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This paper studies upper bounds for the mean (steady-state and transient) waiting time in the GI/GI/1

queue given the first two moments of the interarrival-time and service-time distributions. For distributions

with support on bounded intervals, we show that the upper bounds (with one distribution given and overall)

are attained at distributions with support on at most three points. The proof exploits fixed point theory

and optimization theory in addition to standard stochastic theory for the model. We then apply relatively

tractable numerical algorithms to identify the optimal distributions within that class. For the overall upper

bound with unbounded support sets, we propose a simple approximation formula and provide a numerical

comparison of the approximations and bounds, showing that the new approximate bound is very accurate.
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1. Introduction

In this paper we address a long-standing open problem for the classical GI/GI/1 queueing model:

determining a tight upper bound for the mean steady-state waiting time, given the first two

moments of the interarrival-time and service-time distributions; see Daley et al. (1992), especially

§10, Wolff and Wang (2003) and references therein.
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1.1. The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n≥ 0}, each distributed as V with cumulative distribution function (cdf) G, which is inde-

pendent of a sequence of i.i.d. interarrival times {Un : n ≥ 0} each distributed as U with cdf F .

With the understanding that a 0th customer arrives at time 0 to find an empty system, Vn is the

service time of customer n, whle Un is the interarrival time between customers n and n+1.

Let U have mean E[U ]≡ λ−1 ≡ 1 and squared coefficient of variation (scv, variance divided by the

square of the mean) c2a; let a service time V have mean E[V ]≡ τ ≡ ρ and scv c2s, where ρ≡ λτ < 1,

so that the model is stable. (Let ≡ denote equality by definition.)

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service,

assuming that the system starts empty with W0 ≡ 0. The sequence {Wn : n≥ 0} is well known to

satisfy the Lindley recursion

Wn+1 = [Wn +Vn −Un]
+, n≥ 0, (1)

where x+ ≡max{x,0}. Let W be the steady-state waiting time. It is also well known that Wn
d
=

max{Sk : 0≤ k≤ n} and W
d
= max{Sk : k≥ 0}, where

d
= denotes equality in distribution, Sk ≡

X1 + · · ·+Xk and Xk ≡ Vk −Uk, k ≥ 1; e.g., see §§X.1-X.2 of Asmussen (2003) or (13) in §8.5 of

Chung (2001). It is also known that, under the specified finite moment conditions, Wn and W are

proper random variables with finite means, given by

E[Wn] =
n
∑

k=1

E[S+
k ]

k
<∞ and E[W ] =

∞
∑

k=1

E[S+
k ]

k
<∞. (2)

1.2. Classical Results: Exact, Approximate and Bounds

For the M/GI/1 special case, when the interarrival time has an exponential distribution, we have

the classical Pollaczek-Khintchine formula

E[W ] =
τρ(1+ c2s)

2(1− ρ)
=
ρ2(1+ c2s)

2(1− ρ)
. (3)
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A natural commonly used approximation for the GI/GI/1 model, inspired by (3), which we call

the heavy-traffic approximation, because it is motivated by the early heavy-traffic limit in Kingman

(1961), is

E[W ]≡E[W (ρ, c2a, c
2
s)]≈

ρ2(c2a+ c2s)

2(1− ρ)
. (4)

The most familiar upper bound (UB) on E[W ] is the Kingman (1962) bound,

E[W ]≤
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
, (5)

which is known to be asymptotically correct in heavy traffic (as ρ→ 1).

A better UB depending on these same parameters was obtained by Daley (1977). in particular,

the Daley (1977) UB replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ]≤
ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
. (6)

Note that (2− ρ)/ρ< 1/ρ2 because ρ(2− ρ)< 1 for all ρ, 0< ρ< 1.

In contrast to the tight UB that we study, the tight lower bound (LB) for the steady-state mean

has been known for a long time; see Stoyan and Stoyan (1974), §5.4 of Stoyan (1983), §V of Whitt

(1984b), Theorem 3.1 of Daley et al. (1992) and references there:

E[W (LB)] =
ρ((1+ c2s)ρ− 1)+

2(1− ρ)
. (7)

The LB is attained asymptotically at a deterministic interarrival time with the specified mean

and at any three-point service-time distribution that has all mass on nonnegative-integer multiples

of the deterministic interarrival time. The service part follows from Ott (1987). (All service-time

distributions satisfying these requirements yield the same mean.)

1.3. Motivation: Approximations for Non-Markovian Open Queueing Networks

Our original interest in the bounds was primarily motivated by parametric-decomposition approx-

imations for non-Markovian open networks of single-server queues, as in Whitt (1983b), where

each queue is approximated by a GI/GI/1 queue partially characterized by the parameter vector
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(λ, c2a, τ, c
2
s), obtained by solving traffic rate equations for the arrival rate λ at each queue and after

solving associated traffic variability equations to generate an approximating scv c2a of the arrival

process. Because the internal arrival processes are usually not renewal and the interarrival distri-

bution is not known, there is no concrete GI/GI/1 model to analyze more carefully. To gain some

insight into these approximations (not yet addressing the dependence among interarrival times), It

is natural to regard such approximations for the GI/GI/1 model as set-valued functions, applying

to all models with the same parameter vector (λ, c2a, τ, c
2
s).

For the special case of the GI/M/1 model with bounded interval of support for the interarrival-

time cdf F , the extremalGI/M/1 models were studied inWhitt (1984b), where intervals of bounded

support were also used together with the theory of Tchebychev systems; as in Karlin and Studden

(1966). (The focus in Whitt (1984b) was on the mean steady state number in system, but it is

easily seen that the extremal interarrival-time distributions are the same for the mean steady-state

waiting time.) For the GI/M/1 model, the extremal distributions are two-point distributions.

Let P2,2(M)≡P2,2(m1, c
2,M) be the set of all two-point distributions with mean m1 and second

momentm2 =m2
1(c

2+1) with support in [0,m1M ]. The set P2,2(M) is a one-dimensional parametric

family. Any element has probability mass c2a/(c
2+(b−1)2) at m1b, and mass (b−1)2/(c2a+(b−1)2)

onm1(1−c
2
a/(b−1)) for 1+c2 ≤ b≤M . The cases b=1+c2 and b=M constitute the two extremal

distributions.

