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We study the tight upper bound of the transient mean waiting time in the classical GI/GI/1 queue over

candidate interarrival-time distributions with finite support, given the first two moments of the interarrival

time and the full service-time distribution. We formulate the problem as a non-convex nonlinear program.

We derive the gradient of the transient mean waiting time and then show that a stationary point of the

optimization can be characterized by a linear program. We develop and apply a stochastic variant of the

Frank-Wolfe (1956) algorithm to find a stationary point for any given service-time distribution. We also

establish necessary conditions and sufficient conditions for stationary points to be three-point distributions

or special two-point distributions. We illustrate by applying simulation together with optimization to analyze

several examples.
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1. Introduction

It is often helpful to have a bound on the possible performance in a stochastic performance model

given only partial information, which can serve as a useful approximation. A classic example is the

mean steady-state waiting time in the GI/GI/1 queueing model, given the first two moments of the

underlying interarrival-time and service-time distributions. For that problem, the Kingman (1962)

bound has often been applied, but that bound is not tight. A long-standing open problem is to

determine the tight upper bound of the steady-state mean waiting time and the distributions that

attain it, exactly or asymptotically; see Daley et al. (1992), especially §10, Wolff and Wang (2003)
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and references therein. Progress on that problem is reviewed in Chen and Whitt (2020a), where

algorithms are developed to compute the conjectured upper bound, which is attained asymptoti-

cally by two point distributions, where the interarrival-time distribution, denoted by F0, has one

mass at 0, while the service-time distribution, denoted by Gu, has one mass at the upper limit of

support Ms, and then Ms is allowed to increase to infinity. A convenient formula is also developed

in Theorem 3.2 of Chen and Whitt (2020a) for an upper bound to the conjectured tight upper

bound, which provides a good approximation overall, but the main conjecture remains unresolved.

There are also variants of the classic extremal problem above when one of the two underlying

distributions is given. An appealing simple story is developed for higher moments of both the

transient and steady-state GI/GI/1 waiting time in Chen and Whitt (2021b) by applying the

theory of Tchebycheff systems from Karlin and Studden (1966) and stochastic comparison theory

from Rolski (1976) and Denuit et al. (1998). To state them, let Wn(F,G) be the waiting time of

customer (arrival) n starting empty with interarrival-time cdf F and service-time cdf G. Let Fu

and G0 be two-point distributions defined the same as Gu and F0 above. For these performance

measures and for interarrival-time and service-time distributions with bounded support, Theorems

1 and 3 of Chen and Whitt (2021b) show that the following order relations hold for all n, 1≤ n≤∞

(n=∞ means steady-state) and k≥ 2:

(a) E[Wn(Fu,G)k]≤E[Wn(F,G)k]≤E[Wn(F0,G)k] for all G,

(b) E[Wn(F,G0)
k]≤E[Wn(F,G)k]≤E[Wn(F,Gu)

k] for all F,

(c) E[Wn(Fu,G0)
k]≤E[Wn(F,G)k]≤E[Wn(F0,Gu)

k] for all F and G. (1)

Corresponding simple comparison results for the asymptotic decay rate of the steady-state waiting

time appear in Chen and Whitt (2020b). (These results require assumptions to avoid heavy tails.)

Unfortunately, the nice story in (1) breaks down for k= 1, i.e., for the transient and steady-state

mean. For k = 1, counterexamples to cases (a) and (b) in the first two lines of (1) for n≤∞ and

for case (c) in the final line for n<∞ were constructed by considering the special case of two point
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distributions in Chen and Whitt (2021c), extending previous results in §V of Whitt (1984) and

§8 of Wolff and Wang (2003). (The paper Chen and Whitt (2021c) studies optimization over two-

point and over three-point distributions.) Partial positive results for cases (a) and (b) with k = 1

and n=∞ (for the steady-state mean) are contained in Theorem 2 of Chen and Whitt (2021b). In

particular, case (a) was established for k = 1 and n=∞ when G can be represented as a mixture

of exponential distributions.

In this paper, we contribute by applying classical optimization theory to develop new mathe-

matical tools to study the extremal theory for the transient mean waiting time. To the best of our

knowledge, the present paper is the first to focus on tight bounds for the transient mean. Since the

transient mean increases to the steady-state mean as n increases (see (4) below), we also provide

new ways to study tight bounds for the steady-state mean.

In particular, we study the upper bound of the transient mean E[Wn(F,G)] over candidate

interarrival-time distributions F assumed to have finite support and specified first two moments, for

any given service-time distributionG assumed to have finite second moment (case(a) in (1) for k=1

and n<∞). We show that this problem can be represented as a non-convex nonlinear program. (In

the appendix Chen and Whitt (2021a) we obtain related results for maximizing E[Wn(F,G)] over

candidate service-time distributions G, for given interrarrival-time distribution F , corresponding

to case (b) of (1). We also consider the associated minimization problem there.)

In order to establish counterexamples and to obtain partial positive results, we focus on station-

ary points of the optimization, as in Proposition 3.1.1 of Bertsekas (2016) (see §4 below). It is well

known that any local optimum must be a stationary point. The first step is to derive the gradient

of the transient mean with respect to F , which we do for F having finite support in §3.

We next show in §4 that we can test whether or not F0 (or any other candidate F ) is a stationary

point of the optimization by solving a linear program. We specify the objective function and show

that it easily can be accurately estimated by stochastic simulation. In that way, we can construct

counterexamples and develop candidates for the optimal distribution. By combining simulation and
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optimization, in this paper we show that the pair (F0,Gu) is a stationary point of the optimizations

over F given Gu and over G given F0 for the steady-state mean in numerical examples, thus

providing evidence to support the main outstanding conjecture about case (c) mentioned in the

opening paragraph.

Given the gradient of the transient mean, we also show in §5 that we can apply the conditional-

gradient or Frank and Wolfe (1956) (FW) algorithm as in §3.2 of Bertsekas (2016) to calculate

a stationary point of the optimization in numerical examples. Because we estimate the objective

function by simulation, we use a stochastic variant of FW as in Reddi et al. (2016). Our version

of the algorithm typically converged very rapidly, in 2-5 steps, and only rarely in up to 15 steps,

thus providing a practical way to find stationary points.

Finally, in §6 we also provide numerical methods to determine structural properties, i.e., whether

the extremal distribution is a two-point or three-point distribution. In §6.1 we develop an abstrac-

tion of our optimization problem, so that the results can be applied to other related stochastic

models. This involves a moment problem over product measures. In §6.2 we establish structural

properties (monotonicity and convexity) of the objective function in our queueing problem. In §6.3

we then state positive structural results in the general setting from the structure established in

Lemma 1. The following §7 is devoted to the proofs. In §8 we give simulation examples related to

§6. in §9 we draw conclusions. Additional supporting material appears in Chen and Whitt (2021a),

an appendix available from the authors’ web pages.

