ c2s ≤Ms <∞, then

W (F,Gu)≤icx W (F,G)≤icx W (F,G0) for all F ∈Pa,2(1, c
2
a,Ma) (16)

so that

E[W (F,Gu)]≤E[W (F,G)]≤E[W (F,G0)] for all F ∈Pa,2(1, c
2
a,Ma). (17)

If the cdf F has support in [0,Ma] and is strictly convex, then (16) and (17) hold with the roles of

G0 and Gu switched.

(c) If Ms <∞ and

E[(W (F0,Gu)+V (G)−U(F )− t)+]≤E[(W (F0,Gu)+V (Gu)−U(F0)− t)+] for all t, (18)
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then W (F,G)≤icx W (F0,Gu) and E[W (F,G)]≤E[W (F0,Gu)]. If (18) holds for all F ∈Pa,2(1, c
2
a)

and G ∈Ps,2(ρ, c
2
s,Ms), then

sup{E[(F,G)] : (F,G)∈Pa,2(1, c
2
a)×Ps,2(ρ, c

2
s,Ms)}=E[W (F0,Gu)]. (19)

It is worthwhile to mention the E[W (Fu,G0)] is not a lower bound (see numerical study in

Chen and Whitt (2020b)). We regard Theorem 2 (c) as a promising tool to do further analysis

together with the algorithms and properties of W (F0,Gu) developed in Chen and Whitt (2020a).

From those results, it suggests a tractable way to justify the optimum by solving an approximate

version of the stochastic optimization in (18); i.e., we solve for all t≥ 0,

sup{
1

n

n∑
i=1

(Wi(F0,Gu)+Vi(G)−Ui(F )− t)+ : F ∈F ,G∈ G}=E[W (F0,Gu)] (20)

where F is a proper finite support over [0,Ma] and G is also a proper finite support over [0, ρMs].

3. Connecting to Basic T System Theory

As indicated above, we apply the theory of T systems, as reviewed in §2 of Chen and Whitt

(2020c), which draws on Karlin and Studden (1966). In particular, we apply Lemma 2.1 in §2.3

Chen and Whitt (2020c), which is a consequence of the tractable Wronskian condition for a T

system.

Definition 1. (T System) Consider a set of n+1 continuous real-valued functions {ui(t) : 0≤

i≤ n} on the closed interval [a, b]. This set of functions constitutes a T system if the (n+1)st-order

determinant of the (n+ 1)× (n+ 1) matrix formed by ui(tj), 0 ≤ i≤ n and 0 ≤ j ≤ n, is strictly

positive for all a≤ t0 < t1 < · · ·< tn ≤ b.

Equivalently, except for an appropriate choice of sign, we could instead require that every non-

trivial real linear combination
∑n

i=0 aiui(t) of the n+1 functions (called a u-polynomial; see §I.4

of Karlin and Studden (1966)) possesses at most n distinct zeros in [a, b]. (Nontrivial means that

∑n

i=0 a
2
i > 0.)

We next state a consequence of Lemma 2.1 in §2.3 of Chen and Whitt (2020c). Let φ(n) denote

the nth derivative of the function φ.
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Lemma 1. (from the (n + 1)st derivative to a T system) Consider the real-valued functions

ui(t)≡ ti, 0≤ i≤ n, and φ on the interval [a, b] for 0≤ a < b <∞. Suppose that φ has n+1 con-

tinuous derivatives. If φ(n+1)(t)> 0 for a≤ t≤ b, then {u0(t), u1(t), . . . , un(t), φ(t)} is a T system

of functions on [a, b]. If (−1)n+1φ(n+1)(t)> 0 for a≤ t≤ b, then {u0(t), u1(t), . . . , un(t),−φ(t)} is a

T system of functions on [a, b].

As reviewed in §2 of Chen and Whitt (2020c), Lemma 1 applies to our setting when n= 2. For

Theorem 2 (a), we want the UB and LB of the integral

∫ Ma

0

φ(u)dF (u), (21)

so that we will be applying Lemma 1 over the interval [0,Ma]. In part (a) of our queueing extremal

problem we work with the integral form in (21) with integrand

φ(u)≡

∫
∞

0

h((y−u)+)dΓ(y)= h(0)Γ(u)+

∫
∞

u+

h(y−u)dΓ(y), 0≤ u≤Ma, (22)

where Γ is a cdf of a nonnegative real-valued random variable Y with a finite moment generating

function (mgf); i.e., satisfying (9).

The following lemma combines Lemma 1 with the known extremal distributions in a T system,

as given in Theorem 2.4 of Rolski (1976).