For GI/M/1, the UB interarrival-time cdf with mean m1 and second moment m2 =m2
1(c

2
a +1)

with support in [0,m1Ma], referred to here as F0, arises for b = 1 + c2. In particular, F0 has

probability mass c2a/(1+ c2a) at 0 and probability mass 1/(c2a+1) at (m2/m1) =m1(c
2
a+1).

The corresponding LB interarrival-time cdf, referred to here as Fu, arises for b =Ma. In par-

ticular, Fu has probability mass c2a/(c
2
a + (Ma − 1)2) at the upper bound of the support, m1Ma,

and mass (Ma − 1)2/(c2a+(Ma − 1)2) on m1(1− c2a/(Ma− 1)). (For the interarrival time, we scale,

i.e., choose measuring units for time, so that m1 = 1.) We use the notation G0 and Gu for the

corresponding service-time cdf’s G with mean ρ and support [0, ρMs].
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That technical approach and the basic results were first established by Rolski (1972) and

Holtzman (1973), and then elaborated on by Eckberg (1977) and Johnson and Taaffe (1993). Since

the range of possible values is quite large, while the distributions that attain the bounds are

unusual (two-point distributions), the papers Klincewicz and Whitt (1984), Whitt (1984c) and

Johnson and Taaffe (1990a) focused on reducing the range by imposing shape constraints. In this

paper we do not consider shape constraints.

1.4. Related Literature

The literature on bounds for the GI/GI/1 queue is well reviewed in Daley et al. (1992) and

Wolff and Wang (2003), so we will be brief. The use of optimization to study the bounding problem

for queues seems to have begun with Klincewicz and Whitt (1984) and Johnson and Taaffe (1990b).

Bertsimas and Natarajan (2007) provides a tractable semi-definite program as a relaxation model

for solving steady-state waiting time of GI/GI/c to derive bounds, while Osogami and Raymond

(2013) bounds the transient tail probability of GI/GI/1 by a semi-definite program.

Several researchers have studied bounds for the more complex many-server queue. In addition

to Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investi-

gate the bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why two

moment information is insufficient for good accuracy of steady-state approximations of M/GI/c.

Gupta and Osogami (2011) establishes a tight bound for the M/GI/K in light traffic. Finally,

Li and Goldberg (2017) establish bounds for GI/GI/c intended for the many-server heavy-traffic

regime.

1.5. Organization

In §2 we obtain our main result, Theorem 1, which shows that there exist extremal interarrival-

time and service-time cdf’s that have support on at most three points when the interarrival-time

and service-time cdf’s have bounded support. The proof of Theorem 1 is based on a new line

of reasoning. It draws on the Lindley recursion, the Kakutani fixed point theorem, the general
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moment problem and the duality theory of linear programming. Theorem 1 We obtain an analog

of Theorem 1 for the transient mean E[Wn] in §3. We identify more structure of the extremal

distributions in a large class of special cases in §4.

We start our numerical studies in §5 by introducing a multinomial formulation for the tran-

sient mean E[Wn] over the product space of the two sets of three-point distributions. We use

that multinomial representation to formulate a non-convex nonlinear program for the overall UB,

which we solve by applying sequential quadratic programming (SQP) as discussed in Ch. 18 of

Nocedal and Wright (1999). The SQP algorithm converges at a local optimum, so we apply it with

randomly selected initial conditions. We found that all local optima for the overall UB are two-

point distributions and that the best local optimum always has interarrival-time cdf F0. See §5.3

for our final conclusions. In §6 we do a careful simulation study over the product space of two-point

distributions. Since the two-point distributions form a one-parameter family, we are able to expose

more of the structure of the mean waiting times. Finally, in §7 we draw conclusions.

We provide additional supporting material in the e-companion (EC). We start in §EC.2 by

providing the postponed part of the proof of Theorem 1 in §2. In §EC.3 we provide postponed proofs

for §4. In §EC.4 we present an alternative way to identify extremal distributions by combining

Tchebycheff systems with our proof of Theorem 1. In §EC.5 we prove Theorem 6 establishing a new

upper bound formula. We discuss the extension to unbounded support in §EC.6. Finally, we present

additional tables and plots in the e-companion. In Chen and Whitt (2018) we develop and evaluate

algorithms for the conjectured tight overall UB for E[W ] in §5.3 here. In Chen and Whitt (2019)

we obtain new results for the LB with finite support and other constraints on the interarrival-time

cdf F .

2. Reduction to Three-Point Distributions

In this section we show that it suffices to consider interarrival-time and service-time cdfs with

support on at most three points in our search for upper bounds on the steady-state mean waiting

time E[W ].



Chen and Whitt: Extremal Queues

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

let Pn be the set of all probability measures on a subset of R with specified first n moments.

The set Pn is a convex set, because the convex combination of two probability measures is just the

mixture; i.e., for all p, 0≤ p≤ 1,

Pmix,p ≡ pP1 +(1− p)P2 ∈Pn if P1 ∈Pn and P2 ∈Pn, (8)

because the nth moment of the mixture is the mixture of the nth moments, which is just the common

value of the components. let Pn,k be the subset of probability measures in Pn that have support

on at most k points.

We use the scv to parameterize, so let P2 ≡ P2(m,c
2) be the set of all cdf’s with mean m and

second moment m2(c2+1) where c2<∞. Let P2(M)≡P2(m,c
2,M) be the subset of all cdf’s in P2

with support in the closed interval [0,mM ] having mean m and second moment m2(c2+1) where

c2 + 1 <M <∞. (The last property ensures that the set P2(M) is non-empty.) Let subscripts a

and s denote sets for the interarrival and service times, respectively.

We are interested in the map

w :Pa,2(1, c
2
a)×Ps,2(ρ, c

2
s)→R, (9)

where 0< ρ< 1 and

w(F,G)≡E[W (F,G)] (10)

for W being a random variable with the distribution of the steady-state waiting time in the

GI/GI/1 queue with interarrival-time cdf F ∈Pa,2 and service-time cdf G ∈Ps,2.

The function w in (10) has explicit form in (2) and an algorithm is given in Abate et al. (1993),

but that algorithm has an analytic property of the transform that is not suitable for the present

problem.) Note that the mean interarrival time is 1 and the mean service time is ρ, so that the

traffic intensity is ρ.

