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In this paper we show that the upper bound for the mean steady-state waiting time in the classical GI/GI/1

queue, given the first two moments of the interarrival-time and service-time distributions, is attained by

probability distributions with support on at most three points. We start by focusing on the extremal problem

for the transient mean with one of the underlying distributions fixed. We then restrict attention to distri-

butions with finite support. In that context, we apply basic optimization theory to formulate the extremal

problem as a non-convex nonlinear program with linear constraints. We show that any local optimum must

be a fixed point involving a linear program. We then show that the linear program must have a unique

solution, implying that the local optimum must correspond to an extreme point of the linear program, and

thus must be a three-point distribution. Finally, we apply asymptotics to obtain corresponding results for

the other cases.
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1. Introduction

In this paper we address a long-standing open problem for the GI/GI/1 queueing model: deter-

mining a tight upper bound for the mean steady-state waiting time, and the interarrival-time and

service-time distributions that attain it, given the first two moments of these underlying distri-
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butions; see Daley et al. (1992), especially §10, Wolff and Wang (2003) and references therein. In

this paper we obtain in important partial result: We show that the upper bound is attained by

probability distributions with support on at most three points.

We approach this problem by considering two more general problems of independent interest.

First, we consider the corresponding two problems with one of the underlying distributions fixed

(with finite first two moments) and specified. Second, we consider those problems also for the

transient expected waiting time. For the transient mean, we exploit the known explicit formula

for the mean. For the case of finite support, we apply basic optimization theory for a non-convex

nonlinear program with linear constraints to show that all local optima are attained at three-point

distributions. Finally, we apply asymptotics to connect those results to the general cases.

2. Background

2.1. The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n≥ 0}, each distributed as V with cumulative distribution function (cdf) G, which is inde-

pendent of a sequence of i.i.d. interarrival times {Un : n ≥ 0} each distributed as U with cdf F .

With the understanding that a 0th customer arrives at time 0, Vn is the service time of customer

n, while Un is the interarrival time between customers n and n+1.

Let U have mean E[U ] ≡ λ−1 ≡ 1 and squared coefficient of variation (scv, variance divided

by the square of the mean) c2a; let a service time V have mean E[V ] ≡ τ ≡ ρ and scv c2s, where

ρ≡ λτ < 1, so that the model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service,

assuming that the system starts with an initial workload W0 having cdf H0 with a finite mean.

The sequence {Wn : n≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 +Vn−1 −Un−1]
+, n≥ 1, (1)
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where x+ ≡max{x,0}. Let W be the steady-state waiting time, satisfying Wn ⇒W as n→ ∞,

where ⇒ denotes convergence in distribution for any proper cdf H0. It is well known that the cdf

H of W is the unique cdf satisfying the stochastic fixed point equation

W
d
= (W +V −U)+, (2)

where
d
= denotes equality in distribution. It is also well known that, if P (W0 = 0)= 1, then Wn

d
=

max{Sk : 0≤ k≤ n} for n≤∞, S0 ≡ 0, Sk ≡X0+ · · ·+Xk−1 and Xk ≡ Vk−Uk, k≥ 1; e.g., It is also

known that, under the specified finite moment conditions, for 1≤ n≤∞, Wn is a proper random

variable with finite mean, given by

E[Wn|W0 =0] =
n

∑

k=1

E[S+
k ]

k
<∞, 1≤ n<∞, and E[W ] =

∞
∑

k=1

E[S+
k ]

k
<∞; (3)

see §§X.1-X.2 of Asmussen (2003) or (13) in §8.5 of Chung (2001). We will exploit the formula for

the transient mean in (3) in our analysis.

2.2. Motivation: Approximations for Non-Markovian Open Queueing Networks

One source of motivation for the bounds is provided by parametric-decomposition approximations

for non-Markovian open networks of single-server queues, as in Whitt (1983), where each queue is

approximated by a GI/GI/1 queue partially characterized by the parameter vector (λ, c2a, τ, c
2
s),

obtained by solving traffic rate equations for the arrival rate λ at each queue and after solving

associated traffic variability equations to generate an approximating scv c2a of the arrival process.

Because the internal arrival processes are usually not renewal and the interarrival distribution

is not known, there is no concrete GI/GI/1 model to analyze. To gain some insight into these

approximations (not yet addressing the dependence among interarrival times), It is natural to

regard such approximations for the GI/GI/1 model as set-valued functions, applying to all models

with the same parameter vector (λ, c2a, τ, c
2
s).

For the special case of the GI/M/1 model with bounded support for the interarrival-time cdf F ,

the extremal GI/M/1 models were studied in Whitt (1984a), where intervals of bounded support
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were also used together with the theory of Tchebychev systems, as in Karlin and Studden (1966),

drawing on Rolski (1972), Holtzman (1973) and Eckberg (1977).(The focus in Whitt (1984a) was

on the mean steady state number of customers in the system, but it is easily seen that the extremal

interarrival-time distributions are the same for the mean number of customers in the system and

the mean steady-state waiting time, because they both depend on the root of the same equation.)

For the GI/M/1 model, the extremal distributions are two-point distributions.

Since the range of possible values is quite large, while the distributions that attain the bounds

are unusual (two-point distributions), the papers Klincewicz and Whitt (1984), Whitt (1984b) and

Johnson and Taaffe (1990a) focused on reducing the range by imposing shape constraints. In this

paper we do not consider shape constraints.

