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(from the main paper) We study the tight upper bound of the transient mean waiting time in the classical

GI/GI/1 queue over candidate interarrival-time distributions with finite support, given the first two moments

of the interarrival time and the full service-time distribution. We formulate the problem as a non-convex

nonlinear program. We derive the gradient of the transient mean waiting time and then show that a stationary

point of the optimization can be characterized by a linear program. We develop and apply a stochastic variant

of the Frank-Wolfe (1956) algorithm to find a stationary point for any given service-time distribution. We also

establish necessary conditions and sufficient conditions for stationary points to be three-point distributions

or special two-point distributions. We illustrate by applying simulation together with optimization to analyze

several examples.
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1. Overview

This paper provides additional material to supplement the main paper Chen and Whitt (2021a).

In §2 we review related work. In §3 we make additional remarks about the gradient of the transient

mean waiting time, supplementing Section 3 in the main paper. In §4 we study the maximization of

the transient mean waiting time E[Wn(F,G)] over the service-time cdf G given the interarrival-time

cdf F .
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The remainder of the supplement is primarily devoted to numerical examples. First, §5 supple-

ments §4 of the main paper by giving examples applying the linear program in Corollary 1 of the

main paper to determine whether the special two-point cdf F0 is a stationary point for the known

difficult service-time distribution G0. Second, §6 supplements §5 of the main paper by elaborating

on the Frank and Wolfe (1956) (FW) algorithm. Additional examples are given in §6.2. Third, §7

elaborates on §§6-8 of the main paper by giving more examples applying the structural Theorem 3

(a) in the main paper to determine if the special two-point interarrival-time cdf F0 is a stationary

point of the optimization for various service-time cdf’s G.

2. Related Work

The use of optimization to study the bounding problem for queues seems to have begun with

Klincewicz and Whitt (1984) and Johnson and Taaffe (1990). Due to intractability( e.g., lack of

convexity), new approaches have been proposed to simplify the problem, e.g, reformulating the

problem into tractable relaxed convex programs, imposing extra conditions and limitations; see

Bertsimas and Natarajan (2007) and Gupta and Osogami (2011)). Optimal solutions are not dif-

ficult to obtain, but it is difficult to assess the approximation error.

In addition, several researchers have studied bounds for the more complex many-server queue.

Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investi-

gate the bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why

two-moment information is insufficient for good accuracy of steady-state approximations of

M/GI/c. Gupta and Osogami (2011) establishes a tight bound for the M/GI/K in light traffic.

Osogami and Raymond (2013) bounds the transient tail probability of GI/GI/1 by a semi-definite

program. Li and Goldberg (2017) establishes bounds for GI/GI/c intended for the many-server

heavy-traffic regime. van Eekelen et al. (2019) address the classical extremal queueing problem by

measuring dispersion in terms of Mean Absolute Deviation (MAD) instead of variance. Finally,

we mention that optimization also plays a critical role in recent work on robust queueing, as in

Bandi et al. (2015) and Whitt and You (2018, 2019).
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3. Complements and Remarks on the Gradient

In this section we make several remarks supplementing Section 3 of the main paper, which derives

the gradient of the transient mean E[Wn(F,G)] with respect to the interarrival-time cdf F using

the Frechet differentiation, under the assumption that F has finite support.

3.1. Extending the Frechet Differentiation

The Frechet derivative can be generalized to Banach spaces using the total variation metric, which

in our setting is just dTV (p, p̂) = (1/2)‖p− p̂‖; see Ch. 6 of Serfling (1980) and Wang (1993). For

example, the following result also holds if the cdf F has a pdf f over R instead of having finite

support. Then dTV (F1, F2) ≡
∫∞

0
|f1(x) − f2(x)|dx. However, convergence in the total variation

metric is not implied by the usual weak convergence, as in Billingsley (1999).

3.2. Stronger Conclusions about Optimality from the Hessian

Stronger conclusions about global optimality can be obtained from the Hessian. Even though we

do not exploit the Hessian in this paper, we state the result for future reference. See Appendix A.4

on p. 760, §1.1.2 on p. 15 and §3.1.11 on p. 252 of Bertsekas (2016) for background.

Recall the notation introduced in the main paper at the end of §2 and the beginning of §3.

Proposition 1. (sufficient condition for local and global optimality) Consider the Hessian

matrix H from Theorem 1 of the main paper for GI/GI/1 queue with the specified G with finite

second moment.

(a) If −H is a positive semi-definite matrix for all F (p)∈P(F), then the optimization in (8) of

the main paper is a convex program, so that there exists a unique global optimal distribution which

is also the stationary point.

(b) If −H is positive semi-definite matrix for some specific F (P̂ )∈P(F) and the p̂ satisfies (19)

in Proposition 1 of the main paper, then the p̂ will be a local optimal distribution.

3.3. Extending the Class of Counterexamples

We next show that a variant of the counterexample to F0 being optimal for all G, based on the

special service-time cdf G0 in §5 holds for service-time cdf’s with a positive pdf, as assumed in
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Lemma 1 in §6.2 of the main paper. We first observe that The objective function φa(u) in (20)-(22)

of the main paper is uniformly bounded and continuous as a function of candidate G, p̂ and u. Let

Gn ⇒G denote convergence in distribution for a sequence of cdf’s as n→∞.

Corollary 1. (extension for Gn ⇒G) Suppose that Gn ⇒G as n→∞ and p̂n is a stationary

point of the optimization for φa(u) given Gn for n≥ 1. Then there exists a convergent subsequence

of {p̂n : n≥ 1} and the limit of any such convergent subsequence is a stationary point of the opti-

mization for φa(u) given G.

Equivalently, if p̂ is not a stationary point for φa(u) for cdf G and if Gn ⇒G as n→∞, then,

for all sufficiently large n, p̂ is not a stationary point of φa(u) for Gn.

Proof. Since the space P(F) is a compact metric space, there exists a convergent subsequence

of {p̂n : n ≥ 1}. Suppose that the limit is p̂. By continuity, p̂ must be a stationary point of the

optimization for φa(u) for the limit.

3.4. Relaxing the Finite Support Condition

We now show how to relax the finite support condition used in Sections 3-5 of the main paper.