Lemma 2. If the condition of Lemma 1 is satisfied with n= 2 and (−1)3φ(3)(u)> 0 for 0≤ u≤

Ma, then

sup{

∫ Ma

0

φ(u)dF (u) : F ∈Pa,2(1, c
2
a,Ma)}=

∫ Ma

0

φ(u)dF0(u) (23)

and

inf {

∫ Ma

0

φ(u)dF (u) : F ∈Pa,2(1, c
2
a,Ma)}=

∫ Ma

0

φ(u)dFu(u). (24)

If the condition of Lemma 1 is satisfied with n= 2 and (−1)3φ(3)(u)< 0 for 0≤ u≤Ma, then then

the roles of F0 and Fu are switched in (23) and (24).
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We now give sufficient conditions on h and the cdf Γ in (22) for the system {1, u, u2,−φ(u)} to be

a T system on [0,Ma]. For a real-valued function h of a real variable that has at least k continuous

derivatives, let h(k) denote its kth derivative; let h(0) ≡ h. Let 1A be the indicator function of the

set A, which equals 1 on A and 0 on its complement. For part of this result, we will be assuming

that the cdf Γ has a smooth pdf γ, but we will relax that assumption in §7.1.

Lemma 3. (condition for the third derivative to be negative) Consider a nonnegative real-valued

random variable Y with a finite mgf (satisfying (9)) and the cdf Γ with support in [a, b] or [a, b)

such that

0≤ a<Ma ≤ b≤∞. (25)

For φ in (22), in order to have

(−1)3φ(3)(u)> 0 for 0≤ u≤Ma, (26)

so that for {1, u, u2,−φ(u)} to be a T system on [0,Ma], implying that F0 attains the UB in (23),

while Fu attains the LB (24), each of the following is a sufficient condition:

(i) h(x)≡ x and Γ has a positive pdf γ that is differentiable with γ(1)(x)< 0 for a≤ x≤Ma,

(ii) h(x)≡ x2 and Γ has a positive pdf γ for a≤ x≤Ma,

(iii) h(x)≡ h(x;p)≡ xp for p≥ 3,

(iv) h(x)≡ h(x; t)≡ etx− tx− (tx)2

2
− (tx)3

6
= 1+

∑
∞

k=4
(tx)k

k!
for t > 0,

(v) h(k)(x)> 0, a < x≤Ma, 0≤ k ≤ 3 and h(k)(a) = 0, 1≤ k≤ 2.

For the function h(x)≡ x in condition (i), the condition on γ is necessary as well as sufficient, given

that γ has a continuous positive derivative. In condition (i), if instead γ(1)(x)> 0 for 0≤ x≤Ma,

then the roles of F0 and Fu are switched in (23) and (24).

Proof. First, observe that condition (9) implies that all integrals are finite. Next, we consider

what happens if 0≤ u≤ a with a > 0 or u > b. First, if u≤ a, then φ(u) =E[h(Y − u)], 0≤ u≤ a,

so that the desired property of φ holds over [0, a]. In particular,

φ(3)(u) =−

∫
∞

a

h(3)(y−u)dΓ(y)< 0, 0≤ u≤ a. (27)
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On the other hand, if u≥ b, then φ(u) = h(0), so that the desired property cannot hold for u > b.

However, we have ruled that case out by assuming that Ma ≤ b. It suffices for Γ to have a pdf over

[a,Ma].

In each case we can apply Lemmas 1 and 2 with (22). To do so, we apply the Leibniz rule for

differentiation of an integral with (22). Using that condition with a≤ u≤Ma, we have

φ(u) =

∫
∞

a

h((y−u)+)dΓ(y)=

∫
∞

u

h(y−u)dΓ(y)+h(0)Γ(u) and

φ(1)(u) = −

∫
∞

u

h(1)(y−u)dΓ(y)−h(0)γ(u)+h(0)γ(u)=−

∫
∞

u

h(1)(y−u)dΓ(y). (28)

For h(x)≡ x in condition (i), we have h(1)(x) = 1 for all x, so that

φ(1)(u) =−

∫
∞

u

h(1)(y−u)dΓ(y) =−

∫
∞

u

dΓ(y) =−(1−Γ(u)), (29)

so that, by the condition on Γ,

φ(2)(u) = γ(u)> 0 and φ(3)(u) = γ(1)(u)< 0 for u≥ a. (30)

From the form of φ(3)(u) in (30), we see that the condition on γ is necessary as well as sufficient.

We also see that the UB and LB are switched if instead γ(1)(u)> 0.

Turning to h(x) = x2 in condition (ii), we use h(1)(0) = 0 and h(2)(x) = 2 for all x with the second

line of (28) to get

φ(2)(u) =

∫
∞

u

h(2)(y−u)dΓ(y)= 2

∫
∞

u

dΓ(y) = 2(1−Γ(u))> 0, (31)

so that φ(3)(u) =−2γ(u)< 0 for a≤ u≤Ma.