2. The GI/GI/1 Model and the Optimization Problem

In this section we review the GI/GI/1 model and the optimization problem. The GI/GI/1 single-

server queue has unlimited waiting space and the first-come first-served service discipline. There

is a sequence of independent and identically distributed (i.i.d.) service times {Vn : n≥ 0}, each

distributed as V with cumulative distribution function (cdf) G, which is independent of a sequence

of i.i.d. interarrival times {Un : n≥ 0} each distributed as U with cdf F . With the understanding

that a 0th customer arrives at time 0, Vn is the service time of customer n, while Un is the interarrival

time between customers n and n+1.
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Let U have mean E[U ]≡ λ−1 ≡ 1 and squared coefficient of variation (scv, variance divided by

the square of the mean) c2a <∞; let a service time V have mean E[V ] ≡ τ ≡ ρ and scv c2s <∞,

where ρ≡ λτ < 1, so that the model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service,

assuming that the system starts empty, so that W0 = 0. The sequence {Wn : n≥ 0} is well known

to satisfy the Lindley recursion

Wn = [Wn−1 +Vn−1 −Un−1]
+, n≥ 1, (2)

where x+ ≡max{x,0}. Let W be the steady-state waiting time, satisfying Wn ⇒W as n→ ∞,

where ⇒ denotes convergence in distribution. It is well known that the cdf H of W is the unique

cdf satisfying the stochastic fixed point equation

W
d
= (W +V −U)+, (3)

where
d
= denotes equality in distribution. It is also well known that Wn

d
=max{Sk : 0≤ k≤ n} for

n≤∞, S0 ≡ 0, Sk ≡X0 + · · ·+Xk−1 and Xk ≡ Vk −Uk, k ≥ 1. Moreover, it is known that, under

the specified finite moment conditions, for 1≤ n≤∞, Wn is a proper random variable with finite

mean, given by

E[Wn]≡E[Wn|W0 = 0] =
n
∑

k=1

E[S+
k ]

k
<∞, 1≤ n<∞, and E[W ] =

∞
∑

k=1

E[S+
k ]

k
<∞; (4)

see §§X.1-X.2 of Asmussen (2003) or (13) in §8.5 of Chung (2001). We will exploit the formula for

the transient mean in (4) in our analysis.

The goal is to identify the distribution that yields a tight upper bound over F , given a specifi-

cation of the cdf G and the first two moments of F . In this paper we assume that the distribution

F has bounded support. Let P(µ, c2,M) be the set of probability measures on [0,M ] with finite

mean µ and scv c2, i.e., with second moment µ2(1+ c2).

With this notation, our primary goal is to establish results for the optimization problem

sup{E[Wn(F,G) : F ∈P(1, c2a,M)}, (5)
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for fixed cdf G with E[V ] = ρ < 1 and scv c2s <∞. The objective function is given by (4), but finding

the global optimal solution of (5) is challenging because it is a non-convex nonlinear program with

affine constraints. Thus we focus on local optimal solutions, which must be stationary points of

the optimization, under the additional assumption that F has finite support.

3. The Gradient of the Transient Mean Waiting Time

In this section we establish smoothness properties of the transient mean waiting time E[Wn] in the

GI/GI/1 queue as a function of the underlying interarrival-time cdf F for given service-time cdf

G. For this purpose, we consider interarrival-time distributions with finite support. Analogs of the

following results can be established for cdf’s with densities; see §3.1 in the appendix. These results

supplement the literature on continuity of queues, e.g., §X.6 of Asmussen (2003).

Let the finite support set in [0,M ] be F . Let the elements of F be 0 = u1 < u2 < . . . < um =M

with m≡ |F| ≥ 3. Let P(F) be the subset of P(1, c2a,M) with support set F . With this assumption,

we will simplify the notation. In particular, we will suppress the fixed service-time cdf G and we

will replace F by its pmf (probability mass function) p≡ (p1, . . . , pm). Let wn(p)≡E[Wn(p,G)]≡

E[Wn(F,G)].

With finite support and this new notation, the optimization problem in (5) becomes

max{wn(p)≡E[Wn(p)] : p∈P(F)}

such that
m
∑

i=1

pi = 1,
m
∑

i=1

uipi = 1,
m
∑

i=1

u2
i pi = (1+ c2a) and pi ≥ 0, (6)

where 0 = u1 <u2 < . . . < um =M are the support points in F ⊆ [0,M ]. There is no loss of generality

in going from the optimization problem in (5) to the optimization problem in (6) with finite

support, provided that the optimal solution to (5) has support in F . Thus, we always require that

F contains the support of the natural candidate F0, which has mass 1/(1+ c2a) in 1 + c2a and the

rest at 0. Support for conclusions can be gained by considering successively larger finite support

sets.
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We now show that the function wn(p) in (6) is a smooth function of p≡ (p1, . . . , pm). In particular,

we show that the gradient is well defined. We do that by showing that the Frechet derivative is

well defined. For that purpose, let ‖x‖ be the l1 norm in R
m, i.e., for x∈R

m,

‖x‖ ≡
m
∑

i=1

|xi|. (7)

The function wn(p) is said to be Frechet differentiable with respect to p if it is Frechet differentiable

with respect to p at each p̂∈P(F). The function wn(p) is Frechet differentiable with respect to p

at p̂∈P(F) if the following limit as p→ p̂ is well defined:

lim
‖p−p̂‖→0

∣

∣wn(p)−wn(p̂)−∇wn(p̂)
t · (p− p̂)

∣

∣

‖p− p̂‖
= 0, (8)

where ∇wn(p̂) is the gradient of wn at p̂, which we regard as an m× 1 column vector, i.e.,

∇wn(p̂)≡

((

∂wn

∂p1
(p̂)

)

, . . . ,

(

∂wn

∂pm
(p̂)

))t

(9)

with t denoting the transpose of vector in R
m. The gradient is associated with the local linear

approximation of wn(p) at some p̂∈R
m, using the dot product, as

wn(p)≈wn(p̂)+∇wn(p̂)
t · (p− p̂). (10)

We now show that the transient mean waiting time in this finite support setting is Frechet

differentiable with respect to the interarrival-time pmf p and derive the gradient and Hessian. We

write V (G) to indicate that V has cdf G; similarly, we write U(p̂) to indicate that U has pmf p̂.