Theorem 1. (reduction to a three-point distribution) Consider the class of GI/GI/1 queues with

interarrival times {Un} distributed as U with cdf F ∈ Pa,2 and service times {Vn} distributed as
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V with cdf G ∈ Ps,2 where 0 < ρ < 1 and the sets Pa,2 and Ps,2 are nonempty. The function w :

Pa,2 ×Ps,2 →R in (9) is continuous. Hence, the following suprema are attained as indicated:

(a) For any specified G∈Ps,2 and 1+ c2a ≤Ma<∞, there exists F ∗(G)∈Pa,2,3(Ma) such that

w↑
a(G)≡ sup{w(F,G) : F ∈Pa,2(Ma)}= sup{w(F,G) : F ∈Pa,2,3(Ma)}=w(F ∗(G),G). (11)

(b) For any specified F ∈Pa,2 and 1+ c2s ≤Ms<∞, there exists G∗(F )∈Ps,2,3(Ms) such that

w↑
s(F )≡ sup{w(F,G) :G ∈Ps,2(Ms)}= sup{w(F,G) :G∈Ps,2,3(Ms)}=w(F,G∗(F )). (12)

(c) For any given (Ma,Ms) with 1+ c2a ≤Ma <∞ and 1+ c2s ≤Ms <∞, there exists (F ∗∗,G∗∗)

in Pa,2,3(Ma)×Ps,2,3(Ms) such that

w↑ ≡ sup{w(F,G) : F ∈Pa,2(Ma),G∈Ps,2(Ms)}= sup{w(F,G) : F ∈Pa,2,3(Ma),G∈Ps,2,3(Ms)}

=w(F ∗∗,G∗∗) =w↑
a(G

∗∗) =w↑
s(F

∗∗). (13)

Remark 1. (uniqueness) There is no claim of uniqueness in Theorem 1. Indeed, the M/GI/1

formula in (3) implies that there is no uniqueness in case (b) when F is exponential; see Remark

EC.1 for more discussion.

We give a brief sketch of the proof in §2.2, and then give more details in §EC.2. Since the proof

draws on results for the moment problem, we review that next.

2.1. The Moment Problem for Distributions with Compact Support

Our problem can be approached via the classical theory for the moment problem, as in Lasserre

(2010), Smith (1995) and references therein. Some simplification can be gained by considering

continuous functions on a compact metric space domain, so that suprema and infima are attained.

For the general moment problem, let Pn ≡ Pn(C) be the set of all probability measures on a

compact subset C of R with specified first n moments, where the kth moment of P is defined

as
∫

xk dP . Assume that Pn is not empty and let Pn be endowed with the topology of weak
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convergence, as determined by the Prohorov or Lévy metric, as in §3.2 and §11.3 of Whitt (2002).

let Pn,k be the subset of probability measures in Pn that have support on at most k points in C.

The following is a generalization of a standard result in linear programming (LP), stating that

the supremum (or infimum) is attained at a basic feasible solution or an extreme point. The set of

extreme points of the set Pn is the subset Pn,n+1. In fact, our proof of Theorem 1 will only use the

LP version where C has finite support.

Theorem 2. (a version of the classic moment problem) Let φ : C → R be a continuous function,

where C is a compact subset of R. Assume that Pn is not empty. Then there exists P ∗ ∈ Pn,n+1

such that

sup{

∫ M

0

φdP : P ∈Pn}= sup{

∫ M

0

φdP : P ∈Pn,n+1}=
n+1
∑

k=1

φ(tk)P
∗({tk}), (14)

where {tk : 1≤ k≤ n+1} is the support of P ∗.

.

Proof. First, because the support C is a compact subset of R and the set Pn is not empty by

assumption, the space Pn is a compact metric space with the usual topology of convergence in

distribution, as a consequence of Prohorov’s theorem; e.g., Theorem 11.6.1 of Whitt (2002). (In

general, the set of all probability measures on a compact metric space with the usual topology of

weak convergence is itself a compact metric space; see Theorem II.6.4 of Parthasarathy (1967).)

Second, because the function φ is continuous, we can apply the continuous mapping theorem as

in §3.4 of Whitt (2002) to deduce that the induced map φ :Pn →R defined by

φ(P )≡

∫ b

0

φdP (15)

is continuous as well. Hence, the induced map in (15) is a continuous bounded real-valued function

on a compact metric space, so that the supremum in (14) is attained. Then the theory for the

classical moment problem implies that it is attained in Pn,n+1; see §2 of Smith (1995).
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2.2. Sketch of the Proof of Theorem 1

We now outline the proof of part (a); see §EC.2 for more details. The proof of part (b) is very

similar, aided by using a reverse-time argument; see Step 5 in §EC.2. Then (c) is a well known

consequence of both (a) and (b); e.g., see Lemma EC.1 in the e-companion to Whitt and You

(2018). So consider (a).

LetW (F,G) be the steady-state waiting time for any specified interarrival-time cdf F ∈Pa,2(Ma)

and service-time cdf G∈Ps,2. Let E ≡ E(G) be the set of cdfs F ∗ that attain the supremum

E[W (F ∗,G)] = sup{E[W (F,G)] : F ∈Pa,2(Ma)} (16)

for any given cdf G ∈Ps,2. We know that the supremum must be attained, i.e., E 6= ∅, because we

are maximizing a continuous function over a compact metric space. (However, we are not claiming

uniqueness for F ∗ in (16).) Our goal here is to show that

E
⋂

Pa,2,3(Ma) 6= ∅. (17)

To show that F ∗ in (16) can be chosen in Pa,2,3, i.e., to establish (17), we introduce a new

line of reasoning for this problem. In particular, we exploit fixed point theory and optimization

theory. The basis is the classical Lindley recursion for the waiting time in (1). It is well known that

the distribution of the steady-state waiting time W (F,G) is the unique solution to the stochastic

fixed-point equation

W (F,G)
d
= [W (F,G)+V −U ]+, (18)

where
d
= denotes equality in distribution, while the three random variables on the right are inde-

pendent with the distributions of V and U being G and F , respectively.

The key initial step is to reformulate our goal in (17) as a fixed point problem.