2.3. Related Literature

The literature on bounds for the GI/GI/1 queue is well reviewed in Daley et al. (1992) and

Wolff and Wang (2003), so we will be brief. The use of optimization to study the bounding problem

for queues seems to have begun with Klincewicz and Whitt (1984) and Johnson and Taaffe (1990b).

Bertsimas and Natarajan (2007) provides a tractable semi-definite program as a relaxation model

for solving steady-state waiting time of GI/GI/c to derive bounds, while Osogami and Raymond

(2013) bounds the transient tail probability of GI/GI/1 by a semi-definite program.

Several researchers have studied bounds for the more complex many-server queue. In addition

to Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investi-

gate the bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why two

moment information is insufficient for good accuracy of steady-state approximations of M/GI/c.

Gupta and Osogami (2011) establishes a tight bound for the M/GI/K in light traffic. Finally,

Li and Goldberg (2017) establishes bounds for GI/GI/c intended for the many-server heavy-traffic

regime.

Since the first version of this paper was completed, we have subsequently completed other related

papers. In Chen and Whitt (2020) we developed some effective algorithms for the widely conjec-

tured upper bound model, which involves only two-point distributions. There we showed that its
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mean value is a significant improvement over established bounds, such as in Kingman (1962) and

Daley (1977). We also developed an explicit formula for an upper bound for the conjectured tight

upper bound, which is very accurate. In Chen and Whitt (2019) we developed sufficient conditions

for special two-point extremal distributions by applying the theory of Tchebycheff systems.

2.4. Organization

In §3 we state our main contribution, Theorem 1, which shows that the extremal distributions

have support on at most three points. We also outline the proof there. In §4 we prove the part

of the main theorem with the service-time distribution fixed. In §5 we prove the corresponding

part of the theorem with the interarrival-time distribution fixed. It is shorter because much of the

same argument can be used again. In §6 we show that the results in §§4 and 5 can be combined to

quickly provide a proof for the case neither distribution is fixed. In §7 we present three asymptotic

results needed to complete the overall proof. Finally, in §8 we draw conclusions.

3. The Main Result

In this section we state our main result, Theorem 1, and outline the proof. We start in §3.1 by

introducing the notation we will use.

3.1. Notation

Let Pn be the set of all probability measures on a subset of R with specified first n moments.

The set Pn is a convex set, because the convex combination of two probability measures is just

the mixture; i.e., for all p, 0≤ p≤ 1, pP1 + (1− p)P2 ∈Pn if P1 ∈Pn and P2 ∈Pn, because the nth

moment of the mixture is the mixture of the nth moments, which is just the common value of the

components.

We use the scv to parameterize, so let P2 ≡ P2(m,c
2) be the set of all cdf’s with mean m and

second moment m2(c2+1) where c2<∞. Let P2(M)≡P2(m,c
2,M) be the subset of all cdf’s in P2

with support in the closed interval [0,mM ] having mean m and second moment m2(c2+1) where

c2 +1<M <∞. (The last property ensures that the set P2(M) is non-empty.)
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Let subscripts a and s denote sets for the interarrival and service times, respectively. For inter-

arrival time, we let Pa,2(S)≡Pa,2(1, c
2
a, S) be the set of probability measures for inter-arrival time

distribution F on [0,∞) with two moments specified, as determined by the parameter pair (1, c2a),

and support in the set S. Let Ps,2(S) ≡ Ps,2(ρ, c
2
s, S) denote the corresponding set of probability

measures for the service time distribution G. For example, if S = [0,Ma], then we write Pa,2(Ma)≡

Pa,2(1, c
2
a, [0,Ma]); if S = F where F is a finite set including ending points in {0,Ma}, then we

write Pa,2(F)≡Pa,2(1, c
2
a,F). If S is omitted, i.e., if we write Pa,2 ≡Pa,2(1, c

2
a), then the support is

understood to be [0,∞). Let Pa,2,k(S) denote the subset with support on at most k points within

S for various S as above.

We introduce some further simplified notation in our proof. In particular, see the beginning of

§4.1 and §5.

3.2. Theorem Statement

We consider the mean waiting time E[Wn] for 1≤ n≤∞ expressed as a mapping of the underlying

distributions; i.e., let

wn :Pa,2(1, c
2
a)×Ps,2(ρ, c

2
s)→ [0,∞), (4)

where 0< ρ< 1 and

wn(F,G)≡E[Wn(F,G)], 1≤ n≤∞, (5)

in the GI/GI/1 queue with interarrival-time cdf F ∈Pa,2(1, c
2
a) and service-time cdf G ∈Ps,2(ρ, c

2
s),

as given explicitly in (3).

Theorem 1. (reduction to a three-point distribution) Consider the class of GI/GI/1 queues with

W0 = 0, F ∈Pa,2 ≡Pa,2(1, c
2
a), G ∈ Ps,2 ≡Ps,2(ρ, c

2
s), 0< ρ< 1, where Pa,2 and Ps,2 are nonempty.

For 1 ≤ n ≤ ∞, the functions wn : Pa,2 × Ps,2 → R in (4) are continuous. Hence, the following

suprema over spaces of probability measures with specified nonempty compact support are attained.