Theorem 1. (Frechet derivative) For the GI/GI/1 queue in the finite support setting above, the

function wn(p) in (6) is Frechet differentiable with respect to p at p̂ in P(F) with partial derivatives

with respect to p at p̂ given by

∂wn

∂pi
(p̂) =

n
∑

j=1

E[(

j
∑

k=1

Vk−1(G)−

j−1
∑

k=1

Uk−1(p̂)−ui)
+], (11)

so that

∇wn(p̂)
t · (p− p̂) =

m
∑

i=1

∂wn

∂pi
(p̂)(pi− p̂i). (12)

Higher-order derivatives hold as well. The Hessian matrix H of wn(p) at p̂ given by

H(l, k)≡
∂(2)wn

∂pl∂pk
(p̂) =

n
∑

j=1

(j− 1)E[(

j
∑

k=1

Vk−1(G)−

j−2
∑

k=1

Uk−1(p̂)−ul −uk)
+]. (13)
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Proof. We do the proof of the gradient for n= 2; the argument for higher n and higher-order

differentiation is analogous. For any real-valued functions f(x) and g(x), let f(x) =Θ(g(x)) denote

that there exist constants c1 and c2 such that 0< c1 < c2 <∞ and c1g(x)≤ |f(x)| ≤ c2g(x) for all

x. Then, adding and subtracting by p̂i and p̂j inside the expression for w2(p) from (4), we get

w2(p) =
∑

i

E[(V0 −ui)
+]pi +

1

2

∑

i,j

E[(V0 +V1 −ui −uj)
+]pipj

=
∑

i

E[(V0 −ui)
+](pi− p̂i + p̂i)+

1

2

∑

i,j

E[(V0 +V1 −ui −uj)
+](pi − p̂i+ p̂i)(pj − p̂j + p̂j)

=
∑

i

E[(V0 −ui)
+]p̂i +

1

2

∑

i,j

E[(V0 +V1 −ui −uj)
+]p̂ip̂j

+
∑

i

E[(V0 −ui)
+](pi − p̂i)+

∑

i

E[(V0 +V1 −U0(F̂ )−ui)
+(pi − p̂i)+Θ(‖p− p̂‖2)

= w2(p̂)+
∑

i

∂w2

∂pi
(p̂)(pi− p̂i)+Θ(‖p− p̂‖2), (14)

where

∂w2

∂pi
(p̂) =

2
∑

j=1

E[(

j
∑

k=1

Vk−1(Ĝ)−

j−1
∑

k=1

Uk−1(F )−ui)
+]. (15)

To justify the conclusion in (14), we observe that there exists a constant C such that E[(V0 +

V1 − ui − uj)
+] ≤ C <∞ for all i and j. Consequently, the second term in the second line of

(14) associated with the second order of (pi − p̂i) can be bounded by the square of the norm, in

particular,

∣

∣

1

2

∑

i,j

E[(V0 +V1 −ui −uj)
+](pi − p̂i)(pj − p̂j)

∣

∣≤C
∑

i,j

∣

∣(pi− p̂i)(pj − p̂j)
∣

∣

≤C
∑

i,j

∣

∣(pi− p̂i)
∣

∣

∣

∣(pj − p̂j)
∣

∣=C‖p− p̂‖2.

Therefore, as ‖p− p̂‖→ 0,

∣

∣w2(p)−w2(p̂)−
∑

i

∂w2

∂pi
(p̂)(pi− p̂i)

∣

∣

‖p− p̂‖
≤C

‖p− p̂‖2

‖p− p̂‖
=C‖p− p̂‖→ 0.

Hence, we have shown that w2(p) is Frechet differentiable. We can extend to general n by observing

that the argument above implies that for n=2 the relation (10) extends to

wn(p)≈wn(p̂)+∇wn(p̂)
t · (p− p̂)+O(‖p− p̂‖2) as ‖p− p̂‖→ 0. (16)
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It is not difficult to prove that (16) holds for all n≥ 2 by mathematical induction.

Given (11), we can continue to take the derivative with respect to p at p̂, so that

∂2w2

∂pl∂pk
(p̂) =

2
∑

j=1

E[(

j
∑

k=1

Vk−1(Ĝ)−

j−2
∑

k=1

Uk−1(F )−ul−uk)
+]

= E[(
2

∑

k=1

Vk−1(Ĝ)−ul −uk)
+]. (17)

Therefore, we directly obtain (13) for the case n = 2. We can continue the argument to obtain

(13).

4. The Linear Program for a Stationary Point

We now show how to exploit the smoothness established in Theorem 1 to establish partial results

for the optimization problem formulated in (5) and (6). First, we observe that there exists a global

maximum because we are maximizing a continuous function over a compact subset of Rm.

Recall that a point p̂ is a local maximum for (6) if there exists δ > 0 such that

wn(p)≤wn(p̂) for all p such that ‖p− p̂‖< δ. (18)

Clearly, there exists at least one local maximum because the global maximum is necessarily a local

maximum. We apply the following necessary condition for a local maximum from Proposition 3.1.1

of Bertsekas (2016).

Proposition 1. (necessary condition for a local maximum, Proposition 3.1.1 of Bertsekas

(2016)) If p̂∈P(F) is a local maximum of wn(p) in (6), then

∇wn(p̂)
t · (p− p̂)≤ 0 for all p∈P(F). (19)

If there exists p̂ satisfying (19), then p̂ is called a stationary point (of the optimization).

It will be convenient to look at the partial derivatives in (11) as a function of the support point

u with p̂∈P(F) given. Hence, we define

φa(u)≡
∂wn

∂pi
(p̂)(u)≡

n
∑

i=1

E[(
i

∑

k=1

Vk−1(G)−
i−1
∑

k=1

Uk−1(p̂)−u)+], u≥ 0. (20)
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Corollary 1. (the key linear program) A pmf p̂ in P(F) is a stationary point of the optimiza-

tion in (6), satisfying (19), if and only if p̂ is the solution of the linear program (LP)

sup{∇wn(p̂)
t · p≡

m
∑

i=1

∂wn

∂pi
(p̂)pi ≡

m
∑

i=1

φa(ui)pi : p∈P(F)}; (21)

for φa(u) in (20), i.e., if and and only if

sup{
m
∑

i=1

φa(ui)pi : p∈P(F)}=
m
∑

i=1

φa(ui)p̂i. (22)

For the steady-state mean, the two-point cdf F0 provides the tight upper bound for E[W (F,G)]

for many G, but that is not true for G0, as shown in §8 of Wolff and Wang (2003). Hence, we

now apply Corollary 1 to study the special two-point interarrival-time distribution F0 for the case

G≡G0.

Example 1. (application of Corollary 1 to an established counterexample)

We now assume that the service-cdf is the two-point cdf G0. We consider two cases, one designed

to approximately represent steady state and one to be genuinely transient. The nearly-steady-

state example has n= 40, ρ= 0.1, c2a = c2s = 0.5,M = 10. The support contains m = 401 points in

[0,10] (including the endpoints) so that, F0 is in the support, while the transient example has

n= 4, ρ=0.7, c2a = c2s =0.5,M = 10. (The cdf F0 as mass 1/(1+ c2a) on 1+ c2a = 1.50.)

