
Submitted to Operations Research

manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Extremal GI/GI/1 Queues Given Two Moments

Yan Chen
Industrial Engineering and Operations Research, Columbia University, yc3107@columbia.edu

Ward Whitt
Industrial Engineering and Operations Research, Columbia University, ww2040@columbia.edu

This paper studies tight upper and lower bounds for the mean (transient and steady-state) waiting time

in the GI/GI/1 queue given the first two moments of the interarrival-time and service-time distributions.

For distributions with nonempty compact support, we show that these bounds (with one distribution given

and overall) are attained at extremal distributions with support on at most three points. The proof exploits

theory for the moment problem and penalty functions in addition to standard stochastic theory for the

model. We derive an alternative fixed-point characterization for the steady-state mean that is promising

for deriving additional structure of the extremal distributions. We then apply relatively tractable numerical

algorithms to identify the optimal distributions within the three-point distributions. For the overall upper

bound with unbounded support sets, we propose a simple approximation formula and provide a numerical

comparison of the approximations and bounds, showing that the new approximate bound is very accurate.
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1. Introduction

In this paper we address a long-standing open problem for the classical GI/GI/1 queueing model:

determining tight bounds for the mean steady-state waiting time, and the distributions that attain

them, given the first two moments of the interarrival-time and service-time distributions; see

Daley et al. (1992), especially §10, Wolff and Wang (2003) and references therein.
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1.1. The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n≥ 0}, each distributed as V with cumulative distribution function (cdf) G, which is inde-

pendent of a sequence of i.i.d. interarrival times {Un : n ≥ 0} each distributed as U with cdf F .

With the understanding that a 0th customer arrives at time 0, Vn is the service time of customer

n, while Un is the interarrival time between customers n and n+1.

Let U have mean E[U ] ≡ 1 and squared coefficient of variation (scv, variance divided by the

square of the mean) c2a; let a service time V have mean E[V ]≡ τ ≡ ρ and scv c2s, where ρ < 1, so

that the model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service,

assuming that the system starts with an initial workload W0 having cdf H0 with a finite mean.

The sequence {Wn : n≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 +Vn−1 −Un−1]
+, n≥ 1, (1)

where x+ ≡ max{x,0}. Let Hn be the cdf of Wn, which is determined by (1). Let W ≡ W∞

(both used) be the steady-state waiting time, satisfying Wn ⇒W∞ as n→∞, where ⇒ denotes

convergence in distribution; see §§X.1-X.2 of Asmussen (2003). The cdf H∞ of W∞ is the unique

cdf satisfying the stochastic fixed point equation

W∞
d
= (W∞ +V −U)+, (2)

where
d
= denotes equality in distribution. If P (W0 = 0) = 1, then Wn

d
= max{Sk : 0≤ k≤ n} for

n≤∞, S0 ≡ 0, Sk ≡X0 + · · ·+Xk−1 and Xk ≡ Vk −Uk, k ≥ 1. Under the specified finite moment

conditions, for 1≤ n≤∞, Wn is a proper random variable with finite mean, given by

E[Wn|W0 = 0] =

n
∑

k=1

E[S+
k ]

k
<∞, 1≤ n<∞, and E[W∞] =

∞
∑

k=1

E[S+
k ]

k
<∞. (3)
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1.2. Classical Steady-State Results: Exact, Approximate and Bounds

For the M/GI/1 special case, when the interarrival time has an exponential distribution, we have

the classical Pollaczek-Khintchine formula

E[W ] =
τρ(1+ c2s)

2(1− ρ)
=
ρ2(1+ c2s)

2(1− ρ)
. (4)

A natural commonly used approximation for the GI/GI/1 model, inspired by (4), which we call

the heavy-traffic approximation, because it is motivated by the early heavy-traffic limit in Kingman

(1961), is

E[W ]≡E[W (ρ, c2a, c
2
s)]≈

ρ2(c2a+ c2s)

2(1− ρ)
. (5)

The heavy traffic limit for the mean states that (1− ρ)E[W (ρ, c2a, c
2
s)]→ (c2a+ c2s)/2 as ρ ↑ 1.

The most familiar upper bound (UB) on E[W ] is the Kingman (1962) bound,

E[W ]≤
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
, (6)

which also satisfies the same heavy traffic limit.

A better UB depending on these same parameters was obtained by Daley (1977). in particular,

the Daley (1977) UB replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ]≤
ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
. (7)

Note that (2− ρ)/ρ< 1/ρ2 because ρ(2− ρ)< 1 for all ρ, 0< ρ< 1.

In contrast to the tight UB that we study, the tight lower bound (LB) for the steady-state mean

has been known for a long time; see Stoyan and Stoyan (1974), §5.4 of Stoyan (1983), §V of Whitt

(1984b), Theorem 3.1 of Daley et al. (1992) and references there. The LB is

E[W ]≥
ρ((1+ c2s)ρ− 1)+

2(1− ρ)
. (8)

The LB is attained asymptotically at a deterministic interarrival time with the specified mean

and at any three-point service-time distribution that has all mass on nonnegative-integer multiples

of the deterministic interarrival time. The service part follows from Ott (1987). (All service-time

distributions satisfying these requirements yield the same mean.)
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1.3. Motivation: Approximations for Non-Markovian Open Queueing Networks

One source of motivation for the bounds is provided by parametric-decomposition approximations

for non-Markovian open networks of single-server queues, as in Whitt (1983b), where each queue

is approximated by a GI/GI/1 queue partially characterized by the parameter vector (λ, c2a, τ, c
2
s),

obtained by solving traffic rate equations for the arrival rate λ at each queue and after solving

associated traffic variability equations to generate an approximating scv c2a of the arrival process.

Because the internal arrival processes are usually not renewal and the interarrival distribution

is not known, there is no concrete GI/GI/1 model to analyze. To gain some insight into these

approximations (not yet addressing the dependence among interarrival times), It is natural to

regard such approximations for the GI/GI/1 model as set-valued functions, applying to all models

with the same parameter vector (λ, c2a, τ, c
2
s).

For the special case of the GI/M/1 model with bounded support for the interarrival-time cdf F ,

the extremal GI/M/1 models were studied in Whitt (1984b), where intervals of bounded support

were also used together with the theory of Tchebychev systems, as in Karlin and Studden (1966),

drawing on Rolski (1972), Holtzman (1973) and Eckberg (1977).(The focus in Whitt (1984b) was

on the mean steady state number of customers in the system, but it is easily seen that the extremal

interarrival-time distributions are the same for the mean number of customers in the system and

the mean steady-state waiting time, because they both depend on the root of the same equation.)

For the GI/M/1 model, the extremal distributions are two-point distributions.

Let P2,2(M)≡P2,2(m1, c
2,M) be the set of all two-point distributions with mean m1 and second

momentm2 =m2
1(c

2+1) with support in [0,m1M ]. The set P2,2(M) is a one-dimensional parametric

family. Any element is determined by specifying one mass point. Let F
(2)
b have probability mass

c2/(c2+(b−1)2) on m1b, and mass (b−1)2/(c2+(b−1)2) on m1(1− c
2/(b−1)) for 1+ c2 ≤ b≤M .

The cases b= 1+ c2 and b=M constitute the two extremal distributions.

For GI/M/1, the interarrival-time cdf achieving the UB with mean m1 and second moment

m2 = m2
1(c

2
a + 1) with support in [0,m1Ma], referred to here as F

(2)

1+c2a
, arises for b = 1 + c2a. In
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particular, F
(2)

1+c2a
has probability mass c2a/(1+c

2
a) on 0 and probability mass 1/(c2a+1) on (m2/m1) =

m1(c
2
a +1).

The corresponding LB interarrival-time cdf, referred to here as F
(2)
Ma

, arises for b=Ma. In par-

ticular, F
(2)
Ma

has probability mass c2a/(c
2
a + (Ma − 1)2) on the upper bound of the support, m1Ma,

and mass (Ma − 1)2/(c2a+(Ma − 1)2) on m1(1− c2a/(Ma− 1)). (For the interarrival time, we scale,

i.e., choose measuring units for time, so that m1 = 1.) We use the notation G
(2)

1+c2s
and G

(2)
Ms

for the

corresponding service-time cdf’s G with mean ρ and support [0, ρMs].

Since the range of possible values is quite large, while the distributions that attain the bounds

are unusual (two-point distributions), the papers Klincewicz and Whitt (1984), Whitt (1984c) and

Johnson and Taaffe (1990a) focused on reducing the range by imposing shape constraints. In this

paper we do not consider shape constraints.

1.4. Related Literature

The literature on bounds for the GI/GI/1 queue is well reviewed in Daley et al. (1992) and

Wolff and Wang (2003), so we will be brief. The use of optimization to study the bounding problem

for queues seems to have begun with Klincewicz and Whitt (1984) and Johnson and Taaffe (1990b).

Bertsimas and Natarajan (2007) provides a tractable semi-definite program as a relaxation model

for solving steady-state waiting time of GI/GI/c to derive bounds, while Osogami and Raymond

(2013) bounds the transient tail probability of GI/GI/1 by a semi-definite program.

Several researchers have studied bounds for the more complex many-server queue. In addition

to Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investi-

gate the bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why two

moment information is insufficient for good accuracy of steady-state approximations of M/GI/c.

Gupta and Osogami (2011) establishes a tight bound for the M/GI/K in light traffic. Finally,

Li and Goldberg (2017) establishes bounds for GI/GI/c intended for the many-server heavy-traffic

regime.
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1.5. Organization

In §2 we state our main result, Theorem 1, which shows that there exist extremal interarrival-time

and service-time cdf’s that have support on at most three points when the interarrival-time and

service-time cdf’s have compact support. In §3 we prove Theorem 1, drawing on the theory for the

moment problem as in Smith (1995) plus optimization using a sequence of penalty functions. In §4

we derive a fixed-point characterization of the extremal distributions for the steady-state mean. In

§5 we exploit Theorem 1 to develop a multinomial optimization that supports the conjecture that

the overall upper bound is attained by two-point distributions, in particular, by the conjectured

F
(2)

1+c2a
/G

(2)
Ms

model. In §6 we do a simulation study for two-point distributions to expose the form

of the upper bound for the mean. In §7 we develop a candidate three-point service cdf for the

overall lower bound with finite support. In §8 we present some concluding discussion. We present

additional supporting material in the e-companion, starting with a summary of notation in §EC.2.

2. Reduction to Three-Point Distributions

In this section we show that it suffices to consider interarrival-time and service-time cdfs with

support on at most three points in our search for bounds on the transient and steady-state mean

waiting time E[Wn] for 1≤ n≤∞.

Let Pn be the set of all probability measures on a subset of the positive real line [0,∞) with

specified first n moments. The set Pn is a convex set, because the convex combination of two

probability measures is just the mixture; i.e., for all p, 0≤ p≤ 1, pP1 + (1− p)P2 ∈ Pn if P1 ∈ Pn

and P2 ∈Pn, because the nth moment of the mixture is the mixture of the nth moments, which is

just the common value of the components. let Pn,k be the subset of probability measures in Pn

that have support on at most k points.

We use the scv to parameterize, so let P2 ≡ P2(m,c
2) be the set of all cdf’s with mean m and

second moment m2(c2+1) where c2<∞. Let P2(M)≡P2(m,c
2,M) be the subset of all cdf’s in P2

with support in the closed interval [0,mM ] having mean m and second moment m2(c2+1) where

c2 + 1 <M <∞. (The last property ensures that the set P2(M) is non-empty.) Let subscripts a
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and s denote sets for the interarrival and service times, respectively. Let P
(c)
2 (M)≡P

(c)
2 (m,c2,M)

be the subset of P2(m,c
2) with support in a compact subset of [0,M ], denoted by C, assumed

given, fixed and nonempty. (We are usually interested in C = [0,M ], but finite support may be of

interest; e.g., that is used in the proof of Theorem 4 here.) Therefore, P
(c)
a,2(Ma) is the set of all

interarrival-time cdf’s F with mean 1, scv c2a and compact support within [0,Ma], while P
(c)
s,2,n(Ms)

is the set of all service-time cdf’s G with mean ρ, scv c2s and compact support within [0, ρMs].

Then P
(c)
a,2,n(Ma) and P

(c)
s,2,n(Ms) are the subsets with support on n points.

We are interested in the maps

wn :Pa,2(1, c
2
a)×Ps,2(ρ, c

2
s)→R, (9)

where 0< ρ< 1 and

wn(F,G)≡E[Wn(F,G)], 1≤ n≤∞, (10)

for Wn ≡Wn(F,G)] in the GI/GI/1 queue with interarrival-time cdf F ∈Pa,2 and service-time cdf

G ∈Ps,2. For n <∞, the distribution of Wn(F,G) also depends on an initial cdf H0 of W0, but it

is fixed here.