Conditions (iii) and (iv) are both special cases of condition (v), which implies that

φ(3)(u) =−

∫
∞

u

h(3)(y−u)dΓ(y)< 0. (32)

4. Proof of Theorem 1

We prove Theorem 1 by establishing results for the transient higher moments. We do so by applying

stochastic comparison results from Rolski (1976) and Denuit et al. (1998), which are intimately



12

connected to the theory of T systems. From Theorem 2.1 of of Rolski (1976), the stochastic partial

order X1 ≤2,n X2 holds for any n with n≥ 2 if and only if

E[((X1 − t)+)n]≤E[((X2 − t)+)n] for all t∈R. (33)

From Theorem 3.2 of Denuit et al. (1998), the stochastic partial order X1 ≤3−cx X2 holds if and

only if both X1 ≤2,2 X2 and E[(X1)
j] = E[(X2)

j] for j = 1,2. Hence, X1 ≤3−cx X2 implies that

X1 ≤2,2 X2. Moreover, X1 ≤2,2 X2 implies X1 ≤2,n X2 for all n > 2, as shown in Corollary 1 to

Theorem 2.1 in Rolski (1976). As shown in §5 of Denuit et al. (1998), for random variables X(F )

with cdf F on the bounded interval [0,M ],

X(F0)≤3−cx X(F )≤3−cx X(Fu). (34)

We need two lemmas:

Lemma 4. (order for differences of random variables) If U1 ≤3−cx U2 and V1 ≤3−cx V2, where Ui

and Vi are independent real-valued random variables for each i, then

V1 −U2 ≤3−cx V2 −U1. (35)

Proof. Combine Propositions 3.10 and 3.11 (vi) of Denuit et al. (1998).

Lemma 5. (preservation of order for positive-part function) If U1 ≤2,n U2, then

(U1 − t)+ ≤2,n (U2 − t)+ for all t∈R. (36)

Proof. This is an easy consequence of the definition in (33).

We can apply the above to prove an ordering of all the transient waiting times in the GI/GI/1

queue. The proof of Theorem 1 follows directly from the following theorem.

Theorem 3. (order for transient and steady-state waiting times) Let Wi,n be the waiting time

of customer n in two GI/GI/1 queues with pairs of interarrival-time and service-time distributions
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(Ui, Vi), i= 1,2. Let the systems start empty or with ordered initial waiting times W1,0 ≤2,2 W2,0.

If U1 ≥3−cx U2 and V1 ≤3−cx V2, then

W1,n ≤2,2 W2,n for all n≥ 1. (37)

and

W1 ≤2,2 W2 (38)

for the associated steady-state waiting times.

Proof. Do the proof by mathematical induction. If the systems start empty, we get W1,1 ≤2,2 W2,1

by combining Lemmas 4 and 5. Given W1,n−1 ≤2,2 W2,n−1, we get W1,n ≤2,2 W2,n by applying the

preservation of order under convolution by (C) in §2.1 of Rolski (1976) and the positive part

function in Lemma 5. We get the final order for the steady-state waiting times from the preservation

under convergence Wi,n ⇒Wi as n→∞ for each i using §2.1 of Rolski (1976).

We conclude this section by providing a simulation illustration and sanity check for Theorems 3

and 1. Figure 1 plots simulation estimates of the transient second moments E[Wn(F,G)2] for seven

values of n for (F,G) = (Fu,E2), (E2,E2) and (F0,E2) (left) and (F,G) = (E2,G0), (E2,E2) and

(E2,Gu) (right) for the case c2a = c2s = 0.5, ρ= 0.5 and Ma =Ms =10.
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Figure 1 Simulation estimates of E[Wn(F,G)2] for various (F,G) with c2a = c2s =0.5,Ma =Ms = 10, ρ= 0.5
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5. Proof of Theorem 2 (a)

We next prove Theorem 2 (a): finding the extremal interarrival-time cdf F on [0,Ma] for the mean

E[W (F,G)] for any given service-time cdfG. We again apply the theory of T systems. After treating

part (a), we apply the same methods to treat Theorem 2 (b) and (c). The remaining details in the

proof of Theorem 2 (b) and (c) are given in §7.2 and §7.3.

There are several steps in the proof of Theorem 2 (a). First, we apply increasing convex stochastic

order to show that (39) in Theorem 4 below is a sufficient condition for all the desired conclusions.

Then Theorems 5 and 6 are devoted to providing sufficient conditions to establish (39), as stated

in Theorem 2 (a). The T -system theory enters in the proof of Theorem 5.

5.1. Exploiting Increasing Convex Stochastic Order

For Theorem 2 (a), we apply Lemma 3 (i) with the random variable Y being the sojourn time,

i.e., the time spent by the arrival in the system, also called the response time. It is the sum of

two independent nonnegative random variables, one being a service time V and the other steady-

state waiting time W or the transient waiting time Wn for n ≥ 0. Let Y ≡W + V and let Yn ≡

Wn+V . Let H and Hn be the cdf of W and Wn, respectively. Let Yn(H0, F,G) and Y (F,G) denote

the dependence of Yn and Y on the underlying cdf triple (H0, F,G) of (W0,U,V ) and similarly

for other random variables. (Recall that the steady-state distributions are independent of the

initial conditions, assuming a finite mean E[W0]). We can apply the previous results to deduce the

following two theorems.