In both cases we apply simulation to estimate the objective function in (20) when G=G0 and

F = F0 and then solve the linear program in (21). We perform 5 independent replications, so that

we can estimate 95% confidence intervals. In each replication, use a large sample size such as 106,

so that the randomness in the objective function can be ignored. When we do the optimization, we

always find that the solution has support on at most three points, so that there is little ambiguity.

When we apply this procedure for most standard service-time distributions (for all but one

examples in §8), we find that F0 is a stationary point. However, for G0, for the example with n= 4,

we find that F0 is not the solution of the linear program. In particular, the solution F ∗ of the linear

program has masses 0.3423,0.3242,0.3333 on 0.020,1.500,1.520, respectively. Hence, F0 is not a

stationary point. As a consequence, F0 is not locally optimal, and thus not optimal. On the other

hand, for the nearly-steady-state example with n= 40, we find that F0 is a stationary point. For

G0, we find that the stationary point of the optimization with respect to F can depend on ρ.
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5. A Version of Frank-Wolfe (1956) to Find a Stationary Point

The availability of the gradient of the transient mean allows us to apply the conditional-gradient

or Frank and Wolfe (1956) algorithm as in §3.2 of Bertsekas (2016), Lacoste-Julien (2016) and

references there to compute a stationary point starting from any initial feasible F , provided we

can calculate the objective function (20) in the LP in Corollary 1. As in stochastic variants of

the Frank and Wolfe (1956) algorithm, such as in Reddi et al. (2016), we estimate the objective

function of the LP by applying simulation.

We can exploit the first-order linear approximation in (10). By Proposition 1, if p̂∈P(F) is not a

stationary point of the optimization in (6), then we can find a p∈P(F) such that∇wn(p̂)
t ·(p− p̂)>

0. We thus apply line search to find a p that improves the objective function. The FW algorithm

computes a succession of improvements until a stationary point is found.

Let the successive cdf’s F be indexed by j ≥ 1. (These successive Fj play the role of p̂ in Corollary

1.) The first step is to use Monte-Carlo simulation to estimate the objective value in (20) via

φa(u;Fj) ≡
n

∑

i=1

E[(
i

∑

k=1

Vk−1(G)−
i−1
∑

k=1

Uk−1(Fj)−u)+] (23)

≈
1

B

B
∑

b=1

n
∑

i=1

(
i

∑

k=1

V
(b)
k−1(G)−

i−1
∑

k=1

U
(b)
k−1(Fj)−u)+, u∈F . (24)

where we sample B i.i.d. copies of {(Vk,Uk) : 0≤ k ≤ n− 1} for each j. In each iteration we solve

a linear program in the optimization step. In the following practical algorithm, we have made

an additional simplifying approximation, letting the step size be εj = 2/(j + 2), j ≥ 1. We found

that this approximation was effective in all our numerical examples. See the appendix for a more

complicated step size algorithm following Lacoste-Julien (2016). There we prove that the sequence

of cdf’s {Fj : j ≥ 1} converges to a stationary point as j→∞, assuming accuracy in the objective

function, by applying Lacoste-Julien (2016). Here we give a practical algorithm that we have found

to be effective in identifying a stationary point in only a few iterations.

To state the practical algorithm, let EF [·] denote the expectation with respect to candidate the

cdf F of U .
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Algorithm 1: Practical Stochastic Frank-Wolfe Algorithm

Initialization: A distribution F1 in the feasible region P(F).

Input: Step size εj ≡ 2/(2+ j) for each step j = 1,2, . . . and a stopping threshold δ > 0

Procedure: For each iteration j =1,2, . . . , given a distribution Fj:

1 Compute the estimate of φa(u) in (23) by

φ̂a(u;Fj)≡
1

B

B
∑

b=1

n
∑

i=1

(
i

∑

k=1

V
(b)
k−1(G)−

i−1
∑

k=1

U b
k−1(Fj)−u)+, u∈F (25)

2 Apply the LP in Corollary 1 to solve Qj = argmaxF∈P(F)EF [φ̂a(U(Fj−1);F )] and let the

FW gap at iteration j be

ḡj ≡EQj
[φ̂a(U ;Fj)]−EFj

[φ̂a(U ;Fj)] (26)

3 Update Fj+1 = (1− εj)Fj + εjQj .

Repeat until ḡj ≤ δ or Qj is not changed for two consecutive iterations. If Qj has not

changed for two consecutive iterations, test whether Qj itself is a stationary point. If so,

stop; otherwise, continue iterating.

In all our numerical experiments, we found that, for given service-time cdf G, the stochastic

FW algorithm converged to the same stationary point whatever initial cdf F is used. (The traffic

intensity ρ is the mean of G, so it is fixed given G.) In addition, we observed that the sequence

of {Qj} does not change after the initial few steps and Fj →Q∞ as j→∞. Algorithm (1) always

terminated within at most 15 steps.

With regard to the extremal cdf’s, here is a summary of our findings: For the case (a), we

determine stationary points for F/G0/1 and found the F0 is not always stationary point. We also

found examples of cdf’s G having a density for which F0 is not optimal; see §8. We have not yet

found an example of a completely monotone G for which F0 is not optimal. Thus, we conjecture

that the transient analog of Theorem 2 of Chen and Whitt (2021b) is valid.

For the case (b), we found that G0 was the only stationary point for E[Wn(M,G)] with n<∞.

The uniqueness for n<∞ is in contrast to the insensitivity property of the steady-state mean. For
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the case (c), we confirm the conjectured solution (F0,Gu) and (F0,Gu,n) are stationary points for

E[W∞(F,G)] and E[Wn(F,G)]. (Recall that two-point distributions Gu,n is a two-point distribu-

tion, where the upper mass point converges to Ms as n→∞.)

To illustrate, we describe two experiments, one for the transient mean and one for the (approx-

imate) steady-state mean. For the transient mean, we let n= 4, ρ= 0.5, B = 1× 107 and support

consisting of m = 401 points uniformly distributed in the interval [0,10]. (Since F0 has mass on

1+ c2a =1.50, F0 is in the support.) For steady-state waiting time, we let ρ= 0.1 and n=40. In the

simulation studies, we consider different initial distributions. In all experiments, the optimization

step in the algorithm (1) is numerically solved via the Gurobi solver in CVX.

5.1. The Transient Mean Waiting Time

We first consider the transient mean E[W4] for the four service-time distributions: exponential (M),

Erlang (E10) and the special two-point distributions Gu with one mass point on 10 and G0 with

one mass point on ρ2(1+ c2a) = 3/8= 0.375. For G being M , E10 and Gu, the algorithm converged

to F0 in two steps for all initial F considered, leading to Qj = F0 for all subsequent j.

For G0, the story was different. Table 1 gives the numerical calues of Qj for G0 and F1 = Fu

when the support contains m= 401 points uniformly distributed in [0,10].