Theorem 1. (reduction to a three-point distribution) Consider the class of GI/GI/1 queues with

E[W0] <∞, F ∈ Pa,2(1, c
2
a), G ∈ Ps,2(ρ, c

2
s), 0 < ρ < 1, where Pa,2 and Ps,2 are nonempty. For

1≤ n≤∞, the functions wn :Pa,2 ×Ps,2 →R in (9) are continuous. Hence, the following suprema

over spaces of probability measures with specified nonempty compact support are attained.

(a) For each n, G ∈Ps,2 and 1+ c2a ≤Ma <∞, there exists F ∗
n(G)∈P

(c)
a,2,3(Ma) such that

w↑
a,n(G)≡ sup{wn(F,G) : F ∈P

(c)
a,2(Ma)}= sup{wn(F,G) : F ∈P

(c)
a,2,3(Ma)}=wn(F

∗
n(G),G). (11)

(b) For each n, F ∈Pa,2 and 1+ c2s ≤Ms <∞, there exists G∗
n(F )∈P

(c)
s,2,3(Ms) such that

w↑
s,n(F )≡ sup{wn(F,G) :G∈P

(c)
s,2(Ms)}= sup{wn(F,G) :G ∈P

(c)
s,2,3(Ms)}=wn(F,G

∗
n(F )). (12)



Chen and Whitt: Extremal Queues

8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

(c) For each n, (Ma,Ms) with 1+ c2a ≤Ma <∞ and 1+ c2s ≤Ms <∞, there exists (F ∗∗
n ,G∗∗

n ) in

P
(c)
a,2,3(Ma)×P

(c)
s,2,3(Ms) such that

w↑
n ≡ sup{wn(F,G) : F ∈P

(c)
a,2(Ma),G∈P

(c)
s,2(Ms)}= sup{wn(F,G) : F ∈P

(c)
a,2,3(Ma),G∈P

(c)
s,2,3(Ms)}

=wn(F
∗∗
n ,G∗∗

n ) =w↑
a,n(G

∗∗
n ) =w↑

s,n(F
∗∗
n ). (13)

Corresponding results hold for each supremum replaced by an infimum.

Remark 1. (uniqueness) There is no claim of uniqueness in Theorem 1. Indeed, the M/GI/1

steady-state formula in (4) implies that there is no uniqueness in case (b) when F is exponential.

Remark 2. (extensions) For the transient model, the result remains valid for the mean E[Wn]

replaced by E[(f(Wn)] for any continuous bounded real-valued function f . The result also remains

valid for the mean E[Wn] replaced by a higher moment E[W k
n ], k≥ 1, provided we use the spaces

Pa,k+1 and Ps,k+1, using §X.2 of Asmussen (2003). The result also extends to the time-varying

model in which the cdf’s Fk and Gk depend on k. Indeed, our proof exploits that model.

3. Proof of Theorem 1

Since the proof draws on results for the moment problem, we first review that.

3.1. The Moment Problem for Distributions with Compact Support

Our problem can be approached via the classical theory for the moment problem, as in Lasserre

(2010), Smith (1995) and references therein. Some simplification can be gained by considering

continuous functions on a compact metric space domain, so that suprema and infima are attained.

For the general moment problem, let Pn(C) be the set of all probability measures on a compact

subset C of R with specified first n moments, where the kth moment of P is defined as
∫

xk dP .

Assume that Pn(C) is not empty and let

sPn(C) be endowed with the topology of weak convergence, as determined by the Prohorov or Lévy

metric, as in §3.2 and §11.3 of Whitt (2002). let Pn,k(C) be the subset of probability measures in

Pn(C) that have support on at most k points in C.

The following is a generalization of a standard result in linear programming (LP), stating that

the supremum (or infimum) is attained at a basic feasible solution or an extreme point.
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Theorem 2. (a version of the classic moment problem) Let φ : C → R be a continuous function,

where C is a compact subset of R. Assume that Pn(C) is not empty. Then there exists P ∗ ∈Pn,n+1(C)

such that

sup{

∫ M

0

φdP : P ∈Pn(C)}= sup{

∫ M

0

φdP : P ∈Pn,n+1(C)}=
n+1
∑

k=1

φ(tk)P
∗({tk}), (14)

where {tk : 1≤ k≤ n+1} is the support of P ∗.

.

Proof. First, because the support C is a compact subset of R and the set Pn(C) is not empty

by assumption, the space Pn(C) is a compact metric space with the usual topology of convergence

in distribution, as a consequence of Prohorov’s theorem; e.g., Theorem 11.6.1 of Whitt (2002). (In

general, the set of all probability measures on a compact metric space with the usual topology of

weak convergence is itself a compact metric space; see Theorem II.6.4 of Parthasarathy (1967).)

Second, because the function φ is continuous, we can apply the continuous mapping theorem as

in §3.4 of Whitt (2002) to deduce that the induced map φ :Pn(C)→R defined by

φ(P )≡

∫ b

0

φdP (15)

is continuous as well. Hence, the induced map in (15) is a continuous bounded real-valued function

on a compact metric space, so that the supremum in (14) is attained. Then the theory for the

classical moment problem implies that it is attained in Pn,n+1(C); see §2 of Smith (1995).

Remark 3. (linear program for finite support) Note that the optimization in (14) reduces to an

ordinary linear program (LP) if the compact set C is a finite set. The decision variables are the

probability masses on the specified support set, while the constraints are the specified moments as

well as the requirement that the sum of the probability masses is 1.

3.2. The Time-Varying Model and the Lindley Recursion

We start by focusing on part (a). To do so, we start by considering the time-varying GI(k)/GI/1

model in which the cdf’s Fk of Uk are allowed to depend on k. Afterwards, we force common cdf’s
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in the limit through a sequence of penalty functions. We work with the Lindley recursion in (1),

which remains valid with this generalization. The following is the key lemma. It follows directly

from Theorem 2.

Lemma 1. For any random variable Y with finite mean, E[(Y − u)+] is a continuous bounded

function of u in [0,∞). Thus, the supremum

sup{

∫ M

0

E[(Y −u)+]dF (u) : F ∈P
(c)
2 (m1, c

2,M)} (16)

is attained by a cdf F ∗ in P
(c)
2,3(m1, c

2,M).

Lemma 1 immediately applies to show that, for any given H0 and G, E[W1]≡E[W1(H0, F0,G)]

is maximized over F0 ∈P
(c)
a,2(Ma) by a cdf F ∗

0 ∈P
(c)
a,2,3(Ma).

Corollary 1. Consider the setting of Theorem 1. For any three independent random variable W0

with cdf H0 and finite mean, V with cdf G ∈Ps,2 and U with cdf F0 ∈P
(c)
a,2(Ma),

sup{E[W1(H0, F0,G)] : F0 ∈P
(c)
a,2(Ma)} ≡ sup{E[(W0 +V (G)−U(F0))

+] : F0 ∈P
(c)
a,2}(Ma)}, (17)

= sup{

∫ Ma

0

E[(W0 +V −u)+]dF0(u) : F0 ∈P(c)
a,2(Ma)}.

Proof. Apply Lemma 1 with Y ≡W0 +V .

Lemma 1 also applies to show that, for any given H0 and F , E[W1(H0, F,G0)] is maximized over

G ∈ P(c)
s,2(Ms) by a cdf G∗

0 ∈ P(c)
s,2,3(Ms) if we use a reverse-time perspective and look at ρMs − V .

(Recall that the support of V is in [0, ρMs].)

3.3. A Penalty Function Method for the Transient Mean

We continue focusing on part (a). We do the proof in detail for n= 2; general finite n follows by the

same argument, as we will explain. Part (b) follows by the same argument applied to ρMs−V . Part

(c) follows from by combining parts (a) and (b); e.g., see Lemma EC.1 in §EC.7 of Whitt and You

(2018).

For n= 2, we introduce some notation. Let W2(F0, F1)≡W2(H0, F0,G,F1) be the waiting time

in period 2 as a function of the defining cdf’s, in particular, with H0 being the initial cdf of W0
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having finite mean and G is the common cdf of the service times Vk, assumed to be in Ps,2, while

F0 and F1 are the cdf’s of the independent random variables U0 and U1, assumed to be in P
(c)
a,2(Ma),

but without any constraint that F0 = F1. We use the shorter form because we regard H0 and G as

fixed.

With that notation specified, let

Ŵ2(F0, F1) =W2(F0, F1)− dM(F0, F1), (18)

where dM (F0, F1) is a convenient penalty function with the property that dM(F0, F1)→∞ as M →

∞ if and only if F0 6=F1. We will choose a penalty function that will allow us to apply Theorem 2.

To construct a convenient penalty function, we exploit integral probability metrics, as in Example

3.3.6 on p. 50 and §4.4 on p. 89 of Rachev et al. (2013), which draws on Zolotarev (1976, 1983).

A probability metric is a semi-metric (does not require the triangle inequality) on a space of

probability measures. The space of probability measures we consider are compact subsets of the

compact metric space P2(m1, c
2,M) and so themselves are compact metric spaces, so that they

have all the desired regularity properties.

In particular, we use the integral probability metric

d(F0, F1) ≡ sup

{
∫ Ma

0

h(x)dF0(x)−

∫ Ma

0

h(x)dF1(x) : h∈H

}

, (19)

whereH is a determining class of continuous real-valued functions on [0,Ma] with Lipschitz constant

Lip(h)≡ sup{|h(x)−h(y)|/|x− y| : x 6= y,x, y ∈ [0,Ma]} ≤ 1. (20)

The distance is the dual representation of a Wasserstein distance between F0 and F1; see

Kantorovich and Rubinstein (1958), Kemperman (1983) and §5.4 of Rachev et al. (2013).

We now return to the main argument. For n=2 in part (a), we do an optimization of the mean

E[Ŵ2(F0, F1)] for Ŵ2(F0, F1) in (18) over the pair (F0, F1) without any direct constraints that

F0 =F1. However, afterwards we let M →∞, which will force F0 = F1.
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We first construct a deterministic function of the deterministic variables. Let u0 and u1 be the

first two interarrival times; let v0 and v1 be the first two service times; and let w0 be the initial

waiting time. Note that the sample paths satisfy (w.p.1) the continuous relations

W1(w0, u0, v0) = max{w0 + v0 −u0,0} and

W2(w0, u0, u1, v0, v1) = max{(W1(w0, u0, v0)+ v1 −u1,0}

= max{max{w0 + v0 −u0,0}+ v1 −u1,0}. (21)

Hence, W2(w0, u0, u1, v0, v1) is a continuous function of the five variables. Then write

E[Ŵ2(F0, F1)] =

∫ Ma

0

∫ Ma

0

φ(u0, u1)dF0(u0)dF1(u1)− dM(F0, F1), (22)

where dM(F0, F1)≡Md(F0, F1) for d in (19) and

φ(u0, u1)≡E[W2(W0, u0, u1, V0, V1)] (23)

with

E[W2(W0, u0, u1, V0, V1)] =

∫ ∞

0

∫ ∞

0

∫ ∞

0

W2(w0, u0, u1, v0, v1)dH0(w0)dG(v0)dG(v1). (24)

Then we have

w↑
2 = sup{E[Ŵ2(F0, F1)] : F0 ∈P(c)

a,2(Ma), F1 ∈P(c)
a,2(Ma)}

= sup{

∫ Ma

0

∫ Ma

0

φ(u0, u1)dF0(u0)dF1(u1)− dM(F0, F1) : F0 ∈P(c)
a,2(Ma), F1 ∈P(c)

a,2(Ma)}.(25)

Since

−dM(F0, F1) =M inf

{
∫ Ma

0

h(x)dF0(x)−

∫ Ma

0

h(x)dF1(x) : h∈H

}

, (26)

we can rewrite (25) as

sup
F0,F1

inf
h∈H

{
∫ Ma

0

∫ Ma

0

φ(u0, u1)dF0(u0)dF1.(u1)+M

∫ Ma

0

h(x)dF0(x)−M

∫ Ma

0

h(x)dF1(x)

}

.(27)
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We now apply the minimax theorem to interchange the order of the infimum and supremum in

(27) to obtain the alternative version

inf
h

sup
F0,F1

{
∫ Ma

0

∫ Ma

0

φ(u0, u1)dF0(u0)dF1(u1)+M

∫ Ma

0

h(x)dF0(x)−M

∫ Ma

0

h(x)dF1(x)

}

,(28)

where the inner supremum is over (F0, F1) ∈ P
(c)
a,2(Ma)×P

(c)
a,2(Ma) and the outer infimum is over

h∈H.

We see that the conditions of generalized minimax theorem, extending the classic Von Neumann

(1928), are satisfied because the sets P
(c)
a,2(Ma),P

(c)
s,2(Ms) and H are compact convex sets, while the

objective function is a continuous linear function of F0, F1 and h.