(a) For each n, G ∈Ps,2 and 1+ c2a ≤Ma <∞, there exists F ∗
n(G)∈Pa,2,3(Ma) such that

w↑
a,n(G)≡ sup{wn(F,G) : F ∈Pa,2(Ma)}= sup{wn(F,G) : F ∈Pa,2,3(Ma)}=wn(F

∗
n(G),G). (6)
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(b) For each n, F ∈Pa,2 and 1+ c2s ≤Ms <∞, there exists G∗
n(F )∈Ps,2,3(Ms) such that

w↑
s,n(F )≡ sup{wn(F,G) :G ∈Ps,2(Ms)}= sup{wn(F,G) :G ∈Ps,2,3(Ms)}=wn(F,G

∗
n(F )). (7)

(c) For each n, (Ma,Ms) with 1+ c2a ≤Ma <∞ and 1+ c2s ≤Ms <∞, there exists (F ∗∗
n ,G∗∗

n ) in

Pa,2,3(Ma)×Ps,2,3(Ms) such that

w↑
n ≡ sup{wn(F,G) : F ∈Pa,2(Ma),G∈Ps,2(Ms)}= sup{wn(F,G) : F ∈Pa,2,3(Ma),G∈Ps,2,3(Ms)}

=wn(F
∗∗
n ,G∗∗

n ) =w↑
a,n(G

∗∗
n ) =w↑

s,n(F
∗∗
n ). (8)

Corresponding results hold for each supremum replaced by an infimum.

3.3. Outline of the Proof

We first prove part (a) of Theorem 1. We start with the transient mean E[Wn] with n <∞ and

obtain results for the steady-state mean afterwards by an asymptotic argument. For the transient

mean, we first do the proof for the special case of finite support, and then treat the general case

by a second asymptotic argument. For part (a) given finite support, we do the proof for the case

of the fixed service-time cdf G having a positive probability density function (pdf), and then treat

the general case by a third asymptotic argument. As required by this logic, at the end in §7 we

perform the three asymptotic arguments in reverse order.

For the special case of (a) with finite support, we analyze the optimization problem as a nonlinear

program with a smooth non-convex objective function and linear constraints. The basic nonlinear

program theory as in Bertsekas (2016) then allows us to show that any local optimum must be

the fixed point of a linear program (LP). We then apply duality theory to show that the optimal

solution of the LP must be unique, and thus the local optimummust correspond to an extreme point

of the linear program, which is a three-point distribution. Starting from a local optimum, the LP

yields that given local optimum as the unique solution of the LP, which must be an extreme-point

and thus a three-point distribution.
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4. Proof of Theorem 1 (a) for n<∞

As indicated above, we start by proving part (a) for the transient waiting time E[Wn] with n<∞

as given in (3). For n = 1, the conclusion follows from the classic moment problem reviewed in

Smith (1995) because we can express E[W1] as the integral of a continuous real-valued function

over the bounded interval [0,Ma] via

E[W1] =

∫ Ma

0

φ(u)dF (u), (9)

where φ(u)≡E[(V −u)+]. Unfortunately, the partial sums lead to convolution, which prevent such

a representation for n≥ 2. We circumvent that difficulty to some extent in Chen and Whitt (2019)

by focusing on the more general GI(n)/GI/1 model that allows a different interarrival-time cdf

each time period, but we only obtain partial results by that approach.

4.1. Gradient of the Mean Transient Waiting Time

To treat finite n with n≥ 2, we consider finite support F in Pa,2(Ma), i.e., Pa,2(F). Let the elements

of F be 0= u1 <u2 < . . . < um =Ma with m≡ |F| ≥ 3. With this assumption, we will simplify the

notation. In particular, we will suppress the fixed service-time cdf G and we will replace F by its

probability mass function p≡ (p1, . . . , pm).

With these notation conventions, the optimization in part (a) becomes

max{wn(p)≡wn(F,G)≡E[Wn(F,G)] : F ∈Pa,2(F)}

=max{
n

∑

k=1

1

k
E[S+

k (p)]}

such that
m
∑

i=1

pi = 1,
m
∑

i=1

uipi = 1,
m
∑

i=1

u2
i pi = (1+ c2a), and pi ≥ 0. (10)

We now show that the function wn(p) is a smooth function of p≡ (p1, . . . , pm). In particular, we

show that the gradient is well defined. We do that by showing that the Frechet derivative is well

defined. For that purpose, let ‖p‖ be the l1 norm in R
m, i.e.,

‖p‖ ≡

m
∑

i=1

|pi|. (11)
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The function wn(p) is said to be Frechet differentiable at p̂ if the following limit is well defined:

lim
‖p−p̂‖→0

∣

∣wn(p)−wn(p̂)−∇wn(p̂)
t · (p− p̂)

∣

∣

‖p− p̂‖
= 0, (12)

where where ∇wn(p̂) is the gradient, which we regard as an m× 1 column vector,

∇wn(p̂)≡

((

∂wn

∂p1
(p̂)

)

, . . . ,

(

∂wn

∂pm
(p̂)

))t

(13)

with t denoting the transpose of vector in R
m. The gradient is associated with the local linear

approximation of wn(p) at some p̂∈R
m, using the dot product, as

wn(p)≈wn(p̂)+∇wn(p̂)
t · (p− p̂). (14)

Remark 1. (extension) The Frechet derivative can be generalized to Banach spaces using the

total variation metric, which in our setting is just dTV (p, p̂) = (1/2)‖p− p̂‖; see Ch. 6 of Serfling

(1980) and Wang (1993). For example, the following result also holds if the cdf F has a pdf f over

R instead of having finite support. Then dTV (F1, F2)≡
∫∞

0
|f1(x)− f2(x)|dx.