For that purpose, we will consider a sequence of nested finite support sets. We say that a sequence

of finite support sets {Fk : k ≥ 1} is nested if Fk ⊆Fk+1 for all n≥ 1. We say that Fk → [0,M ] as

k→∞ for a nested sequence of support sets if each x∈ [0,M ] can be expressed as

x= lim
k→∞

{xk : xk ∈Fk}. (1)

We have the following well known approximation lemma.

Lemma 1. (approximation lemma) If Fk → [0,M ] as k→ ∞ for a nested sequence of support

sets, then Any cdf F ∈P(1, c2a,M) can be expressed as the limit of cdf ’s Fk ∈P(Fk).

Proof. We perform a direct construction. Let Fk be the right-continuous piecewise-constant func-

tion satisfying Let Fk(xk) = F (xk). Then F is the limit of this constructed Fk. In particular, for

all x that are continuity points of F , Fk(x)→ F (x) as k→∞.

Let P3(1, c
2
a,M) be the set of probability distributions with support on three points within [0,M ]

having specified first two moments. Let P3(F) be the subset with support in F .
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Lemma 2. (extremal cdf for support [0,M ]) Assume that Fk → [0,M ] as k→ ∞ for a nested

sequence of support sets. If F ∗
k ∈ P3(Fk) is the optimal cdf for support set Fk, then there exists

a convergent subsequence of {F ∗
k : k ≥ 1} with limiting cdf F ∗ ∈ P3(1, c

2
a,M) and the cdf F ∗ is an

optimal cdf in P3(1, c
2
a,M).

Proof. The key fact is that P3(1, c
2
a,M) is a compact subset of P(1, c2a,M). That implies the

existence of the convergent subsequence with a limit in the same space. Then the continuity implies

the extremal property in the limit.

4. Maximizing Over G for Fixed F

In the main paper we focused on maximizing E[Wn(F,G)] over F for given G. It is evident that

we can obtain comparable results when we maximize over G for given F . First, we observe that an

analog of Lemma 1 in §6.2 of the main paper arises if we consider the dual problem of optimizing

over the cdf G given fixed F , assuming that we impose corresponding regularity conditions. This

holds even though the optimization problem in (21) and (22) of the main paper and its gradient

vectors are changed if inter-arrival time distribution F is given. But we can exploit a reverse-time

representation for the service time G to yield the same structure. For that purpose, let

φs(ṽ)≡
n
∑

i=1

E[(
i−1
∑

k=1

Vk(q̂)−
i

∑

k=1

Uk(F )+ ρMs− ṽ)+]. (2)

Lemma 3. (structure of the objective function in (2)) If the fixed cdf F of U has a positive pdf f

over [0,∞), then Zi ≡
∑i−1

k=1 Vk(q̂)−
∑i

k=1Uk(F )+ρMs has support in (−∞, ρMs+(i−1)a], where

a> 0 is the upper limit of the support of V . Thus Zi has a positive pdf θi over (−∞, ρMs] for each

i, 1≤ i≤m. Hence,

φs(ṽ) =
n
∑

i=1

E[(Zi − ṽ)+] =
n
∑

i=1

(

E[Zi − ṽ]−E[(Zi − ṽ)−]
)

,

=
n
∑

i=1

(

E[Zi − ṽ]−

∫ ρMs

−∞

(x− ṽ)− dΘi(x)

)

, (3)

where

Θi(x) =

∫ x

−∞

θi(y)dy for x≤ ρMs, (4)
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so that, paralleling Lemma 1 of the main paper, the first two derivatives of φs(ṽ) are

φ̇s(ṽ) =
n

∑

i=1

(Θi(ṽ)− 1))< 0 and φ̈s(ṽ) =
n

∑

i=1

θi(ṽ)> 0, ṽ ∈ [0, ρMs]. (5)

Thus φs(ṽ) in (2) is a continuous, strictly positive, strictly decreasing and strictly convex function

on [0, ρMs].

Lemma 3 is proved just like Lemma 1 of the main paper. With Lemma 3, the rest of the proof

for optimization over G for fixed F can use the same detailed argument used for optimization over

F for fixed G However, we must recall the change of variables made in (2). For example, 0 appears

in the extremal cdf for F if and only if ρMs appears in the extremal cdf for G.

After exploiting the reverse-time representation, the shape of φs(.) and φa(.) are identical, so

that the all results holding for these two cases will be the same.

5. Applying the LP in Corollary 1 of the Main Paper

We now supplement §4 of the main paper. Corollary 1 in §4 of the main paper provides a a simple

verification algorithm. For any given G, we can verify if a candidate F is a stationary point of the

optimization. When we solve the LP in Corollary 1 for the specified pair (F,G), if the optimal

solution is F , then we have confirmed that F is a stationary point of the optimization. Otherwise,

F will not be a stationary point. The verification algorithm is convenient because we already have

ideas about the extremal cdf F . In particular, we think that it is often the special two-point cdf

F0.

We now give two numerical examples applying the LP in Corollary 1 of the main paper.

5.1. Determining if F0 is Extremal Given G0

For the steady-state mean, the cdf F0 provides the tight upper bound for E[W (F,G)] for many

G, but that is not correct for G0, as shown in §8 of Wolff and Wang (2003). Hence, we now apply

Corollary 1 of the main paper to study the special two-point interarrival-time distribution F0, for

the case G ≡ G0. We consider two cases, one designed to approximately represent steady state

and one to be genuinely transient. The nearly-steady-state example has n= 40, ρ= 0.1, c2a = c2s =
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0.5,Ma = 10. The support contains 401 points in [0,10] (including the endpoints) so that, F0 is in

the support, while the transient example has n= 4, ρ=0.7, c2a = c2s =0.5,Ma = 10.

In both cases we apply simulation to estimate the objective function in (20) of the main paper

when G=G0 and F = F0 and then solve the linear program in (21) of the main paper. We perform

5 independent replications, so that we can estimate 95% confidence intervals. In each replication,

use a large sample size such as 106, so that the randomness in the objective function can be ignored.