Hence we can apply Theorem 2 twice to the inner supremum to deduce that the overall optimum

is attained at (F ∗
0 (M), F ∗

1 (M)) ∈ P
(c)
a,2,3(Ma)× P

(c)
a,2,3(Ma). We use the fact that the functions to

be integrated are continuous in each case. The infimum is attained in the set because it is for a

continuous function over a compact metric space.

Finally, we obtain our desired result by letting M →∞. When we consider a sequence of models

in whichM →∞, we attain a sequence of optima, but since this sequence lies in the compact space

P
(c)
a,2,3(Ma)×P

(c)
a,2,3(Ma), it is tight. Hence, by Prohorov’s theorem, there must exist a convergent

subsequence; e.g., see §11.6 of Whitt (2002). The limit of any such convergent subsequence is the

desired optimum (F ∗
0 , F

∗
1 ), which must satisfy F ∗

0 = F ∗
1 ∈P

(c)
a,2,3(Ma). We draw that final conclusion

because dM (F0, F1) → ∞ as M → ∞ whenever F0 6= F1. (We use the fact that E[W2(F0, F1)] is

bounded by E[W0] + 2E[V ] uniformly in (F0, F1) ∈P
(c)
a,2(Ma)×P

(c)
a,2(Ma).)

To demonstrate optimality, let (F ′, F ′) be any alternative F ′ ∈P
(c)
a,2(Ma) for the limiting system,

which must have the two cdf’s coincide. For eachMk in the converging subsequence of optima with

associated penalties {Mk : k≥ 1}, this is a candidate solution, which is dominated by the optimum

(F ∗
0 (Mk), F

∗
1 (Mk)) for each Mk. Since that subsequence converges, that dominance will extend to

the limit by continuity.

This same argument applies to any finite n. Instead of (18), we can write

Ŵn(F0, F1, . . . , Fn−1) =Wn(F0, F1, . . . , Fn−1)−

n−1
∑

i=1

dM(Fi−1, Fi), (29)
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In the next subsection we indicate how to get the corresponding result for the steady-state mean

E[W∞].

Remark 4. (penalty functions in optimization) Penalty functions are often used in optimization,

but they apply in a relatively simple way in the present context, because with the penalty functions,

we get a relatively simple iteration of the one-period optimizations without additional constraints,

for which Theorem 2 for the moment problem applies directly.

3.4. From the Transient Mean to the Steady-State Mean

We now show that it suffices to consider the transient mean E[Wn] for the three-point distributions

and finite n in order to treat E[W∞]. We can apply the following lemma.

Lemma 2. (reduction to the transient mean) Consider the GI/GI/1 queues in Theorem 1.

(a) For any specified G∈Ps,2, if there exists F ∗
n ∈P

(c)
a,2,3(Ma) such that

wn(F
∗
n ,G) =w↑

a,n(G)≡ sup{wn(F,G) : F ∈P(c)
a,2(Ma)} for all n≥ 1, (30)

then the sequence {F ∗
n : n ≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if F ∗
∞ is the limit of any convergent subsequence, then F ∗

∞ is in P
(c)
a,2,3(Ma) and F ∗

∞ is optimal for

E[W∞(F,G)], i.e., w↑
a,∞(G) =w(F ∗

∞,G) for the steady-state mean.

(b) For any specified F ∈Pa,2, if there exists G∗
n ∈P

(c)
s,2,3(Ms) such that

wn(F,G
∗
n) =w↑

s,n(F )≡ sup{wn(F,G) :G ∈P
(c)
s,2(Ms)} for all n≥ 1, (31)

then the sequence {G∗
n : n≥ 1} is tight, so that there exists a convergent subsequence. Moreover, if

G∗
∞ is the limit of any convergent subsequence, then G∗

∞ is in P(c)
s,2,3(Ms) and G∗

∞ is optimal for

E[W∞(F,G)], i.e., w↑
s,∞(F ) =w(F,G∗

∞) for the steady-state mean.

(c) If there exists (F ∗
n ,G

∗
n) in P

(c)
a,2,3(Ma)×P

(c)
s,2,3(Ms) such that

wn(F
∗
n ,G

∗
n) =w↑

n ≡ sup{wn(F,G) : F ∈P
(c)
a,2(Ma),G∈P

(c)
s,2(Ms)} for all n≥ 1, (32)
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then the sequence {(F ∗
n ,G

∗
n) : n≥ 1} is tight, so that there exists a convergent subsequence. More-

over, if (F ∗
∞,G

∗
∞) is the limit of any convergent subsequence, then (F ∗

∞,G
∗
∞) is in P

(c)
a,2,3(Ma)×

P
(c)
s,2,3(Ms) and the pair (F ∗

∞,G
∗
∞) is optimal for E[W∞], i.e., w↑

∞ = w∞(F ∗
∞,G

∗
∞) for the steady-

state mean.

Moreover, corresponding results hold for supremum replaced by imfimum.

Proof of Lemma 2. We only prove (c), because the others are proved in the same way. As observed

before, because the support sets [0,Ma] and [0, ρMs] are compact intervals, the spaces P
(c)
a,2(Ma),

P
(c)
s,2(Ms) and their product are compact metric spaces, as are the spaces P

(c)
a,2,3(Ma), P

(c)
s,2,3(Ms)

and their product, because they are closed subsets. Hence the tightness follows, which implies that

there exists a convergent subsequence by Prohorov’s theorem in §11.6 of Whitt (2002) and the

limit (F ∗,G∗) of any such subsequence {(F ∗
nk
,G∗

nk
) : k≥ 1} must remain in the space P

(c)
a,2,3(Ma)×

P
(c)
s,2,3(Ms). Moreover, the associated sequence of steady-state waiting times {W∞(F ∗

nk
,G∗

nk
) : k≥ 1}

converges in distribution to W∞(F ∗,G∗) and the means converge as well, by the continuity results

for GI/GI/1 in §X.6 of Asmussen (2003).

We conclude by demonstrating optimality. Suppose that (F ′,G′) is another candidate pair of cdf’s

in P
(c)
a,2,3(Ma)×P

(c)
s,2,3(Ms). By the assumed optimality, we must have wnk

(F ∗
nk
,G∗

nk
)≥wnk

(F ′,G′)

for all k. Then, by continuity, using §X.6 of Asmussen (2003), we conclude that w↑
∞ = w(F ∗,G∗)

for the steady-state mean.

By the same reasoning, an analog of Lemma 2 holds for two-point distributions. In this case, we

assume that the support is the full interval [0,m1M ].

Corollary 2. In the setting of Lemma 2, (i) if F ∗
n ∈ Pa,2,2(Ma) for all n in (a), then F ∗

∞ ∈

Pa,2,2(Ma); if G∗
n ∈ Ps,2,2(Ms) for all n in (b), then G∗

∞ ∈ Ps,2,2(Ms); if (F ∗
n ,G

∗
n) ∈ Pa,2,2(Ma)×

Ps,2,2(Ms) for all n in (c), then (F ∗
∞,G

∗
∞)∈Pa,2,2(Ma)×Ps,2,2(Ms).

Proof. The same argument applies because P2,2(M) is a closed subset of P2,3(M).
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4. A Fixed-Point Characterization for the Steady-State Mean

As a basis for further analysis of the extremal distributions for the steady-state waiting time,

we develop a fixed-point characterization of the extremal distributions for the steady-state mean.

We will be working with one step of the Lindley recursion (1). We obtain a fixed-point equation

because, in the case (a), we impose two conditions: (i) the initial cdf H0 of W0 is the steady-state

cdf of W∞ for an interarrival-time cdf F̂ and (ii) the optimizing cdf F ∗
0 coincides with F̂ .

Theorem 3. (fixed-point characterization) For case (a) in Theorem 1, let G ∈ Ps,2 be given. If

there exists a cdf F̂ ≡ F̂ (G) ∈ P
(c)
a,2(Ma) such that, for H0

d
=W∞(F̂ ,G), the optimal mean in the

first period is attained by F̂ and equals the initial mean, i.e., if

E[W1(H0, F
∗
0 ,G)]≡ sup{E[W1(H0, F0,G)] : F0 ∈P

(c)
a,2(Ma)}=E[W1(H0, F̂ ,G)], (33)

then

w↑
a,n(H0,G) =wa,n(H0, F̂ ,G) for all n≥ 1, (34)

so that

wa,∞(F̂ ,G) =w↑
a,∞(G) = sup{E[W∞(F,G)] : F ∈P

(c)
a,2(Ma)}. (35)

In addition, if there is a unique optimum F ∗
0 (F̂ ) in the optimization (33) for F̂ , then F̂ ∈ P(c)

a,2,3.

The analog holds for (b). Both results hold for supremum replaced by infimum.

Proof. We focus on part (a); the same argument applies to G by focusing on ρMs−V . As in the

proof of Theorem 1, we consider the generalization to the GI(k)/GI/1 model in which the cdf’s Fk

are allowed to vary with k. We exploit the Markov property and the Lindley recursion (1) in this

more general setting to reduce the problem to a one-period problem.

To establish the “if” claim, note that the condition that F ∗
0 = F̂ in (33) implies that the cdf H0

of W (F̂ ,G) satisfies the stochastic fixed point equation for the steady-state waiting time in (2) for

interarrival-time cdf F̂ and service-time cdf G; i.e.,

H1(H0, F
∗
0 ,G)≡H1(H0, F̂ ,G) =H0

d
=W∞(F̂ ,G). (36)
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The Markov property implies that W2 depends on F0 only through H1.

Hence, under condition (33), for the generalized GI(k)/GI/1 model, the optimization problem

over F1 for the second period, given the first period, repeats the initial one-period optimization

problem, unconstrained by the choice of F0. Thus, by mathematical induction, under the given

conditions, we have

F ∗
n =F ∗

0 = F̂ for all n≥ 1 in the GI(k)/GI/1 model. (37)

Hence, the conclusion remains valid for the original GI/GI/1 model. To elaborate, consider n= 2.

For any alternative cdf F , (F,F ) is an alternative for n= 2 in the GI(k)/GI/1 model. However, by

our proof, (F̂ , F̂ ) dominates (F,F ) in the GI(k)/GI/1 model, and so in the GI/GI/1 model.

Next, by Lemma 2 (a), the optimal transient cdf holds for steady state as well for the original

GI/GI/1 model, where steady-state holds. Thus, F ∗
0 = F̂ is optimal for n=∞ as well, which is

the desired conclusion in (35).

For the reduction to P
(c)
a,2,3(Ma), we can apply part (a) of Theorem 1 for n= 1 or Corollary 1 to

determine that, for each candidate F̂ , there is F ∗
0 ≡F ∗

0 (F̂ )∈P
(c)
a,2,3(Ma) for n=1. With uniqueness,

F̂ itself must be in P
(c)
a,2,3(Ma).

Remark 5. (candidate verification) Theorem 3 provides a way to verify that candidate extremal

cdf’s are in fact extremal. For example, for Theorem 1 (a), let G be specified. To verify that F
(2)

1+c2a

is optimal for the steady-state mean, it suffices to verify (33) for F̂ = F
(2)

1+c2a
. Of course, that requires

working with the cdf of W∞(F
(2)

1+c2a
,G).

Our next result, proved in §EC.3 by applying the Kakutani fixed point theorem and an additional

asymptotic argument, shows that the conditions in Theorem 3 can be satisfied.

Theorem 4. (existence) For any G ∈ Ps,2 in Theorem 1 (a), there exists a cdf F̂ ≡ F̂ (G) ∈

P
(c)
a,2(Ma) satisfying the conditions of Theorem 3. The analog holds for Ĝ(F ) in part (b).
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5. A Multinomial Optimization for the Transient Mean E[Wn]

In this section we exploit Theorem 1 (c) to formulate an optimization problem for the upper bound

of the transient mean based on a multinomial representation. We then can apply Lemma 2 (c)

to numerically deduce the form of the overall upper bound in (c) for the steady-state mean. We

provide further support with simulations for two-point distributions in §6.

5.1. The Multinomial Representation

We can represent the transient mean starting empty in (3) in terms of two independent multinomial

distributions. Let the cdf G in P
(c)
s,2,3(Ms) with specified mean ρ and scv c2s be parameterized by

the vector of mass points v ≡ (v1, v2, v3) and the vector of probabilities p≡ (p1, p2, p3). For every

positive integer k, define a multinomial probability mass function on the vector of nonnegative

integers k≡ (k1, k2, k3) by

Pk(p)≡
k!pk11 p

k2
2 p

k3
3

k1!k2!k3!
, (38)

where it is understood that ke′ ≡ k1 + k2 + k3 = k. Similarly, let the cdf F in Pa,2,3 with specified

mean 1 and scv c2a be parameterized by the vector of mass points u≡ (u1, u2, u3) and probabilities

q≡ (q1, q2, q3) on the vector of nonnegative integers w≡ (w1,w2,w3), so that

Qk(q)≡
k!qw1

1 qw2
2 qw3

3

w1!w2!w3!
, (39)

where it is understood that we′ ≡w1 +w2 +w3 = k.