Theorem 2. (Frechet derivative) In the finite support setting above, the function wn(p) is Frechet

differentiable with partial derivatives at p̂ given by

∂wn

∂pi
(p̂) =

n
∑

j=1

E[(

j
∑

k=1

Vk(G)−

j−1
∑

k=1

Uk(p̂)−ui)
+], (15)

so that

∇wn(p̂)
t · (p− p̂) =

m
∑

i=1

∂wn

∂pi
(p̂)(pi− p̂i). (16)

Proof. We do the proof for n= 2; the argument for higher n is analogous. For any real-valued

functions f(x) and g(x), let f(x) = Θ(g(x)) denote that there exists m,M > 0 such that mg(x)≤

|f(x)| ≤Mg(x) for all x. Then, adding and subtracting by p̂i and p̂j inside the expression for w2(p),

we get

w2(p) =
∑

i

E[(V1 −ui)
+]pi +

1

2

∑

i,j

E[(V1 +V2 −ui −uj)
+]pipj
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=
∑

i

E[(V1 −ui)
+](pi− p̂i + p̂i)

+
1

2

∑

i,j

E[(V1 +V2 −ui −uj)
+](pi − p̂i+ p̂i)(pj − p̂j + p̂j)

=
∑

i

E[(V1 −ui)
+]p̂i +

1

2

∑

i,j

E[(V1 +V2 −ui −uj)
+]p̂ip̂j

+
∑

i

E[(V1 −ui)
+](pi − p̂i)+

∑

i

E[(V1 +V2 −U1(F̂ )−u)+(pi− p̂i)+Θ(‖p− p̂‖)

= w2(p̂)+
∑

i

∇w2(p̂)
t(pi − p̂i)+Θ(‖p− p̂‖)2), (17)

where

∂w2

∂pi
(p̂) =

2
∑

j=1

E[(

j
∑

k=1

Vk(Ĝ)−

j−1
∑

k=1

Uk(F )−ui)
+]. (18)

To justify the conclusion in (17), we observe that there exists a constant C such that E[(V1 +

V2 − ui − uj)
+] ≤ C <∞ for all i and j. Consequently, the second term in the second line of

(17) associated with the second order of (pi − p̂i) can be bounded by the square of the norm, in

particular,

∣

∣

1

2

∑

i,j

E[(V1 +V2 −ui −uj)
+](pi − p̂i)(pj − p̂j)

∣

∣≤C
∑

i,j

∣

∣(pi− p̂i)(pj − p̂j)
∣

∣

≤C
∑

i,j

∣

∣(pi− p̂i)
∣

∣

∣

∣(pj − p̂j)
∣

∣=C‖p− p̂‖2. (19)

Therefore, as ‖p− p̂‖→ 0,
∣

∣w2(p)−w2(p̂)−
∑

i

∂w2

∂pi
(p̂)(pi− p̂i)

∣

∣

‖p− p̂‖
≤C

‖p− p̂‖2

‖p− p̂‖
=C‖p− p̂‖→ 0. (20)

Hence, we have shown that wn(p) is Frechet differentiable.

4.2. Local Optimality

There exists a global optimum because we are maximizing a continuous function over a compact

subset of Rm. Recall that a point p̂ is a local optimum for (10) if there exists δ > 0 such that

wn(p)≤wn(p̂) for all p such that ‖p− p̂‖< δ. (21)

Clearly, there exists at least one local optimum because the global optimum is necessarily a local

optimum. We apply the following necessary condition for a local optimum from Proposition 3.1.1

of Bertsekas (2016).
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Proposition 1. (necessary condition for a local optimum, Proposition 3.1.1 of Bertsekas (2016))

If p̂ is a local optimum of wn(p), then

∇wn(p̂)
t · (p− p̂)≤ 0 for all p∈Pa,2(F). (22)

Given the special linear form of the constraints, we obtain the following corollary.

Corollary 1. (LP fixed point property) If p̂ is a local optimal solution for wn(p) in (10), then

p= p̂ is an optimal solution of the following linear program

sup{∇wn(p̂)
t · p≡

m
∑

i=1

∂w

∂pi
(p̂)pi : p∈Pa,2(F)}. (23)

Proof. Clearly p = p̂ in (22) yields equality. Then (23) is obtained directly from (22) by sub-

tracting the constant term.

We will prove that, if p̂ is a local optimum of wn(p) in Pa,2(F), then p̂ is a three-point distribution.

To do so, we will show that, for any p̂, the LP under p̂ in Corollary 1 necessarily has a unique

optimal solution. Thus the unique optimal solution, which coincides with p̂, must be an extreme

point, i.e., in Pa,2,3(F). For that purpose, we impose regularity conditions on the fixed service-time

cdf G.

4.3. Uniqueness in the Linear Program

We now prove that the LP in (23) has a unique solution, assuming that the fixed service-time cdf

G has a positive pdf g over [0,∞). That condition is satisfied if G is a phase-type distribution or

has a rational Laplace transform; see Asmussen (2003) or §II.5.10 of Cohen (1982). We will later

relax this condition in our asymptotic argument in §7.

Theorem 3. (uniqueness in the LP for local optimality) Suppose that G has a positive pdf g over

[0,∞). If p̂ is a local optimal solution of (10) for 2≤ n <∞, then the LP given p̂ in (23) has a

unique optimal solution, which must be p̂. Thus p̂ must be an extreme point, so that p̂∈Pa,2,3(F).
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Proof. We apply duality theory for the LP in (23). From basic LP duality theory as in Ch. 4

of Bertsimas and Tsitsiklis (1997), the dual problem associated with the LP in (23) is to find the

vector λ∗ ≡ (λ∗
0, λ

∗
1, λ

∗
2) that attains the minimum

min{λ0 +λ1 +λ2(1+ c2a)}

such that ψ(ui)≡ λ0 +λ1ui +λ2u
2
i ≥ φa(ui) for all i, 1≤ i≤m. (24)

where the decision variables λi are unconstrained and

φa(u)≡
n

∑

i=1

E[(
i

∑

k=1

Vk(G)−
i−1
∑

k=1

Uk(p̂)−u)+], u≥ 0. (25)

We apply the following lemma; e.g., see pp. 1128-9 of Appa (2002).

