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1. Introduction
It is often helpful to have a bound on the possible performance in a stochastic performance model
given only partial information, which can serve as a useful approximation. A classic example is the
mean waiting time in the GI/GI/1 queueing model, given the first two moments of the underlying
interarrival-time and service-time distributions. For that problem, the Kingman (1962) bound has
often been applied; see (5) in §2.

However, that bound is not tight. A long-standing open problem is to determine the tight upper
bound of the steady-state mean waiting time and the distributions that attain it, exactly or asymp-

totically; see Daley et al. (1992), especially §10, Wolff and Wang (2003) and references therein.



Progress on this problem is reviewed in Chen and Whitt (2020a), where algorithms are developed
to compute the conjectured upper bound, which is attained asymptotically by two point distri-
butions, where the interarrival-time distribution, denoted by F{j, has one mass at 0, while the
service-time distribution, denoted by G, has one mass at the upper limit of support M,, and then
M, is allowed to increase to infinity. A convenient formula is also developed in Theorem 3.2 of
Chen and Whitt (2020a) for an upper bound to the conjectured tight upper bound, which provides
a good approximation overall, but the main conjecture remains unresolved.

An appealing simple story is developed for higher moments of the GI/GI/1 waiting time in
Chen and Whitt (2021a) by applying the theory of Tchebycheff systems from Karlin and Studden
(1966) and stochastic comparison theory from Rolski (1976) and Denuit et al. (1998). To state
them, let F,, and Gy be defined the same as GG, and F, above. For these performance measures and
for interarrival-time and service-time distributions with bounded support, Theorems 1 and 3 of
Chen and Whitt (2021a) show that the following order relations hold for all n, 1 <n < oo (n =00

means steady-state) and k > 2:

E[W,(F,,G)*] < E[W,(F,G)*| < BE[W,(F,,G)*] forall G,
E[W,(F,Gy)"] < E[W,(F,G)*] < E[W,(F,G,)*] forall F,

EW,(F,,Gy)"] < EW,(F,G)*| < E[W,(F,,G,)*] forall F and G. (1)

Corresponding simple comparison results for the asymptotic decay rate of the steady-state waiting
time appear in Chen and Whitt (2020b). (These results require assumptions to avoid heavy tails.)
Unfortunately, this nice story in (1) breaks down for k =1, i.e., for the transient and steady-state
mean. Counterexamples to the first two lines of (1) for n < oo and the final line for n < co were
constructed by considering the special case of two point distributions in Chen and Whitt (2021b),
extending previous results in §V of Whitt (1984) and §8 of Wolff and Wang (2003).
Partial positive results for the first two lines of (1) with n = oo (for the steady-state mean)

are contained in Theorem 2 of Chen and Whitt (2021a). In particular, the first line of (1) was



established for n = oo when G is completely monotone, i.e., can be represented as a mixture of
exponential distributions.

In this paper, we contribute by applying classical optimization theory. In particular, we study
the upper bound of the transient mean E[W,, (F,G)] over candidate interarrival-time distributions
F' assumed to have finite support and specified first two moments, for any given service-time dis-
tribution G assumed to have finite second moment. We show that this problem can be represented
as a non-convex nonlinear program.

In order to establish counterexamples and to obtain partial positive results, we focus on sta-
tionary points of the optimization, as in Proposition 3.1.1 of Bertsekas (2016) (see §4 below). It is
well known that any local optimum must be a stationary point. We show that we can test whether
or not F, (or any other candidate) is a stationary point of the optimization by solving a linear
program with an explicit objective function that can easily be estimated by stochastic simulation.
In that way, we can construct counterexamples and develop candidates for the optimal distribu-
tion. By combining simulation and optimization, in this paper we show that the pair (Fp,G,) is a
stationary point of the optimization for the steady-state mean in numerical examples.

A key step in carrying out this program is calculating the gradient of the transient mean waiting
time with respect to the interarrival-time distribution. We do that in §3, after formulating our
problem in §2. In §4 we show how this smoothness can be exploited in the optimization. In Lemma
2 there we establish important structure of the objective function. In §5 we develop an abstraction
of our optimization problem, so that the results can be applied to related stochastic models. This
involves a moment problem over product measures. We then state positive results following from
the structure established in Lemma 2. The following §6 is devoted to the proofs. In §7 we study
the associated minimization problem, for achieving lower bounds, again when the service-time
distribution has a positive pdf. In §8 we show how results for finite support can be extended to
other distributions by taking limits. In §9 we give simulation examples. In §10 we draw conclusions.

Before proceeding, we mention other related work. The use of optimization to study the bounding

problem for queues seems to have begun with Klincewicz and Whitt (1984) and Johnson and Taaffe



(1990). Due to intractability( e.g., lack of convexity), new approaches have been proposed to sim-
plify the problem, e.g, reformulating the problem into tractable relaxed convex programs, imposing
extra conditions and limitations; see Bertsimas and Natarajan (2007) and Gupta and Osogami
(2011)). Optimal solutions are not difficult to obtain, but it is difficult to assess the approximation
error.

In addition, several researchers have studied bounds for the more complex many-server queue.
Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investi-
gate the bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why
two-moment information is insufficient for good accuracy of steady-state approximations of
M/GI/c. Gupta and Osogami (2011) establishes a tight bound for the M/GI/K in light traffic.
Osogami and Raymond (2013) bounds the transient tail probability of GI/GI/1 by a semi-definite
program. Li and Goldberg (2017) establishes bounds for GI/GI/c intended for the many-server
heavy-traffic regime. van Eekelen et al. (2019) address the classical extremal queueing problem by
measuring dispersion in terms of Mean Absolute Deviation (MAD) instead of variance. Finally,
we mention that optimization also plays a critical role in recent work on robust queueing, as in

Bandi et al. (2015) and Whitt and You (2018, 2019).

2. Formulation

We now formulate our problem. We review the GI/GI/1 model in §2.1 and the notation for the
spaces of probability measures we consider in §2.2.

2.1. The GI/GI/1 Model and the Optimization Problem

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-
vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times
{V,, :n >0}, each distributed as V with cumulative distribution function (cdf) G, which is inde-
pendent of a sequence of i.i.d. interarrival times {U, : n > 0} each distributed as U with cdf F.
With the understanding that a 0" customer arrives at time 0, V,, is the service time of customer

n, while U, is the interarrival time between customers n and n + 1.



Let U have mean F[U] =\A"' =1 and squared coefficient of variation (scv, variance divided by
the square of the mean) ¢ < oo; let a service time V have mean E[V] =7 =p and scv ¢ < oo,
where p = A7 < 1, so that the model is stable. (Let = denote equality by definition.)

Let W,, be the waiting time of customer n, i.e., the time from arrival until starting service,
assuming that the system starts with an initial workload W, having cdf H, with a finite mean.