Then, from (3),

E[Wn|W0 =0] =
n
∑

k=1

1

k

∑

(k,w)∈I

max{0,
3

∑

i=1

(kivi −wjuj)}Pk(p)Qk(q), (40)

where I is the set of all pairs of vectors (k,w) with both ke′ ≡ k1 + k2 + k3 = k and we′ ≡

w1 +w2 +w3 = k.

For any given n and any given distributions G in P
(c)
s,2,3(Ms) parameterized by the pair (v,p) and

F in P
(c)
a,2,3(Ma) parameterized by the pair (u,q), we can calculate the transient mean E[Wn|W0 = 0]
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by calculating the sum in (40). We can easily evaluate E[Wn|W0 =0] for candidate cases provided

that n is not too large.

Next, for the overall optimization over P
(c)
a,2,3(Ma)×P

(c)
s,2,3(Ms), we write

sup{E[Wn(v,p,u,q)] : ((v,p), (u,q))∈P
(c)
a,2,3(Ma)×P

(c)
s,2,3(Ms)}, (41)

using (40). We now write this optimization problem in a more conventional way, from which we

see that the optimization is a form of non-convex nonlinear program. In particular, we write for

the means m1 ≡E[U ]≡ 1, m2 ≡E[U2]≡m2
1(c

2
a+1), s1 ≡E[V ]≡ ρ and s2 ≡E[V 2]≡ s21(c

2
a+1),

maximize
n
∑

k=1

1

k

∑

∑
ki=k,

∑

j

wj=k

max(
∑

i

kivi −
∑

j

wjui,0)P (k1, k2, k3)Q(w1,w2,w3)

subject to
3

∑

j=1

ujqj =m1,
3

∑

j=1

u2
jqj =(1+ c2a)m

2
1,

3
∑

j=1

vjpj =s1,
3

∑

j=1

v2jpj =(1+ c2s)s
2
1,

3
∑

j=1

pj =
3

∑

k=1

qk =1,

Ms ≥ vj ≥ 0, Ma ≥ uj ≥ 0, pj ≥ 0, qj ≥ 0, 1≤ j ≤ 3.

(42)

5.2. The Numerical Conclusion about the Overall Upper Bound

We solved this non-convex nonlinear program in (42) by applying sequential quadratic program-

ming (SQP) as discussed in Chapter 18 of Nocedal and Wright (1999). In particular, we applied

the Matlab variant of SQL, which is a second-order method, implementing Schittkowski’s NLPQL

Fortran algorithm. This algorithm converges at a local optimum. Since the algorithm is not guar-

anteed to reach a global optimum, we run the algorithm for a large collection of uniform randomly

chosen initial conditions.

We found that the local optimum solution is usually attained at the pair of two-point distribu-

tions (F
(2)

1+c2a
,G

(2)

b(n)), where b(n) depends on n, but b(n)→Ms as n→∞; i.e., G
(2)

b(n) is a two-point

distribution that converges to G
(2)
Ms

as n→∞. In the rare cases that we obtain a different solution,
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we found that it is always in P
(c)
a,2,2(Ma)×P

(c)
s,2,2(Ms). Moreover, in these cases, we can find a dif-

ferent initial condition for which (F
(2)

1+c2a
,G

(2)

b(n)) is the local optimum, and that E[W (F
(2)

1+c2a
,G

(2)

b(n))]

is larger than for other local optima.

From extensive numerical experiments, which draw on our mathematical results, we conclude

that the extremal UB interarrival-time cdf F
(2)

1+c2a
for GI/M/1 also applies to all GI/GI/1, but

the extremal service-time distribution is more complicated because it depends on both n and Ms.

In summary, Theorem 1 and our numerical results support the following conjecture about the

overall tight upper bound. For part (b), let G(2)
∞ in E[W (F

(2)

1+c2a
,G

(2)
Ms

)] be shorthand for the limit of

E[W (F (2)

1+c2a
,G(2)

Ms
)] as Ms →∞.

Conjecture 1. (the tight upper bound for 1≤ n≤∞ for W0 = 0)

(a) Given any parameter vector (1, c2a, ρ, c
2
s) and a bounded interval [0, ρMs] for the service-time

cdf G, whereMs ≥ c2s+1, the pair (F (2)

1+c2a
,G(2)

Ms
) attains the tight UB of the steady-state mean E[W ],

i.e.,

E[W (F,G)]≤E[W (F
(2)

1+c2a
,G

(2)
Ms

)] for all F ∈Pa,2(Ma) and G ∈Ps,2(Ms),

while a pair (F
(2)

1+c2a
,G

(2)
b(n)) attains the tight UB of the transient mean E[Wn], i.e.,

E[Wn(F,G)]≤E[Wn(F
(2)

1+c2a
,G

(2)

b(n)))] for all F ∈Pa,2(Ma) and G ∈Ps,2(Ms),

where G(2)
b(n) is a two-point distribution with G(2)

b(n) ⇒G(2)
Ms

as n→∞.

(b) When both F and G have unbounded support [0,∞), the tight UB of E[W (F,G)] is obtained

asymptotically in the limit as Ms →∞ in part (a), i.e.,

E[W (F,G)]≤ lim
Ms→∞

E[W (F (2)

1+c2a
,G(2)

Ms
)]≡E[W (F (2)

1+c2a
,G(2)

∞ )] for all F ∈Pa,2 and G ∈Ps,2.

We develop algorithms for computing E[W (F
(2)

1+c2a
,G(2)

∞ )] in Chen and Whitt (2018). The follow-

ing is an UB for E[W (F
(2)

1+c2a
,G(2)

∞ )], assuming Conjecture 1.
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Theorem 5. (an UB for E[W (F
(2)

1+c2a
,G(2)

∞ )]) under the conjecture) For the GI/GI/1 queue with

parameter four-tuple (1, c2a, ρ, c
2
s), if E[W (F (2)

1+c2a
,G(2)

∞ )] is the tight UB as claimed in Conjecture 1,

then

E[W (F
(2)

1+c2a
,G(2)

∞ )]≤
2(1− ρ)ρ/(1− δ)c2a+ ρ2c2s

2(1− ρ)
<
ρ(2− ρ)c2a+ ρ2c2s

2(1− ρ)
, (43)

where δ ∈ (0,1) and δ = exp(−(1− δ)/ρ).

Formula (43) relies on Conjecture 1, so it is only verified numerically so far. Formula (43) is

based on Conjecture III on p. 211 of Daley et al. (1992). We prove Theorem 5 in §EC.4.

Counterexamples that contradict corresponding conjectures that analogs of Conjecture 1 hold

when one distribution is fixed were constructed in §V of Whitt (1984b), drawing on Whitt (1984a),

and in §8 of Wolff and Wang (2003).

Tables 1 and 2 compare the numerically computed values of the conjectured tight UB,

E[W (F
(2)

1+c2a
,G(2)

∞ )], drawing on Chen and Whitt (2018), to the heavy-traffic approximation (HTA)

in (5), the new conjectured upper bound in (43), the Daley (1977) bound in (7) and the Kingman

(1962) bound in (6) over a range of ρ for the scv pairs (c2a, c
2
s) = (4.0,4.0) and (0.5,0.5). In order to

focus on the variability independent of the traffic intensity ρ, we display the scaled mean waiting

time values (1− ρ)E[W ]/ρ2, which are constant for the heavy-traffic approximation in (5), being

equal to (c2a + c2s)/2. Tables EC.4-EC.7 in the e-companion give results for 12 values of ρ all four

cases: (c2a, c
2
s) = (4.0,4.0), (0.5,0.5), (4.0,0.5), (0.5,4.0).

In these tables we also show the value of δ in the new UB (43) and the maximum relative error

(MRE) between the UB approximation and the tight UB. The MRE over all four cases was 5.7%.

which occurred for c2a = c2s = 0.5 and ρ= 0.5.

We also display the lower bound (LB) in (8), which is far less than the other values, indicating

the wide range of possible values. The extremely low value for the LB occurs because it is associated

with the D/GI/1 model, which is approached by the F
(2)
Ma

extremal distribution as the support

limit Ma →∞ for any c2a. Notice that the LB is actually 0 for many cases with low traffic intensity;

that occurs if and only if P (V ≤ U) = 1. Hence, the LB looks especially bad for the case (c2a =
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4.0, c2s = 0.5) in Table EC.6, because it is the same as for the case (c2a = 0.5, c2s =0.5) in Table EC.5

and even for (c2a = 0.0, c2s = 0.5) in the D/GI/1 model. We discuss the LB in §7.

Table 1 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =4.0.

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.30 0.833 4.000 11.661 11.731 0.041 0.60% 13.333 24.222

0.50 1.500 4.000 6.940 7.020 0.203 1.15% 8.000 10.000

0.70 1.786 4.000 5.168 5.216 0.467 0.93% 5.714 6.082

0.80 1.875 4.000 4.662 4.693 0.629 0.67% 5.000 5.125

0.90 1.944 4.000 4.287 4.302 0.807 0.35% 4.444 4.469

0.95 1.974 4.000 4.134 4.142 0.902 0.18% 4.211 4.216

0.99 1.995 4.000 4.025 4.027 0.980 0.04% 4.040 4.041

Table 2 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =0.5.

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.30 0.000 0.500 1.432 1.466 0.041 2.36% 1.667 3.028

0.50 0.000 0.500 0.827 0.878 0.203 5.72% 1.000 1.250

0.70 0.036 0.500 0.623 0.652 0.467 4.53% 0.714 0.760

0.90 0.194 0.500 0.530 0.538 0.807 1.38% 0.556 0.559

0.95 0.224 0.500 0.514 0.518 0.902 0.65% 0.526 0.527

0.99 0.245 0.500 0.503 0.503 0.980 0.14% 0.505 0.505

From this analysis, we see that conjectured new UB (43) is an excellent approximation for the

conjectured UB E[W (F
(2)

1+c2a
,G(2)

∞ )]. Moreover, we see that there is significant improvement going

from the Kingman (1962) bound in (6) to the Daley (1977) bound in (7) to the new UB in (43).

We also see that the heavy-traffic approximation is consistent with the upper bounds in all cases.

The heavy-traffic approximation in (5) tends to be much closer to the UB than the lower bound,



Chen and Whitt: Extremal Queues

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

which shows that the overall MRE can be large and that the heavy-traffic approximation tends to

be relatively conservative, as usually is desired in applications.

6. A Simulation Study Over All Two-Point Distributions

The optimization in §5 supports Conjecture 1, but not as strongly as we would like. A more

convincing conclusion from §5 is that it suffices to reduce the search for an optimum to the smaller

subset of two-point distributions, i.e., to the product space P(c)
a,2,2(Ma)×P(c)

s,2,2(Ms). This space is

relatively easy to analyze because each of the sets P
(c)
a,2,2(Ma) and P

(c)
s,2,2(Ms) is one-dimensional, as

indicated in §1.3. The G
(2)

1+c2s
counterexample from §8 of Wolff and Wang (2003) also falls in this

set.

6.1. Simulation Experiments

To analyze the mean waiting times for the two-point interarrival-time and service-time distribu-

tions, we primarily use stochastic simulation. (We also verify for lower traffic intensities by applying

the multinomial representation in §5 for finite n.)

We study various simulation approaches in Chen and Whitt (2018). For the transient mean

E[Wn], we use direct numerical simulation, but for the steady-state simulations we mostly use the

simulation method in Minh and Sorli (1983) that exploits the representation of E[W ] in terms of

the steady-state idle time I and the random variable Ie that has the associated equilibrium excess

distribution, i.e.,

E[W ] =−
E[X2]

2E[X]
−E[Ie] =−

E[X2]

2E[X]
−
E[I2]

2E[I]
=
ρ2c2s + c2a +(1− ρ)2

2(1− ρ)
−
E[I2]

2E[I]
; (44)

which is also used in Wolff and Wang (2003). For each simulation experiment, we perform multiple

(usually 20− 40) i.i.d. replications. Within each replication we look at the long-run average after

deleting an initial portion to allow the system to approach steady state if deemed helpful. It is well

known that obtaining good statistical accuracy is more challenging as ρ increases, e.g., see Whitt

(1989), but that challenge is largely avoided by using (44). There is also a well known issue of one

long run versus multiple replications, e.g., see Whitt (1991).
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We do not report confidence intervals for all the individual results, but we did do a careful

study of the statistical precision. To illustrate, Table 3 compares the 95% confidence intervals

associated with estimates of the steady-state mean E[W (F
(2)

1+c2a
,G

(2)
Ms

)] for the parameter triple

(ρ, c2a, c
2
s) = (0.5,4.0,4.0) obtained by making the statistical t test to multiple replications of runs of

various length. The table compares the standard simulation for various run lengths N (number of

arrivals) and the Minh and Sorli (1983) algorithm for various run lengths T (length of time, over

which we average the observed idle periods) and numbers of replications n. (See Chen and Whitt

(2018) for more discussion.)