When we do the optimization, we always find that the solution has support on at most three points,

so that there is little ambiguity. Figure 1 shows the estimates of the objective function φa(u) for

the two experiments with (F0,G0).

0 2 4 6 8 10
[0, 10]

0

0.05

0.1

0.15

0.2

0.25
 =0.1, n  =40, G=G0, F=F0, CIL = 1e-03

0 2 4 6 8 10
[0, 10]

0

0.5

1

1.5

2

2.5
 =0.7, n =4, G=G0, F=F0, CIL = 1e-03

Figure 1 Simulation estimates of the objective function φa(u) in (20) of the main paper over [0,10] for the

F0/G0/1 model with n = 40, ρ = 0.1, c2a = c2s = 0.5,Ma = 10 (left) and with n = 4, ρ = 0.7, c2a = c2s =

0.5,Ma = 10 (right), based on 5 replications of 106 arrivals.

When we carry out this simulation+optimization program for the other service-time distributions

considered in the examples of §8 of the main paper, we find that F0 is always a stationary point.

However, for G0, for the example with n = 4, we find that F0 is not the solution of the linear

program. In particular, the solution F ∗ of the linear program has masses 0.3423,0.3242,0.3333 on

0.020,1.500,1.520, respectively. Hence, F0 is not a stationary point. As a consequence, F0 is not

locally optimal, and thus not optimal. On the other hand, for the nearly-steady-state example with

n= 40 and ρ= 0.5, we find that F0 is a stationary point.
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We also considered our associated numerical study over two-point distributions in

Chen and Whitt (2021c). Tables 2 and 3 there display the mean waiting times E[W ] and E[W20] for

two-point distributions F and G. These tables confirm the counterexample in §8 of Wolff and Wang

(2003) for the case c2a = c2s = 4.0, ρ= 5 for n= 20 and steady-state. We first applied Corollary 1 of

the main paper to (F0,G0). With a spacing of 0.25 between points in the support of F , we found that

the optimal solution of the linear program had masses of 0.8767,0.0833,0.0400 on 0.25,6.25,6.50,

respectively. Hence, F0 is not a stationary point. Moreover, starting from the optimal solution F 2∗

among the two-point distributions shown in Table 3, which has one mass on 5.25, we find that

it too is not a stationary point. We found that the optimal solution of that linear program had

masses of 0.4525,0.3810,0.1645 on 0.00,0.25,5.50, respectively. Thus, we conclude that neither F0

nor the optimal two-point cdf F 2∗ is a stationary point, and thus neither is optimal overall.

5.2. Determining if Gu is Extremal Given F0

We now apply Corollary 1 of the main paper to study the special two-point service-time distribution

Gu, for the case F ≡ F0, which is a natural candidate upper bound overall. From §V of Whitt (1984)

and Theorem 2 of Chen and Whitt (2021b), we know that the extremal G for given F , is more

complicated, depending critically on the shape of F . However, the accumulated evidence indicates

that Gu is optimal given F0 for the steady-state mean. For example, in §3.3 of Chen and Whitt

(2021c), we found that Gu was optimal within two-point distributions for steady state, but not for

the transient mean. For the transient mean, we found that the optimal was obtained at two-point

distributions Gu,n, where the upper mass point converges to Ms as n→∞. (Recall that Ms is the

upper limit of support for G, while the two-point distributions Gu,n is a two-point distribution,

where the upper mass point converges to Ms as n→ ∞; see Chen and Whitt (2021c) for more

discussion.)

Consistent with that numerical experience, we find that Gu is a stationary point for the nearly-

steady-state example with n= 40, ρ= 0.1, c2a = c2s = 0.5, ρMs = 10, while it is not in the transient

example with n= 4, ρ= 0.7, c2a = c2s = 0.5, ρMs =10.
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Considering the joint optimality over (F,G), from this numerical analysis we find that (F0,Gu)

is a stationary point of the optimization in the nearly nearly-steady-state example with n= 40, ρ=

0.1, c2a = c2s = 0.5,Ma = 10, ρMs = 10, whereas it is not for the transient example with n = 4, ρ =

0.7, c2a = c2s = 0.5,Ma = 10, ρMs = 10.

6. More on the Frank and Wolfe (1956) Algorithm

We now elaborate on the Frank and Wolfe (1956) algorithm in §5 of the main paper. A basic refer-

ence is §3.2 of Bertsekas (2016). The algorithm is now widely used to solve convex and non-convex

programs with convex constraints; see Lacoste-Julien (2016), Reddi et al. (2016) and references

there.

6.1. A General FW Algorithm

We start by presenting a general FW algorithm, following Lacoste-Julien (2016) who establishes

convergence results. As in the main paper, we denote the cdf F either directly or by its pmf p.

Recall from the first-order optimality condition in Corollary 1 of the main paper, the objective

function given p̂ can be expressed as

φa(u)≡
n

∑

i=1

E[(
i

∑

k=1

Vk−1(G)−
i−1
∑

k=1

Uk−1(p̂)−u)+], u∈F . (6)

(Of course, φa(u) is also a function of G and p̂.) Given the first-order expansion, we can establish

the first order approximation for E[Wn(p,G)]:

E[Wn(p,G)]≈E[Wn(p̂,G)]+φa(u)
t(p− p̂).

Paralleling the setting of Frank-Wolfe algorithm 1 in Lacoste-Julien (2016), we define the curva-

ture constant Cf of the continuous differentiable function E[Wn(p,G)] of p, which thus maps Rm

into R, as follows,

Cf ≡ sup
γ∈[0,1]

2

γ2

(

E[Wn(p,G)]−E[Wn(p̂,G)]−φa(u)
t(p− p̂)

)

(7)

subject to p̂, p2 ∈P(F), p= p̂+ γ(p2 − p̂). (8)
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We now state the outline of the algorithm in our context. As in the main paper, let EF [·] denote

the expectation with respect to candidate the cdf F of U .

Algorithm 1: Frank-Wolfe algorithm

Initialization: A pmf p1 in the feasible region P(F).