For the first theorem, we exploit increasing convex stochastic order, denoted by ≤icx, and state

results in that form. For real-valued random variables, Z1 ≤icx Z2 if E[f(Z1)] ≤ E[f(Z2)] for all

nondecreasing convex functions f for which the expectations are well defined; e.g., see §1.5 of

Muller and Stoyan (2002).

Theorem 4. (a one-step condition for ordered steady-state means) Consider the GI/GI/1model

with given service-time cdf G satisfying (9). Let W0
d
=W (F1,G) and Y0

d
= Y (F1,G), where W (F,G)
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and Y (F,G) are the steady-state waiting time and sojourn time using F ∈Pa,2(1, c
2
a,Ma). For any

F2 ∈Pa,2(1, c
2
a,Ma), if

∫ Ma

0

E[(Y0(F1,G)− t−u)+]dF2(u)≤

∫ Ma

0

E[Y0(F1,G)− t−u)+]dF1(u) for all t≥−Ma,(39)

then

Wn(F2,G)≤icx Wn−1(F2,G) and Yn(F2,G)≤icx Yn−1(F2,G) for n≥ 1 (40)

for

Yn(Fi,G) ≡ Wn(Fi,G)+V (G) for n≥ 2, Y1(Fi,G)≡W0 +V (G) =W (F1,G)−U(Fi))
+,

Wn(Fi,G) ≡ (Yn−1(Fi,G)−U(Fi))
+ for n≥ 2 and W1(Fi,G)≡ (Y0 −U(Fi))

+. (41)

Hence,

W (F1,G)≥icx W (F2,G) and Y (F1,G)≥icx Y (F2,G) (42)

and thus

E[W (F1,G)]≥E[W (F2,G)] and E[Y (F1,G)]≥E[Y (F2,G)]. (43)

Proof. We start by observing that the increasing convex stochastic ordering

Y (F1,G)−U(F1)≥icx Y (F1,G)−U(F2), (44)

where the random variables Y and U are independent, is equivalent to the expectation orderings

E[(Y (F1,G)−U(F1)− t)+]≥E[(Y (F1,G)−U(F2)− t)+] for all t, (45)

by virtue of Theorem 1.5.7 of Muller and Stoyan (2002). We can then rewrite (45) equivalently as

∫ Ma

0

E[(Y (F1,G)−u− t)+]dF1(u)≥

∫ Ma

0

E[(Y (F1,G)−u− t)+]dF2(u) for all t. (46)

Since U has support in [0,Ma], we only need to consider t≥−Ma. Thus, the condition in (39) is

equivalent to each of the expressions in (44)-(46).

Now, given (44), because (x)+ is a nondecreasing convex function, we have

W0 ≡W (F1,G)
d
= (Y (F1,G)−U(F1))

+ ≥icx (Y (F1,G)−U(F2))
+ ≡W1. (47)
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where W1 ≡ W1(F1, F2,G) ≡ [W (F1,G) + V (G) − U(F2)]
+. Then, by Theorem 1.5.5 (b) of

Muller and Stoyan (2002), we see that the order is maintained if we add the same independent

random variable from both sides. That gives

Y0 ≡W0 +V (G)≥icx W1 +V (G)≡ Y1, (48)

where independence is assumed in the sums, as usual. Then, by Theorem 1.5.5 (b) of

Muller and Stoyan (2002) again, we see that the order is maintained if we subtract the same inde-

pendent random variable from both sides. Hence, from (48) we deduce that

Y0 −U(F2)≥icx Y1 −U(F2). (49)

Then, because (x)+ is a nondecreasing convex functions of x, we have

W1 = (Y0 −U(F2))
+ ≥icx (Y1 −U(F2))

+ ≡W2. (50)

By the same reasoning, we deduce recursively, and using mathematical induction, that

Wn−1 ≥icx Wn and Yn−1 ≥icx Yn for all n≥ 1. (51)

But then observe that (Wn, Yn)⇒ (W (F2,G), Y (F2,G)) as n→∞, so that we can apply Theorem

1.5.9 of Muller and Stoyan (2002) to deduce (42), which of course implies (43).

It now remains to provide a sufficient condition for condition (39) in Theorem 4 in terms of the

steady-state sojourn time Y (F0,G). We remark that it is known that the steady-state waiting-time

cdf is always new worse than used (NWU), is concave if the service-time cdf is has decreasing

failure rate (is DFR), and is completely monotone if the service-time cdf is completely monotone;

see §§1.7-1.9 of Szekli (1995). However, these properties are not preserved under convolution in

general.