Table 3 Confidence interval halfwidths for estimates of the steady-state mean E[W (F
(2)

1+c2
a

,G
(2)
Ms

)] for the

parameter triple (ρ, c2a, c
2
s) = (0.5,4.0,4.0)

Monte Carlo simulation Minh and Sorli simulation

replications N = 1× 105 N =1× 106 N = 1× 107 T = 1× 105 T = 1× 106 T = 1× 107

20 6.64E-02 2.45E-02 8.01E-03 1.58E-03 4.81E-04 1.55E-04

40 5.59E-02 1.27E-02 4.22E-03 1.20E-03 3.20E-04 9.89E-05

60 3.69E-02 1.20E-02 4.23E-03 8.44E-04 2.88E-04 8.03E-05

80 3.52E-02 1.17E-02 3.72E-03 7.54E-04 2.27E-04 9.55E-05

100 2.61E-02 9.94E-03 3.13E-03 6.06E-04 2.02E-04 7.20E-05

6.2. The Impact of the Interarrival-Time Distribution

Figure 1 reports simulation results for E[W20] (left) and E[W ] (right) in the case ρ=0.5, c2a = c2s =

4.0 and Ma =Ms = 15. Recall ba ∈ [1+ c2a,Ma] and bs ∈ [1+ c2s,Ms] determine F in P
(c)
a,2,2(Ma) and

G in P
(c)
s,2,2(Ma) respectively, we focus on the impact of ba (for F ) in the permissible range [5,15]

for six values of bs (for G) ranging from 5 to 15. (Recall that the parameter b was defined in §1.3.)
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Figure 1 Simulation estimates of the transient mean E[W20] (left) and the steady-state mean E[W ] (right) as a

function of ba for six cases of bs in the case ρ= 0.5, c2a = c2s = 4.0 and Ma =Ms =15 under N = 1× 107

and 20 i.i.d replications.

Figure 1 shows that the mean waiting times tend to be much larger at the extreme left, which

is associated with ba = 5 or F (2)

1+c2a
. Also, the mean is roughly decreasing with bs increasing except

for ba = 5.

On the other hand, a close examination of the extreme case bs = 5 shows that the largest value

of ba does not occur for ba = 5, but in fact occurs at a slightly higher value. That turns out to be

the counterexample for the conjecture

E[W (F0,G)] = sup{E[W (F,G)] : F ∈Pa,2} (45)

for any given G ∈ Ps,2. In particular, Tables 4 present detailed simulation estimates of E[W ] and

E[W20]. In Table 4, we see that the maximum mean waiting time value in the first row, i.e., over ba

when bs = 5 is not attained at ba = 5.0, but is instead attained at ba = 5.25. For emphasis, in each

case we highlight both the maximum entry in the first row and the maximum entry in the table.

Therefore, for that service-time distribution (which is G
(2)

1+c2s
), the extremal inter-arrival time is not

F
(2)

1+c2a
.
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Table 4 Simulation estimates of E[W ] as a function of ba and bs when ρ= 0.5, c2a = c2s = 4.0 and

Ma = 8<Ms = 10 (N = 1× 107 and 20 i.i.d replications).

bs\ba 5 5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75 8

5 3.11 3.14 3.11 3.08 3.04 3.00 2.95 2.90 2.86 2.81 2.76 2.71 2.66

6 3.19 3.06 2.93 2.91 2.90 2.88 2.85 2.81 2.77 2.73 2.69 2.64 2.60

7 3.19 3.07 2.94 2.80 2.75 2.72 2.71 2.70 2.67 2.64 2.60 2.57 2.53

8 3.20 3.06 2.93 2.81 2.66 2.61 2.59 2.57 2.55 2.53 2.51 2.48 2.45

9 3.24 3.09 2.93 2.79 2.67 2.53 2.47 2.46 2.45 2.43 2.41 2.39 2.37

10 3.28 3.14 2.98 2.81 2.64 2.51 2.37 2.35 2.35 2.34 2.32 2.31 2.29

Note that F
(2)

1+c2a
is not optimal for all other bs and the difference between max{E[W (F,G0)] : F}−

E[W (F (2)

1+c2a
,G0)] is very small. Moreover, consistent with Conjecture 1, the overall UB is attained

at the pair (F
(2)

1+c2a
,G

(2)
Ms

). Finally, note that the difference across each row tends to be greater than

the difference across each column.

6.3. The Impact of the Service-Time Distribution

Figure 1 also shows the impact of the service-time distribution, but that impact is more compli-

cated. We see that the curve crosses the other curves in the middle. We now investigate what is

the optimal value of bs over [1+ c
2
s,Ms] for E[Wn] and E[W ]. For that purpose, Figure 2 shows the

upper bound of E[W ] over P
(c)
a,2,2(Ma)×P

(c)
a,2,2(Ms) is attained by (F

(2)

1+c2a
,G

(2)
Ms

). Moreover,

E[W (F
(2)
ba
,G

(2)

1+c2s
)] = sup{E[W (F

(2)
ba
,G)] :G ∈P

(c)
s,2,2(Ms)}, for ba ∈ (5,10],Ms =10. (46)
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Figure 2 Simulation estimates of the transient mean E[W20] (left) and the steady-state mean E[W ] (right) as a

function of bs for six cases of ba in the case ρ= 0.5, c2a = c2s = 4.0 and Ma =Ms =10 under N = 1× 107

and 20 i.i.d replications.

Figure 3 plots the values of E[W10] (left) and E[W20] (right) as a function of bs in the case

ρ = 0.5, c2a = c2s = 4.0, Ms = 300 and ba = (1 + c2a). For Figure 3, we use the optimization in §5

with a numerical method to directly compute a good finite truncation of objective in the nonlinear

program (42). For these cases, we find b∗s(10) = 35.1 and b∗s(20) = 41.1.
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Figure 3 The transient mean waiting time E[Wn(F
(2)

1+c2
a

,G)] for n= 10,20 as a function of bs up to Ms = 300.

b∗s(10) = 35.10, b∗s(20) = 41.12.

As a function of bs, our numerical experience shows the transient mean waiting time E[Wn]

is approximately first increasing and then decreasing at all traffic levels. Therefore, for each n,
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there exists optimal b(n) such that E[Wn(F
(2)

1+c2a
,G

(2)

b(n))] ≥ E[Wn(F
(2)

1+c2a
,G);G ∈ P

(c)
s,2,2(Ms)] where

the Gb(n) implies the u= ρ(1− c2s/(b(n)− 1)).

We next directly examine the steady-state mean waiting time E[W ] for set ba = (1 + c2a) and

Ms = 100. We use Minh and Sorli (1983) method with simulation length over a time interval of

length T = 1× 107 and 40 i.i.d. replications. To illustrate, Figure 4 shows the results for the traffic

levels ρ= 0.5 (left) and ρ= 0.9 (right).
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Figure 4 E[W (F
(2)

1+c2
a

,G)] for G∈P
(c)
s,2,2(Ms) as a function of bs given ba = (1+ c2a) for the case c2a = c2s = 4.

Just as in Figure 4 shows that the steady-state mean E[W ] is eventually increasing in bs, given

ba = (1+ c2a), strongly supporting the conclusion that the upper bound is attained at (F
(2)

1+c2a
,G

(2)
Ms

).

Hence, the optimal bs is Ms. Since E[Wn]→E[W ], we must also have b(n)→Ms as n→∞.

7. The Lower Bound with Finite Support

For unbounded support, Ott (1987) showed that the overall LB of E[W (F,G)] for (F,G)∈Pa,2 ×

Ps,2 is attained asymptotically by theD/G(3)
a /1 model where theD interarrival time with c2a =0 can

be regarded as the limit of F
(2)
Ma

with c2s on [0,Ma] as Ma →∞ holding the mean fixed at E[U ] = 1,

while the service-time cdf G(3)
a is any three-point distribution in Ps,2(ρ, c

2
s) that has support on

integer multiples of the constant interarrival time 1; also see Theorem 3.1 of Daley et al. (1992).

It turns out that the mean is insensitive to the service-time cdf provided that all support is on
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integer multiples of the interarrival time. Thus, the pure-lattice structure of the D/G(3)
a /1 model

acts to reduce E[W ]. The resulting LB has the convenient explicit formula in (8).

However, the overall LB has not yet been established for distributions with finite support. Moti-

vated by the established extremal property of the lattice D/G(3)
a /1 model with unbounded support,

we investigated a new “nearly-lattice” three-point distribution to use with F
(2)
Ma

called G
(3)
u,bsu

. It

has support {0, u, bsu}, where 1 < bs ≤Ms is an appropriate positive value (see §EC.6 for more

explanations.); u is the first point of the cdf F
(2)
Ma

at u= 1− c2a/(Ma− 1)∈ (0,1) with Ma> 1+ c2a.

We provide details of our study in §EC.6.

As expected, for each (1, c2a, ρ, c
2
s,Ma) with Ma > 1 + c2a, there exists a proper b∗s ∈ (1,∞) such

that

E[W (D,G(3)
a )]≤E[W (F

(2)
Ma
,G

(3)
u,b∗su

)]≤ inf{E[W (F
(2)
Ma
,G

(2)
bs
)] : bs ∈ [1+ c2s,∞)}. (47)

If Ma =1+ c2a, we have

E[W (D,G(3)
a )]≤E[W (F

(2)
Ma
,G

(2)

1+c2s
)]≤ inf{E[W (F

(2)
Ma
,G

(2)
bs
)] : bs ∈ [1+ c2s,∞)}. (48)

8. Conclusions

Theorem 1 showed that the tight upper and lower bounds for both the transient and steady-

state mean waiting time, E[Wn], in the GI/GI/1 model given interarrival and service times with

compact support and specified first two moments are attained at three-point distributions. That

result applies both to the overall bound over both distributions as well as the bounds with one of

the distributions fixed. Theorems 3 and 4 provided an alternative fixed-point characterization of

the extremal distributions for the steady-state mean, which should prove useful for further studies.

In the rest of the paper, we applied numerical methods to further identify the extremal distri-

butions. In §5 we exploited Theorem 1 to construct a multinomial mathematical optimization for

the transient mean. In §6 we reported results of extensive simulations over the one-dimensional

space of distributions with support on two points. From a practical engineering perspective, these

numerical studies answered the important question about the tight upper bound. The combination
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of mathematical and numerical results strongly supports Conjecture 1 in §5.2, which states that the

overall upper bound is attained by E[W (F
(2)

1+c2a
,G(2)

∞ )], i.e., at the extremal two-point distributions,

modified by a limit, as many have thought. However, because the analysis is partly numerical,

it still remains to provide a mathematical proof. We also provided a new upper bound analyti-

cal formula (43), which is a valid bound under Conjecture 1. Drawing on algorithms to compute

E[W (F
(2)

1+c2a
,G(2)

∞ )] in Chen and Whitt (2018), Tables 1, 2 and EC.4-EC.5 illustrate that the new

UB formula is quite accurate, providing significantly improvement over previous bounds.

We also conducted a study of the extremal lower bound with finite support in §7 and §EC.6. We

have less conclusive results, but we present evidence that it is attained by E[W (F
(2)
Ma
,G

(3)
u,bsu

)], where

F
(2)
Ma

is the natural two-point distribution with support on the upper limit of support Ma, while

G
(3)
u,bsu

is a nearly-lattice three-point distribution with mass on the set {0, u, ksu} for an integer ks,

where u is the smaller mass point of F
(2)
Ma

needed to go with the mass point at the upper barrier

Ma. This is asymptotically correct as Ma →∞ because it converges to the known lower bound for

unbounded support in (8).

There are many remaining problems for research. In addition to providing a full mathematical

proof of Conjecture 1, it remains to identify the extremal distributions with one distribution given.

It also remains to establish similar results for other models. The method of proof here can be

adapted to other settings.
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e-Companion to ‘Extremal GI/GI/1 Queues Given Two
Moments” by Y. Chen and W. Whitt

EC.1. Overview

This e-companion contains supplements to the main paper. §EC.2 provides a summary of the

notation. §EC.3 provides a proof of Theorem 4. §EC.4 provides a proof of Theorem 5, which justifies

the new analytical formula for the overall upper bound, under the assumption that Conjecture

1 is valid. §EC.5 discusses the extension from compact support to unbounded support. §EC.6

provides details of the study of the lower bound with finite support. §EC.7 supplements Table 1

by providing numerical comparisons of the conjectured tight upper bound and known tight lower

bound of E[W (F,G)] over the underlying cdf’s F and G with specified first two moments, but

unbounded support.