Table 1 The successive optimal distributions Qj for E[W4(F,G0)] with c2a = c2s =0.5, ρ= 0.5 when the initial

distribution is F =Fu

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0.0000 1.500

2 0.3795 0.1538 0.4667 0.1000 1.400 1.600

3 0.4190 0.5810 0.1500 1.600

4 0.3816 0.4828 0.1356 0.1000 1.550 1.575

5 0.3816 0.4828 0.1356 0.1000 1.550 1.575

The solution in Table 1 is a three-point distribution, but it has two adjacent points in its support

(1.5500 and 1.575), suggesting that it might change if we refined the support. Indeed, when we
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increasem to 801 from 401, we find the right to mass points change to 1.5500 and 1.5625. Continuing

to increase the support set in this way, our numerical estimate of the extremal distribution for (5)

is actually a two-point distribution with masses 0.3816 and 0.6184 on 0.1000 and 1.5556.

5.2. Steady-State Mean Waiting Time

We repeat the above experiments for the approximate steady-state mean waiting time E[W40(F,G)]

under the same four models. The story is not changed for F =M,E10, Fu, again yielding F = F0 as

the stationary point. For F/G0/1, we obtain F0 being approximate stationary point under ρ= 0.1.

But when we set ρ = 0.5, we obtain a different stationary points F with three masses on

{0.3295,0.3232,0.3472} on support {0.000,1.375,1.600}. Table 2 shows the successive Qj.

Table 2 The sequence of optimal distribution Qj for GI/G0/1 for E[W60(F,G)] during each iterations when

initial distribution is F =M with ρ=0.5

Iterations p1 p2 p3 x1 x2 x3

1 0.3333 0.6667 0.000 1.500

2 0.4170 0.1413 0.4417 0.000 0.175 1.325

3 0.3326 0.3448 0.3226 0.000 1.450 1.550

4 0.3317 0.3509 0.3175 0.000 1.425 1.575

5 0.3304 0.3571 0.3125 0.000 1.400 1.600

6 0.3304 0.3571 0.3125 0.000 1.400 1.600

7 0.3287 0.3636 0.3077 0.000 1.375 1.625

8 0.3287 0.3636 0.3077 0.000 1.375 1.625

9 0.3295 0.3232 0.3472 0.000 1.375 1.600

10 0.3295 0.3232 0.3472 0.000 1.375 1.600

Therefore, we obtain different stationary points under different ρ. We see that F0 is not the

stationary point for F/G0/1 for all ρ. It seems likely that a three-point distribution will be the

extremal distribution for E[W∞(F,G0)] for some ρ.
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6. Sufficient Conditions for Structured Extremal Distributions

In this section we establish sufficient conditions for the extremal cdf to have special structure, e.g.,

to be a three-point distribution or a two-point distribution. However, we first abstract the queueing

problem we have considered so far to provide a framework that can be used for other stochastic

models in addition to the GI/GI/1 transient mean waiting time. We show that our problem can

be regarded as a special case of a multi-dimensional moment problem. That generalization leads to

extensions of the function φa(u) in (20). We will then identify structure needed for these functions

in order to characterize the solutions of the optimization problems. To provide guidance, in §6.2

we will establish structure of the objective function arising with the transient mean waiting time.

6.1. An Abstraction to a Multi-Dimensional Moment Problem

Our abstraction extends the classical moment problem, as reviewed in Birge and Dula (1991),

Smith (1995) and other references therein. A version (special case) of the classical moment problem

is the optimization

max
F

{E[ĝ(X)]≡

∫ M

0

ĝ(x)dF (x) subject to F ∈P(µ, c2a,M)}, (27)

where ĝ is a real-valued continuous function defined on [0,M ] and X is a random variable dis-

tributed as F where F lies in the domain P(µ, c2a,M) with fixed first two moments µ and µ2(1+c2a)

and bounded support [0,M ], which is thus convex and compact. The classical moment problem in

our setting is a convex program over a compact domain and it has been shown that there always

exists an optimal distribution F ∗ with all mass on at most three points.

In this paper we consider a similar moment problem for a continuous objective function ĝ over

independent random variables with a specified common marginal distribution; i.e., over random

vectors (X1, . . . ,Xn), where Xi are independent random variables with a common marginal cdf’s

F . The new formulation is

max
F

{E[ĝ(X1, . . . ,Xn)]≡

∫ M

0

ĝ(x1, . . . , xn)dF (x1) . . . dF (xn) subject to F ∈P(µ, c2a,M)},(28)

where ĝ(x1, . . . , xn) is a nonnegative continuous real-valued function defined on the product space

[0,M ]n withM ≥ 1+c2 (to have a feasible solution). In (28) the common marginal distribution has
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specified first two moments. The program formulation in (28) has many applications such as robust

estimation in tail analysis and rare-event simulation; e.g., Lam and Mottet (2015, 2017) propose

the reformulation in (28) with ĝ being an indicator function. In that case, for some positive b, we

are interested in solving

max
F

{P (X1+ . . .+Xn ≥ b) =

∫ M

0

1{x1+...+xn≥b}dF (x1) . . . dF (xn) subject to F ∈P(µ, c2a,M)},

where all Xi are independent and distributed as the same cdf F , where F lies in an uncertainty

set with unspecified tail.

As in §3, we restrict attention to probability distributions with finite support. We assume that

all F ∈ P(µ, c2a,M) have the common finite support F with elements 0 = u1 < . . . < um =M with

sufficient large m. So that we have the following alternative formulation for (28),

max
p
ŵn(p)≡

∑

i1,...,in

ĝ(ui1 , . . . , uin)pi1 . . . pin (29)

subject to
m
∑

i=1

pi = 1,
m
∑

i=1

uipi = 1,
m
∑

i=1

u2
ipi =1+ c2 and pi ≥ 0,

where g : F → R and the probability mass function p belongs to P(F), which is a compact and

convex subset of Rm.

6.2. Structural Properties of the Objective Function in (20)

To provide guidance about what possible conditions to assume for our general objective function,

We next establish structural properties of the objective function in (20) and (21) regarded as a

function of u over the interval [0,M ].

Lemma 1. (structure of the objective function in (20)) If the fixed cdf G of V has a positive

pdf g over [0,∞), then the random variable Yi ≡
∑i

k=1 Vk −
∑i−1

k=1Uk has a cdf Γi with support in

[−(i− 1)M,∞) which has a positive pdf γi over [0,∞) for each i, 1≤ i≤m. Hence, for x> 0, the

cdf of Yi can be expressed by

Γi(x) = Γi(0)+

∫ x

0

γi(y)dy for x≥ 0, (30)
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so that the function φa in (20) can be expressed as

φa(u)≡
∂wn

∂p
(p̂) =

n
∑

i=1

∫ ∞

0

(x−u)+γi(x)dx> 0, u≥ 0. (31)

Hence, φa(u)> 0 and the first two derivatives of φa in (20) with respect to u exist for u > 0 and

satisfy

φ̇a(u) =
n
∑

i=1

(Γi(u)− 1)< 0, φ̈a(u) =
n

∑

i=1

γi(u)> 0, u≥ 0. (32)

Thus, φa is continuous, strictly decreasing and strictly convex on [0,M ].