Input: Step size εj for each step j = 1,2, . . . and a stopping threshold δ > 0

Procedure: For each iteration j =1,2, . . . , given a pmf pj:

1 Compute

φa(u) =
n

∑

i=1

E[(
i

∑

k=1

Vk−1(G)−
i−1
∑

k=1

Uk−1(p̂))−u)+], u∈F (9)

2 Solve Qj = argmaxp∈P(F)Ep[φa(U)]≡ argmaxp∈P(F)[∇wn(p̂)
t · p].

3 Update Fj+1 = (1− εj)Fj + εjQj with two options for the choice of εj: (a)

εj ∈ argmaxε∈[0,1]E[Wn(Fj+1,G)] or (b) εj =min{ḡj/Cf ,1} for some constant Cf > 0,

where ḡ≡EQj
[φa(U)]−EFj

[φa(U ; )] is the FW gap.

Repeat above procedure until ḡj ≤ δ.

In the setting of the algorithm above, the assumption of bounded Cf corresponds to the assump-

tion on the gradient of E[Wn(F,G)] being Lipschitz. We now show that condition holds for our

queueing problem. We do that by showing that the Hessian is bounded.

Given that the domain [0,Ma] has bounded support and P(F) is compact, the function φa(u) in

(9) is a continuous function with respect to F over a compact domain. Therefore, φa(u)≡ φa(u,F )

is uniformly bounded for all F ∈P(F) and u ∈ F . Since each term in φa(u;F ) is non-negative, it

is also uniformly bounded.

A similar argument applies to the Hessian. Recall that the Hessian matrix in this problem is

H(ui, uj)≡
n
∑

i=1

(n− 1)E[(
i

∑

k=1

Vk−1(G)−
i−2
∑

k=1

Uk−1(p(F ))−ui−uj)
+],

it is thus also uniformly bounded for all ui, uj ∈F and all F ∈P(F) such that

H(ui, uj)≡
n
∑

i=1

(n− 1)E[(
i

∑

k=1

Vk−1(G)−
i−2
∑

k=1

Uk−1(p(F ))−ui−uj)
+]<n(n− 1)max

i,j
Ci,j <∞.
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This is equivalent to say the Hessian matrix is bounded ‖H‖ ≤L for some constant L. Finally,

for all F (p1), F (p2) ∈P(F), we have ‖φa(u;p1)− φa(u;p2)‖ ≤L‖p1 − p2‖ for a uniform constant L

with respect to the norm of Hessian matrix.

Given the Lipschitz condition of φa, the Cf in (7) is well defined, we thus apply the Theorem 1

in Lacoste-Julien (2016) to conclude the algorithm will converge to a stationary point, i.e., pj → p∗

as j → ∞ and it will take O(1/δ2) iterations to find an approximate stationary point with gap

smaller than δ.

6.2. A Simple Practical FW Algorithm

In the simulation experiments, because there is no simple closed form expression of (9), we exploit

the stochastic Frank-Wolfe algorithm. That means we use simulation to estimate the objective

function (9).

Let the successive cdf’s F be indexed by j ≥ 1. (These successive Fj play the role of p̂ in Corollary

1 of the main paper.) The first step is to use Monte-Carlo simulation to estimate the objective

value via

φa(u;Fj) ≡
n

∑

i=1

E[(
i

∑

k=1

Vk−1(G)−
i−1
∑

k=1

Uk−1(Fj)−u)+] (10)

≈
1

B

B
∑

b=1

n
∑

i=1

(
i

∑

k=1

V (b)
k−1(G)−

i−1
∑

k=1

U (b)
k−1(Fj)−u)+, u∈F . (11)

where we sample B i.i.d. copies of {(Vk,Uk) : 0≤ k ≤ n− 1} for each j. In each iteration we solve

a linear program in the optimization step. In the following practical algorithm, we have made an

additional simplifying approximation, letting the step size be εj = 2/(j+2), j ≥ 1. We found that

this approximation was effective in all our numerical examples.

To state the algorithm, let EF [·] denote the expectation with respect to candidate the cdf F of

U .
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Algorithm 2: Practical Stochastic Frank-Wolfe Algorithm

Initialization: A distribution F1 in the feasible region P(F).

Input: Step size εj ≡ 2/(2+ j) for each step j = 1,2, . . . and a stopping threshold δ > 0

Procedure: For each iteration j =1,2, . . . , given a distribution Fj:

1 Compute the estimate of φa(u) in (10) by

φ̂a(u;Fj)≡
1

B

B
∑

b=1

n
∑

i=1

(
i

∑

k=1

V
(b)
k−1(G)−

i−1
∑

k=1

U b
k−1(Fj)−u)+, u∈F (12)

2 Apply the LP in Corollary 1 of the main paper to solve

Qj = argmaxF∈P(F)EF [φ̂a(U(Fj−1);F )] and let the FW gap at iteration j be

ḡj ≡EQj
[φ̂a(U ;Fj)]−EFj

[φ̂a(U ;Fj)] (13)

3 Update Fj+1 = (1− εj)Fj + εjQj .

Repeat until ḡj ≤ δ or Qj is not changed for two consecutive iterations. If Qj has not

changed for two consecutive iterations, test whether Qj itself is a stationary point. If so,

stop; otherwise, continue iterating.

In all our numerical experiments, we found that, for given service-time cdf G, the stochastic

FW algorithm converged to the same stationary point whatever initial cdf F is used. (The traffic

intensity ρ is the mean of G, so it is fixed given G.) Hence, our numerical studies support the

conjecture that, for maximizing E[Wn(F,G)] with respect to F in P(F) for 2≤ n<∞ and fixed G,

the stationary point is unique and so is the global optimal solution. In addition, we observed that

the sequence of {Qj} does not change after the initial few steps and Fj →Q∞ as j→∞. Algorithm

(2) always terminated within at most 15 steps.

With regard to the extremal cdf’s, here is a summary of our findings: For the case (a), we

determine stationary points for F/G0/1 and found the F0 is not always stationary point. We also

found examples of cdf’s G having a density for which F0 is not optimal; see §7.3.

For the case (b), the stationary point for M/GI/1 under E[Wn(M,G)] with n<∞ is evidently

unique, in contrast to the insensitivity property of the steady-state mean. For the case (c), we
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confirm the conjectured solution (F0,Gu) and (F0,Gu,n) are stationary points for E[W∞(F,G)] and

E[Wn(F,G)]. (Recall that two-point distributions Gu,n is a two-point distribution, where the upper

mass point converges to Ms as n→∞.)