The sequence {W,, : n >0} is well known to satisfy the Lindley recursion
Wn: [Wn,1+Vn,1 _Un71]+> nZ 1, (2)

where xt = max{z,0}. Let W be the steady-state waiting time, satisfying W,, = W as n — oo,
where = denotes convergence in distribution for any proper cdf Hy. It is well known that the cdf

H of W is the unique cdf satisfying the stochastic fixed point equation
WL (W+V-U)", (3)

where < denotes equality in distribution. It is also well known that, if P(W,;=0)=1, then W, <
max{S,:0<k<n}forn<oo, So=0,S5=Xo+ -+ X, and X, =V, — Uy, k> 1; e.g., It is also
known that, under the specified finite moment conditions, for 1 <n < oo, W,, is a proper random

variable with finite mean, given by

ElS¢]
k

 EIST] 3 <oo; (4)

E[WH]EE[Wn|W0:O]:ZT<oo, 1<n<oo, and E[W]=)_
1

k=1 K
see §6X.1-X.2 of Asmussen (2003) or (13) in §8.5 of Chung (2001). We will exploit the formula for

the transient mean in (4) in our analysis. For reference, the Kingman (1962) upper bound is

P*([(2—p)ca/pl +c)
EW] < 51— p) : (5)

We consider the mean waiting time E[W,,] for 1 <n < oo expressed as a mapping of the under-

lying distributions; i.e., let



in the GI/GI/1 queue with interarrival-time cdf F' and service-time cdf G, as given explicitly in (4).
The goal is to identify the distribution that yields a tight upper bound over F', given a specification
of the cdf G and the first two moments of F'. In this paper we assume that the distribution F' has
bounded support.

In particular, our primary goal is to establish results for the optimization problem

sup {w, (F,G) for for fixed cdf G with E[V]=p<1

M M
such that / udF(u)=1, and / u?dF(u) = (1+c2), (7)
0 0

where F' is a cdf with support over the bounded interval [0, M]. We can use (4) to explicitly write
the objective function. However, finding the global optimal solution of (7) is challenging because it
is a non-convex nonlinear program with affine constraints. Thus we focus on local optimal solutions,
which must be stationary points of the optimization; see §4.

2.2. Notation

Let P,, be the set of all probability measures on a subset of R with specified first n moments. We use
the scv to parameterize, so let Py = Py (m, ¢?) be the set of all cdf’s with mean m and second moment
m?(c? 4 1) where ¢* < co. Let Py(M) = Py(m, ¢, M) be the subset of all cdf’s in P, with support in
the closed interval [0, mM] having mean m and second moment m?(c? + 1) where ¢? +1 < M < co.
(The last property ensures that the set Py (M) is non-empty.) We let Py (S) = P5(1,¢?,S) be the set
of probability measures for inter-arrival time distribution F' on [0,00) with two moments specified,
as determined by the parameter pair (1,¢?), and support in the set S. For example, if S = [0, M],
then we write Py(M) = Py(1,¢2,[0,M]). If S =F where F is a finite set including ending points
in {0, M}, then we write Py(F) =P,(1,c¢ F). If S is omitted, i.e., if we write Py = P,(1,c?), then
the support is understood to be [0,00). Let Py 1 (S) and Ps x(S) denote the subset with support on
at most k points within S for various S as above. To guarantee the P,(M) being feasible, require
M > 1+ c?. Finally, we introduce notations for specific two-point distributions. Let F, denote the

two-point cdf with ¢?/(1+4¢?) on 0 and 1/(1+¢c?) on 1+ ¢%. Let F, denote another two-point cdf



with (M —1)?/(c>+ (M —1)?)) on 1 —c?/(M —1) and ¢*/(c*+ (M —1)?) on M; Typically, we use
P,, and P;, with notations a and s to denote the sets of probability measures for inter-arrival

time and service time.

3. The Gradient of the Transient Mean Waiting Time

In this section we establish smoothness properties of the transient mean waiting time E[W,,] in
the GI/GI/1 queue as a function of the underlying interarrival-time cdf F for given service-time
cdf G. For this purpose, we consider interarrival-time distributions with finite support, but analogs
of the following results can be established for cdf’s with densities; see Remark 1. The smoothness
results here supplement the large literature on continuity of queues, e.g., Whitt (1974) and §X.6
of Asmussen (2003).

For n > 2, we consider finite support F in P,2(M,), i.e., P,2(F). Let the elements of F be
O=u; <us<...<u, =DM, with m=|F| > 3. With this assumption, we will simplify the notation.
In particular, we will suppress the fixed service-time cdf G and we will replace F' by its pmf
(probability mass function) p = (p1,...,Pm)-

With this new notation, the optimization problem in (7) becomes

max {w, (p) = w,(F,G) = E[W, (F,G)]: F € Pya(F)}

such that Zpi =1, Zuipi =1, Zu?pi =(1+¢?) and p; >0, (8)
=1 =1

=1
where 0 =u; <wuy <...<wu,, =M, are the support points in [0, M,].
We now show that the function w,, (p) in (8) is a smooth function of p = (py,...,p.,). In particular,

we show that the gradient is well defined. We do that by showing that the Frechet derivative is

well defined. For that purpose, let ||p|| be the [; norm in R™, i.e.,

[l EZ |pil- (9)

The function w,(p) is said to be Frechet differentiable if it is Frechet differentiable at each p. The

function w, (p) is Frechet differentiable at p if the following limit as p — p is well defined:

S A e e ) Y (10
lp—pll—0 lp— Pl




where Vw, (p) is the gradient of w,, at p, which we regard as an m x 1 column vector (function of

(uy,...,u,) in the support of p),

vu.)= (22 (520)) (1)

with ¢ denoting the transpose of vector in R™. The gradient is associated with the local linear

approximation of w, (p) at some p € R™, using the dot product, as

wy,(p) = wy,(p) + an(p)t “(p—p).

REMARK 1. (extension) The Frechet derivative can be generalized to Banach spaces using the
total variation metric, which in our setting is just drv(p,p) = (1/2)|lp — pl|; see Ch. 6 of Serfling
(1980) and Wang (1993). For example, the following result also holds if the cdf F' has a pdf f over
R instead of having finite support. Then drv (Fy, Fy) fo | f1(z) — fo(z)|dx. However, convergence
in the total variation metric is not implied by the usual weak convergence, as in Billingsley (1999).

We now show that the transient mean waiting time in this finite support setting is a smooth
function of the interarrival-time pmf p. We show that it is Frechet differentiable and exhibit the

gradient and Hessian.

THEOREM 1. (Frechet derivative) For the GI/GI/1 queue in the finite support setting above,

the function w,(p) in (8) is Frechet differentiable with partial derivatives at p given by

2 )= > EIVAlG) — YUkl )] (12)

j=1 k=1 k=1

so that

YV, (p) Z —py). (13)

Higher-order derivatives hold as well. The Hessian matriz H of w,(p) at p given by

@) " =z
H(L k)= 2% () =3 (- DE zvk &)= 3" Ui(h) — w — u)*]. (14)

OpOpy, =



Proof. We do the proof of the gradient for n = 2; the argument for higher n and higher-order

differentiation is analogous. For any real-valued functions f(x) and g(x), let f(z)=

©(g(x)) denote

that there exists m, M > 0 such that mg(x) < |f(x)| < Mg(z) for all . Then, adding and subtract-

ing by p; and p; inside the expression for wy(p), we get

ZE Vi—u;) p; + ZE Vit Vo —u; —u;) pip;

4,J

N ~ N
= ZE[(VI _ui)+](pi_pi+pi)+§ZE[(‘/l + Vo —u; —uy)"|(pi — Pi + 1) (P — B; +5;)
—ZE (Vi —wa) ]pi + ZE [(Vi+ Vo —wi — ) ]pi;
]
+ZE — i +ZE Vit Ve = Ui(F) =) (p: =) + O(llp — 5I1°)
8w2 R ~112
= ws(p pi — i)+ O(llp -5, (15)
where
ow : g —
. .
ap; (p):ZE[( Vk(G)_ZUk(F - (16)
v j=1 k=1 k=1

To justify the conclusion in (15), we observe that there exists a constant C' such that E[(V; +

Vo —u; —u;)t] < C < oo for all i and j. Consequently, the second term in the second line of

(15) associated with the second order of (p; — p;) can be bounded by the square of the norm, in

particular,

3 B0+ Vo =) 100 =)y 2)] < O X[~ -]

—p;)|=Cllp—pl*.