Theorem 5. (strict concavity condition for F0) Consider the GI/GI/1 model with given service-

time V having cdf G with support in [a,∞) for 0≤ a < ρ=E[V ] and a finite mgf (satisfying (9)).
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If the sojourn-time cdf Γ(x)≡P (Y (F0,G)≤ x) is strictly concave in x over [a,∞), then condition

(39) in Theorem 4 is satisfied for F1 = F0 and for all F2 ∈Pa,2(1, c
2
a,Ma), so that

Y (F,G)≤icx Y (F0,G) for all F ∈Pa,2(1, c
2
a,Ma) (52)

and

sup{E[W (F,G)] : F ∈Pa,2(1, c
2
a,Ma)}=E[W (F0,G)]. (53)

If the sojourn-time cdf Γ(x) ≡ P (Y (F,G) ≤ x) is strictly concave in x over [a,∞) for all F ∈

Pa,2(1, c
2
a,Ma), then condition (39) in Theorem 4 is satisfied for all F2 = Fu and F1 = F for all F

in Pa,2(1, c
2
a,Ma), so that

Y (Fu,G)≤icx Y (F,G) for all F ∈Pa,2(1, c
2
a,Ma), (54)

and

inf {E[W (F,G)] : F ∈Pa,2(1, c
2
a,Ma)}=E[W (Fu,G)]. (55)

Proof. The condition on the cdf Γ in Theorem 5 implies condition (39) in Theorem 4. That

implication follows by applying Lemma 3 (i) when the service-time cdf has a strictly decreasing

pdf, which we have not yet assumed. However, it is possible to treat the more general case by an

additional asymptotic argument, as we indicate in §7.1 below. In particular, we apply Lemmas

6 and 7. The concavity of the cdf Γ over the entire interval [a,∞) is important for covering the

subtraction by t in condition (39).

We now provide a sufficient condition for the strict concavity conditions on the sojourn-time

distribution in Theorem 5. Recall that a cdf G on [0,∞) is completely monotone if it is a mixture

of exponential cdf’s, i.e., if

G(x) =

∫
∞

0

(1− e−λx)dP (λ)

for some probability measure P .

Theorem 6. (hyperexponential sojourn-time distribution) In the GI/GI/1 queue, if the service-

time distribution is Hk, then so is the sojourn-time distribution. Hence, the concavity conditions

on the sojourn-time cdf Γ in Theorem 5 are satisfied for all F ∈Pa,2(1, c
2
a,Ma) if the service-time

cdf G is hyperexponential or completely monotone.
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Proof. For the GI/PH/1 queue with any interarrival-time cdf, it is known that the waiting time

and sojourn time cdf’s inherit the phase-type (PH) matrix structure of the service-time cdf; see

pp. 46 and 151 of Neuts (1981) or Corollary 2.2 of Asmussen (1992). From the diagonal structure

of the substochastic matrix in the PH representation when the PH distribution is Hk, we see that

the distributions of W and Y are also Hk when the cdf G of V is Hk.

We continue to provide a detailed proof, referring to Neuts (1981) and using notation there.

To do so, we use the known fact that the waiting-time cdf is Hk with an atom at the origin;

see §II.5.10 of Cohen (1982) or Theorem 1.9 D (i) of Szekli (1995). Thus, from equation (4.1.41)

of Neuts (1981), we deduce that the matrix function Θ(x) that appears there in the cdf of W ,

and is characterized in previous equations, is a diagonal matrix with exponential functions e−µix

appearing on the diagonal. (The constant matrices appearing there are all strictly positive, so that

there is no cancellation.) Hence, this must also be true for the matrix Ψ(x) in equation (4.1.40) of

Neuts (1981). Thus, the ODE for the function Ψ1(x) appearing there involves diagonal matrices S

and Ψ(x). Hence, Ψ1(x) has a diagonal matrix function solution. Thus, the distribution of Y given

in equation (4.1.44) is a mixture of exponentials. Given that Hk structure, the cdf Γ has a strictly

decreasing pdf, so that the concavity condition is satisfied. The general completely monotone case

can be represented as the limit of Hk cdf’s, using §7.1. The asymptotic argument was used for the

GI/GI/k waiting time by Szekli (1987)

We now observe that the concavity condition for the sojourn-time cdf cannot be satisfied for any

GI/Ek/1 queue for k≥ 2 or any queue where the service time is a finite mixture of Ek distributions

all of which have k≥ 2.

Proposition 1. (negative results for Erlang service) For any service-time cdf G that has a pdf

g that is differentiable and strictly increasing over [0, x] for some x> 0, the pdf γ of the associated

steady-state sojourn-time Y ≡W +V must be strictly increasing over [0, x], so that the cdf Γ cannot

be strictly concave.
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Proof. Let H be the cdf of W , which has an atom at 0. Given that V has a continuous pdf,

Y ≡ V +W has a pdf γ, where

γ(t) =H(0)g(t)+

∫ t

0+

g(t−u)dH(u), t≥ 0. (56)

Consequently, the derivative satisfies

γ(1)(t) =H(0)g(1)(t)+

∫ t

0+

g(1)(t−u)dH(u), (57)

which is strictly positive for 0≤ t≤ x for sufficiently small x by the assumption on g.