To illustrate, we describe two experiments, one for the transient mean and one for the (approx-

imate) steady-state mean. For the transient mean, we let n= 4, ρ= 0.5, B = 1× 107 and support

consisting of m = 401 points uniformly distributed in the interval [0,10]. (Since F0 has mass on

1+ c2a =1.50, F0 is in the support.) For steady-state waiting time, we let ρ= 0.1 and n=40. In the

simulation studies, we consider different initial distributions. In all experiments, the optimization

step in the algorithm (2) is numerically solved via the Gurobi solver in CVX.

6.2.1. Transient Mean Waiting Time We first consider the transient mean E[W4] for the

classical four models GI/M/1, GI/E10/1, GI/Gu/1 and GI/G0/1.

The direct finding is that the algorithm will converge to F0 within two steps for the three models

GI/M/1, GI/E10/1, GI/Gu/1 and two steps Qk =F0 for all k. For GI/G0/1, the story is different.

The sequence will converge to a specific two-point distributions within finite steps and Qk is not

changed after four steps. When we chance initial distribution into M and other distributions, the

above conclusions are not changed.

The Qk has some changes in the initial steps and keep the same for GI/G0/1 after four iterations.

We present numerical values for the sequence of Qk. In this experiment we started with a support

of m = 401 points evenly distributed in [0,10], but then refined thesupport to obtain a better

approximation of the extremal distribution over all of [0,10]. In that way we obtain a two point

distribution was mass on 1.5556 instead of a three-point distribution (as shown in the main paper).



14

Table 1 The sequence of optimal distribution Qk for GI/G0/1 during each iterations when initial distribution is

F = Fu

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0 0 1.5 0

2 0.3795 0.1538 0.4667 0.1 1.4 1.6

3 0.4190 0.581 0 0.15 1.6 0

4 0.3816 0.6184 0 0.1000 1.5556 0

5 0.3816 0.6184 0 0.1000 1.5556 0

Table 2 The sequence of optimal distribution Qk for GI/G0/1 during each iterations when initial distribution is

F =M

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0 0 1.5 0

2 0.3795 0.1538 0.4667 0.1 1.4 1.6

3 0.4190 0.581 0 0.15 1.6 0

4 0.3816 0.6184 0 0.1000 1.5556 0

5 0.3816 0.6184 0 0.1000 1.5556 0

After 5 steps, the Qk has not changed anymore. The optimization step in the algorithm (2)

is numerically solved via Gurobi solver in CVX, in the final output we usually obtain a three-

point distribution with two adjacent masses when the theoretical optimal solution is a two-point

distribution. For example, in the above case, we obtain the final resulting solution provided by the

solver is {0.3816,0.4828,0.1356} on {0.1,1.550,1.575} where errors result from the finite uniform

discretization and numerical solver. In fact, it is a two-point distribution. According to the two-

point distribution closed-form solution, we can determine the b via 1− c2a/(b− 1) = 0.1 to obtain

b= 1.5556 such that the resulting two-point distribution Q∞ has mass on {0.1,1.5556}.
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We also look into the behaviors of the sequence {Fk}. After 20 iterations, the F20 has probability

{0.043,0.3717,0.049,0.0024,0.2812,0.3354} on support {0,0.1,0.2,1.4,1.5,1.6}. We have seen con-

sistently decreasing masses on 0.0,0.2,1.4 as k→∞. Thus the Fk will finally converge to Q∞ as

k→∞.

6.2.2. Steady-State Mean Waiting Time We repeat the above experiments for the approx-

imate steady-state mean waiting time E[W40(F,G)] under such four models. The story is not

changed for the three models with F = F0 as stationary points. For F/G0/1, we obtain F0 being

approximate stationary point under ρ= 0.1.

Table 3 The sequence of optimal distribution Qk for GI/G0/1 for E[W40(F,G)] during each iterations when

initial distribution is F =M with ρ=0.1

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0 0 1.5 0

2 0.3333 0.6667 0 0 1.5 0

3 0.3333 0.6667 0 0 1.5 0

4 0.3333 0.6667 0 0 1.5 0

5 0.3333 0.6667 0 0 1.5 0

But when we set ρ = 0.5, we obtain a different stationary points F with three masses on

{0.3295,0.3232,0.3472} on support {0,1.375,1.6}.
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Table 4 The sequence of optimal distribution Qk for GI/G0/1 for E[W60(F,G)] during each iterations when

initial distribution is F =M with ρ=0.5

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0 0 1.5 0

2 0.4170 0.1413 0.4417 0 0.1750 1.325

3 0.3326 0.3448 0.3226 0 1.45 1.55

4 0.3317 0.3509 0.3175 0 1.4250 1.575

5 0.3304 0.3571 0.3125 0 1.4 1.6

6 0.3304 0.3571 0.3125 0 1.4 1.6

7 0.3287 0.3636 0.3077 0 1.375 1.625

8 0.3287 0.3636 0.3077 0 1.375 1.625

9 0.3295 0.3232 0.3472 0 1.375 1.6

10 0.3295 0.3232 0.3472 0 1.375 1.6

Therefore, we obtain different stationary points under different ρ. F0 is not always the stationary

point for F/G0/1 for all ρ. It is highly possible the three-point distribution will be the extremal

distribution for E[W∞(F,G0)].

6.3. Numerical Examples for Case (b)

We set up the same settings as experiments in the case (a) for transient mean waiting time and

approximate steady-state mean waiting time. The only difference is the range of b where b∈ [0,Ms]

where Ms = 10/ρ due to mean one inter-arrival time.