SC’ZKP

Therefore, as ||p — p|| — 0,

|ws(p) —ws(P) = 32, 522 (D) (pi — i) CHp—ﬁH2
lp— Dl ~ lp—5ll

Hence, we have shown that w, (p) is Frechet differentiable.

Given (12), we continue to take the derivative with respect p;, so that

j—2

82w2 5) 3 n
m —ZE ZVk —> UWF) —w —u)"]

k=1

= B[(Y_Vil(@) —w —w)*]

=Cl|p—p||—0.
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Therefore,

n

HLE) =5~ DE Vil@) — 3 Un(p) — e — u)*]. (18)

j=1
which supports (14). =

4. Exploiting the Smoothness for Optimization

We now show how to exploit the smoothness established in Theorem 1 in order to establish partial
results for the optimization problem formulated in (7) and (8). First, we observe that there exists
a global optimum because we are maximizing a continuous function over a compact subset of R™.
4.1. Necessary Condition for a Local Optimum: a Stationary Point

Recall that a point p is a local optimum for (8) if there exists 0 > 0 such that
wy(p) <w,(p) forall p suchthat |p—pl<d. (19)

Clearly, there exists at least one local optimum because the global optimum is necessarily a local
optimum. We apply the following necessary condition for a local optimum from Proposition 3.1.1

of Bertsekas (2016).

PROPOSITION 1. (necessary condition for a local optimum, Proposition 3.1.1 of Bertsekas

(2016)) If p is a local optimum of w, (p), then
vwn(p)t(p_p) SO fOT (lll pepa,Q(]:)' (20)

If there exists p satisfying (20), then p is called a stationary point (of the optimization).

It will be convenient to look at the partial derivatives in (12) as a function of the support point

u. Hence, we define

a0 = 6a(ui9) = S () = Y B V(G =Y Uelp) -], wzo. (2D

COROLLARY 1. (the key linear program) The pmf p is a stationary point, satisfying (20), if and
only if p is the solution of the linear program (LP)

ow,,

Op;

sup {an(ﬁ)t P= Z (P)pi = Z Ga(i)pi :p € Paa(F)}- (22)
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i.e., if and and only if

sup (Y du(ui)pi:p € Paa(F)} =D _ ulus)pi (23)

i=1

4.2. Applications of Corollary 1 to Fj given G,

We now apply Corollary 1 to study the special two-point interarrival-time distribution Fjy, for the
case G = (G, which is the counterexample for the steady-state mean from §8 of Wolff and Wang
(2003). We consider two cases, one designed to approximately represent steady state and one to
be genuinely transient. The nearly-steady-state example has n =40,p=0.1,¢2 =¢* =0.5, M, = 10.
The support contains 501 points in [0, 10] (including the endpoints) so that, Fj is in the support,
while the transient example has n=4,p=0.7,¢ =c¢* =0.5, M, = 10.

In both cases we apply simulation to estimate the objective function in (21) when G = G and
F = F}, and then solve the linear program in (22). We perform 5 independent replications, so that
we can estimate 95% confidence intervals (denoted by CIL). In each replication, use a large sample
size such as 10°, so that the randomness in the objective function can be ignored. When we do the
optimization, we always find that the solution has support on at most three points, so that there
is little ambiguity. Figure 1 shows the estimates of the objective function ¢,(u) in (21) for the two

experiments with (Fy, Gy).

p=0.1,n =40, G:GO, F:FO’ CIL = 1e-03 p =0.7,n =4, G:GO, FZFO, CIL = 1e-03

0.25

2.5

0.2

0.15

0.1

0.05

0 2 s 6 8 10
[0, 10] [0, 10]
Figure 1  Simulation estimates of the objective function ¢, (u) in (21) over [0,10] for the Fy/Go/1 model with

n=40,p=0.1,¢2 = c2 =0.5, M, =10 (left) and with n=4,p=0.7,¢2 = ¢Z = 0.5, M, = 10 (right), based

on 5 replications of 10° arrivals.
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When we carry out this simulation+optimization program for the other service-time distribu-
tions considered in the examples of §9, we find that Fj is always a stationary point. However, for
G, for the example with n =4, we find that F{ is not the solution of the linear program. In partic-
ular, the solution F'* of the linear program has masses 0.3423,0.3242,0.3333 on 0.020, 1.500, 1.520,
respectively. Hence, Fy is not a stationary point. As a consequence, Fy is not locally optimal, and
thus not optimal. On the other hand, for the nearly-steady-state example with n =40, we find that
F, is a stationary point, even though we know that it is not optimal. (A stationary point need not
be locally optimal.) This shows that there may be more than one stationary point.

We also considered our associated numerical study over two-point distributions in
Chen and Whitt (2021b). Tables 2 and 3 there display the mean waiting times E[W] and E[W] for
two-point distributions F' and G. These tables confirm the counterexample in §8 of Wolff and Wang
(2003) for the case ¢z =c?=4.0,p =05 for n =20 and steady-state. We first applied Corollary 1 to
(Fo,Gy). With a spacing of 0.25 between points in the support of F', we found that the optimal
solution of the linear program had masses of 0.8767,0.0833,0.0400 on 0.25,6.25,6.50, respectively.
Hence, F, is not a stationary point. Moreover, starting from the optimal solution F?* among the
two-point distributions shown in Table 3, which has one mass on 5.25, we find that it too is not
a stationary point. We found that the optimal solution of that linear program had masses of
0.4525,0.3810,0.1645 on 0.00,0.25,5.50, respectively. Thus, we conclude that neither F nor the
optimal two-point cdf F?* is a stationary point, and thus neither is optimal overall.

4.3. Extending the Class of Counterexamples
We next show that a variant of the counterexample in §4.2 holds for service-time cdf’s with a

positive pdf, as will be assumed in Lemma 2 below. We first establish the following basic property.

LEMMA 1. The objective function ¢q(u;p,G) (21) is uniformly bounded and continuous as a

function of candidate G, p and wu.

Proof. Note that

n

0< ¢a(u) <D QEV]<n(n+1)p/2m (24)

i=1
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COROLLARY 2. (extension for G, = G) Suppose that G,, = G as n— oo and p,, is a stationary
point of the optimization for ¢,(u;G,,) forn > 1. Then there exists a convergent subsequence of {p,, :
n>1} and the limit of any such convergent subsequence is a stationary point of the optimization
for ¢u(u; G).