6. Continuity of the Mean Steady-State Waiting Time

In this section we use a variant of Theorem 1 to show that the mean steady-state waiting time

is continuous as a function of the underlying pair of cdf’s (F,G) under a natural condition. This

section thus provides an extension to Corollary X.6.4 in Asmussen (2003) by establishing uniform

integrability (UI) of the sequence of waiting times, e.g., see §5 of Billingsley (1968).

For this result, we relax condition (9) and instead assume that instead the third moment of the

service time V is specified as well as the parameters (1, c2a, ρ, c
2
s). Let

νs,3 ≡
E[V 3]

E[V ]3
= ρ3E[V 3], (58)

which we assume to be finite. Our new continuity result is

Theorem 7. (continuity of the mean waiting times) Consider a sequence of GI/GI/1 queueing

models indexed by k with underlying interarrival-time and service-time random variables (Uk, Vk)

having the pair of cdf ’s (Fk,Gk) with the fixed model parameters (1, c2a, ρ, c
2
s, νs,3) (to be used in

each time period n). Let W (k)
n be the transient waiting time in time period n and let W (k) be

the steady-state waiting time for model k. Suppose that Fk ⇒ F and Gk ⇒ G as k → ∞. Then

W (k)
n ⇒Wn ≡Wn(F,G) as k→∞ for each n≥ 1 and W (k) ⇒W ≡W (F,G) as k→∞,

both {(W (k)) : k≥ 1} for each n≥ 1 and {(W (k)) : k≥ 1} are UI (59)

or, equivalently,

E[(W (k)
n )]→E[Wn] as k→∞ for each n≥ 1 and E[(W (k))]→E[W ] as k→∞. (60)
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The proof of the uniform integrability needed for Theorem 7 exploits upper bounds on the mean

waiting times, which is provided by the following variant of Theorem 1.

Theorem 8. (upper bounds for the second moment of the steady-state waiting time) Consider

the set of GI/GI/1 queueing models with F ∈Pa,2(1, c
2
a) and G ∈Ps,3(ρ, c

2
s, νs,3) for νs,3 in (58).

(a) Let the service-time cdf G ∈Ps,3(ρ, c
2
s, νs,3) be fixed. Then

E[W (F,G)2]≤E[W (F0,G)2]<∞ (61)

for all F ∈Pa,2(1, c
2
a), where F0 is the two-point cdf with one mass at 0.

(b) Let the interarrival-time cdf F ∈Pa,2(1, c
2
a) be fixed. Then there exists a cdf Ĝ ∈Ps,3(ρ, c

2
s, νs,3)

such that

E[W (F,G)2]≤E[W (F, Ĝ)2]<∞ (62)

for all G∈Ps,2(ρ, c
2
s, νs,3).

(c) Suppose that neither F nor G is fixed. Then there exists a cdf Ĝ∈Ps,3(ρ, c
2
s, νs,3) such that

E[W (F,G)2]≤E[W (F0, Ĝ)2]<∞ (63)

for all F ∈Pa,2(1, c
2
a) and G∈Ps,2(ρ, c

2
s, νs,3).

Proof. The proof is a variant of the proof in Theorem 1. As before, we apply T systems. Since

we only draw conclusions about the second moment of the steady-state waiting time, it suffices to

have the bounded third moment of G in (58). For part (a), we initially impose the finite support

bound Ma on F , but the extremal cdf F0 places no mass on the upper limits. Thus the bound is

independent of Ma. For parts (b) and (c), we use the T -system theory again to exploit the specified

third moment of G to construct the extremal upper bound cdf of G given the first three moments,

which we denote by Ĝ. The extremal cdf Ĝ asssigns one point to 0 and the other two points to

x1 and x2 with 0 < x1 < x2 <Ms for Ms suitably large; e.g., see the tables on p. 137 of Eckberg

(1977). By Theorem X.2.1 of Asmussen (2003), E[W 2]<∞ given that νs,3 <∞.
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Proof of Theorem 7. First, the results for the transient waiting times are elementary, given the

Lindley recursion in (1). For the steady-state mean, Corollary X.6.4 of Asmussen (2003) implies

that W (k) ⇒W as k→∞. The condition there that {X+
k : k≥ 1} be UI for Xk ≡ Vk−Uk is satisfied

because X+
k ≤ Vk and E[V 2

k ] = ρ2(c2s+1)<∞ for all k. To deduce (59), which is equivalent to (60)

because the waiting times are nonnegative (see Theorem 5.4 of Billingsley (1968)), we apply the

uniform bound on the second moment provided by Theorem 8.

7. Remaining Proofs

We now provide the remaining proofs.

7.1. Relaxing the PDF Condition in Lemma 3

We now relax the pdf condition on Γ in Lemma 3 under conditions (i) and (ii) above. Recall

that convergence in distribution can be expressed in terms of cdf’s; i.e., corresponds to pointwise

convergence at all points x that are continuity points of the limiting cdf. Let ⇒ denote convergence

in distribution.