Proof. We directly calculate the derivative of φa(u) in (20) term by term. Since the random

variable V with cdf G has a positive pdf, so does Yi for each i; see §V.4 of Feller (1971). To calculate

the derivative of each term in the sum, we apply the Leibniz integral rule for differentiation of

integrals of integrable functions that are differentiable almost everywhere. Each term involves the

positive part function (x)+ ≡max{x,0}. Observe that the derivative of (x−u)+γi(x) with respect

to u is −γi(x) for u< x. That implies that

φ̇a(u) =−

n
∑

i=1

∫ ∞

u

γi(x)dx=
n

∑

i=1

(Γi(u)− 1). (33)

The rest follows directly.

Going forward, we will see that the extremal distributions will depend on the structure of φ̈a(u) in

(32), which is the second derivative of φa(u) in (20). where γi is the pdf of Yi ≡
∑i

k=1 Vk−
∑i−1

k=1Uk.

We will establish concrete results in the next section.

6.3. Sufficient Conditions to be a Stationary Point

We clearly have a generalization of the linear program in Corollary 1 with the objective function

φa(u) in (20) replaced by a new function

ψ(u)≡
∂ŵn

∂pi
(p̂)(u) (34)

for ŵn in (29). It suffices to check the optimality for

max{

m
∑

i=1

ψ(ui)pi ≡∇g(p̂)tp, p∈P(F)}=∇g(p̂)tp̂. (35)



18

As regularity conditions we require the properties deduced for φa in Lemma 1, but we also an extra

condition on the second derivative ψ̈.

We apply duality theory for the LP in (35). From basic LP duality theory as in Ch. 4 of

Bertsimas and Tsitsiklis (1997), the dual problem associated with the LP in (35) is to find the

vector λ∗ ≡ (λ∗
0, λ

∗
1, λ

∗
2) that attains the minimum

min{λ0 +λ1 +λ2(1+ c2)}

such that r(ui)≡ λ0 +λ1ui +λ2u
2
i ≥ψ(ui) for all i, 1≤ i≤m. (36)

We are now ready to state the results obtained in this paper. Our first theorem establishes

sufficient conditions for any specific stationary point to be a three-point distribution. For this

purpose, we now introduce additional notation. Let Pn(F) denote the subset of P(F) with support

on at most n points.

For the queueing problem, Lemma 1 shows that the first three conditions are satisfied if the fixed

service-time cdf G has a positive pdf.

Theorem 2. (sufficient condition for a stationary point p̂ to be a three-point distribution) We

make the following initial three assumptions for the optimization problem in (29)-(35):

(i) The objective function ŵn(p) in (29) is Frechet differentiable at all p∈P(F).

(ii) ψ(u) in (34) is a strictly convex, strictly positive and strictly decreasing function over [0,M ].

(iii) ψ(u) is twice differentiable and the second derivative ψ̈(u) is a smooth function over [0,M ].

For any stationary point p̂ of (29), the LP given p̂ in (35) has a unique optimal solution, which

is thus an extreme point, and thus an element of P3(F), if and only if the quadratic function r(u)

in (36) has at most three intersection with ψ(u)≡ψ(u; p̂) over [0,M ].

Our next theorem establishes sufficient conditions for one of the special two-point distributions

F0 or Fu to be a stationary point of the optimization. For the shape of ψ̈(u), we introduce the

following strong from of unimodality.
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Definition 1. (single peak) A nonnegative continuous function f : [0,M ]→R is said to have a

single peak if its maximum value is achieved uniquely at an interior point û and if f is monotone

increasing over [0, û] and monotone decreasing over [û,M ].

Theorem 3. (sufficient conditions for F0 or Fu to be a stationary point) Under the same initial

three assumptions as Theorem 2,

(a) For any candidate cdf F , if ψ̈(u;F ) is strictly decreasing or has a single peak over [0,M ],

then F0 must be a solution of the LP in (35). Hence, if this condition is satisfied for F = F0, then

F0. must be a stationary point.

(b) Similarly, for any candidate cdf F , if ψ̈(u;F ) is strictly increasing over [0,M ], then Fu must

be a solution of the LP in (35). Hence, if this condition is satisfied for F = Fu, then Fu. must be a

stationary point.

Corollary 2. (sufficient conditions for F0 or Fu to be a global optimum) Under the same initial

three assumptions as Theorem 2, if ψ̈(u;F ) satisfies the specified conditions for all F ∈P(F), then

the identified stationary points in Theorem 3 provide the unique global optimal solution.

We can also extend to other functional forms of ψ̈ using the following generalization of Definition

1.

Definition 2. (multiple peaks) A nonnegative continuous function f : [0,M ] → R is said to

have n peaks if it has n unique interior local maximum points and it is monotone increasing before

the first maximum point and then thereafter the function is first monotone decreasing and then

monotone increasing between each adjacent two peaks before the final maximum point. Then the

function is monotone decreasing after the final maximum point.

Theorem 4. (implication of multiple peaks) Under the setting of Theorem 3. If ψ̈(u;F ) has at

most n (1≤ n <∞) peaks over [0,M ] for any candidate F ∈ P(F), then all stationary points of

the optimization in (35) must lie in Pn+1(F).

7. Proofs for Theorems 2-4 in Section 6.3

We now prove the results above.



20

7.1. Proof of Theorem 2

We first show the necessary condition, and then the sufficient condition.

Necessary Condition: Starting with p̂ being a stationary point satisfying the condition that

r(u) has at most three intersection point with ψ(u; p̂), the main goal is to show such (35) has a

unique solution, so that the p̂ must be an extremal point. For that purpose, we apply the following

lemma, which is Corollary 1 to Theorem 4 in Tijssen and Sierksma (1998).

Lemma 2. (non-degeneracy and uniqueness in LP) A standard LP has a unique optimal solution

if and only if its dual has a non-degenerate optimal solution.

To apply Lemma 2 from Corollary 1 to Theorem 4 in Tijssen and Sierksma (1998), we express

the dual (36) in standard form by introducing slack variables and dividing the three variables λi

into their positive and negative parts as

min{(λ+
0 −λ−

0 )+ (λ+
1 −λ−

1 )+ (λ+
2 −λ−

2 )(1+ c2)}

such that (λ+
0 −λ−

0 )+ (λ+
1 −λ−

1 )ui +(λ+
2 −λ−

2 )u
2
i + si = ψ(ui) for all i, 1≤ i≤m,

and λ+
j ≥ 0, λ−

j ≥ 0, 1≤ j ≤ 3; si ≥ 0, 1≤ i≤m. (37)

In the setting of (37), we have m+ 6 variables and m equality constraints. To show that there

exists a non-degenerate optimal solution, will show that at least one among (λ+
i , λ

−
i ) for i= 0,1,2

are not equal to be zero, e.g., λ+
0 > 0, λ−

1 > 0 and λ+
2 > 0, while λ−

0 = 0, λ+
1 = 0 and λ−

2 = 0. That

is equivalent to show all λ∗
i in (36) are not equal to zero. We will achieve the goal by establishing

Lemma 3 below.