Equivalently, if p is not a stationary point for ¢,(u;G) and if G, = G as n — oo, then, for all

sufficiently large n, p is not a stationary point of ¢, (u; G.,).

Proof. Since the space P, »(F) is a compact metric space, there exists a convergent subsequence
of {p, : n>1}. Suppose that the limit is p. By continuity, p must be a stationary point of the
optimization for ¢,(u;G).m
4.4. Stronger Conclusions about Optimality from the Hessian
Stronger conclusions about global optimality can be obtained from the Hessian. Even though we
do not exploit the Hessian in this paper, we state the result for future reference. See Appendix A.4

on p. 760, §1.1.2 on p. 15 and §3.1.11 on p. 252 of Bertsekas (2016) for background.

PROPOSITION 2. (sufficient condition for local and global optimality) Consider the Hessian
matriz H from Theorem 1 for GI/GI/1 queue with the specified G € P 5.

(a) If —H s a positive semi-definite matriz for all F(p) € P,2(F), then the program (8) is a
convex program, so that there exists a unique global optimal distribution which is also the stationary
point.

(b) If —H s positive semi-definite matrixz for some specific F(P) € P.o(F) and the p satisfies
(20), then the p will be a local optimal distribution.

4.5. Structural Properties of the Objective Function

We next establish structural properties of the objective function in (21) and (22) regarded as a

function of u over the interval [0, M,].

LEMMA 2. (structure of the objective function in (21)) If the fixred cdf G of V has a positive

pdf g over [0,00), then the random variable Y; = 22:1 Vi — ;;11 U, has a cdf T'; with support in
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[—(i—1)M,,00) which has a positive pdf ~; over [0,00) for each i, 1 <i<m. Hence, for x >0, the

cdf of Y; can be expressed by

so that the function ¢, in (21) can be expressed as

o) an" Z/ r—u)ty(z)dr >0, u>0. (26)

Hence, ¢,(u) >0 and the first two derivatives of ¢, in (21) exist for u>0 and satisfy
a(u) =) (Li(u) =1) <0, ¢, = Z% u>0. (27)
1=1
Thus, ¢, is continuous, strictly decreasing and strictly convexr on [0, M,].

Proof. We directly calculate the derivative of ¢,(u) in (21) term by term. Since the random
variable V' with cdf G has a positive pdf, so does Y; for each i; see §V.4 of Feller (1971). To calculate
the derivative of each term in the sum, we apply the Leibniz integral rule for differentiation of
integrals of integrable functions that are differentiable almost everywhere. Each term involves the
positive part function (z)* =max{z,0}. Observe that the derivative of (z —wu)"~;(z) with respect
to u is —v;(x) for u < x. That implies that

Z/ (o) de =3 ()~ 1). (25)

i=1
The rest follows directly. =

Going forward, we will see that the extremal distributions will depend on the structure

= Z%(U) (29)

where ~; is the pdf of Y; and we define

T SR S (30)

We will establish concrete results in the next section.



15

4.6. Maximizing over G for Fixed F

It is evident that we obtain comparable results when we maximize over GG for fixed F. First, we
observe that an analog of Lemma 2 arises if we consider the dual problem of optimizing over the
cdf G given fixed F', assuming that we impose corresponding regularity conditions. Even though
the optimization problem (8) and its gradient vectors are changed if inter-arrival time distribution
F is given. But we can exploit a reverse-time representation for the service time G to yield the

same structure. For that purpose, let

i—1 i

05(0) = D _EI(Y_Va(@) = 3 Un(F) +pM, —0)*]. (31)

k=1 k=1

LEMMA 3. (structure of the objective function in (31)) If the fized cdf F of U has a positive
pdf f over [0,00), then Z; = 31— Vi(§) — 32—, Ue(F) 4 pM, has support in (—oo, pM, + (i — 1)a),
where a > 0 is the upper limit of the support of V.. Thus Z; has a positive pdf 0; over (—oo, pM,]

for each i, 1 <i<m. Hence,

n

¢,(0) = ZE[(&- —0)*=_ (BlZ -9 - E[(Z: - 9)7]),

_ Z: <E[ZZ- — 1] - /_ ifs (:E—z?)d@i(a:)>, (32)
where

O,(x) —/I 0.(y)dy for x<pM,, (33)

so that, paralleling Lemma 2, the first two derivatives of ¢,(0) are

@(ﬁ)zZ(@i(ﬁ)—l)Ko and éz%sw):_zei(@bo, v €[0,pM,]. (34)

Thus ¢4(0) in (31) is a continuous, strictly positive, strictly decreasing and strictly convex function

on [0, pMj].

Proof. Just as in Lemma 2, we differentiate the integral to go from (32) to (34). For each term
in the sum for ¢,(?), we get —1 from the first term in (32) and ©;(?) from the second. =
With Lemma 3, the rest of the proof for optimization over G for fixed F' can use the same

detailed argument used for optimization over F for fixed G However, we must recall the change of
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variables made in (31). For example, 0 appears in the extremal cdf for F' if and only if pM, appears
in the extremal cdf for G.

After exploiting the reverse-time representation, the shape of ¢,(.) and ¢,(.) are identical, so

that the all results holding for these two cases will be the same.

4.7. Applications of Corollary 1 to G, given Fj

We now apply Corollary 1 to study the special two-point service-time distribution G, for the case
F = F,, which is a natural candidate upper bound overall. From §V of Whitt (1984) and Theorem
2 of Chen and Whitt (2021a), we know that the extremal G for given F', is more complicated,
depending critically on the shape of F. However, the accumulated evidence indicates that G, is
optimal given Fj for the steady-state mean. For example, in §3.3 of Chen and Whitt (2021b), we
found that G, was optimal within two-point distributions for steady state, but not for the transient
mean. For the transient mean, we found that the optimal was obtained at distributions G, ,,, where
the upper mass point converges to M, as n — co.

Consistent with that numerical experience, we find that G, is a stationary point for the nearly-
steady-state example with n =40,p=0.1,¢? = ¢? = 0.5, pM, = 10, while it is not in the transient
example with n=4,p=0.7,¢2 =c?=0.5, pM, = 10.

Considering the joint optimality over (F,G), from this numerical analysis we find that (F,, G,)
is a stationary point of the optimization in the nearly nearly-steady-state example with n =40, p =
0.1,¢2 = ¢ =0.5, M, = 10, pM, = 10, whereas it is not for the transient example with n=4,p =
0.7,¢2=c*=0.5,M, =10, pM, = 10.

5. An Abstraction to a Multi-Dimensional Moment Problem

We now abstract the queueing problem we have considered so far to provide a framework that can
be used for other stochastic models in addition to the GI/GI/1 transient mean waiting time. We
show that our problem can be regarded as a special case of a multi-dimensional moment problem.
That generalization leads to extensions of the functions ¢,(u) in (21) and ¢, (?) in (31). We will then
identify structure needed for these functions, in addition to the structure established in Lemmas 2

and 3, is needed in order to characterize the solutions of the optimization problems.
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Our abstraction extends the classical moment problem, which was established many years ago,
as reviewed in Birge and Dula (1991), Smith (1995) and other references therein. A version (special

case) of the classical moment problem is the optimization

max FE[g(X)] E/O g(xq)dFy(xy)

subject to F} € Py(M) (35)

where § is a real-valued continuous function defined on [0, M] — R and X; is a random variable
distributed as F; where F} lies in the domain Py(M) with fixed first two moments and bounded
support M, which is thus convex and compact. The classical moment problem in our setting is a
convex program over a compact domain and it has been shown that there always exists an optimal
distribution F} in Py 3(M); i.e., with all mass on at most three points.