Lemma 1. (non-degeneracy and uniqueness in LP) A standard LP has a unique optimal solution

if and only if its dual has a non-degenerate optimal solution.

From (25), we see that the constraints produce the quadratic function ψ(u) that is required to

dominate φa(u) for all u∈F . We now use the following lemma.

Lemma 2. (structure of the objective function) If the fixed cdf G of V has a positive pdf g over

[0,∞), then the random variable Yi ≡
∑i

k=1 Vk −
∑i−1

k=1Uk has a cdf Γi with support in [−(i −

1)Ma,∞) which has a positive pdf γi over [0,∞) for each i, 1≤ i≤m. Hence, for x> 0, the cdf of

Yi can be expressed by

Γi(x) = Γi(0)+

∫ x

0

γi(y)dy for x≥ 0, (26)

so that the function φa in (25) can be expressed as

φa(u)≡
∂wn

∂p
(p̂) =

n
∑

i=1

∫ ∞

0

(x−u)+γi(x)dx> 0, u≥ 0. (27)

Hence, φa(u)> 0 and the first two derivatives of φa in (25) exist for u> 0 and satisfy

φ̇a(u) =
n

∑

i=1

(Γi(u)− 1)< 0, φ̈a =
n

∑

i=1

γi(u)> 0, u≥ 0. (28)

Thus, φa is continuous, strictly decreasing and strictly convex on [0,Ma].



Chen and Whitt: Extremal Queues

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

Proof. For the initial pdf property, see §V.4 of Feller (1971). To calculate the derivatives, we apply

the Leibniz integral rule for differentiation of integrals of integrable functions that are differentiable

almost everywhere. Observe that the derivative of (x− u)+γi(x) with respect to u is −γi(x) for

u< x. That implies that

φ̇a(u) =−

n
∑

i=1

∫ ∞

u

γi(x)dx=
n

∑

i=1

(Γi(u)− 1). (29)

The rest follows directly.

To continue the proof, we now show that the dual problem has a non-degenerate optimal solution.

To do so, we exploit the structure of the function φa in (25) established in Lemma 2. Under the

condition, φa is continuous, strictly positive, strictly decreasing and strictly convex. Recall that we

are working with standard LP’s, where the cdf F has finite support set F , but the support set F

always contains the two endpoints 0 and Ma.

The inequality constraints in (24) are only required to hold at the finitely many point in the

support set F . Even though we exploit the structure of continuous functions, the following argument

applies to any finite support set.

If Ma =m2, then the primal has the unique feasible, and thus optimal, two-point feasible distri-

bution with masses on 0 and m2. So henceforth assume that Ma >m2 as well. We start knowing

that both the dual LP (24) and the primal LP (23) have feasible solutions and the feasible region

of the primal LP (23) is compact, thus they both have at least one optimal solution. We will

show that the primal LP (23) has a unique solution by applying Lemma 1 and showing that no

optimal solution of the dual (24) can be degenerate. That implies that the dual has at least one

non-degenerate optimal solution. Hence, we will show that we cannot have the optimal λ∗
i be 0 for

any i.

First, we must have λ0 ≥ φa(0) > 0, so we cannot have λ∗
0 = 0. Next, suppose that λ1 = 0. In

this setting, with λ∗
0 > 0 and λ∗

1 = 0, if λ∗
2 ≥ 0, then ψ can intersect φa only at 0, which cannot

correspond to a feasible solution of the primal. (We exploit complementary slackness here and in the

following.) On the other hand, if λ∗
2 < 0, then φa can only intersect ψ at the two endpoints, without
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violating the conditions at the endpoints, but that does not correspond to a feasible solution of

the primal, assuming that Ma >m2. Hence, we cannot have a degenerate optimal solution with

λ∗
1 = 0. Finally, suppose that λ∗

2 = 0, which makes ψ linear. If λ0 = φa(0) > 0, then again ψ can

only meet φa at the two endpoints without violating the conditions at the endpoints, but that does

not correspond to a feasible solution of the primal, assuming thatMa >m2. Otherwise, ψ can only

have one intersection point with φa (as we have done).

4.4. Uniqueness for Minimization

The proof for the corresponding minimization problem of (23) is very similar, but is somewhat

more complex because it requires more care in treating the underlying finite support set F of F .

We now assume that 1 ∈F (so that the fixed mean is in F) as well as the two endpoints 0 and Ma.

As before, we apply Lemma 1 to shows uniqueness, which leads to the maximization version of

the dual LP in (24), i.e.,

max{λ0 +λ1 +λ2(1+ c2a)}

such that ψ(ui)≡ λ0 +λ1ui +λ2u
2
i ≤ φa(ui) for all i, 1≤ i≤m. (30)

where the decision variables λi are again unconstrained.

Next, as before, we show that the dual LP does not have any degenerate solution. Thus, suppose

that (λ∗
0, λ

∗
1, λ

∗
2) is an optimal solution for the dual. First, if λ∗

2 = 0, then ψ(u) must be linear, so

that the intersections of ψ(u) and φa(u) can only occur at two adjacent points, so that it cannot

correspond to a feasible solution. Since 1 ∈F , these points both must be ≥ 1 or both must be ≤ 1,

but neither pair of points corresponds to a feasible solution.