Lemma 6. (preservation of optimality) Suppose that {Yn : n ≥ 1} is a sequence of real-valued

random variables such that the conditions of Lemma 3 are satisfied for each n≥ 1 and Yn ⇒ Y as

n→∞. If F0 (Fu) yields the UB for (23) and Fu (F0) yields the LB in (24) for all n≥ 1, then the

same is true for the limit Y .

Proof. We directly compare F0 to any alternative cdf F for the UB. First, by the continuous

mapping theorem, we obtain

φn(u)→ φ(u) as n→∞ (64)

for each u from (22). Then, by the dominated convergence theorem,

∫ Ma

0

φ(u)dF (u)= lim
n→∞

∫ Ma

0

φn(u)dF (u)≤ lim
n→∞

∫ Ma

0

φn(u)dF0(u) =

∫ Ma

0

φ(u)dF0(u). (65)

Hence. F0 remains optimal for the limit. Essentially the same argument applies to the lower

bound.
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Lemma 7. (preservation of optimality for the first two moments) In order to apply Lemma 6 to

condition (i) in Lemma 3 with γ(1)(x)< 0, a≤ x≤Ma, it suffices to have, in addition to Yn ⇒ Y ,

the cdf ’s Γ of Y be strictly concave over [a,Ma], i.e., satisfy Γ(x+ δ)−Γ(x) be strictly decreasing

in x over [a,Ma] for all δ > 0. For condition (ii) in Lemma 3, it suffices to have Γ(x) be strictly

decreasing in x over [a,Ma].

Proof. If Γ has the stated property, then Γ can be made the limit of cdf’s Γn with the properties

stated in Lemma 3.

7.2. Proof of Theorem 2 (b)

The proof for part (b) can be short, because we can apply a variant of the proof for part (a). For

part (b), we are concerned with

sup{

∫
∞

0

E[(W (F,G)+ v−U)+]dG(v) :G ∈Ps,2(ρ, c
2
s,Ms)}. (66)

It is convenient to use a reverse-time formulation and work with the cdf G̃ of Ṽ ≡ ρMs−V , and

adjusting the moments consistently. Then we can focus on

sup{

∫
∞

0

E[(W (F,G)−U + ρMs − v)+]dG̃(v) : G̃∈Ps,2(ρ̃, c̃
2
s,Ms)}. (67)

We make structural assumptions about the cdf’s F of U and H of W , which can be relaxed by the

asymptotic methods of §7.1.

Lemma 8. If (i) the cdf F is differentiable with a strictly positive pdf f that can be expressed as

f(u) =

∫ u

0

f (1)(x)dx, u≥ 0, (68)

where f (1) is integrable, and (ii) W has a cdf H with H(0)> 0 and

H(x) =H(0)+

∫ x

0

h(w)dw x≥ 0, (69)

where h is strictly positive and integrable over the halfline, then the integrand φs in (67) with k=1

can be expressed as

φs(v) =H(0)E[(ρMs − v−U)+] +

∫
∞

0

h(w)E[(w+ ρMs − v−U)+]dw > 0, (70)
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so that the first three derivatives of φs exist for v > 0 and, with satisfy

φ(1)
s (v) = −P (U −W ≤ ρMs − v) =−H(0)F (ρMs− v)−

∫
∞

0

h(w)F (w+ ρMs − v)dw < 0,

φ(2)
s (v) = θ(v) =H(0)f(ρMs− v)+

∫
∞

0

h(w)f(w+ ρMs − v)dw> 0,

φ(3)
s (v) = θ̇(v) =−H(0)f (1)(ρMs − v)−

∫
∞

0

h(w)f (1)(w+ ρMs − v)dw > 0, v≥ 0, (71)

where θ(v) is the pdf of U −W over [0, ρMs] because v ∈ [0, ρMs]. So that φs is strictly positive,

strictly decreasing and strictly convex on [0, ρMs]. Moreover, from (71) we see that if f (1) > 0, then

φ(3)
s (v)< 0 as well.

Thus, the previous proof applies until we come to Theorem 6, but we now need to replace

the steady-state sojourn time Y =W + V by U −W , where W is the steady-state waiting time.

Fortunately, the analog of Theorem 6 is already covered by Lemma 8.

7.3. Proof of Theorem 2 (c)

The proof here is essentially the same as the proof of Theorem 4. As before, we establish increas-

ing convex stochastic order as we move from one steady-state distribution to another through a

sequence of transient distributions, based on the Lindley recursion (1),

8. Supporting Simulation Results

In this section we present results of simulation experiments illustrating the the shape conditions

for parts (a) and (b) of Theorem 2.