EC.2. Summary of the Notation

(i) acronyms

(a) UB: upper bound [§1.2]

(b) LB: lower bound [§1.2]

(c) HTA: heavy traffic approximation [§1.2]

(d) LP: linear program [§3.1]

(e) MRE: maximum relative error [Table 1]

(ii) random variables

(a) Uk: interarrival time between customers k and k+ 1, k ≥ 0, having cdf Fk, with generic

U ≡U(F ) having cdf F , E[U ] = 1 and finite scv c2a [§1.1]

(b) Vk: service time of customer k, k ≥ 0, having cdf Gk, with generic V ≡ V (G) having cdf

G and E[V ] = ρ, 0<ρ< 1, and finite scv c2s [§1.1]

(c) Xk ≡ Vk −Uk, k≥ 0, [§1.1]

(d) Sk ≡X0 + · · ·+Xk−1, k≥ 1, with S0 ≡ 0 [§1.1]
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(e) Wk: waiting time of customer k, k ≥ 0, having cdf Hk, with steady-state limit W ≡W∞,

assuming a customer 0 arrives at time 0 with a waiting time W0 distributed according to H0 with

finite mean E[W0] [§1.1]

(f) Wk(F,G)≡Wk(H0, F,G) and W (F,G)≡W∞(F,G): the random variables Wk and W ≡

W∞ showing the dependence upon the cdf’s H0, F and G. (The steady-state distribution does not

depend on H0.) [§3.3]

(g) Ŵ2(F0, F1): modification of W2(F0, F1) by penalty function [§3.3]

(h) Y : a generic random variable [§3.2]

(i) I: a steady-state idle time [§6]

(iii) special probability distributions

(a) F (2)
b : a two-point interarrival-time distribution with one point at b, given the first two

moments; so F
(2)

1+c2a
is the natural F for the UB of E[W ]; [§1.3]

(b) F
(2)
Ma

: a two-point interarrival-time distribution with one point at the upper limitMa given

the first two moments; it is a natural candidate for the LB of E[W ]; [§1.3]

(c) G
(2)
b : a two-point service-time distribution with one point at b, given the first two moments

[§1.3]

(d) G(2)
Ms

: a two-point service-time distribution with one point at the upper limit ρMs given

the first two moments; ; it is a natural candidate for the UB of E[W ]; [§1.3]

(e) G
(2)

1+c2s
: a two-point service-time distribution with one point at 0 given the first two

moments; it is a natural candidate for the LB of E[W ]; [§1.3]

(f) G(3)
a : a three-point service-time distribution concentrating on multiples of the deterministic

interrival time in a D/GI/1 model [§1.2 and §7]

(g) G
(3)
u,bsu

: a three-point service-time distribution with support {0, u, ksu} for some integer k,

where u is the smaller mass point of the F
(2)
Ma

two-point interarrival-time cdf having higher mass

point Ma [§7]

(h) F ∗(G): the optimal F as a function of G [Theorem 1]
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(i) G∗(F ): the optimal G as a function of F [Theorem 1]

(j) (F ∗∗,G∗∗): the optimal pair (F,G) [Theorem 1]

(iv) spaces of probability measures

(a) P: the space of all probability distributions on [0,∞) or a subset, with subscripts a and

s used to designate the interarrival time or the service time [§2]

(b) Pn: the subset of P with first n moments specified, [§2]

(c) P2(m1,m2)≡P2(m1, c
2): the space of P2 with specified first two moments m1 and m2 =

m2
1(c

2 +1) [§2]

(d) Pn(M)≡Pn(m1, c
2,M): the subset of Pn with support on the bounded interval [0,m1M ]

[§2]

(e) P(c)
2 (M): the subset of P2(M) with support on a compact subset (denoted by C) of the

bounded interval [0,m1M ] [§2]

(f) Pa,2(Ma)≡Pa,2(1, c
2
a,Ma): the space of interarrival-time cdf’s F with first two moments

(1, c2a+1) and support [0,Ma] [§2]

(g) P
(c)
a,2(1, c

2
a,Ma): the space of interarrival-time cdf’s F with first two moments (1, c2a + 1)

and support on a compact subset (denoted by C) of the bounded interval [0,Ma] [§2]

(h) Ps,2(ρ, c
2
s,Ms): the space of service-time cdf’s G with first two moments (ρ, ρ2(c2s + 1))

and support [0, ρMs] [§2]

(i) P
(c)
s,2(1, c

2
s,Ms): the space of service-time cdf’s G with first two moments (ρ, ρ2(c2s+1)) and

support on a compact subset (denoted by C) of the bounded interval [0, ρMs] [§2]

(v) functions

(a) wn ≡wn(F,G): Shorthand for the mean, i.e., wn(F,G)≡E[W (F,G)] [§2]

(b) w↑
a,n: Shorthand for the supremum. [§2]

(c) φ: integrand for application of Theorem 2 [§3]

(d) dM (F0, F1): penalty function depending on the parameter M [§3.3]

(vi) models
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(a) F/G/1: a GI/GI/1 model with cdf’s F and G

(b) D/G/1: a GI/GI/1 model with deterministic F having unit mass on the mean, which

here is 1.

EC.3. Proof of Theorem 4.

In this section we prove Theorem 4 which shows that there exist distributions satisfying the

conditions in Theorem 3, which in turn provides a fixed-point characterization of the extremal

distributions for the steady-state mean E[W ].

Proof. Focusing on (a) with G ∈Ps,2 fixed, let ζ(F̂ ) with ζ :P
(c)
a,2(Ma)→R be defined by

ζ(F̂ )≡ sup{E[(W (F̂ ,G)+V (G)−U(F0))
+] : F0 ∈P

(c)
a,2(Ma)}, (EC.1)

where W (F̂ ,G) is understood to be the steady-state waiting time with the pair (F̂ ,G), V ≡ V (G)

has cdf G, U ≡U(F0) has cdf F0 and all three random variables are independent.

Let η(F̂ ) be the set of maximizers in (EC.1) when F̂ ∈P
(c)
a,2(Ma). Let P

∗
a,2(Ma) be the set of all

fixed points of the map η :P
(c)
a,2(Ma)→ 2P

(c)
a,2(Ma), i.e.,

P∗
a,2(Ma)≡ {F ∈P

(c)
a,2(Ma) : F ∈ η(F )}. (EC.2)

To show that P∗
a,2(Ma) is nonempty, we apply the Kakutani fixed point theorem; e.g., see

Kakutani (1941) and Border (1985), so we state it here.

Theorem EC.1. (Kakutani fixed point theorem) If S is a non-empty compact and convex subset

of some Euclidean space R
d and ψ : S→ 2S is a set-valued function with a closed graph such that

ψ(x) is non-empty and convex for all x ∈ S, then the map ψ has a fixed point, i.e., there exists

x∈ S such that x∈ ψ(x).

In order to be able to work within the Euclidean space R
d, we restrict attention to sets of

probability measures with finite support in the compact set C in [0,Ma]; each such subset is

homeomorphic to a convex compact subset of Rn. We use an asymptotic argument to get the entire

set P
(c)
a,2(Ma) when the initial support set is infinite. If indeed the initial support set is infinite,
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then for k ≥ 3, let Ck be a support set with k points within the initial support set C. Let the sets

be nested with that Ck ⊂ Ck+1 and ∪∞
k=1Ck being dense in C. Hence, we can apply the Kakutani

fixed point theorem to show that the set of fixed points P∗
a,2(Ma) in (EC.2) is nonempty when we

restrict F to Ck.

To apply the Kakutani fixed point theorem in Theorem EC.1, we let ψ in Theorem EC.1 be η,

where η(F̂ ) is the set of all maximizers of ζ(F̂ ) in (EC.1) restricted to the subset P
(c)
a,2(Ma). Thus,

we need to show that η(F̂ ) has a closed graph and that η(F̂ ) is nonempty and convex for each F̂ .

Recall that a set-valued function ψ is said to have a closed graph (or be upper-hemicontinuous) if

for all sequences {(xn, yn) : n≥ 1} such that yn ∈ ψ(xn) for all n, xn → x and yn → y, we also have

y ∈ψ(x).

To show that η in (EC.1) has a closed graph, we apply the Berge maximum theorem, e.g., Berge

(1963), a version of which we state here.

Theorem EC.2. (Berge maximum theorem) Let S be a compact metric spaces; let w : S×S→R

be a continuous function; let w↑(x1) ≡ sup{w(x1, x2) : x2 ∈ S}; and let η : S → 2S be the set of

x2 ∈ S such that w(x1, x2) = w↑(x1). Then η has a closed graph (is upper-hemicontinuous), η(x1)

is nonempty, compact and w↑ : S→R is continuous.

.

To establish the continuity condition in our context, we use the continuity of the mean steady-

state waiting time as a function of the interarrival-time cdf F within the set P
(c)
a,2(Ma) with specified

finite first two moments, see §X.6 of Asmussen (2003).

It remains to show that η(F̂ ) is convex for each F̂ when η(F̂ ) is the set of all maximizers of ζ(F̂ )

in (EC.1), but that convexity follows from the linearity in F0 of the integral in (17). The set η(F )

is also nonempty because we are maximizing a continuous function over a compact metric space.

To complete the proof, we need to do an asymptotic argument. We need to go beyond the case

of finite support. Hence, for each k ≥ 2, let F̂ (k) be a fixed point cdf satisfying the conditions

of Theorem 3 with support Ck. Since all these cdf’s have common finite first two moments, the
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sequence {F̂ (k) : k ≥ 2} is necessarily tight, so that there exists a subsequence {F̂ (kj) : j ≥ 1}

such that F̂ (kj)⇒ F̂ ∗ as j→∞; see §11.6 of Whitt (2002). Moreover, since the cdf’s have finite

second moments, we have convergence of the associated steady-state waiting times Wkj ⇒W ∗ and

moments E[Wkj ]→E[W ∗] as j→∞, again by virtue of §X.6 of Asmussen (2003). The limit then

yields the desired fixed point in P(c)
a,2(Ma).

EC.4. Proof of Theorem 5

In this section we prove Theorem 5, which provides an UB for E[W ] in the conjectured F (2)

1+c2a
/G(2)

∞ /1

extremal GI/GI/1 queue. The notation G(2)
∞ means the limit of G

(2)
Ms

as Ms →∞.

Following §10 of Daley et al. (1992), we concentrate on the class Pa,2 × Ps,2 and attempt to

determine the best choices of functions a(ρ), b(ρ) such that

E[W ]≤
a(ρ)c2a+ b(ρ)c2s

2(1− ρ)
. (EC.3)

We apply Delay’s decomposition in the subsequent Theorem EC.3 to limMs→∞E[W (F,G
(2)
Ms

)] to

obtain

lim
Ms→∞

E[W (F,G
(2)
Ms

)] =E[W (F,D)]+ lim
Ms→∞

E[W (D,G
(2)
Ms

)] =E[W (F,D)]+
c2s

2(1− ρ)
. (EC.4)

Consequently, b(ρ)≥ bLB(ρ) = 1. From (EC.4), the lower bound of a(ρ) can be given by

a(ρ)≥ aLB(ρ) = inf
c2a>0

{
2(1− ρ)

c2a
sup

F∈Pa,2

E[W (F,D)]}. (EC.5)

The aLB(ρ) is the best choice (if it exists) when set b(ρ) = 1. The aLB(ρ) and bLB(ρ) can give a

new upper bound for GI/GI/1, so that we obtain

E[W (F,G)]≤E[W (F (2)

1+c2a
,G(2)

∞ )]≤
aLB(ρ)c

2
a+ c2s

2(1− ρ)
≤
a(ρ)c2a+ b(ρ)c2s

2(1− ρ)
. (EC.6)

Now we are left to determine the aLB(ρ). At this point we focus on the candidate bounding

system F
(2)

1+c2a
/GI/1, so we obtain a proof only for this case. We obtain an alternative representation

in Chen and Whitt (2018), which we state here. In particular, we can convert the queue F
(2)

1+c2a
/GI/1

into D/RS(V,p)/1 where RS(V,p) =
∑N(p)

k=1 Vk is a random sum of i.i.d. variables distributed as

V , N(p) is a geometric random variable on the positive integers having E[(N(p))] = 1/p with

1/p= 1+ c2a. Here is the specific lemma:
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Lemma EC.1. (Theorem 1 in Chen and Whitt (2018)) For the F
(2)

1+c2a
/GI/1 model with service

time V having mean ρ and scv c2s, the mean steady-state waiting time can be expressed as

E[W (F
(2)

1+c2a
(p)/GI/1)] = E[W (D(1/p)/RS(V,p)/1)]+ (E[N(p)]− 1)E[V ]

= E[W (D(1/p)/RS(V,p)/1)]+ ρ(1− p)/p

= E[W (D(1/p)/RS(V,p)/1)]+ ρc2a. (EC.7)

Proof. The F (2)

1+c2a
interarrival time means that a random number of arrivals, distributed as

N(p), arrive at deterministic intervals with deterministic value 1/p = c2a + 1. So the model has

batch arrivals. The result in (EC.7) follows from Halfin (1983) or Theorem 1 of Whitt (1983a),

which states that the delay of an arbitrary customer in the batch is distributed the same as the

delay of the last customer in the batch when the batch-size distribution is geometric. Because

E[W (D(1/p)/RS(V,p)/1)] is the expected delay of the first customer in a batch, we need to add

the second term in (EC.7) to get the delay of the last customer in the batch; e.g., see §III of Whitt

(1983a).