5.1. A Moment Problem Over Product Measures

In this paper we consider a similar moment problem for a continuous objective function g over
independent random variables with a specified common marginal distribution; i.e., over random
vectors (Xi,...,X,), where X, are independent random variables with a common marginal cdf’s

F'. The new formulation is

M
max E[g(Xy,...,X,)] E/ g(z1,...,x,)dF\(zy)...dF,(x,) (36)
0
subject to Fy =Fy,=...=F, € P,(M)
where §(z1,...,2,) is a nonnegative continuous real-valued function defined on the product space

[0, M]™ with M >1+¢?. In (36) the common marginal distribution has specified first two moments.
The program formulation in (36) has many applications such as robust estimations in tail analysis
and rare-event simulation problems. Lam and Mottet (2015) and Lam and Mottet (2017) propose
the reformulation as (36) when setting g to be indicator function. That implies that we consider

some positive b, one is interested in solving

M
max Pr(X; 4+ ...+ X, > b) —/ LiossoanonydFy (21) . dF ()
0

subject to Fy =Fy=...=F, € Po(M)
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where all X; are independent and are distributed as a same unknown distribution F and F' lies in
an uncertain set with unspecified tail. Also, we might extend to any utility function g(z,...,z,)
over the product measure space.

As in §3, we restrict attention to probability distributions with finite support. We assume that all
F € Py (M) have the common finite support F with elements 0 =u; < ... <wu,, = M with sufficient

large m. So that we have the following alternative formulation for (36),

max g(p) = Y (Ui, i )Piy - Diy (37)
subject toZpi:I,Zuipizl,z:ufpi:1+02 and p; >0,
i=1 i=1 i=1

where g:Py(F) — R and Py(F) is a compact and convex subset of R™.
5.2. Sufficient Conditions to be a Stationary Point
We clearly have a generalization of the linear program in Corollary 1 with the objective function

¢a(u) in (21) replaced by a new function

v =52 6)(w) (39)

It suffices to check the optimality for
max{y " (u:)p: = Vg(p)'p, p € Po(F)} =Vg(p)'p. (39)
i=1
As regularity conditions we require the properties deduced for ¢, in Lemma 2, but we also an extra
condition on the second derivative 1.
We apply duality theory for the LP in (39). From basic LP duality theory as in Ch. 4 of
Bertsimas and Tsitsiklis (1997), the dual problem associated with the LP in (39) is to find the

vector \* = (A5, A}, A) that attains the minimum

min {Ao + A + Ao (1 +¢%)}

such that 7(u;) = Ao+ Ayu; + Agu? >(u;) forall i, 1<i<m. (40)
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We are now ready to state the results obtained in this paper. Our first theorem establishes
sufficient conditions for any specific stationary point to be a three-point distribution. For the
queueing problem, Lemma 2 shows that these conditions are satisfied if the fixed service-time cdf

G has a positive pdf.

THEOREM 2. (sufficient condition for a stationary point p to be a three-point distribution) We

make the following initial three assumptions for the optimization problem in (37)-(39):

(i)  The objective function g(p) in (37) is Frechet differentiable at all p € Po(F).
(ii) (u) in (38) is a strictly convex, strictly positive and strictly decreasing function over [0, M].

(i53)  (u) is twice differentiable and the second deriative () is a smooth function over [0, M].

For any stationary point p of (37), the LP given p in (39) has a unique optimal solution, which
18 thus an extreme point, and is thus a three-point distribution, if and only if the quadratic function

r(u) in (40) has at most three intersection with ¥(u) =1 (u;p) over [0, M].

Our next theorem establishes sufficient conditions for one of the special two-point distributions
Fy or F, to be a stationary point of the optimization. For the shape of w(u), we introduce the
following strong from of unimodality.

DEFINITION 1. (single peak) A nonnegative continuous function f : [0, M] — R is said to have a
single peak if its maximum value is achieved uniquely at an interior point ¢ and if f is monotone

increasing over [0, %] and monotone decreasing over [, M].

THEOREM 3. (sufficient conditions for Fy or F, to be a stationary point) Under the same initial
three assumptions as Theorem 2,

(a) For any candidate cdf F, if (u; F) is strictly decreasing or has a single peak over [0, M],
then Fy must be a solution of the LP in (39). Hence, if this condition is satisfied for F = Fy, then
Fy. must be a stationary point.

(b) Similarly, for any candidate cdf F, if (u; F) is strictly increasing over [0, M], then F, must
be a solution of the LP in (39). Hence, if this condition is satisfied for F'=F,, then F,. must be a

stationary point.
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COROLLARY 3. (sufficient conditions for Fy or F, to be a global optimum) Under the same initial
three assumptions as Theorem 2, ifil}(u; F) satisfies the specified conditions for all F' € Py(F), then

the identified stationary points in Theorem 3 provide the unique global optimal solution.

We can also extend to other shapes for 11} using the following generalization of Definition 1.

DEFINITION 2. (multiple peaks) A nonnegative continuous function f: [0, M] — R is said to
have n peaks if it has n unique interior local maximum points and it is monotone increasing before
the first maximum point and then thereafter the function is first monotone decreasing and then
monotone increasing between each adjacent two peaks before the final maximum point. Then the

function is monotone decreasing after the final maximum point.

THEOREM 4. (more structures) Under the setting of Theorem 3. If ))(u; F) has at most n (1<
n < 00) peaks over [0, M| for any candidate F' € Py(F), then all stationary points of the optimization

in (39) must lie in Py i (F).

6. Proofs
We now prove the results above.
6.1. Proof of Theorem 2
We first show the necessary condition, and then the sufficient condition.

Necessary Condition: Starting with p being a stationary point satisfying the condition that
r(u) has at most three intersection point with ¢ (u;p), the main goal is to show such (39) has a
unique solution, so that the p must be an extremal point. For that purpose, we apply the following

lemma, which is Corollary 1 to Theorem 4 in Tijssen and Sierksma (1998).

LEMMA 4. (non-degeneracy and uniqueness in LP) A standard LP has a unique optimal solution

if and only if its dual has a non-degenerate optimal solution.

To apply Lemma 4 from Corollary 1 to Theorem 4 in Tijssen and Sierksma (1998), we express
the dual (40) in standard form by introducing slack variables and dividing the three variables \;

into their positive and negative parts as

min {(Ag —Ag) + (AT = A7)+ (A7 = A7) (1 +¢*)}
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such that (AT —Ay) + (AT = AD)us + (A — A\o)ui + s, =(u;) forall i, 1<i<m,

and AF>0,A7>0,1<;5<3; 5>0,1<i<m. (41)

In the setting of (41), we have m + 6 variables and m equality constraints. To show that there
exists a non-degenerate optimal solution, will show that at least one among (A, \;) for i =0,1,2
are not equal to be zero, e.g., A\ > 0,A\] >0 and A\ >0, while \; =0, A\ =0 and \; =0. That
is equivalent to show all A} in (40) are not equal to zero. We will achieve the goal by establishing
Lemma 5 below.