Second, we consider two cases to analyze λ∗
1. If λ

∗
0 = φa(0)> 0, by considering a Taylor series at

the origin, then we must have λ∗
1 ≤ φ̇a(0)< 0. On the other hand, if λ∗

1 =0 and λ∗
0 <φa(0), then we

must have λ∗
2 < 0 to have any intersection. However, if λ∗

2 < 0, then there can be an intersection of

ψ(u) and φa(u) only at two adjacent points in the support set F . So again that cannot correspond

to a feasible solution.
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Finally, we rule out the case λ∗
0 = 0. Under the condition λ∗

0 = 0, the function ψ either first

decreases and then increases or it first increases and then decreases. If it first decreases, then it can

only have an intersection at the right endpoint. Hence, it cannot correspond to a feasible solution.

Finally, if it first increases, then it can again can only have an intersection at two adjacent points

in F , so that it cannot correspond to a feasible solution. it cannot correspond to a feasible solution.

5. Proof of Theorem 1 (b)

The proof is mostly the same as for part (a), so we will be brief. Paralleling §4.1, to treat finite

n with n≥ 2, we consider finite support G in Ps,2(Ms), i.e., Ps,2(G). Let the elements of G be 0 =

v1 < v2 < . . . < vm = ρMs with m≡ |G| ≥ 3. As before, we will simplify the notation. In particular,

we will suppress the fixed interarrival-time cdf F and we will replace G by its probability mass

function q≡ (q1, . . . , qm).

With these notation conventions, paralleling (10), the optimization in part (b) becomes

max{wn(q)≡wn(F,G)≡E[Wn(F,G)] :G∈Ps,2(G)}

=max{
n

∑

k=1

1

k
E[S+

k (q)]}

such that
m
∑

i=1

qi =1,
m
∑

i=1

viqi = 1,
m
∑

i=1

v2i qi = ρ2(1+ c2s), and qi ≥ 0. (31)

We then have the following analog of the differentiability result in Theorem 2. We omit the

identical proof.

Theorem 4. (Frechet derivative for (b)) In the finite support setting above, the function wn(q) is

Frechet differentiable with partial derivatives at q̂ given by

∂wn

∂qi
(q̂) =

n
∑

j=1

E[(

j−1
∑

k=1

Vk(q̂)−

j
∑

k=1

Uk(F )+ vi)
+], (32)

so that

∇wn(q̂)
t · (q− q̂) =

m
∑

i=1

∂wn

∂qi
(q̂)(qi− q̂i). (33)



Chen and Whitt: Extremal Queues

16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Turning to local optimality, we have the following fixed point property, just as in Corollary 1.

Corollary 2. (LP fixed point property for (b)) If q̂ is a local optimal solution for wn(q) in (31),

then q= q̂ is an optimal solution of the following linear program

sup{∇wn(q̂)
t · q ≡

m
∑

i=1

∂w

∂qi
(q̂)qi : q ∈Ps,2(G)}. (34)

Turning to uniqueness in the LP (34), we have the analog of Theorem 3.

Theorem 5. (uniqueness in the LP for local optimality in (b)) Suppose that F has a positive pdf f

over [0,∞). If q̂ is a local optimal solution of (31) for 2≤ n<∞, then the LP given q̂ in (34) has

a unique optimal solution, which must be q̂. Thus q̂ must be an extreme point, so that q̂ ∈Ps,2,3(G).

Just as for Theorem 3, we exploit duality to prove Theorem 5. However, to carry out this step, it

is convenient to perform a change of variables so that we can directly apply the detailed argument

used for part (a). In particular, we replace v by

ṽ≡ ρMs − v. (35)

With this change, we can write the LP in (34) as

max{wn(q)≡wn(F,G)≡E[Wn(F,G)] :G∈Ps,2(G)}

=max{
m
∑

i=1

c̃iqi}

such that
m
∑

i=1

qi =1,
m
∑

i=1

ṽiqi = m̃1,
m
∑

i=1

ṽ2i qi = m̃2, and qi ≥ 0, (36)

where, from Theorem 4,

c̃i ≡
n

∑

j=1

E[(

j−1
∑

k=1

Vk(q̂)−

j
∑

k=1

Uk(F )+ ρMs− ṽi)
+] (37)

and

m̃k ≡E[(ρMs −V )k], k= 1,2. (38)

.
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For the optimization problem in (36), we have the associated dual

min{λ0 +λ1m̃1 +λ2m̃2}

such that ψ(ṽi)≡ λ0 +λ1ṽi +λ2ṽ
2
i ≥ φs(ṽi) for all i, 1≤ i≤m, (39)

where the decision variables λi are unconstrained and

φs(ṽ)≡
n
∑

i=1

E[(
i−1
∑

k=1

Vk(q̂)−
i

∑

k=1

Uk(F )+ ρMs− ṽ)+]. (40)

We now have an analog of Lemma 2. Let x− ≡min{x,0} and recall that x= x+ +x−.