6.3.1. Transient Mean Waiting Time We then consider the transient mean E[W4] for

M/GI/1, E10/GI/1, F0/GI/1 and Fu/GI/1. The stationary points for M/GI/1 and E10/GI/1

is Gu. For other models, the stationary points are specific two-point distributions with interior

masses.
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Table 5 The sequence of optimal distribution Qk for Fu/GI/1 during each iterations when initial distribution is

G=M

Iterations p1 p2 p3 x1 x2 x3

1 0.9592 0.0408 0 0.422 2.2 0

2 0.9792 0.0208 0 0.45 3 0

3 0.9792 0.0208 0 0.45 3 0

4 0.9792 0.0208 0 0.45 3 0

5 0.9792 0.0208 0 0.45 3 0

Table 6 The sequence of optimal distribution Qk for F0/GI/1 during each iterations when initial distribution is

G=M

Iterations p1 p2 p3 x1 x2 x3

1 0.9822 0.0178 0 0.452 3.1 0

2 0.9774 0.0226 0 0.446 2.8 0

3 0.9774 0.0226 0 0.446 2.8 0

4 0.9774 0.0226 0 0.446 2.8 0

5 0.9774 0.0226 0 0.446 2.8 0

6.3.2. Transient Mean Waiting Time The approximate stationary points for the four mod-

els are Fu.

Table 7 The sequence of optimal distribution Qk for F0/GI/1 during each iterations when initial distribution is

G=M

Iterations p1 p2 p3 x1 x2 x3

1 0.9939 0.0001 0 0.1 10 0

2 0.9939 0.0001 0 0.1 10 0

3 0.9939 0.0001 0 0.1 10 0

4 0.9939 0.0001 0 0.1 10 0

5 0.9939 0.0001 0 0.1 10 0
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Table 8 The sequence of optimal distribution Qk for Fu/GI/1 during each iterations when initial distribution is

G=M

Iterations p1 p2 p3 x1 x2 x3

1 0.9939 0.0001 0 0.1 10 0

2 0.9939 0.0001 0 0.1 10 0

3 0.9939 0.0001 0 0.1 10 0

4 0.9939 0.0001 0 0.1 10 0

5 0.9939 0.0001 0 0.1 10 0

6.4. Numerical Examples for Case (c)

We combine the settings of the case (a) and the case (b).

6.4.1. Transient Mean Waiting Time We set up the same initial setting of experiments

as before. We set G=M to do maximization over F with initial F =M , we found the F = F0 is

the approximate stationary point. Then we given F =F0 to do maximization over G under initial

distribution G=M to conclude Gu,n in our setting is the approximate stationary point. (Recall

that two-point distributions Gu,n is a two-point distribution, where the upper mass point converges

toMs as n→∞.) To be specific, the Gu,n has masses {0.9773,0.0227} on support {0.4461,2.8199}.

Finally given the Gu,n we still are able to check the F0 is also the stationary point. Therefore, the

pair (F0,Gu,n) is the fixed point solution for the LP program in Corollary 1 of the main paper for

(a) and the analog ofr case (b) respectively, thus they are the approximate stationary points for

the case (c).

We repeat the above experiment with G = G0, we first optimize over F with initial F =M ,

the convergent solution is a two-point distribution Fu,n which has masses on {0.381,0.619} on

{0.099,1.555}. Then we given F = Fu,n to optimize over G with initial G=M , the approximate

stationary point is the Gu,n with {0.9808,0.0192} on support{0.45,3}.
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Table 9 The sequence of optimal distribution Qk for Fu,n/GI/1 during each iterations when initial distribution

is G=M

Iterations p1 p2 p3 x1 x2 x3

1 0.9864 0.0154 0 0.4554 3.3 0

2 0.9808 0.0192 0 0.45 3 0

3 0.9808 0.0192 0 0.45 3 0

4 0.9808 0.0192 0 0.45 3 0

5 0.9808 0.0192 0 0.45 3 0

Given such above G, we continue to optimize over F with initial F =M , we obtain F = F0

and finally obtain the same stationary pair (F0,Gu,n) with Gu,n = {0.3810,0.6190} on support

{0.099,1.555}.

Therefore, we have confirmed that (F0,Gu,n) is the stationary point pair for the case (c) maxi-

mization problem. Next, we study the performance of Gu,n when increasing n.

Table 10 The sequence of Q20 as a function of n for E[Wn(F0,G)] when initial distribution is G=M

n p1 p2 p3 x1 x2 x3

4 0.9774 0.0226 0 0.446 2.8 0

10 0.9916 0.0084 0 0.4671 4.3 0

15 0.9958 0.0042 0 0.4769 5.9 0

20 0.9975 0.0025 0 0.4821 7.5 0

40 0.9986 0.0014 0 0.4868 10 0

This table illustrates the Q20 =Gu,n and the largest point in Gu,n increases as n increases. When

n= 40 such that the E[Wn] approximates the E[W∞] well, the Gu,n =Gu with the largest point

b= ρMs =10.

6.4.2. The Steady-State Mean Waiting Time For the steady-state approximation, we

consider more cases to make results convincing; We set ρ= 0.1,0.3,0.5 and n= 40,60,80 under the
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same experiment setting with initial distributions F,G=M . We finally obtain consistent conclusion

(F0,Gu) is always the approximate stationary points. Given F0 being inter-arrival time for ρ= 0.1,

the Gu is approximate stationary point with mass on {0.988,10} and probability {0.9986,0.0014};

Given such Gu the F0 is the approximate stationary point. Therefore, (F0,Gu) is the approximate

stationary points for the case (c).

7. Applications of Theorem 3 (a) for Some GI/GI/1 Examples

This section is an elaboration of §8 of the main paper, where we give numerical examples illustrating

the value of the structural theorems in §6 of the main paper. In particular, here we focus on the

application of Theorem 3 (a) in the main paper.

In this section we apply simulation to examine if the conditions in Theorem 3 (a) of the main

paper for F0 or Fu to be a stationary point of the optimization are satisfied for various GI/GI/1

examples, in the context of Corollary 1 and Lemma 1 in the main paper. That is, we consider the

maximization over interarrival-time cdf’s F with specified first two moments for given service-time

cdf G. For that purpose, we will look at φ̈a(u) in (32) for φa(u) in (20) of the main paper, which is

the summation of pdf functions of Yi in Lemma 1 of the main paper. We obtain supporting positive

results for the exponential (M) and Erlang (E2) service-time distributions and negative results for

a mixture of two Erlang service-time distributions.