Step 1. Characterization as a fixed point. Let the cdf G of the service-time V be given and

fixed. Let UF denote the random variable U with cdf F . Given (18), for any F ∗ satisfying (16),
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we can identify a subset of the F ∗ in E by formulating a fixed point problem over Pa,2(Ma). First,

observe that

E[W (F ∗,G)] = sup{E[(W (F1,G)+V −UF1
)+] : F1 ∈Pa,2(Ma)}

= sup{E[(W (F1,G)+V −UF2
)+] : F1 = F2 ∈Pa,2(Ma)}, (19)

where the three random variables W (F1,G), V and UF2
are mutually independent and W (F1,G)

has the steady-state distribution associated with (F1,G). In particular, note that W (F1,G) is the

steady-state waiting time when the interarrival time has cdf F1, but UF2
has the cdf F2, so that we

must also require that F1 = F2. Also note that the second supremum in (19) is over both F1 and

F2, subject to the constraint.

We approach the reformulated optimization in (19) by first ignoring the constraint F1 = F2 and

the optimization over F1. Afterwards, we impose those conditions by finding a fixed point. Hence,

we consider the optimization problem

ζ(F1)≡ sup{E[(W (F1,G)+V −UF2
)+] : F2 ∈Pa,2(Ma)}, (20)

where the three random variables W (F1,G), V and UF2
are mutually independent and W (F1,G)

has the steady-state distribution associated with (F1,G). We next impose the requirement that

F1 =F2.

To impose the requirement that F1 = F2, we construct a map η mapping the space Pa,2(Ma)

into the set 2Pa,2(Ma) of all subsets of Pa,2(Ma). Let η(F1) be the set of all cdfs F2 attaining the

supremum of the function ζ in (20). Let P∗
a,2 be the subset of all fixed points of the map η; i.e.,

P∗
a,2 ≡ {F ∈Pa,2(Ma) : F ∈ η(F )}. (21)

Clearly, if F̄ ∈P∗
a,2, then

sup{E[(W (F̄ ,G)+V −UF2
)+] : F2 ∈Pa,2(Ma)}=E[(W (F̄ ,G)+V −UF̄ )

+]. (22)

However, we still need to optimize over F̄ in (22), which corresponds to optimizing over F1 in (19)

as well as F2. Let F
∗ be a cdf that attains the supremum over F̄ in (22). That supremum over
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F̄ will be attained because it is for a continuous function over a compact set. That cdf F ∗ also

satisfies (19) and so must be in E . Hence, we have shown that

E
⋂

P∗
a,2 6= ∅. (23)

Thus we will achieve our goal by proving that the set P∗
a,2 is a nonempty subset of Pa,2,3(Ma).

However, note that we cannot claim set containment between E and P∗
a,2 in either direction.

The Rest of the proof: Steps 2-5. We complete the proof for case (a) in Steps 2-4. In Step 2

we prove that the set P∗
a,2 is nonempty by applying the Kakutani fixed point theorem. To apply the

Kakutani fixed point theorem, we first restrict attention to cdf’s F with finite support. We then

treat the general case by a limiting argument in Step 4. In Step 3 we show that, given that F has

the assumed finite support, P∗
a,2 is a subset of Pa,2,3(Ma); i.e., the fixed points must be three-point

distributions. We do two supporting asymptotic arguments in Step 4. We then extend the result

to case (b) in Step 5. We now elaborate on Step 3. For the remaining technical details, see §EC.2.

Step 3(a). Applying Theorem 2. To show that P∗
a,2 is a subset of Pa,2,3(Ma), we exploit

Theorem 2, which is only an ordinary linear program (LP) with the finite support. To do so, we

write (20) in the form of (14). In particular, for G the fixed cdf of the service time V and H the

cdf of the waiting time W (F1,G) with finite mean, we can write

sup{E[(W (F1,G)+V −U+
F2
] : F2 ∈Pa,2(Ma)}= sup{

∫ Ma

0

φ(u)dF2 : F2 ∈Pa,2(Ma)} (24)

for φ expressed as the double integral

φ(u)≡

∫ ∞

0

∫ ∞

0

(x+ v−u)+ dG(v)dH(x), 0≤ u≤Ma. (25)

Next observe that φ in (25) is a bounded continuous real-valued function of u because the cdfs G

and H have bounded mean. Hence, we can apply Theorem 2 to deduce that, for any pair of cdf’s

(G,H) of (V,W ), we may take F2 ∈Pa,2,3(Ma) in the optimization in (24).

Step 3(b). Uniqueness in the LP. We next prove that, when we take F1 = F ∗ for F1 in

(24) and F ∗ ∈P∗
a,2, the LP in (24) restricted to finite support always has a unique solution. Thus,
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there is no solution other than the one that must be in Pa,2,3(Ma). Hence, we have shown that

P∗
a,2 ⊆ Pa,2,3(Ma). (Note that we are showing that the LP in (24) has a unique solution for a

particular F1 in P∗
a,2. That does not mean that (16) necessarily has a unique solution.)

To establish that uniqueness of the solution of the LP in (24), we apply duality theory for linear

programs. The objective of the dual problem is to find the vector λ∗ ≡ (λ∗
0, λ

∗
1, λ

∗
2) that attains the

infimum

γ(m1,m2)≡ inf
λ≡(λ0,λ1,λ2)

{λ0 +λ1m1 +λ2m2}, (26)

where mi ≡E[U i], i= 1,2 and λi are the decision variables (which are unconstrained), such that

ψ(u)≡ λ0 +λ1u+λ2u
2 ≥ φ(u) for all u∈F (27)

where F is the support of F and

φ(u)≡

∫ ∞

0

∫ ∞

0

(x+ v−u)+dH(x)dG(v) =

∫ ∞

0

(x−u)+dΓ(x) (28)

where Γ is the cdf of W +V , as in (25).

In particular, we establish uniqueness by showing that the dual LP has a non-degenerate optimal

solution; i.e., we apply the following lemma; e.g., see pp. 1128-1129 of Appa (2002).

Lemma 1. (non-degeneracy and uniqueness in LP) A standard LP has a unique optimal solution

if and only if its dual has a nondegenerate optimal solution.

It is easy to see that both the primal LP and the dual LP have feasible solutions. Hence, we see

that the dual LP problem has at least one optimal solution. Given that the dual has an optimal

solution, we show that the dual has a non-degenerate optimal solution by showing that the dual

does not have a degenerate optimal solution. To do so, we first determine the structure of the

function φ in (25) for case (a), which requires regularity conditions on the service-time cdf G. We

later in Step 4 relax the regularity condition on G by doing a limiting argument.