Hence, when at most three of the slack variables si are 0 (at most three intersection points), the

dual problem has a non-degenerate solution solution, thus the p̂ will be the unique solution in (35)

and p̂ must be in P3(F), i.e., must be a three-point distribution.

Lemma 3. (non-degeneracy for the dual) For the dual formulation (36), any optimal dual solu-

tion (λ∗
0, λ

∗
1, λ

∗
2) associated with p̂, λ∗

i for i= 0,1,2 can not be zero.



21

From (36), we see that the constraints produce the quadratic function r(u) that is required

to dominate r(u) for all u ∈ F . We exploit the structure of the function ψ(u) in (35), under the

assumed conditions. (The first three are established in Lemma 1.) Under those conditions, ψ(u)

is continuous, strictly positive, strictly decreasing and strictly convex. Recall that we are working

with standard LP’s, where the cdf F has finite support set F , but the support set F always contains

the two endpoints 0 and M .

The inequality constraints in (36) are only required to hold at the finitely many point in the

support set F . Even though we exploit the structure of continuous functions, the following argument

applies to any finite support set.

If M = 1+ c2, the second moment, which is the lower limit of the support, then the primal has

the unique feasible, and thus optimal, two-point feasible distribution with masses on 0 and 1+ c2.

So henceforth assume that M > 1+ c2 as well.

We start knowing that both the dual LP (36) and the primal LP (35) have feasible solutions

and the feasible region of the primal LP (35) is compact, thus they both have at least one optimal

solution. We will show that the primal LP (35) has a unique solution by applying Lemma 2 and

showing that no optimal solution of the dual (36) can be degenerate.

Hence, we will show (i) that we cannot have the optimal λ∗
i be 0 for any i in the (36).

We start with the λ∗
i . First, we must have λ0 ≥ψ(0)> 0, so we cannot have λ∗

0 =0. Next, suppose

that λ1 = 0. In this setting, with λ∗
0 > 0 and λ∗

1 = 0, if λ∗
2 ≥ 0, then r can intersect ψ(u) only at 0,

which cannot correspond to a feasible solution of the primal. (We exploit complementary slackness

here and in the following.) On the other hand, if λ∗
2 < 0, then ψ(u) can only intersect ψ at the

two endpoints, without violating the conditions at the endpoints, but that does not correspond to

a feasible solution of the primal, assuming that M > 1+ c2. Hence, we cannot have a degenerate

optimal solution with λ∗
1 = 0. Finally, suppose that λ∗

2 = 0, which makes ψ linear. If λ0 = ψ(0)> 0,

then again ψ can only meet ψ(u) at the two endpoints without violating the conditions at the

endpoints, but that does not correspond to a feasible solution of the primal, assuming that M >

1+ c2. Otherwise, r can only have one intersection point with ψ(u) (as we have done).
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Sufficient Condition: To prove the sufficient condition, if p̂ is the unique optimal solution

for (35) which must be ∈ P3(F), by strict complimentary slackness condition in LP, the optimal

distribution can be identified from the solution to the LP, so that such ψ and r has at most three

intersection points over [0,M ] which corresponds to the same points having positive masses in p̂.

7.2. Proof of Theorem 3

We now consider the LP (35) based on an objective function determined by a cdf F under the

conditions of Theorem 3. In each case we will show that the LP (35) has a unique optimal solution

and the unique optimal solutions will be the specified special two-point distribution.

We first do the proof for (a) and then (b). For (a), we first establish the claim for only one unique

interior intersection point and then the claim for F0.

The argument for the single peak case is essentially same as that for the strictly monotone

decreasing case. So we do the proof for the both two cases together.

We first show that at most one of the internal inequality constraints for 0 = u1 < ui < um =M

can be satisfied as equalities if ψ is strict monotone (strictly decreasing or strictly increasing) or

has a single peak. For any interior intersection point u where r(u) = ψ(u), according to (36), we

also have

r̈(u) = 2λ∗
2 = ψ̈(u),

ṙ(u) = λ∗
1 +2λ∗

2u= ψ̇(u),

r(u) = λ∗
0 +λ∗

1u+λ∗
2u

2 =ψ(u). (38)

We first assume that equalities are obtained at the two interior points x, y, where 0<x< y <M

and show that produces a contradiction. Since x, y are interior intersection points,

r̈(x) = 2λ∗
2 = ψ̈(x), ṙ(x) = ψ̇(x), r(u) = ψ(x),

r̈(y) = 2λ∗
2 = ψ̈(y), ṙ(y) = ψ̇(y), r(y)= ψ(y). (39)

Looking at the differences of these derivatives, we obtain

2λ∗
2 =

ψ̇(y)− ψ̇(x)

y−x
= ψ̈(x) = ψ̈(y). (40)
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Therefore, by Mean Value Theorem, there exists ũ ∈ (x, y) such that ψ̈(ũ) = 2λ∗
2. That leads to a

contradiction because such ψ̈(u) can only have at most two intersection points with 2λ∗
2.

Assume the only one interior intersection point is y, we next show the ψ(u) and r(u) can not

intersect at u=M .

Recall at the point y, we must have

2λ∗
2 = ψ̈(y), ṙ(y) = ψ̇(y), r(y) =ψ(y). (41)

Since r(u)>ψ(u) for u∈ (y,M), then 2λ∗
2 > ψ̈(u) for u∈ (y, y+ δ) for some small δ > 0. Therefore,

given the shape of ψ̈(u), the point y must be the final intersection point for ψ̈(u) and 2λ∗. For

u > y, since 2λ∗ > ψ̈(u) (ψ̈ has a single peak or is strictly monotone decreasing), that implies the

ψ(u)< r(u) for all u so that they can not intersect again at u=M .

The only remaining possible case is that the ψ and r will intersect at 0 and an interior point

b ∈ (0,M). By the strict complementary slackness Condition in LP, the optimal distribution can

be identified from the solution to the LP. So that the optimal distribution only has the positive

mass on 0 and b. A two-point distribution which has one mass at 0 must be F0.

Essentially the same argument applies in part (b), but now the two-point distribution must have

one inner point and mass at the upper end point M , which corresponds to the claimed Fu.