Hence, when at most three of the slack variables s; are 0 (at most three intersection points), the
dual problem has a non-degenerate solution solution, thus the p will be the unique solution in (39)

and p must be in Py 3(F).

LEMMA 5. (non-degeneracy for the dual) Consider the dual formulation (40), for any optimal

dual solution (N5, \i, \5) associated with p, A\; for i=0,1,2 can not be zero.

From (40), we see that the constraints produce the quadratic function r(u) that is required to
dominate 7(u) for all u € F. We exploit the structure of the function 1 (u) in (39) from regulations
and assumptions. Under the condition, ¢ (u) is continuous, strictly positive, strictly decreasing and
strictly convex. Recall that we are working with standard LP’s, where the cdf F' has finite support
set F, but the support set F always contains the two endpoints 0 and M.

The inequality constraints in (40) are only required to hold at the finitely many point in the
support set F. Even though we exploit the structure of continuous functions, the following argument
applies to any finite support set.

If M =1+ c?, the second moment, which is the lower limit of the support, then the primal has
the unique feasible, and thus optimal, two-point feasible distribution with masses on 0 and 1+ ¢
So henceforth assume that M > 1+ ¢? as well.

We start knowing that both the dual LP (40) and the primal LP (39) have feasible solutions

and the feasible region of the primal LP (39) is compact, thus they both have at least one optimal
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solution. We will show that the primal LP (39) has a unique solution by applying Lemma 4 and
showing that no optimal solution of the dual (40) can be degenerate.

Hence, we will show (i) that we cannot have the optimal A} be 0 for any ¢ in the (40).

We start with the \!. First, we must have \g > 1(0) > 0, so we cannot have A\ = 0. Next, suppose
that A\; =0. In this setting, with A\j >0 and A\; =0, if \j >0, then r can intersect 1(u) only at 0,
which cannot correspond to a feasible solution of the primal. (We exploit complementary slackness
here and in the following.) On the other hand, if A5 <0, then v (u) can only intersect ¢ at the
two endpoints, without violating the conditions at the endpoints, but that does not correspond to
a feasible solution of the primal, assuming that M > 1+ c¢. Hence, we cannot have a degenerate
optimal solution with A\j = 0. Finally, suppose that A} =0, which makes 9 linear. If A\ =(0) >0,
then again 1 can only meet ¥ (u) at the two endpoints without violating the conditions at the
endpoints, but that does not correspond to a feasible solution of the primal, assuming that M >
1+ ¢?. Otherwise, r can only have one intersection point with ¢ (u) (as we have done).

Sufficient Condition: To prove the sufficient condition, if p is the unique optimal solution for
(39) which must be € Py 3(F), by Strict Complimentary Slackness Condition in LP, the optimal
distribution can be identified from the solution to the LP, so that such ¥ and r has at most three
intersection points over [0, M] which corresponds to the same points having positive masses in p.
6.2. Proof of Theorem 3
We now consider the LP (39) based on an objective function determined by a cdf F' under the
conditions of Theorem 3. In each case we will show that the LP (39) has a unique optimal solution
and the unique optimal solutions will be the specified special two-point distributio.

We first do the proof for (a) and then (b). For (a), we first establish the claim for only one unique
interior intersection point and then the claim for Fj.

The argument for the single peak case is essentially same as that for the strictly monotone
decreasing case. So we do the proof for the both two cases together.

We first show that at most one of the internal inequality constraints for 0 = u; < u; < u,,, = M

can be satisfied as equalities if v is strict monotone (strictly decreasing or strictly increasing) or
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has a single peak. For any interior intersection point u where r(u) =1 (u), according to (40), we

also have

#(u) = 225 =¥ (),
#(u) = A+ 2X5u =4 (u),

r(u) =Ny + Nju+ Aju® = (u). (42)

We first assume that equalities are obtained at the two interior points x, y, where 0 <x <y < M

and show that produces a contradiction. Since z,y are interior intersection points,

i) =2\ =(x),7(2) =P (x),r(u) = ¥(z),
i(y) =23 = (y),7(y) = ¥(y),r(y) = Y(y). (43)

Looking at the differences of these derivatives, we obtain

d(y) — v (x)

20\ =
2 y—o

= () = P(y)- (44)

Therefore, by Mean Value Theorem, there exists @ € () such that ¢)(@) = 2X;. That leads to a
contradiction because such w(u) can only have at most two intersection points with 2AJ.

Assume the only one interior intersection point is y, we next show the ¢ (u) and r(u) can not
intersect at u= M.

Recall at the point y, we must have

205 =(y), i+ (y) = ¥ (y),r(y) =¥(y). (45)

Since r(u) > 1(u) for u € (y, M), then 2X3 > ¢(u) for u € (y,y +0) for some small § > 0. Therefore,
given the shape of 1/J(u), the point y must be the final intersection point for 1/J(u) and 2\*. After
u >y, since 2\* > w(u) (w has a single peak or is strictly monotone decreasing), that implies the
(u) <r(u) for all u so that they can not intersect again at v = M.

The only remaining possible case is that the 1) and r will intersect at 0 and an interior point

be (0,M). By Strict Complementary Slackness Condition in LP, the optimal distribution can be
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identified from the solution to the LP. So that the optimal distribution only has the positive mass
on 0 and b. A two-point distribution which has one mass at 0 must be Fg.

Essentially the same argument applies in part (b), but now the two-point distribution must have
one inner point and mass at the upper end point M, which corresponds to the claimed F,,. =
6.3. Proof of Theorem 4
Paralleling with lines before (44) in the proof of Theorem 3, given the number of peaks equal to
n > 2, we can first show the number of interior intersection points between ¢ and r is at most
n. Then paralleling the arguments after (45), since the first intersection point of ¢ and r must
be the second intersection point between 1/1 and 7, the ¥ and r will not intersect at M. With at
most n interior intersection points and possible additional one intersection point at 0, the total
number intersection points between 1 and r is at most n 4 1. Therefore, the optimal distribution

n ,Pn,n-i—l (M)

7. The Associated Minimization Problem

We now consider the associated minimization problem, which corresponds to the supremum in (7),
(22), (23) being replaced by an infimum, and then the associated maximum in (8), (35), (36), (37)
and (39) being replaced by a minimum. Then the inequality must be reversed in the inequality
(20) which expresses the definition of a stationary point. Accordingly the associated dual problem

in (40) becomes finding the vector \* = (A5, A7, A;) that attains the maximum

max{)\o + )\1 + )\2(1 +C2)}

such that  r(u;) = Ao+ M + Aoul <p(u;) forall i, 1<i<m. (46)

If we simply replace \; via —)\; such that the max in (46) can be replaced by min, we found
the dual problem in (46) is not equivalent to that in (40) because the —(u) is not a strictly
monotone decreasing and strictly positive convex function satisfying Lemma 2. That leads to
failure of completely replicating proof of Theorem 3, thus leading to weaker conclusions for the

minimization problem.
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PROPOSITION 3. (sufficient conditions for Fy or F, to be a stationary point) Under the same
initial three assumptions as Theorem 2, (a) if ¥(u; F) is strictly decreasing over [0, M] for any
candidate cdf F, then F, must be a solution of the LP in (39). Hence, if this condition is satisfied
for F=F,, then F,. must be a stationary point.