Step 3(c). Regularity conditions on G. In particular, we assume that G is a distribution

in Ps,2 with rational Laplace transform, as in Smith (1953) or §II.5.10 of Cohen (1982). Following
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Cohen (1982), we say that the random variable or its cdf G is in Kn. That implies that cdf G has

a positive density and that the cdf H of W has a positive density except for an atom at 0. Those

properties in turn imply that W + V has a positive density. In particular, we use the following

lemma.

Lemma 2. If V +W has cdf Γ with

Γ(x) =

∫ x

0

γ(y)dy for x≥ 0, (29)

then the function φ in (25) can be expressed as

φ(u) =

∫ ∞

0

(x−u)+γ(x)dx, u≥ 0. (30)

Hence, φ(0) =E[W +V ] and the first two derivatives of φ in (25) exist for u> 0 and satisfy

φ̇(u) ≡
dφ(t)

dt
(u) = Γ(u)− 1< 0 and

φ̈(u) ≡
dφ̇(t)

dt
(u) = γ(u)> 0. (31)

Thus, φ is continuous. If in addition γ is strictly positive on [0,Ma], as occurs when the cdf G of

V is in Kn, then φ is strictly decreasing and strictly convex on [0,Ma].

Proof. To calculate the derivatives, we apply the Leibniz integral rule for differentiation of inte-

grals of integrable functions that are differentiable almost everywhere. Observe that the derivative

of (x−u)+γ(x) with respect to u is −γ(x) for u< x. That implies that

φ̇(u) =−

∫ ∞

u

γ(x)dx=Γ(u)− 1. (32)

The rest follows directly.

This uniqueness argument for (24) shows that the LP under the regularity conditions on service

time cdf G always has a unique solution, so the solution must be in Pa,2,3(Ma). But it does not

imply that the set P∗
a,2 contains only a single element.

Step 5. part (b). Instead of (20) in part (a), we now have

ζ(G1)≡ sup{E[(W (F,G1)+VG2
−U)+] :G2 ∈Ps,2(Ms)}, (33)
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where the three random variables W (F,G1), VG2
and U are mutually independent and W (F,G1)

has the steady-state distribution associated with (F,G1). We reduce the proof to the proof of part

(a) by focusing on Ms − v instead of v. Instead of the function φ in (25), we work with

φs(v)≡E[(W +Ms − v−U)+], (34)

and we show that it has the same structure as φ, so we can use the rest of the proof for part (a).

The reverse-time construction can be confusing, so we explain briefly. The starting point is

the formulation of the moment problem in §2.1. We change the underlying measure from the

distribution of V to the distribution ofMs−V , so the new kth moment becomes m̂k ≡E[(Ms−V )k].

When we view the function to φs(v) in (34) as an expectation with respect to the distribution of

Ms−V , we change the underlying measure, which causes the objective function of the dual in (26)

to change to λ0 + λ1m̂1 + λ2m̂2. On the other hand, the function ψ(x)≡ λ0 + λ1x+ λ2x
2 remains

unchanged. Lemma EC.4 shows that φs has essentially the same structure as φ in Lemma 2. That

completes our sketch of the proof; see §EC.2 for the remaining details.

3. An Analog of Theorem 1 for the Transient Mean

We now show that we can also obtain three-point extremal distributions for the transient mean

E[Wn] in the GI/GI/1 model. Paralleling (9) and (10), let wn :Pa,2 ×Ps,2 →R be defined by

wn(F,G)≡E[Wn(F,G)], (35)

using the formula in (2).

Theorem 3. (reduction to a three-point distribution for the transient mean) In the setting of

Theorem 1, the function wn in (35) is continuous and the domain is a compact metric space. Hence,

the following suprema are attained as indicated:

(a) For any specified G∈Ps,2, there exists F ∗(G)∈Pa,2,3(Ma) such that

w↑
a,n(G)≡ sup{wn(F,G) : F ∈Pa,2(Ma)}= sup{wn(F,G) : F ∈Pa,2,3(Ma)}=w(F ∗(G),G). (36)
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(b) For any specified F ∈Pa,2, there exists G∗(F )∈Ps,2,3(ρMs) such that

w↑
a,n(F )≡ sup{wn(F,G) :G ∈Ps,2(ρMs)}= sup{wn(F,G) :G∈Ps,2,3(ρMs)}=w(F,G∗(F )). (37)

(c) There exists (F ∗∗,G∗∗) in Pa,2,3(Ma)×Ps,2,3(ρMs) such that

w↑
n ≡ sup{wn(F,G) : F ∈Pa,2(Ma),G∈Ps,2(ρMs)}= sup{wn(F,G) : F ∈Pa,2,3(Ma),G∈Ps,2,3(ρMs)}

=wn(F
∗∗,G∗∗) =w↑

a,n(G
∗∗) =w↑

s,n(F
∗∗). (38)

Proof of Theorem 3. Just as for Theorem 1, we only prove part (a) in detail. Based on (2), we

first express the mean as

E[Wn] =
n
∑

k=1

k−1

∫ kMa

0

∫ ∞

0

(v−u)+ dPSa
k
(u)dPSs

k
(v)

=

∫ Ma

0

φa,n(u)dF (u), (39)

where Sa
k is the partial sum of the first k i.i.d interarrival times each with cdf F , where F has mean

1 and support on [0,Ma] with Ma ≥ c2a +1, Ss
k is the partial sum of the first k i.i.d. service times

each with cdf G, where G has mean ρ and finite scv c2s, and

φa,n(u)≡
n

∑

k=1

k−1

∫ (k−1)Ma

0

∫ ∞

0

(v−x−u)+ dPSa
k−1

(x)dPSs
k
(v), (40)

provided that the common cdf, say F1, of the k−1 i.i.d interarrival times that produces the partial

sum Sa
k−1 coincides with the cdf of Uk, say F2. Thus, paralleling our treatment of the steady-state

waiting time, we have created a framework in which we can apply a fixed-point argument.