Hence, we apply Lemma EC.1 to write

E[W (F
(2)

1+c2a
,G)] =E[W (D,RS(V,p))]+ ρc2a. (EC.8)

For the rest, we use a stochastic comparison argument involving convex stochastic order, as in §9.5

of Ross (1996) or in §1.7 and Chapter 5 of Stoyan (1983). Let convex order be denoted by ≤c.

In particular, consider an F
(2)

1+c2a
/GI/1 system for which S ≤c S

′ where S′ denotes a exponential

random variable with mean E[S]. Then for two sequences of i.i.d. variables {Sn} and {S′
n},

S1 + ...+SN(p) ≤c S
′
1 + ...+S′

N(p). (EC.9)

However, the righthand side is distributed as an exponential random variable with mean N(p)E[S],

where N(p) is a geometric random variable with mean E[N(p)] = 1+ c2a. Hence, we obtain

(S1 + ...+SN(p))/E[N(p)]≤c S
′. (EC.10)
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Consequently,

(1+ c2a)
−1W (D,RS(V,p)) =d W ((1+ c2a)D,S1+ ...+SN(p))

=d W (D, (S1+ ..+SN(p))/(1+ c2a))

≤c W (D,S′) =W (D,M). (EC.11)

Hence,

(1+ c2a)
−1E[W (D,RS(V,p))]≤EW [(D,M)] = δρ/(1− δ). (EC.12)

where δ = exp(−(1− δ)/ρ).

Finally, combine (EC.5), (EC.8) and (EC.12) to obtain

aLB(ρ) = inf
c2a>0

2(1− ρ) supF∈Pa,2
E[W (F,D)]

c2a

= inf
c2a>0

2(1− ρ)E[W (F
(2)

1+c2a
,D)]

c2a
≤ inf

c2a>0
{2ρ(1− ρ)+

(1+ c2a)δρ/(1− δ)2(1− ρ)

c2a
}

→
ρ(2− 2ρ)

1− δ
(as c2a →∞). (EC.13)

So aLB(ρ)≤ ρ(2− 2ρ)/(1− δ) and

E[W (F
(2)

1+c2a
,G(2)

∞ )]≤
aLB(ρ)c

2
a + c2s

2(1− ρ)
≤

2(1− ρ)ρ/(1− δ)c2a+ ρ2c2s
2(1− ρ)

. (EC.14)

EC.5. Extension to Unbounded Support

In this section we discuss what happens when we increase the intervals of support [0,Ma] and

[0, ρMs]. Throughout this section we assume that the UB for finite support has been shown to be

(F
(2)

1+c2a
,G

(2)
Ms

). We ask what happens as we let Ma →∞ and Ms →∞.

EC.5.1. Unbounded Support for the Interarrival Time

First, for the interarrival-time cdf F , the cdf F
(2)

1+c2a
is optimal for the UB for all Ma, and thus

remains optimal asMa →∞. In contrast, for the lower bound, which we mostly do not discuss here,

the extremal interarrival-time cdf is F
(2)
Ma

, which places positive mass on Ma. Then the extremal
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interarrival-time cdf F
(2)
Ma

converges to the deterministic distribution with mean 1 asMa →∞, which

of course has c2a = 0, which is likely to be inconsistent with the specified parameter. Nevertheless,

the mean waiting time converges to the value E[W (D,G)] of the associated D/GI/1 model, as we

saw in Tables EC.4-EC.5. Moreover, as discussed in Theorem 3.1 of Daley et al. (1992), that yields

the well-known tight LB.

EC.5.2. Unbounded Support for the Service Time

The situation is more complicated when we let Ms → ∞ for the upper bound. Just as for the

interarrival-time cdf F (2)
Ma

, the service-time cdf G(2)
Ms

converges to the deterministic cdf with the

mean ρ of G
(2)
Ms

as Ms →∞. However, the mean waiting time fails to converge to the mean waiting

time of the associated GI/D/1 queue.

We propose two approaches to this problem. The first way is to exploit the representation in

terms of the idle time in (44), as was done in Minh and Sorli (1983) and Wolff and Wang (2003).

It turns out that the mean idle time does converge as Ms → ∞. We discuss this approach in

Chen and Whitt (2018). The second approach is to exploit the Daley decomposition from §10 of

Daley et al. (1992).

EC.5.3. The Daley Decomposition

We now discuss a decomposition for the mean steady-state waiting time E[W ] in §10 of Daley et al.

(1992). The decomposition appears in equation (10.2) of Daley et al. (1992), where it is attributed

to unpublished by D. J. Daley in 1984. We state it in the following theorem. Let G(2)
∞ be shorthand

for the limit E[W (F,G
(2)
Ms

)] as Ms →∞ and let Dm denote a deterministic cdf with mass 1 on m.

Theorem EC.3. (the Daley decomposition in (10.2) of Daley et al. (1992)) Consider the GI/GI/1

model with specified interarrival-time cdf F ∈Pa,2. As Ms →∞,

E[W (F,G(2)
∞ )]≡ lim

Ms→∞
E[W (F,G

(2)
Ms

)] = E[W (F,Dρ)]+E[W (D1,G
(2)
∞ )]

= E[W (F,Dρ)]+
ρ2c2s

2(1− ρ)
. (EC.15)
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Proof. We only give a brief overview. We do a regenerative analysis to compute the mean waiting

time, looking at successive busy cycles starting empty. We exploit the classic result that the steady-

state mean waiting time is the expected sum of the waiting times over one cycle divided by the

expected length of one cycle; e.g., see §3.6 and §3.7 of Ross (1996).

As Ms increases, the two-point cdf G
(2)
Ms

necessarily places probability of order O(1/M 2
s ) on Ms

and the rest of the mass on a point just less than the mean service time, ρ. For very large Ms,

there will be only rarely, with probability of order O(1/M 2
s ), a large service time of order O(Ms).

In the limit, most customers never encounter this large service time, so that we get a contribution

to the overall mean E[W ] corresponding to E[W (F,Dρ)] in the first term on the right in (EC.15).

On the other hand, the total impact of the very large waiting time of order Ms is roughly the

area of the triangle with height O(Ms) and width O(Ms), which itself is O(M 2
s ). When combined

with the O(1/M 2
s ) probability, this produces an additional O(1) impact on the steady-state mean,

which is given by the second term on the right in (EC.15). Moreover, because we can use a law-

of-large-numbers argument to treat this large service time, the asymptotic impact of that large

service time is independent of the interarrival-time cdf beyond its mean, so we can substitute D1

for the original interarrival-time cdf F with mean 1 in the second term.

If Conjecture 1 holds, then

sup{E[W (F,D)] : F ∈Pa,2}=E[W (F
(2)

1+c2a
,D)]. (EC.16)

Hence, we can apply Theorem EC.3 to show that, if Conjecture 1 (b) holds, then, for all F ∈Pa,2

and G∈Ps,2,

E[W (F,G)] ≤ lim
Ms→∞

E[W (F
(2)

1+c2a
,G

(2)
Ms

)]≡E[W (F
(2)

1+c2a
,G(2)

∞ )]

≤ E[W (F
(2)

1+c2a
,Dρ)]+

ρ2c2s
2(1− ρ)

. (EC.17)

EC.6. More on the Lower Bound with Finite Support

In this section we elaborate on our investigation of the lower bound with finite support, which was

briefly discussed in §7.
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The newG
(3)
u,bsu

makes the F
(2)
Ma
/G

(3)
u,bsu

/1 model lattice except for the mass atMa. If the parameter

bs is chosen as a integer value which is greater than 1, then

lim
Ma→∞

E[W (F
(2)
Ma
,G

(3)
u,bsu

)] =E[W (D,G(3)
a )] (EC.18)

which is the tight lower bound of GI/GI/1 models over Pa,2 ×Ps,2.

In previous extensive numerical studies we find that F
(2)
Ma

is good for F , but G
(2)

1+c2s
and G

(2)
Ms

might

not be nearly optimal for G to minimize the mean waiting time. Moreover, Figure 2 showsG
(2)

1+c2s

is the optimal solution to minimize E[W (F (2)
Ma
,G)] over P(c)

s,2,2(Ms) only for Ma = 1+ c2a. Thus it is

interesting to explore better service time distribution when F =F
(2)
Ma

for Ma > 1+ c2a.

EC.6.1. The G
(3)
u,bsu

Service-Time Distribution

To derive the closed form of G
(3)
u,bsu

, we next solve the moment equations with mass at x1 = 0, x2 =

u,x3 = bsu with bs > 1 and u> 0 (recall u= 1− c2a/(Ma− 1)),

p1 + p2 + p3 =1, x1p1 +x2p2 +x3p3 = ρ,x2
1p1 +x2

2p2 +x2
3p3 = (1+ c2s)ρ

2 (EC.19)

to obtain a solution as a function of the single variable bs. Note the G(3)
u,bsu

has no definition for

u= 0. The probabilities of the points in {0, u, bsu} are then

p1 =
(b2s(u

2 − ρu)+ bs(−u
2 +(1+ c2s)ρ

2)− (1+ c2s)ρ
2 +uρ)

(b2su
2 − bsu2)

,

p2 =
ρbsu− (1+ c2s)ρ

2)

bsu2 −u2
and p3 =

ρ2(1+ c2s)−uρ

b2su
2 − bsu2

. (EC.20)

It remains to specify bs. To do so, we conducted extensive simulation experiments. Based on these

experiments, we find that the possible values of bs depend on E[V ] = ρ. In particular, if ρ ∈

(u/(1+ c2s), u], bs ∈ [(1+ c2s)ρ/u,∞). When bs = (1+ c2s)ρ/u, then G
(3)
u,bsu

=G
(2)

1+c2s
. If ρ= u/(1+ c2s),

then G(3)
u,bsu

is a two-point distribution with mass at {0, u}. Since inter-arrival time distribution F (2)
Ma

has mass at {u,Ma} and there is no large service time impact, E[W (F (2)
Ma
,G(3)

u,bsu
)] = 0. If ρ∈ (u,1),

then there exists a positive value γ > 0 which is the largest root of the quadratic equation in bs

b2s(u
2 − ρu)+ bs(−u

2+(1+ c2s)ρ
2)− (1+ c2s)ρ

2 +uρ= 0, (EC.21)
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such that bs ∈ [(1+ c2s)ρ/u, γ). Therefore, the possible range of bs depends on ρ. In general,

bs ∈

[

(1+ c2s)ρ

u
,1{ρ∈(u/(1+c2s),u]}

∞+1{ρ>u}γ

)

. (EC.22)

EC.6.2. The Impact of Service Time in F (2)
Ma
/G(3)

u,bsu
/1

We study the impact of bs to E[W (F (2)
Ma
,G(3)

u,bsu
)] and seek for optimal b∗s in (EC.22) to minimize

E[W (F
(2)
Ma
,G

(3)
u,bsu

] by Minh and Sorli (1983) simulation with T = 1× 107 and 20 i.i.d replications.

Following the range of bs in EC.22, we simulate the model under Ma = 6,8,10 and various settings

of bs (γ−= γ− 0.0001. For example, γ− is 19.167 when Ma =6 by some simple calculation.).

Table EC.1 Simulation estimates of E[W (F
(2)
Ma

,G
(3)
u,bsu

)] under the case c2a = c2s = 4, ρ= 0.5

bs 13 14 15 16 17 18 19 γ− γ− γ− γ−

Ma =6 3.01 2.95 2.89 2.82 2.76 2.72 2.67 2.66 2.66 2.66 2.66

bs 10 12 14 16 18 20 22 24 26 28 30

Ma =8 2.36 2.22 2.10 1.98 1.85 1.73 1.69 1.68 1.65 1.61 1.58

bs 10 12 14 16 18 20 22 24 26 28 30

Ma = 10 1.97 1.87 1.78 1.70 1.61 1.53 1.48 1.44 1.41 1.39 1.37

From the above simulation, we see the E[W (F
(2)
Ma
,G

(3)
u,bsu

)] is monotone decreasing with bs increas-

ing. Thus the optimal b∗s = γ− when ρ > u or b∗s =∞ when ρ∈ (u/(1+ c2s), u].