7.1. An Exponential Service Time Distribution

We first show simulation results for GI/M/1 models, with fixed exponential service-time distribu-

tion.

7.1.1. F0/M/1 and Fu/M/1 Models. We start by considering the special two-point distri-

butions F0 with one mass on 0 and Fu with one mass on the upper limit of support Ma. If U is

distributed as F0 with mass at {0,1+ c2a}, then

φ̈a(u) =

n
∑

i=1

γi(u) =

n
∑

i=1

ei(u+ z
(i)
k )p

(i)
k (14)
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where ei(.) is the pdf of
∑i

k=1 Vi(M) and z
(i)
k is the point from convolution

∑i−1

k=1Uk. For example,

if n= 2, then

φ̈a(u) = e2(u)
c2a

1+ c2a
+ e2(u+1+ c2a)

1

1+ c2a
+ e1(u). (15)

Direct calculation shows that φ̈a(u) < 0, implying that φ̈a(u) is a strictly monotone decreasing

function over [0,Ma].

For large n, we can verify the monotonicity property in any instance by applying stochastic

simulation. As before, we used Monte-Carlo simulation to create 5 replications of 106 random

samples in order to estimate the summation of pdf functions φ̈a for
∑n

i=1 Yi in GI/M/1 with

F = F0. To illustrate, Figure 2 shows the simulation estimates of the second derivative φ̈a(u) of

the objective function in φa(u) in (32) and (20) of the main paper for F0/M/1 (LHS) and Fu/M/1

(RHS) in the case c2a = 0.5, ρ= 0.7, n= 4,Ma = 10. These plots show that φ̈a(u) is monotonically

decreasing over [0,Ma] in both cases. Hence, F0 is the optimal solution in the LP in Corollary 1 in

both cases. Thus, we conclude that F0 is a stationary point of the optimization, whereas Fu is not.

These conclusions were confirmed by applying Corollary 1 of the main paper. In particular, F0 was

found to be the solution to the LP in both the nearly-steady-state example with (ρ= 0.1, n= 40)

and the transient example with (ρ=0.7, n=4).

7.1.2. Beyond Two-point Distributions. In order to better understand Theorem 3 of the

main paper, we present the simulation results GI/M/1 models when the inter-arrival time dis-

tributions are not the special two-point distributions considered in Figure 2. Figure 3 displays

the simulation estimates of φ̈(u) in Lemma 1 for M/M/1 (LHS) and E2/M/1 (RHS) in the case

c2a = 0.5, ρ=0.7, n=4,Ma = 10. These plots show that φ̈(u) is monotonically decreasing over [0,Ma]

in both cases. That implies that F0 is a solution of the LP in both cases, so that these M and

E2 interarrival-time distributions are not stationary points of the optimization. As in the previ-

ous example, these conclusions were confirmed by applying Corollary 1 of the main paper. As

before, F0 was found to be the solution to the LP in both the nearly-steady-state example with

(ρ= 0.1, n= 40) and the transient example with (ρ= 0.7, n= 4).
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Figure 2 Simulation estimates of φ̈(u) in Lemma 1 of the main paper for F0/M/1 (LHS) and Fu/M/1 (RHS) in

the case c2a = 0.5, ρ= 0.7, n= 4,Ma = 10. These plots show that F0 is a solution of the LP in in both

cases, so that F0 is a stationary point, while Fu is not.

Figure 3 Simulation estimates of φ̈(u) in Lemma 1 of the main paper for M/M/1 (LHS) and E2/M/1 (RHS) in

the case ρ= 0.7, n= 4,Ma = 10. These plots show that F0 is a solution of the LP in Corollary 1 of the

main paper in both cases, so that neither of these interarrival-time cdf’s is a stationary point of the

optimization.

7.2. Erlang E2 Service Distributions

We now consider a fixed Erlang E2 service-time distribution. The Erlang Ek service-time distri-

butions are appealing because they are strongly unimodal, i.e., the convolution of the an Erlang

distribution with any other unimodal distribution is again unimodal.

We now discuss GI/E2/1. Figure 4 displays simulation estimates of φ̈(u) in Lemma 1 of the

main paper for F0/E2/1 (LHS) and Fu/E2/1 (RHS) in the case c2a = 0.5, ρ= 0.5, n= 4,Ma = 10.
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In this case we do not see monotonicity, but instead we see the single-peak property over [0,Ma].

Thus, these plots also show that F0 is a solution of the LP in Corollary 1 of the main paper in both

cases, because of the single-peak property, so that F0 is a stationary point, while Fu is not. As in

the previous example, these conclusions were confirmed by applying the LP in Corollary 1 of the

main paper. As before, F0 was found to be the solution to the LP in both the nearly-steady-state

example with (ρ= 0.1, n= 40) and the transient example with (ρ=0.7, n=4).

Figure 4 Simulation estimates of φ̈a(u) in Lemma 1 of the main paper for F0/E2/1 (LHS) and Fu/E2/1 (RHS)

in the case c2a = 0.5, ρ= 0.5, n= 4,Ma = 10. These plots show that F0 is a solution of the LP in Corollary

1 of the main paper in both cases because of the single-peak property, so that F0 is a stationary point,

while Fu is not.

7.3. A More Complex Service-Time Distribution

We now show that the sufficient condition in Theorem 3 (a) of the main paper involving a sin-

gle peak is not always satisfied. For that purpose, we let the service-time distribution be the

mixture of two Erlang distributions. Let Ek(m) denote an Ek distribution with mean m, i.e.,

the distribution of the sum of k i.i.d. exponential random variables, each with mean m/k. Let

mix(Ek1(m1),Ek2(m2), p) denote the mixture of an Erlang Ek1(m1) distribution with probability

p and an Ek2(m2) distribution with probability 1−p, which necessarily has mean pm1+(1−p)m2.

Figure 5 presents simulation estimates of φ̈(u) in (32) and Lemma 1 of the main paper for

F0/GI/1 (LHS) and Fu/GI/1 (RHS) in the case c2a = 0.5, ρ=0.5, n=4,Ma = 10, where the service-

time distribution is chosen to be G = mix(E20(0.4),E20(1.6),0.5), which has mean 0.5(0.4) +
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0.5(1.6)= 1.0. Figure 5 shows that the condition of Theorem 3 (a) of the main paper is not satisfied

in either case.