In particular, paralleling (20), we define ζ(F1) with ζ :Pa,2(Ma)→R defined by

ζ(F1)≡ sup{E[(Wn(F1,G;F2)] : F2 ∈Pa,2(Ma)}, (41)

whereWn(F1,G;F2) is understood to be the transient waiting time, starting empty, where the k−1

i.i.d. interarrival times making up Sa
k−1 each have cdf F1, the k i.i.d. service times making up Ss

k
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each have cdf G and the one unspecified interarrival time has cdf F2. Paralleling Step 1 in the

proof of Theorem 1, let η(F1) be the set of maximizers of (41). Let P∗
a,2(Ma) be the set of all fixed

points of the map η :Pa,2(Ma)→ 2Pa,2(Ma), i.e.,

P∗
a,2 ≡ {F ∈Pa,2(Ma) : F ∈ η(F )}. (42)

A minor modification of the proof of Theorem 1 (which also accounts for the need to optimize over

F1 in (41)) shows that P∗
a,2 is nonempty and always contains an element of Pa,2,3(Ma). The rest of

the argument can now follow Steps 2-5 of the proof of Theorem 1. For that purpose, we initially

restrict attention to interarrival-time cdf’s F with finite support. For Step 3b, we initially assume

that the cdf G is in Kn, and observe that implies that the cdf of the sum Ss
k also is in Kn. That

in turn implies that Ss
k − Sa

k−1 has a density. Hence, we can apply Lemma 2 as in Step 3b of the

proof of Theorem 1. We now have (30) and (31), where γ is the density of Ss
k − Sa

k−1, which is a

finite sum of translates of the density of Ss
k. The rest of the proof is essentially the same. Hence

the proof is complete.

4. More Structure of the Extremal Distributions

We now show that the fixed point framework used to prove Theorem 1 also can be applied to

establish more properties of the extremal distributions. For this purpose, we exploit the special

form of the LP in (24) and (25) and the dual in (26)-(28) for (a). That depends on the structure

of the function φ in (28) for (a) and its analog φs in (34) for case (b). That in turn depends on the

three-point fixed point cdfs F ∗ in P∗
a,2 in (a) and G∗ in P∗

s,2 in (b).

We have developed two different sufficient conditions, the first in the form of unimodal distri-

butions in the GI/GI/1 model and the second in the form of Tchebycheff systems. We describe

the first here and the second in §EC.4. As in our proof of Theorem 1, we first impose regularity

conditions on the fixed distribution, which is the service-time cdf G in (a). In particular, we assume

that G is in Kn for (a).
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Theorem 4. (more structure of the extremal distribution) Consider the setting of Theorem 1. Let

F ∗(G) ∈ Pa,2,3(Ma),G
∗(F ) ∈ Pa,2,3(Ms) be elements in the set of fixed points P∗

a,2 in (21) for (a)

and P∗
s,2 for (b), respectively.

(a) For any fixed service-time cdf G on [0,∞) in Kn

⋂

Ps,2, let γ = φ̈ be the pdf of W (F ∗,G)+VG

in Lemma 2. (i) If Ma is sufficiently large, then Ma is not contained in the support of F ∗. (ii) If

γ is unimodal for F ∗, then F ∗ ∈Pa,2,2.

(b) For any fixed interarrival-time cdf F on [0,∞) in Kn

⋂

Pa,2, let θ = φ̈s be the pdf of

W (F,G∗) +Ms −UF in (EC.15) and (EC.16), which also depends on G. (i) If θ is unimodal for

G∗(F ) ∈ Ps,2,3(Ms), then G∗ ∈ Ps,2,2. (ii) If F has a strictly monotone density, then θ is strictly

monotone for all G∈Ps,2,3(Ms) and w
↑(F ) =w(F,G0).

We give the proof of Theorem 4 in §EC.3.

Corollary 1. (the Hk/GI/1 model) In the setting of Theorem 4, if F is Hk, then w↑(F ) =

w(F,G0) in (b).

.

Corollary 1 extends the results for the K2/GI/1 model covered by Theorem 11 in §V of Whitt

(1984b) and Whitt (1984a).

5. Numerical Support for the Overall Upper Bound

In this section we combine Theorem 1 (c) with numerical optimization for the transient mean

E[Wn] to deduce the form of the overall upper bound. In §5.1 we show that results for the transient

mean imply corresponding results for the steady-state mean. In §5.2 we formulate an optimization

problem for the transient mean based on a multinomial representation. Then in §5.3 we draw

conclusions from this numerical study. We provide further support with simulations for two-point

distributions in §6.
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5.1. From E[Wn] to E[W ]

We now show that it suffices to consider the transient mean E[Wn] for the three-point distributions

and finite n in order to treat E[W ]. Theorem 1 implies that we only need consider three-point

distributions. Theorems 5 and 3 together provide a new proof of Theorem 1, but that does not

help greatly, because our proof of Theorem 3 was largely based on the proof of Theorem 1,

Theorem 5. (reduction to the transient mean) Consider the GI/GI/1 queues in Theorem 1.

(a) For any specified G∈Ps,2, if there exists Fn ∈Pa,2,3(Ma) such that

wn(Fn,G) =w↑
a,n(G)≡ sup{wn(F,G) : F ∈Pa,2,3(Ma)} for all n≥ 1, (43)

then the sequence {Fn : n ≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if F is the limit of any convergent subsequence, then F is in Pa,2,3(Ma) and F is optimal for

E[W (F,G)], i.e., w↑
a(G) =w(F,G) for the steady-state mean.

(b) For any specified F ∈Pa,2, if there exists Gn ∈Ps,2,3(Ms) such that

wn(F,Gn) =w↑
s,n(F )≡ sup{wn(F,G) :G ∈Ps,2,3(Ms)} for all n≥ 1, (44)

then the sequence {Gn : n ≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if G is the limit of any convergent subsequence, then G is in Ps,2,3(Ms) and G is optimal for

E[W (F,G)], i.e., w↑
s(F ) =w(F,G) for the steady-state mean.

(c) If there exists (Fn,Gn) in Pa,2,3(Ma)×Ps,2,3(Ms) such that

wn(Fn,Gn) =w↑
n ≡ sup{wn(F,G) : F ∈Pa,2,3(Ma),G∈Ps,2,3(Ms)} for all n≥ 1, (45)

then the sequence {(Fn,Gn) : n≥ 1} is tight, so that there exists a convergent subsequence. Moreover,

if (F,G) is the limit of any convergent subsequence, then (F,G) is in Pa,2,3(Ma)×Ps,2,3(Ms) and

the pair (F,G) is optimal for E[W ], i.e., w↑ =w(F,G) for the steady-state mean.
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Proof. We only prove (c), because the others are proved in the same way. As observed before,

because the support sets [0,Ma] and [0, ρMs] are compact intervals, the spaces Pa,2(Ma), Ps,2(Ms)

and their product are compact metric spaces, as are the spaces Pa,2,3(Ma), Ps,2,3(Ms) and their

product, because they are closed subsets. Hence the tightness follows, which implies that there

exists a convergent subsequence by Prohorov’s theorem in §11.6 of Whitt (2002) and the limit (F,G)

of any such subsequence {(Fnk
,Gnk

) : k ≥ 1} must remain in the space Pa,2,3(Ma) × Ps,2,3(Ms).