(b) Similarly, if (u; F) is strictly increasing over [0, M] for any candidate cdf F, then Fy must
be a solution of the LP in (39). Hence, if this condition is satisfied for F' = Fy, then Fy. must be a

stationary point.

Proof. Replace A\; by —\; and make 1(u) become —(u) in (46). Thus we shall solve

min {\o + A\ + Ao (1 +¢%)}
such that  r(w;) = X+ \u; + Aou? > —tp(w;)  for all 4, 1<i<m. (47)

It is the dual problem of maximization problem with — as in the objective function. That implies
if 1) is strictly monotone decreasing, then —1 is strictly monotone increase. Paralleling with proof

of Theorem 3, we can conclude the opposite conclusions. =

PROPOSITION 4. (a single peak for minimization problem) For the minimization problem, if
U (u; F) has a single peak over [0, M] for all F € Py(F), then all local optimizers must be in Py 5(F),
in particularly, the optimizers must be one of the {Fy, F,, Fy,} where Fy, is a three-point distribution

with only one interior point b € (0, M). So that one of these three will be the global optimal solution.

Proof. Given (47), if 1 has one peak, then the — is not a one peak function. We apply the same
argument before (44) to show there is at most one interior intersection point. However, due to —1)
not being one peak function, there is no other cases which can be ruled out, thus it is possible to
have Fy, F,, as well as F}, being optimizers where Fj has two ending points 0 and M and it also has
one interior point b€ (0,M). =

Combine the result of Proposition 4 and parallel with Theorem 4, we establish the following

result for minimization problem.

THEOREM 5. (more structures for minimization) Under the setting of Theorem 3. If w(u, F) has
at most n (1 <n < oo) peaks over [0, M] for any candidate F' € Py(F), then all stationary points

of the optimization in (39) must lie in P, a(F).
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Proof. We apply the same argument before (44) in the proof of Theorem 3 to show there is at
most n interior intersection point, then following via the proof of Proposition 4, the proof is thus

complete. =

8. Asymptotic Analysis

We now show how to relax the finite support condition introduced in Section 3. For that purpose,
we will consider a sequence of nested finite support sets. We say that a sequence of finite support
sets {Fy, : k > 1} is nested if F;, C Fyy for all n > 1. We say that F;, — [0, M] as k — oo for a nested

sequence of support sets if each x € [0, M] can be expressed as
x = lim {z}:x} € Fp}. (48)
k—o0

We have the following well known approximation lemma.

LEMMA 6. (approximation lemma) If Fr, — [0, M] as k — oo for a nested sequence of support

sets, then Any cdf F € Py(M) can be expressed as the limit of cdf’s Fy, € Py(Fy).

Proof. We perform a direct construction. Let F}, be the right-continuous piecewise-constant func-
tion satisfying Let Fj(x) = F(xy). Then F is the limit of this constructed F}. In particular, for

all x that are continuity points of F', Fj(x) — F(x) as k — co.m

LEMMA 7. (extremal cdf for support [0, M]) Assume that Fj, — [0,M] as k — oo for a nested
sequence of support sets. If Fy € Pay3(Fy) is the optimal cdf for support set Fy, then there exists
a convergent subsequence of {Fy :k > 1} with limiting cdf F* € P23([0,M]) and the cdf F* is an

optimal cdf in Py z(M).

Proof. The key fact is that Py 3(M) is a compact subset of Py(M). That implies the existence
of the convergent subsequence with a limit in the same space. Then the continuity implies the

extremal property in the limit. =



27

9. Simulation Verification for Some GI/GI/1 Examples

In this section we apply simulation to examine if the conditions in Theorem 3 for Fy or F, to be
a stationary point of the optimization are satisfied for various GI/GI/1 examples, in the context
of Corollary 1 and Lemma 2. That is, we consider the maximization over interarrival-time cdf’s F’
with specified first two moments for given service-time cdf G. For that purpose, we will look at
$a(u) in (27) for ¢, (u) in (21), which is the summation of pdf functions of ¥; in (30). We obtain
supporting positive results for the exponential (M) and Erlang (E,) service-time distributions and
negative results for a mixture of two Erlang service-time distributions.

9.1. An Exponential Service Time Distribution

We first show simulation results for GI/M /1 models, with fixed exponential service-time distribu-

tion.

9.1.1. Fy/M/1 and F,/M/1 Models. We start by considering the special two-point distri-
butions F with one mass on 0 and F, with one mass on the upper limit of support M,. If U is

distributed as Fj with mass at {0,1+ ¢?}, then

= ) Z (w2l (19)

where ¢;(.) is the pdf of 22:1 V:(M) and z,(f) is the point from convolution Z;;ll Uy. For example,
if n =2, then

2

l—i-cg

Ga() = ex(u)—2— + es(u +1+c§)1i tea(u). (50)

a

Direct calculation shows that d)a(u) < 0, implying that d)a(u) is a strictly monotone decreasing
function over [0, M,].

For large n, we can verify the monotonicity property in any instance by applying stochastic
simulation. As before, we used Monte-Carlo simulation to create 5 replications of 10° random
samples in order to estimate the summation of pdf functions ¢, for 327 V; in GI/M/1 with F = F.
To illustrate, Figure 2 shows the simulation estimates of the second derivative ¢, (u) in (27) of the

objective function in (21) for Fy/M/1 (LHS) and F,/M/1 (RHS) in the case ¢2 =0.5,p=0.7,n =
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4, M, = 10. These plots show that ¢, (u) is monotonically decreasing over [0, M,] in both cases.
Hence, Fj is the optimal solution in the LP in (22) or (39)) in both cases. Thus, we conclude that
Fy is a stationary point of the optimization, whereas [, is not. These conclusions were confirmed
by applying Corollary 1. In particular, Fy was found to be the solution to the LP in both the

nearly-steady-state example with (p=0.1,n =40) and the transient example with (p=0.7,n=4).

0.012 T T T T T T T T 0.015

0.008

0.006 -

0.004

0.002 -

Figure 2 Simulation estimates of ¢(u) in (27) and Lemma 2 for Fy/M/1 (LHS) and F,,/M/1 (RHS) in the case
c2=0.5,p=0.7,n =4, M, = 10. These plots show that F} is a solution of the LP in (22) or (39) in both

cases, so that Fj is a stationary point, while [, is not.