8.1. Supporting Simulation Results for F

We now present supporting simulation results for the shape of the steady-state sojourn time Y ≡

W +V asserted in Theorem 6 and thus for the extremal results in Theorems 4 and 5. We consider

the supreumum and infimum for F , e.g.,

E[W (F0,Hk)] = sup{E[W (F,Hk)] : F ∈Pa,2(Ma)}, k≥ 2. (72)

Figure 2 shows that for the examples F0/H2/1 and Fu/H2/1 (Ma = 10) with balanced means

under traffic level ρ= 0.5, the pdf γ of Y under the same simulation settings in both cases has a
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monotone density. In these cases, the estimated mean steady-state values are E[W (Fu,H2)] = 2.00

and E[W (F0,H2)] = 3.28.

Figure 2 The shape of the pdf of W (F0,H2) + VH2
and W (Fu,H2) + VH2

for H2 service with Ma = 10, ρ= 0.5

and c2a = c2s = 4

In addition, Figure 3 shows supporting simulation results for F0/H5/1 and Fu/H5/1 (Ma =

10) where H5 has the service rates [1.0,1.5,2.0,2.5,3.0] with the respective probabilities

[0.1,0.15,0.2,0.25,0.3]. In these cases, E[W (Fu,H5)] = 1.03 and E[W (F0,H5)] = 2.75.

Figure 3 The shape of the pdf of W (F0,H5)+VH5
and W (Fu,H5)+VH5

for H5 service (as specified in the text)

with Ma =10, ρ=0.5 and c2a = c2s =4
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Figure 4 shows corresponding results for E2 service. Figure 4 shows that the pdf of W + V is

nearly monotone, but a careful examination shows that the pdf is increasing over a short interval

[0, x]. In these cases, E[W (Fu,E2)] = 0.528 and E[W (F0,E2)] = 2.55.

Figure 4 The shape of the pdf pf W (F0,E2) + VE2
and W (Fu,E2) + VE2

for Erlang E2 service with Ma = 10,

ρ= 0.5, c2a =4 and c2s =0.5

8.2. Supporting Simulation Results for G

In this concluding subsection we present simulation results supporting Theorem 2. Figure 5 exper-

imentally confirms the conclusion of Lemma 8 in §7.2. that the condition of Theorem 2 (b) can be

satisfied by presenting simulation estimates of the pdf of W (H2,G0)−UH2
and W (H2,Gu)−UH2

≤

0 with Ms = 10 and ρ = 0.5 for the case c2a = c2s = 4. In these cases, E[W (H2,G0)] = 2.17 and

E[W (H2,Gu)] = 2.03.
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Figure 5 The shape of the pdf of W (H2,G0)− UH2
and W (H2,Gu)− UH2

≤ 0 with H2 interarrival-time cdf,

Ms =10, ρ= 0.5 and c2a = c2s = 4

Figure 6 presents corresponding simulation results when F has an E2 distribution. We see that

monotonicity fails, just as in Figure 4. In these cases, E[W (E2,G0)] = 1.01 and E[W (E2,Gu)] =

1.06. Notice that there is a switch of order of G0 and Gu going from H2 arrivals to E2 arrivals.

Figure 6 The shape of the pdf of W (E2,G0) − UE2
and W (E2,Gu) − UE2

≤ 0 with E2 interarrival-time cdf,

Ms =10, ρ= 0.5 and c2a =0.5, c2s = 4

9. Conclusions

This paper applies the theory of Tchebycheff (T) systems to identify interarrival-time and service-

time cdf’s that maximize or minimize the transient and steady state moments of the waiting time
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in the GI/GI/1 queue, given the first two moments of the underlying interarrival-time and service-

time cdf’s. The extremal cdf’s are classical two-point distributions that are determined by either

having one mass point at 0 or the upper limit of the support.

Theorem 1 establishes that higher moments of the steady-state waiting times are maximized

(minimized) over all by interarrival-time cdf’s F with given first two moments in the GI/GI/1

model by the classical extremal two-point cdf F0 with one mass on 0 (Fu with one mass on the

upper limit of support). Corresponding results are also obtained for the service times and for the

two cdf’s jointly. We prove Theorem 1 in §4 by combining stochastic comparison results in Rolski

(1976) and Denuit et al. (1998), which are intimately related to T systems. In §6 a variant of

Theorem 1 is established to produce a continuity result for the mean steady-state waiting time in

the GI/GI/1 queue, extending Corollary X.6.4 of Asmussen (2003).

Theorem 2 establishes sufficient conditions for corresponding results to hold for the steady state

mean E[W ]. The proofs rely on the tractable characterization of T systems in §3 in terms of

Wronskians, which was used for the asymptotic decay rate in Chen and Whitt (2020c). For given

service-time cdf G, F0 yields the upper bound if G is completely monotone. For optimizing over F ,

a key supporting result was Theorem 5, establishing the concavity of the sojourn-time cdf when

the service-time cdf is completely monotone. For given interarrival-time cdf F , G0 yields the upper

bound if the cdf F is strictly concave, as occurs when G has a strictly decreasing pdf. Increasing

convex order is used to give a sufficient condition for the overall upper bound to be E[W (F0,Gu)],

as widely conjectured, but the main extremal problem for the GI/GI/1 queue remains unresolved.
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