Suppose that (F ′,G′) is another candidate pair of cdf’s in Pa,2,3(Ma)×Ps,2,3(Ms). By the assumed

optimality, we must have wnk
(Fnk

,Gnk
)≥wnk

(F ′,G′) for all k. Then, by continuity, using §X.6 of

Asmussen (2003) again, we conclude that w↑ =w(F,G) for the steady-state mean.

By the same reasoning, an analog of Theorem 5 holds for two-point distributions.

Corollary 2. In the setting of Theorem 5, (i) if Fn ∈ Pa,2,2(Ma) for all n in (a), then F ∈

Pa,2,2(Ma); if Gn ∈ Ps,2,2(Ms) for all n in (b), then G ∈ Ps,2,2(Ms); if (Fn,Gn) ∈ Pa,2,2(Ma) ×

Ps,2,2(Ms) for all n in (c), then (F,G)∈Pa,2,2(Ma)×Ps,2,2(Ms).

Proof. The same argument applies because P2,2(M) is a closed subset of P2,3(M).

.

5.2. The Multinomial Representation for the Transient Mean E[Wn]

We can represent the transient mean in (2) in terms of two independent multinomial distributions.

Let the cdf G in Ps,2,3 with specified mean ρ and scv c2s be parameterized by the vector of mass

points v ≡ (v1, v2, v3) and the vector of probabilities p≡ (p1, p2, p3). For every positive integer k,

define a multinomial probability mass function on the vector of nonnegative integers k≡ (k1, k2, k3)

by

Pk(p)≡
k!pk11 p

k2
2 p

k3
3

k1!k2!k3!
, (46)

where it is understood that ke′ ≡ k1 + k2 + k3 = k. Similarly, let the cdf F in Pa,2,3 with specified

mean 1 and scv c2a be parameterized by the vector of mass points u≡ (u1, u2, u3) and probabilities

q≡ (q1, q2, q3) on the vector of nonnegative integers w≡ (w1,w2,w3), so that

Qk(q)≡
k!qw1

1 qw2

2 qw3

3

w1!w2!w3!
, (47)
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where it is understood that we′ ≡w1 +w2 +w3 = k.

Then, from (2),

E[Wn] =
n
∑

k=1

1

k

∑

(k,w)∈I

max{0,
3

∑

i=1

(kivi −wjuj)}Pk(p)Qk(q), (48)

where I is the set of all pairs of vectors (k,w) with both ke′ ≡ k1 + k2 + k3 = k and we′ ≡

w1 +w2 +w3 = k.

For any given n and any given distributions G in Ps,2,3 parameterized by the pair (v,p) and F in

Pa,2,3 parameterized by the pair (u,q), we can calculate the transient mean E[Wn] by calculating

the sum in (48). We can easily evaluate E[Wn] for candidate cases provided that n is not too large.

Next, for the overall optimization over Pa,2,3(Ma)×Ps,2,3(Ms), we write

sup{E[Wn(v,p,u,q)] : ((v,p), (u,q))∈Pa,2,3(Ma)×Ps,2,3(Ms)}, (49)

using (48). We now write this optimization problem in a more conventional way, from which we

see that the optimization is a form of non-convex nonlinear program. In particular, we write for

the means m1 ≡E[U ]≡ 1, m2 ≡E[U2]≡m2
1(c

2
a+1), s1 ≡E[V ]≡ ρ and s2 ≡E[V 2]≡ s21(c

2
a+1),

maximize
n
∑

k=1

1

k

∑

∑
ki=k,

∑

j

wj=k

max(
∑

i

kivi −
∑

j

wjui,0)P (k1, k2, k3)Q(w1,w2,w3)

subject to
3

∑

j=1

ujqj =m1,
3

∑

j=1

u2
jqj =(1+ c2a)m

2
1,

3
∑

j=1

vjpj =s1,
3

∑

j=1

v2jpj =(1+ c2s)s
2
1,

3
∑

j=1

pj =
3

∑

k=1

qk =1,

Ms ≥ vj ≥ 0, Ma ≥ uj ≥ 0, pj ≥ 0, qj ≥ 0, 1≤ j ≤ 3.

(50)

We solved this non-convex nonlinear program in (50) by applying sequential quadratic program-

ming (SQP) as discussed in Chapter 18 of Nocedal and Wright (1999). In particular, we applied

the Matlab variant of SQL, which is a second-order method, implementing Schittkowski’s NLPQL

Fortran algorithm. This algorithm converges at a local optimum. Since the algorithm is not guar-

anteed to reach a global optimum, we run the algorithm for a large collection of uniform randomly

chosen initial conditions.
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We found that the local optimum solution is usually (F0,Gu,n), where Gu,n is a two-point dis-

tribution that converges to Gu as n→∞. In the rare cases that we obtain a different solution, we

found that it is always in Pa,2,2 × Ps,2,2. Moreover, in these cases, we can find a different initial

condition for which (F0,Gu,n) is the local optimum, and that E[W (F0,Gu,n)] is larger than for

other local optima.

5.3. The Numerical Conclusion about the Overall Upper Bound

From extensive numerical experiments, which draw on our mathematical results, we conclude that

the extremal UB interarrival-time cdf F0 for GI/M/1 also holds for all GI/GI/1, but the extremal

service-time distribution is more complicated because it depends on both n and Ms. In summary,

Theorem 1 and our numerical results support the following conjecture about the overall tight upper

bound.

Conjecture 1. (the tight upper bound)

(a) Given any parameter vector (1, c2a, ρ, c
2
s) and a bounded interval of support [0, ρMs] for the

service-time cdf G, where Ms ≥ c2s + 1, the pair (F0,Gu) attains the tight UB of the steady-state

mean E[W ], while a pair (F0,Gu,n) attains the tight UB of the transient mean E[Wn], where Gu,n

is a two-point distribution with Gu,n ⇒Gu as n→∞.