EC.6.3. Simulation Comparisons

From extensive simulation experiments, we conclude that the LB for E[W ] is attained, at least

approximately, by the F
(2)
Ma
/G

(3)
u,bsu

/1 model. Following from Figure 1 and 2, we see there exists an

optimal b∗s(ba) such that the lower bound of E[W ] is attained by E[W (F
(2)
Ma
,G

(2)
bs
)] over P

(c)
a,2,2(Ma)×

P
(c)
s,2,2(Ms). Since the mean of F

(2)
Ma
/G

(3)
u,bsu

/1 is monotone decreasing as bs increases, we set bs

sufficiently large for F
(2)
Ma
/G

(3)
u,bsu

/1 and set the optimal b∗s(ba) for F
(2)
Ma
/G

(2)
bs
/1 to make a careful

simulation comparison under the case c2a = c2s = 4 under different settings of ba.
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Table EC.6.3 shows the results for the E[W (F
(2)
Ma
,G

(2)
bs
)] under optimal b∗s within [0,Ms] (Ms =

1000). We compare it to Ott’s lower bound, the HTA and conjectured UB and UB Approx.

Table EC.2 Simulation performance of lower bound with different settings of Ma for the model F
(2)
Ma

/G
(2)
bs

/1

(T =5× 108 and 20 i.i.d replications)

ρ Ott LB Ma = 20 Ma = 10 Ma = 8 Ma = 6 HTA Tight UB UB Approx

0.30 0.107 0.261 0.262 0.307 0.815 0.514 1.50 1.51

0.50 0.750 1.01 1.02 1.70 2.68 2.00 3.47 3.51

0.70 2.92 3.33 6.34 6.95 7.76 6.53 8.44 8.52

0.90 15.8 29.1 33.0 33.5 34.1 72.2 74.6 74.8

We study the simulation performance of E[W (F
(2)
Ma
,G

(3)
u,bsu

)] under optimal b∗s =min{1000, γ −

0.0001} by Minh and Sorli (1983) algorithm with simulation length T =5×108 and 20 independent

repetitive experiments.

Table EC.3 Simulation performance of lower bound with different settings of Ma for the model F
(2)
Ma

/G
(3)
u,bsu

/1

(T =1× 107 and 20 i.i.d replications)

ρ Ott LB Ma = 20 Ma = 10 Ma = 8 Ma = 6 HTA Tight UB UB Approx

0.30 0.107 0.151 0.203 0.230 0.685 0.514 1.50 1.51

0.50 0.750 0.857 0.973 1.50 2.66 2.00 3.47 3.51

0.70 2.92 3.17 5.56 6.33 7.56 6.53 8.44 8.52

0.90 15.8 27.2 31.8 32.7 33.7 72.2 74.6 74.8

Therefore, we conclude by stating a conjecture associated with lower bound.

Conjecture EC.1. Given any parameter vector (1, c2a, ρ, c
2
s) and a bounded interval [0,Ma] for

the interarrival-time cdf F , the pair (F
(2)
Ma
,G

(3)
u,bsu

) attains the tight LB of the steady-state mean

E[W ] for Ma> 1+ c2a, i.e.,

E[W (F,G)]≥E[W (F
(2)
Ma
,G

(3)
u,bsu

)] for all F ∈P
(c)
a,2(Ma) and G∈Ps,2. (EC.23)
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If Ma = 1+ c2a, the pair (F
(2)

1+c2a
,G

(2)

1+c2s
) attains the tight LB of the steady-state mean E[W ], i.e.,

E[W (F,G)]≥E[W (F
(2)

1+c2a
,G

(2)

1+c2s
)] for all F ∈P

(c)
a,2(Ma) and G∈Ps,2. (EC.24)

EC.7. Numerical Comparison of the Bounds and Approximations

We now supplement Tables 1 and 2 by making numerical comparisons for both the scaled means

(1−ρ)E[W ]/ρ2 and the unscaled meansE[W ] for 12 values of ρ in the four cases: (c2a, c
2
s) = (4.0,4.0),

(0.5,0.5), (4.0,0.5), (0.5,4.0). Tables EC.4-EC.7 present the scaled values, while Tables EC.8-EC.11

then present the corresponding unscaled values.

Table EC.4 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =4.0.

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 4.000 38.001 38.002 0.000 0.00% 40.000 202.000

0.20 0.000 4.000 18.078 18.112 0.007 0.19% 20.000 52.000

0.30 0.833 4.000 11.661 11.731 0.041 0.60% 13.333 24.222

0.40 1.250 4.000 8.640 8.722 0.107 0.94% 10.000 14.500

0.50 1.500 4.000 6.940 7.020 0.203 1.15% 8.000 10.000

0.60 1.667 4.000 5.883 5.946 0.324 1.07% 6.667 7.556

0.70 1.786 4.000 5.168 5.216 0.467 0.93% 5.714 6.082

0.80 1.875 4.000 4.662 4.693 0.629 0.67% 5.000 5.125

0.90 1.944 4.000 4.287 4.302 0.807 0.35% 4.444 4.469

0.95 1.974 4.000 4.134 4.142 0.902 0.18% 4.211 4.216

0.98 1.990 4.000 4.052 4.055 0.960 0.07% 4.082 4.082

0.99 1.995 4.000 4.025 4.027 0.980 0.04% 4.040 4.041
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Table EC.5 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =0.5.

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 0.500 4.750 4.750 0.000 0.00% 5.000 25.250

0.20 0.000 0.500 2.252 2.264 0.007 0.54% 2.500 6.500

0.30 0.000 0.500 1.432 1.466 0.041 2.36% 1.667 3.028

0.40 0.000 0.500 1.049 1.090 0.107 3.82% 1.250 1.813

0.50 0.000 0.500 0.827 0.878 0.203 5.72% 1.000 1.250

0.60 0.000 0.500 0.708 0.743 0.324 4.71% 0.833 0.944

0.70 0.036 0.500 0.623 0.652 0.467 4.53% 0.714 0.760

0.80 0.125 0.500 0.569 0.587 0.629 2.95% 0.625 0.641

0.90 0.194 0.500 0.530 0.538 0.807 1.38% 0.556 0.559

0.95 0.224 0.500 0.514 0.518 0.902 0.65% 0.526 0.527

0.98 0.240 0.500 0.505 0.507 0.960 0.27% 0.510 0.510

0.99 0.245 0.500 0.503 0.503 0.980 0.14% 0.505 0.505

Table EC.6 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = 4.0 and c2s = 0.5

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 2.250 36.251 36.252 0.000 0.00% 38.250 200.250

0.20 0.000 2.250 16.328 16.362 0.007 0.21% 18.250 50.250

0.30 0.000 2.250 9.911 9.981 0.041 0.71% 11.583 22.472

0.40 0.000 2.250 6.890 6.972 0.107 1.16% 8.250 12.750

0.50 0.000 2.250 5.190 5.270 0.203 1.51% 6.250 8.250

0.60 0.000 2.250 4.133 4.196 0.324 1.50% 4.917 5.806

0.70 0.036 2.250 3.418 3.466 0.467 1.39% 3.964 4.332

0.80 0.125 2.250 2.912 2.943 0.629 1.06% 3.250 3.375

0.90 0.194 2.250 2.537 2.552 0.807 0.59% 2.694 2.719

0.95 0.224 2.250 2.384 2.392 0.902 0.31% 2.461 2.466

0.98 0.240 2.250 2.301 2.305 0.960 0.17% 2.332 2.332

0.99 0.245 2.250 2.275 2.277 0.980 0.09% 2.290 2.291
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Table EC.7 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = 0.5 and c2s = 4.0

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 2.250 6.500 6.500 0.000 0.00% 6.750 27.000

0.20 0.000 2.250 4.002 4.014 0.007 0.30% 4.250 8.250

0.30 0.833 2.250 3.182 3.216 0.041 1.08% 3.417 4.778

0.40 1.250 2.250 2.799 2.840 0.107 1.47% 3.000 3.563

0.50 1.500 2.250 2.577 2.628 0.203 1.91% 2.750 3.000

0.60 1.667 2.250 2.458 2.493 0.324 1.40% 2.583 2.694

0.70 1.786 2.250 2.373 2.402 0.467 1.23% 2.464 2.510

0.80 1.875 2.250 2.319 2.337 0.629 0.74% 2.375 2.391

0.90 1.944 2.250 2.280 2.288 0.807 0.32% 2.306 2.309

0.95 1.974 2.250 2.264 2.268 0.902 0.15% 2.276 2.277

0.98 1.990 2.250 2.255 2.257 0.960 0.06% 2.260 2.260

0.99 1.995 2.250 2.253 2.253 0.980 0.03% 2.255 2.255

Table EC.8 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = c2s = 4.0

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 0.044 0.422 0.422 0.000 0.00% 0.444 2.244

0.20 0.000 0.200 0.904 0.906 0.007 0.19% 1.000 2.600

0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114

0.40 0.333 1.067 2.304 2.326 0.107 0.94% 2.667 3.867

0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000

0.60 1.500 3.600 5.295 5.352 0.324 1.07% 6.000 6.800

0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933

0.80 6.000 12.800 14.917 15.017 0.629 0.67% 16.000 16.400

0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200

0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100

0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040

0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020
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Table EC.9 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = c2s = 0.5

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 0.006 0.053 0.053 0.000 0.00% 0.056 0.281

0.20 0.000 0.025 0.113 0.113 0.007 0.54% 0.125 0.325

0.30 0.000 0.064 0.184 0.189 0.041 2.36% 0.214 0.389

0.40 0.000 0.133 0.280 0.291 0.107 3.82% 0.333 0.483

0.50 0.000 0.250 0.414 0.439 0.203 5.72% 0.500 0.625

0.60 0.000 0.450 0.637 0.669 0.324 4.71% 0.750 0.850

0.70 0.058 0.817 1.017 1.065 0.467 4.53% 1.167 1.242

0.80 0.400 1.600 1.822 1.877 0.629 2.95% 2.000 2.050

0.90 1.575 4.050 4.295 4.355 0.807 1.38% 4.500 4.525

0.95 4.037 9.025 9.284 9.344 0.902 0.65% 9.500 9.512

0.98 11.515 24.010 24.271 24.338 0.960 0.27% 24.500 24.505

0.99 24.008 49.005 49.265 49.336 0.980 0.14% 49.500 49.503

Table EC.10 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 4.0 and c2s =0.5

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 0.025 0.403 0.403 0.000 0.00% 0.425 2.225

0.20 0.000 0.113 0.816 0.818 0.007 0.21% 0.913 2.513

0.30 0.000 0.289 1.274 1.283 0.041 0.71% 1.489 2.889

0.40 0.000 0.600 1.837 1.859 0.107 1.16% 2.200 3.400

0.50 0.000 1.125 2.595 2.635 0.203 1.51% 3.125 4.125

0.60 0.000 2.025 3.720 3.777 0.324 1.50% 4.425 5.225

0.70 0.058 3.675 5.583 5.662 0.467 1.39% 6.475 7.075

0.80 0.400 7.200 9.317 9.417 0.629 1.06% 10.400 10.800

0.90 1.575 18.225 20.546 20.668 0.807 0.59% 21.825 22.025

0.95 4.037 40.613 43.033 43.168 0.902 0.31% 44.413 44.513

0.98 11.515 108.045 110.479 110.667 0.960 0.17% 111.965 112.005

0.99 24.008 220.523 222.971 223.167 0.980 0.09% 224.483 224.503
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Table EC.11 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 0.5 and c2s =4.0

ρ Tight LB HTA Tight UB conj UB δ MRE Daley Kingman

(8) (5) F
(2)

1+c2a
/G(2)

∞ (43) (43) (7) (6)

0.10 0.000 0.025 0.072 0.072 0.000 0.00% 0.075 0.300

0.20 0.000 0.113 0.200 0.201 0.007 0.30% 0.213 0.413

0.30 0.107 0.289 0.409 0.414 0.041 1.08% 0.439 0.614

0.40 0.333 0.600 0.746 0.757 0.107 1.47% 0.800 0.950

0.50 0.750 1.125 1.289 1.314 0.203 1.91% 1.375 1.500

0.60 1.500 2.025 2.212 2.244 0.324 1.40% 2.325 2.425

0.70 2.917 3.675 3.875 3.923 0.467 1.23% 4.025 4.100

0.80 6.000 7.200 7.422 7.477 0.629 0.74% 7.600 7.650

0.90 15.750 18.225 18.470 18.530 0.807 0.32% 18.675 18.700

0.95 35.625 40.613 40.871 40.932 0.902 0.15% 41.088 41.100

0.98 95.550 108.045 108.307 108.373 0.960 0.06% 108.535 108.540

0.99 195.525 220.523 220.783 220.853 0.980 0.03% 221.018 221.020
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