7.3. Proof of Theorem 4

Paralleling with lines before (40) in the proof of Theorem 3, given the number of peaks equal to

n ≥ 2, we can first show the number of interior intersection points between ψ and r is at most

n. Then paralleling the arguments after (41), since the first intersection point of ψ and r must

be the second intersection point between ψ̈ and r̈, the ψ and r will not intersect at M . With at

most n interior intersection points and possible additional one intersection point at 0, the total

number intersection points between ψ and r is at most n+1. Therefore, the optimal distribution

in Pn+1(F).
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8. Numerical Examples Exploiting Theorem 3 (a)

In this section we apply simulation to examine if the conditions in Theorem 3 (a) for F0 and other

F to be a stationary point of the optimization are satisfied for various GI/GI/1 examples, in the

context of Corollary 1 and Lemma 1. That is, we consider the maximization over interarrival-time

cdf’s F with specified first two moments for given service-time cdf G. For that purpose, we will

look at φ̈a(u) in (32) for φa(u) in (20) We obtain supporting positive results for the exponential

(M) and Erlang (E2) service-time distributions and negative results for a mixture of two Erlang

service-time distributions.

First, Figure 1 shows simulation estimates of φ̈(u) in (32) and Lemma 1 for F0/M/1 (LHS) and

M/M/1 (RHS) in the case c2a = 0.5, ρ= 0.7, n= 4,M = 10 with m= 501 equally spaced points in

the support. Both plots show that φ̈a(u) is monotonically decreasing over [0,M ], implying that F0

is the optimal solution in the LP in (21) or (35)) in both cases. That in turn implies that, when

the service-time distribution isM , F0 is a stationary point for the optimization, whileM is not. As

shown in the appendix, corresponding plots for the models Fu/M/1 and E2/M/1 look very similar

to the LHS and RHS of Figure 1, respectively, again implying that F0 is the optimal solution in

the LP in (21) or (35)) in both cases. Hence, neither Fu nor E2 is a stationary point when the

service-time distribution is M .

Next, Figure 2 shows simulation estimates of φ̈(u) in (32) and Lemma 1 again in the case c2a =

0.5, ρ= 0.7, n= 4,M = 10 for two cases involving Erlang distributions. First, the LHS shows the

simulation estimates for the F0/E2/1 model. In this case we do not see monotonicity, but instead

we see the single-peak property over [0,M ]. Thus, the LHS shows that F0 is again a solution of

the LP in (35), because of the single-peak property, so that F0 is a stationary point. The model

with interarrival-time cdf Fu looks very similar, again showing the single-peak property, but that

implies Fu is not a stationary point.

The RHS in Figure 2 considers a more complex service-time cdf. Let Ek(µ) denote an Ek distri-

bution with mean µ, i.e., the distribution of the sum of k i.i.d. exponential random variables, each
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Figure 1 Simulation estimates of φ̈(u) in (32) and Lemma 1 for F0/M/1 (LHS) and M/M/1 (RHS) in the case

c2a = 0.5, ρ=0.7, n=4,M = 10. These plots show that F0 is a solution of the LP in (21) or (35) in both

cases, so that F0 is a stationary point, while M is not.

with mean µ/k. Let mix(Ek1(m1),Ek2(m2), p) denote the mixture of an Erlang Ek1(m1) distribu-

tion with probability p and an Ek2(m2) distribution with probability 1− p, which necessarily has

mean pm1 + (1− p)m2. The specific G is mix(E20(0.4),E20(1.6),0.5). The RHS shows that that

the condition of Theorem 3 (a) is not satisfied for this more complicated service-time distribution.

Figure 2 Simulation estimates of φ̈a(u) in (32) for F0/E2/1 (LHS) and Fu/GI/1 (RHS) where the service-time

distribution is a mixture of two Erlang distributions, specifically mix(E20(0.4),E20(1.6),0.5), as defined

above. in the case c2a = 0.5, ρ= 0.5, n= 4,M = 10. The LHS plots show that F0 is a solution of the LP

in (35) in both cases because of the single-peak property, so that F0 is a stationary point. In contrast,

the RHS shows that the condition of Theorem 3 (a) is not satisfied
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Unlike the previous examples, the conclusions from applying Corollary 1 for the model on the

RHS of Figure 2 are more complicated. As before, F0 was found to be the solution to the LP in the

nearly-steady-state example with (ρ= 0.1, n= 40), but it was not in the transient example with

(ρ= 0.7, n= 4). Moreover, the FW algorithm confirmed these conclusions. Starting with M or F0,

the stationary point obtained from FW has masses (0.6667,0.3333) on the points (0.500,2.000) in

the transient example. This example provides a service-time cdf G substantially different from G0

for which F0 is not a stationary point and thus not optimal.

9. Conclusions

We applied the theory of non-convex nonlinear programs together with the explicit expression for

the transient mean E[Wn] in (4) to study the interarrival-time distribution that maximizes the

transient mean waiting time in the GI/GI/1 queue, given a specified service-time distribution and

the first two moments of the interarrival time, assuming that the the interarrival-time distribution

has finite support. We established mathematical properties justifying three different numerical

algorithms, and illustrated each in §§4, 5, 8 and the appendix, Chen and Whitt (2021a).

Theorem 1 first establishes the gradient of transient mean waiting time E[Wn] with respect

to the interarrival-time distribution F under finite support. Then Corollary 1 applies well-known

first-order optimality conditions stated in Proposition 1 to characterize the stationary points of the

optimization as solutions of a linear program. This provides an efficient way to construct counterex-

amples, as we illustrate in Example 1. The gradient also provides a basis for the Frank and Wolfe

(1956) or conditional-gradient algorithm to find a stationary point, as we discuss in §5.

In §6 we develop new structural theorems. In §6.1 we develop an abstraction of the GI/GI/1

queueing problem that applies to other models in addition to the GI/GI/1 queue, provided that

the objective function inherits the structure established for theGI/GI/1 model in Lemma 1 in §6.2.

In that context, Theorem 2 establishes sufficient conditions for a stationary point to be a three-

point distribution, while Theorem 3 establishes the sufficient conditions for the special two-point

distributions F0 and Fu to be stationary points of the optimization. In §7 we prove Theorems 2 and
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3. We prove Theorem 2 by applying Lemma 2 which establishes that an LP has a unique solution

if and only if its dual has a nondegenerate optimal solution. We extend the proof of Theorem 3

to establish Theorem 4 for more complicated functional forms. We present numerical examples

illustrating Theorem 3 (a) in §8. More examples appear in the appendix.

There is much yet to be done. It remains to prove or disprove that there is a unique stationary

point of the maximization of E[Wn(F,G)] over F ∈ P(F) for given G. It remains to be seen if

the numerical examples can be extended to theorems, e.g., by efficiently calculated the functions

that here have been estimated by simulation in our numerical examples. It remains to derive

expressions for the tight upper bound of the mean E[Wn(F0,G)] as a function of the service-time

cdf G, extending the results for E[Wn(F0,Gu)] in Chen and Whitt (2020a). It remains to obtain

corresponding results for other stochastic models. Hopefully the results here can be helpful for that

purpose.
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