Unlike the previous three examples, the conclusions from applying Corollary 1 of the main paper

are more complicated. As before, F0 was found to be the solution to the LP in the nearly-steady-

state example with (ρ= 0.1, n= 40), but it was not in the transient example with (ρ=0.7, n=4).

Moreover, the FW algorithm confirmed these conclusions. Starting with M , the stationary point

obtained has masses (0.6667,0.3333) on the points (0.500,2.000) in the transient example.

Figure 5 Simulation estimates of φ̈(u) in Lemma 1 of the main paper for F0/GI/1 (LHS) and Fu/GI/1 (RHS) in

the case c2a = 0.5, ρ= 0.5, n= 4,Ma = 10, where the service-time distribution in both cases is a mixture

of two Erlang distributions, specifically mix(E20(0.4),E20(1.6),0.5), as defined above.

7.4. Maximization Over G Given F

We next show simulation results for the associated maximization problem over candidate service-

time distributions G, given a specified inter-arrival time distribution F .

From Lemma 3, we know that we can apply a reverse-time representation to reduce this problem

to the case previously considered. That implies that, in the reverse-time representation, we should

look at the shape of φ̈s(ṽ) in the range [0, ρMs]. However, that is equivalent to looking at the

corresponding shape of φ̈s(v) over [−ρMs,0] without time-reverse representation. That means if the

original shape is strictly monotone increasing over [−ρMs,0], that is equivalent to the time-reverse
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shape is strictly monotone increasing over [0, ρMs] because 0 under the time-reverse representation

corresponds to ρMs under no time-reverse representation.

We next show the summation of simulated pdf function
∑n

i=1 Yi for M/GI/1 with G=G0 and

M/GI/1 with G=Gu with n= 4,Ma =Ms =10.

Figure 6 Simulation estimates of φ̈s(ṽ) in (5) associated with Lemma 3 for M/G0/1 (LHS) and for M/Gu/1

(RHS) in the case: c2a = 01.0, c2s = 0.5, ρ= 0.7, n= 4,Ms =10

From −ρMs to 0, we observe the strictly monotone increasing shape, thus the φ̈s is strictly

monotone increasing over [0, ρMs] such that G̃u is the optimal solution under time reverse rep-

resentation from Theorem 3. That implies that G0 is a stationary point of the optimization for

M/GI/1, whereas Gu is not.

8. The Associated Minimization Problem

We now consider the associated minimization problem, which corresponds to the supremum in (5),

(21) and (22) of the main paper being replaced by an infimum, and then the associated maximum in

(6), (27), (28) and (29) being replaced by a minimum. Then the inequality must be reversed in the

inequality (19) of the main paper which expresses the definition of a stationary point. Accordingly

the associated dual problem in (35) of the main paper becomes finding the vector λ∗ ≡ (λ∗

0, λ
∗

1, λ
∗

2)

that attains the maximum

max{λ0 +λ1 +λ2(1+ c2)}

such that r(ui)≡ λ0 +λ1ui +λ2u
2
i ≤ψ(ui) for all i, 1≤ i≤m. (16)
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If we simply replace λi via −λi such that the max in (16) can be replaced by min, we found the

dual problem in (16) is not equivalent to that in (36) of the main paper because the −ψ(u) is not a

strictly monotone decreasing and strictly positive convex function satisfying Lemma 1 of the main

paper. As a consequence, we are not able to completely replicate the proof of Theorem 3 of the

main paper, thus leading to weaker conclusions for the minimization problem.

Proposition 2. (sufficient conditions for F0 or Fu to be a stationary point) Under the same

initial three assumptions as in Theorem 2 of the main paper, (a) if ψ̈(u;F ) is strictly decreasing

over [0,M ] for any candidate cdf F , then Fu must be a solution of the LP in (34) of the main

paper. Hence, if this condition is satisfied for F =Fu, then Fu. must be a stationary point.

(b) Similarly, if ψ̈(u;F ) is strictly increasing over [0,M ] for any candidate cdf F , then F0 must

be a solution of the LP in (34) of the main paper. Hence, if this condition is satisfied for F = F0,

then F0. must be a stationary point.

Proof. Replace λi by −λi and make ψ(u) become −ψ(u) in (16). Thus we shall solve

min{λ0 +λ1 +λ2(1+ c2)}

such that r(ui)≡ λ0 +λ1ui +λ2u
2
i ≥−ψ(ui) for all i, 1≤ i≤m. (17)

It is the dual problem of maximization problem with −ψ as in the objective function. That implies

if ψ is strictly monotone decreasing, then −ψ is strictly monotone increase. Paralleling with proof

of Theorem 2 in the main paper, we can conclude the opposite conclusions.

Proposition 3. (a single peak for the minimization problem) For the minimization problem, if

ψ̈(u;F ) has a single peak over [0,M ] for all F ∈P(F), then all local optimizers must be three-point

distributions, in particular, the optimizers must be one of the {F0, Fu, Fb} where Fb is a three-point

distribution with only one interior point b ∈ (0,M). So that one of these three will be the global

optimal solution.
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Proof. Given (17), if ψ has one peak, then the −ψ is not a one peak function. We apply the same

argument before (39) in the main paper to show there is at most one interior intersection point.

However, due to −ψ not being one peak function, there is no other cases which can be ruled out,

thus it is possible to have F0, Fu as well as Fb being optimizers where Fb has two ending points 0

and M and it also has one interior point b∈ (0,M).

Incorporating the result of Proposition 3 and paralleling Theorem 4 of the main paper, we

establish the following result for minimization problem.

Theorem 1. (multiple peaks for minimization) Consider the setting of Theorem 3 of the main

paper. If ψ̈(u;F ) has at most n (1≤ n <∞) peaks over [0,M ] for any candidate F ∈ P(F), then

all stationary points of the optimization in (39) of the main paper must lie in Pn+2(F).

Proof. We apply the same argument before (39) of the main paper in the proof of Theorem 3 to

show there is at most n interior intersection point, then following via the proof of Proposition 3,

the proof is thus complete.
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