9.1.2. Beyond Two-point Distributions. In order to better understand Theorem 3, we
present the simulation results GI/M /1 models when the inter-arrival time distributions are not the
special two-point distributions considered in Figure 2. Figure 3 displays the simulation estimates of
$(u) in (21) and Lemma 2 for M/M/1 (LHS) and E,/M/1 (RHS) in the case ¢2 =0.5,p=0.7,n =
4, M, = 10. These plots show that ¢(u) is monotonically decreasing over [0,M,] in both cases.
That implies that Fy is a solution of the LP in both cases, so that these M and FE, interarrival-
time distributions are not stationary points of the optimization. As in the previous example, these
conclusions were confirmed by applying Corollary 1. As before, F,, was found to be the solution to

the LP in both the nearly-steady-state example with (p=0.1,n =40) and the transient example

with (p=0.7,n=4).
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Figure 3  Simulation estimates of ¢(u) in (27) for M/M/1 (LHS) and E»/M/1 (RHS) in the case p=0.7,n =
4, M, =10. These plots show that Fy is a solution of the LP in (22) in both cases, so that neither of
these interarrival-time cdf’s is a stationary point of the optimization.

9.1.3. GI/E,;/1 Models. We now consider a fixed Erlang E, service-time distribution. The
Erlang E; service-time distributions are appealing because they are strongly unimodal, i.e., the
convolution of the an Erlang distribution with any other unimodal distribution is again unimodal.

We now discuss GI/E, /1. Figure 4 displays simulation estimates of ¢(u) in (21) and Lemma 2
for F,/E»/1 (LHS) and F,/E,/1 (RHS) in the case ¢2 =0.5,p =0.5,n =4, M, = 10. In this case we
do not see monotonicity, but instead we see the single-peak property over [0, M,]. Thus, these plots
also show that Fj is a solution of the LP in (39) in both cases, because of the single-peak property,
so that Fj is a stationary point, while F,, is not. As in the previous example, these conclusions were
confirmed by applying Corollary 1. As before, Iy was found to be the solution to the LP in both the

nearly-steady-state example with (p=0.1,n =40) and the transient example with (p=0.7,n=4).

9.1.4. Examples for a More Complex Service-Time Distribution. We now show that
the sufficient condition in Theorem 3 involving a single peak is not always satisfied. For that
purpose, we let the service-time distribution be the mixture of two Erlang distributions. Let Ey(m)
denote an F), distribution with mean m, i.e., the distribution of the sum of k i.i.d. exponential
random variables, each with mean m/k. Let mix(Ej, (m1), Ey,(m2),p) denote the mixture of an
Erlang Ey, (m,) distribution with probability p and an Ej,(m,) distribution with probability 1 —p,

which necessarily has mean pm; + (1 — p)ms..
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Figure 4  Simulation estimates of ¢, (u) in (27) for Fy/E>/1 (LHS) and F,/E2/1 (RHS) in the case ¢ = 0.5, p =
0.5,n =4, M, = 10. These plots show that F{ is a solution of the LP in (39) in both cases because of
the single-peak property, so that Fj is a stationary point, while I, is not.

Figure 5 presents simulation estimates of ¢(u) in (21) and Lemma 2 for F,/GI/1 (LHS) and
F,/GI/1 (RHS) in the case ¢ =0.5,p=0.5,n=4, M, = 10, where the service-time distribution is
chosen to be G =mixz(Es(0.4), E20(1.6),0.5), which has mean 0.5(0.4) + 0.5(1.6) = 1.0. Figure 5
shows that the condition of Theorem 3 is not satisfied in either case.

Unlike the previous three examples, the conclusions from applying Corollary 1 are more com-
plicated. As before, Fy was found to be the solution to the LP in the nearly-steady-state example
with (p=0.1,n=40), but it was not in the transient example with (p=0.7,n=4).

9.2. Maximization Over G Given F

We next show simulation results for the associated maximization problem over candidate service-

time distributions G, given a specified inter-arrival time distribution F'.

From Lemma 3, we know that we can apply a reverse-time representation to reduce this problem
to the case previously considered. That implies that, in the reverse-time representation, we should
look at the shape of ¢,(7) in the range [0, pM,]. However, that is equivalent to looking at the
corresponding shape of ¢, (v) over [—pM,, 0] without time-reverse representation. That means if the
original shape is strictly monotone increasing over [—pM,, 0], that is equivalent to the time-reverse
shape is strictly monotone increasing over [0, pM,] because 0 under the time-reverse representation

corresponds to pM, under no time-reverse representation.
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Figure 5  Simulation estimates of ¢(u) in (21) and Lemma 2 for F,/GI/1 (LHS) and F,/GI/1 (RHS) in the
case c2 =0.5,p=0.5,n =4, M, = 10, where the service-time distribution in both cases is a mixture of

two Erlang distributions, specifically mix(E20(0.4), E20(1.6),0.5), as defined above.
We next show the summation of simulated pdf function > |'Y; for M/GI/1 with G =G, and

M/GI/1 with G = G,, with n=4, M, = M, = 10.

3
9 X 10 . . 0.01
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Figure 6  Simulation estimates of ¢(7) in (34) associated with Lemma 3 for M/Go/1 (LHS) and for M /G, /1

in the case: c; =01.0,¢; =0.5,p=0.7,n =4, M; =
RHS) in th 2=01.0,c2=0.5 0.7 4, M, =10

From —pM, to 0, we observe the strictly monotone increasing shape, thus the és is strictly
monotone increasing over [0, pM,] such that éu is the optimal solution under time reverse rep-
resentation from Theorem 3. That implies that G is a stationary point of the optimization for

M/GI/1, whereas G, is not.
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10. Conclusions

We applied the theory of non-convex nonlinear programs together with the explicit expression for
the transient mean E[W,] in (4) to study the interarrival-time distribution that maximizes the
transient mean waiting time in the GI/GI/1 queue, given a specified service-time distribution and
the first two moments of the interarrival time. We assume that the the interarrival-time distribution
has finite support.

Theorem 1 first establishes the gradient of transient mean waiting time E[W,] with respect
to the interarrival-time distribution F' under finite support. Then Corollary 1 applies well-known
first-order optimality conditions stated in Proposition 1 to characterize the stationary points of
the optimization as solutions of a linear program. This provides an efficient way to construct
counterexamples, as we illustrate in §4.2 and §4.7.

In §5 we develop an abstraction of the GI/GI/1 queueing problem that applies to other models
in addition to the GI/GI/1 queue, provided that the objective function inherits the structure
established for the GI/GI/1 model in Lemma 2. In that context, Theorem 2 establishes sufficient
conditions for a stationary point to be a three-point distribution, while Theorem 3 establishes the
sufficient conditions for the special two-point distributions F,, and F, to be stationary points of
the optimization.

In §6 we prove Theorems 2 and 3. We prove Theorem 2 by applying Lemma 4 which establishes
that an LP has a unique solution if and only if its dual has a nondegenerate optimal solution. We
extend the proof of Theorem 3 to establish Theorem 4 for more complicated shapes.

In §7 we observe that minimization is not symmetric with maximization. In fact, the minimization
problem is harder. We establish the corresponding results in Proposition 4 and Theorem 5. In
particular, our results suggest that even when d)a(u) is a one-peak function, it is possible that a
specific three-point distribution will be a stationary point.

Finally, in §9 we apply simulation to provide some concrete numerical examples. We report
results of simulation experiments showing that the sufficient conditions of Theorem 3 and Theorem

4 are satisfied for some concrete GI/GI/1 models.
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There is much yet to be done; e.g., to verify or refute Conjectures 1 and 2 of Chen and Whitt

(2021D).
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