Lemma 3. (structure of the objective function for (b)) If the fixed cdf F of U has a positive pdf f

over [0,∞), then Zi ≡
∑i−1

k=1 Vk(q̂)−
∑i

k=1Uk(F )+ρMs has support in (−∞, ρMs+(i−1)a], where

a> 0 is the upper limit of the support of V . Thus Zi has a positive pdf θi over (−∞, ρMs] for each

i, 1≤ i≤m. Hence,

φs(ṽ) =

n
∑

i=1

E[(Zi − ṽ)+] =

n
∑

i=1

(

E[Zi − ṽ]−E[(Zi − ṽ)−]
)

,

=
n
∑

i=1

(

E[Zi − ṽ]−

∫ ρMs

−∞

(x− ṽ)− dΘi(x)

)

, (41)

where

Θi(x) =

∫ x

−∞

θi(y)dy for x≤ ρMs, (42)

so that, paralleling Lemma 2, the first two derivatives of φs(ṽ) are

φ̇s(ṽ) =
n

∑

i=1

(Θi(ṽ)− 1))< 0 and φ̈s(ṽ) =
n

∑

i=1

θi(ṽ)> 0, ṽ ∈ [0, ρMs]. (43)

Thus φs(ṽ) in (40) is a continuous, strictly positive, strictly decreasing and strictly convex function

on [0, ρMs].

Proof. Just as in Lemma 2, we differentiate the integral to go from (41) to (43). For each term

in the sum for φ̇s(ṽ), we get −1 from the first term in (41) and Θi(ṽ) from the second.

With Lemma 3, the rest of the proof for (b) can use the same detailed argument used for part

(a). However, we must recall the change of variables made in (35). For example, 0 appears in the

extremal cdf for F if and only if ρMs appears in the extremal cdf for G.
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6. Proof of Theorem 1 (c)

Part (c) of Theorem 1 follows directly from the conclusions of parts (a) and (b) because the

two iterated suprema coincide with the joint supremum; e.g., see Lemma EC.1 of Whitt and You

(2018).

7. Three Remaining Asymptotic Arguments

We now complete the proof of Theorem 1 (a) by providing three asymptotic arguments. In §7.1 we

relax the condition that G have a positive pdf in Theorem 3. In §7.2 we relax the condition that

F have finite support, introduced in §4.1. Finally, in §7.3 we extend the result from the transient

mean to the steady-state mean. These asymptotic arguments apply to (b) and (c) as well.

All three asymptotic arguments are based on continuity and compactness. There are four key

facts: (i) the bounded interval [0,Ma] is a compact metric space; (ii) the space of probability

measures on a compact metric space is itself a compact metric space; (iii) any sequence from a

compact metric space has a convergent subsequence with the limits of all convergent subsequences

being in that compact metric space; and (iv) the mean waiting time functions in (4) and (5) are

continuous functions. To go beyond the compact setting, we apply Prohorov’s theorem and the

notion of tightness; e.g., see §11.6 of Whitt (2002). Let ⇒ denote convergence in distribution.

7.1. Relaxing the Positive Density Condition

In our proof of Theorem 1 (a), we applied Theorem 3, which required that the service-time cdf G

have a positive density. We now relax that condition. We observe that the class of cdf’s G with

positive densities in Ps,2 is dense in the class of all cdf’s in Ps,2.

To give a concrete demonstration, consider the subclass of K
⋂

Ps,2, where K is the set of all

distributions with rational Laplace transform, as in §II.5.10 of Cohen (1982), i.e., the union of Kn

where n is the order of the polynomial in the denominator.

Lemma 4. (a dense subset) The subset K
⋂

Ps,2 is a dense subset of Ps,2.
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Proof. Observe that any point mass on the positive halfline can be expressed as the limit of

Erlang En distributions, which are in Kn, with fixed mean and variance approaching 0 as n→∞.

Thus, any distribution with finite support is the limit of finite mixtures of En distributions (which

also are in Kn). Since arbitrary distributions can be expressed as limits of distributions with finite

support, we see that the conclusion holds.

For any fixed G ∈Ps,2 and n≥ 1, let Gn be a cdf in Kn

⋂

Ps,2 such that Gn ⇒G as n→∞. Let

F ∗
n be a extremal distribution in Pa,2,3(Ma) associated with Gn for each n from Theorem 3. Since

the set Pa,2,3(Ma) is compact, the sequence {F ∗
n : n ≥ 1} is tight; e.g., see §11.6 of Whitt (2002).

Hence, it contains a convergent subsequence with limit F ∗, which is in Pa,2,3(Ma) because it is

compact. Finally, because the mean transient waiting time is a continuous function, the limit F ∗ is

an extremal distribution associated with the limiting G. To verify the extremal property, suppose

that F̂ is an alternative cdf in Pa,2(Ma) such that wn(F̂ ,G)>wn(F
∗,G). That would then require

that wn(F̂ ,Gn)>wn(F
∗,Gn) for sufficiently large n, but that cannot occur.

7.2. Relaxing the Finite Support Condition

We now show how to relax the finite support condition introduced for part (a) in §4.1. For that

purpose, we will consider a sequence of nested support sets. We say that a sequence of support sets

{Fk : k ≥ 1} is nested if Fk ⊆Fk+1 for all n≥ 1. We say that Fk → [0,Ma] as k→∞ for a nested

sequence of support sets if each x∈ [0,Ma] can be expressed as

x= lim
k→∞

{xk : xk ∈Fk}. (44)

We have the following approximation lemma.

Lemma 5. (approximation lemma) If Fk → [0,Ma] as k→∞ for a nested sequence of support sets,

then Any cdf F ∈Pa,2([0,Ma]) can be expressed as the limit of cdf ’s Fk ∈Pa,2([0,Fk]).

Lemma 6. (extremal cdf for support [0,Ma]) Assume that Fk → [0,Ma] as k → ∞ for a nested

sequence of support sets. If F ∗
k ∈Pa,2,3(Fk) is the optimal cdf for support set Fk, then there exists

a convergent subsequence of {F ∗
k : k≥ 1} with limiting cdf F ∗ ∈Pa,2,3([0,Ma]) and the cdf F ∗ is an

optimal cdf in Pa,2,3([0,Ma]).
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Proof. The key fact is that Pa,2,3([0,Ma]) is a compact subset of Pa,2([0,Ma]). That implies the

existence of the convergent subsequence with a limit in the same space. Then the continuity implies

the extremal property in the limit.

7.3. From the Transient Mean to the Steady-State Mean

So far, we have established the results for wn(F,G) in (4) and (5) for n <∞. We now show that

these results extend to the steady-state mean with n=∞.

Theorem 6. (reduction to the transient mean) Consider the GI/GI/1 queues in Theorem 1.

(a) For any specified G∈Ps,2, if there exists Fn ∈Pa,2,3(Ma) such that

wn(Fn,G) =w↑
a,n(G)≡ sup{wn(F,G) : F ∈Pa,2,3(Ma)} for all n≥ 1, (45)

then the sequence {Fn : n ≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if F is the limit of any convergent subsequence, then F is in Pa,2,3(Ma) and F is optimal for

E[W (F,G)], i.e., w↑
a(G) =w(F,G) for the steady-state mean.

(b) For any specified F ∈Pa,2, if there exists Gn ∈Ps,2,3(Ms) such that

wn(F,Gn) =w↑
s,n(F )≡ sup{wn(F,G) :G ∈Ps,2,3(Ms)} for all n≥ 1, (46)

then the sequence {Gn : n ≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if G is the limit of any convergent subsequence, then G is in Ps,2,3(Ms) and G is optimal for

E[W (F,G)], i.e., w↑
s(F ) =w(F,G) for the steady-state mean.

(c) If there exists (Fn,Gn) in Pa,2,3(Ma)×Ps,2,3(Ms) such that

wn(Fn,Gn) =w↑
n ≡ sup{wn(F,G) : F ∈Pa,2,3(Ma),G∈Ps,2,3(Ms)} for all n≥ 1, (47)

then the sequence {(Fn,Gn) : n≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if (F,G) is the limit of any convergent subsequence, then (F,G) is in Pa,2,3(Ma)×Ps,2,3(Ms) and

the pair (F,G) is optimal for E[W ], i.e., w↑ =w(F,G) for the steady-state mean.
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Proof. We only prove (c), because the others are proved in the same way. As observed before,

because the support sets [0,Ma] and [0, ρMs] are compact intervals, the spaces Pa,2(Ma), Ps,2(Ms)

and their product are compact metric spaces, as are the spaces Pa,2,3(Ma), Ps,2,3(Ms) and their

product, because they are closed subsets. Hence the tightness follows, which implies that there

exists a convergent subsequence by Prohorov’s theorem in §11.6 of Whitt (2002) and the limit (F,G)

of any such subsequence {(Fnk
,Gnk

) : k ≥ 1} must remain in the space Pa,2,3(Ma) × Ps,2,3(Ms).

Suppose that (F ′,G′) is another candidate pair of cdf’s in Pa,2,3(Ma)×Ps,2,3(Ms). By the assumed

optimality, we must have wnk
(Fnk

,Gnk
)≥wnk

(F ′,G′) for all k. Then, by continuity, using §X.6 of

Asmussen (2003) again, we conclude that w↑ =w(F,G) for the steady-state mean.

By the same reasoning, an analog of Theorem 6 holds for two-point distributions.

Corollary 3. In the setting of Theorem 6, (i) if Fn ∈ Pa,2,2(Ma) for all n in (a), then F ∈

Pa,2,2(Ma); if Gn ∈ Ps,2,2(Ms) for all n in (b), then G ∈ Ps,2,2(Ms); if (Fn,Gn) ∈ Pa,2,2(Ma) ×

Ps,2,2(Ms) for all n in (c), then (F,G)∈Pa,2,2(Ma)×Ps,2,2(Ms).

Proof. The same argument applies because P2,2(M) is a closed subset of P2,3(M).

8. Conclusions

We have proved Theorem 1, establishing that the upper bounds of the transient and steady-

state mean waiting time, given two specified moments of the underlying interarrival-time and/or

service-time distribution, are attained by three-point distributions. We provided a detailed proof

of Theorem 1 (a), after which the other cases (b) and (c) follow relatively easily. Our proof of

part (a) in §4 is based on first treating the transient mean with finite support. In that setting

we applied basic optimization theory to the explicit formula for the transient mean in (3). In

that setting, we obtain the non-convex nonlinear program with linear constraints shown in (10).

Corollary 1 concludes that any local optimum must be the fixed point of a linear program. Under

an extra density condition for the fixed service-time distribution, Theorem 3 concludes that the

linear program has a unique solution, implying that the local optimum must be an extreme point,
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which is a three-point distribution. In §7 we applied asymptotic arguments to extend the results

to the general setting.

There is much yet to do. In particular, it remains to identify the actual tight bounds and the

extremal distributions that attain them. The answers are known in special cases, as discussed

in Chen and Whitt (2019). The conjectured overall optimum in (c) is discussed extensively in

Chen and Whitt (2020), where algorithms are developed. The results here can be the basis for

numerical algorithms to explore these problems further. In that regard, the LP in Corollary 1 can

be a useful tool to verify candidate optima as well as generate counterexamples. A complication,

though, is determining the form of the objective function in that LP. So far, it seems necessary to

resort to simulation for that purpose. Hopefully the methods here will be useful for other problems

and stimulate more research.
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