(b) When G has an unbounded interval of support [0,∞), the tight UB of E[W ] is not attained

directly, but is obtained asymptotically in the limit as Ms →∞ in part (a). The extremal service-

time cdf Gu is asymptotically deterministic with the given mean ρ asMs →∞, but that deterministic

distribution does not have parameter c2s if c2s 6= 0. Moreover, the mean E[W (Ms)] does not approach

the mean in the associated extremal GI/D/1 queue as Ms →∞.

Let Gu∗ in E[W (F,Gu∗)] be shorthand for the limit of E[W (F,Gu)] asMs →∞ as in Conjecture

1 (b). We obtain an UB for E[W (F0,Gu∗)], assuming Conjecture 1

Theorem 6. (an UB for E[W (F0,Gu∗)]) For the GI/GI/1 queue with parameter four-tuple

(1, c2a, ρ, c
2
s), if E[W (F0,Gu∗)] is the tight UB as claimed in Conjecture 1, then

E[W (F0,Gu∗)]≤
2(1− ρ)ρ/(1− δ)c2a+ ρ2c2s

2(1− ρ)
<
ρ(2− ρ)c2a+ ρ2c2s

2(1− ρ)
, (51)
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where δ ∈ (0,1) and δ = exp(−(1− δ)/ρ).

We call formula (51) the “new UB,” but because it relies on Conjecture 1 it is only verified

numerically so far. Formula (51) draws on §10 of Daley et al. (1992); it is based on Conjecture III

on p. 211 of Daley et al. (1992), but we show in §EC.6.3 that the conjecture is actually not correct.

We prove Theorem 6 in §EC.5.

Counterexamples were constructed in §V of Whitt (1984b), drawing on Whitt (1984a), and in

§8 of Wolff and Wang (2003) that contradict corresponding conjectures that analogs of Conjecture

1 hold when one distribution is fixed.

Tables 1 and 2 compare the numerically computed values of the conjectured tight UB,

E[W (F0,Gu∗)], drawing on Chen and Whitt (2018), to the heavy-traffic approximation (HTA) in

(4), the new upper bound in (51), the Daley (1977) bound in (6) and the Kingman (1962) bound

in (5) over a range of ρ for the scv pairs (c2a, c
2
s) = (4.0,4.0) and (0.5,0.5). In order to focus on

the variability independent of the traffic intensity ρ, we display the scaled mean waiting time val-

ues (1− ρ)E[W ]/ρ2, which are constant for the heavy-traffic approximation in (4), being equal to

(c2a+ c
2
s)/2. simulation algorithm, discussed in §6.1. Tables EC.2 and EC.3 in the e-companion give

comparable results for the mixed pairs (c2a, c
2
s) = (4.0,0.5) and (0.5,4.0), while Tables EC.4-EC.7

show all the unscaled values.

In these tables we also show the value of δ in the new UB (51) and the maximum relative error

(MRE) between the UB approximation and the tight UB. The MRE over all four cases was 5.7%.

which occurred for c2a = c2s = 0.5 and ρ= 0.5.

We also display the lower bound (LB) in (7), which is far less than the other values, indicating

the wide range of possible values. The extremely low LB occurs because it is associated with the

D/GI/1 model, which is approached by the Fu extremal distribution as the support limit Ma →∞

for any c2a. Notice that the LB is actually 0 for many cases with low traffic intensity; that occurs

if and only if P (V ≤ U) = 1. Hence, the LB looks especially bad for the case (c2a = 4.0, c2s = 0.5)

in Table EC.2, because it is the same as for the case (c2a = 0.5, c2s = 0.5) in Table 2 and even for

(c2a = 0.0, c2s =0.5) in the D/GI/1 model. We discuss the LB in Chen and Whitt (2019).
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Table 1 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =4.0.

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman

(4) (51) (6) (5)

0.10 0.000 4.000 38.001 38.002 0.000 0.00% 40.000 202.000

0.20 0.000 4.000 18.078 18.112 0.007 0.19% 20.000 52.000

0.30 0.833 4.000 11.661 11.731 0.041 0.60% 13.333 24.222

0.40 1.250 4.000 8.640 8.722 0.107 0.94% 10.000 14.500

0.50 1.500 4.000 6.940 7.020 0.203 1.15% 8.000 10.000

0.60 1.667 4.000 5.883 5.946 0.324 1.07% 6.667 7.556

0.70 1.786 4.000 5.168 5.216 0.467 0.93% 5.714 6.082

0.80 1.875 4.000 4.662 4.693 0.629 0.67% 5.000 5.125

0.90 1.944 4.000 4.287 4.302 0.807 0.35% 4.444 4.469

0.95 1.974 4.000 4.134 4.142 0.902 0.18% 4.211 4.216

0.98 1.990 4.000 4.052 4.055 0.960 0.07% 4.082 4.082

0.99 1.995 4.000 4.025 4.027 0.980 0.04% 4.040 4.041

From this analysis, we see that conjectured new UB (51) is an excellent approximation for the

conjectured UB E[W (F0,Gu∗)]. Moreover, we see that there is significant improvement going from

the Kingman (1962) bound in (5) to the Daley (1977) bound in (6) to the new UB in (51). We also

see that the heavy-traffic approximation is consistent with the UBs in all cases. Moreover, all the

approximations are asymptotically correct as ρ ↑ 1. The heavy-traffic approximation in (4) tends

to be much closer to the UB than the lower bound, which shows that the overall MRE can be large

and that the heavy-traffic approximation tends to be relatively conservative, as usually is desired

in applications.

6. A Systematic Study Over All Two-Point Distributions

The optimization in §5 supports Conjecture 1, but not as strongly as we would like. A more

convincing conclusion from §5 is that it suffices to reduce the search for an optimum to the smaller

subset of two-point distributions, i.e., to the product space Pa,2,2 ×Ps,2,2. This space is relatively
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Table 2 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = c2s =0.5.

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman

(4) (51) (6) (5)

0.10 0.000 0.500 4.750 4.750 0.000 0.00% 5.000 25.250

0.20 0.000 0.500 2.252 2.264 0.007 0.54% 2.500 6.500

0.30 0.000 0.500 1.432 1.466 0.041 2.36% 1.667 3.028

0.40 0.000 0.500 1.049 1.090 0.107 3.82% 1.250 1.813

0.50 0.000 0.500 0.827 0.878 0.203 5.72% 1.000 1.250

0.60 0.000 0.500 0.708 0.743 0.324 4.71% 0.833 0.944

0.70 0.036 0.500 0.623 0.652 0.467 4.53% 0.714 0.760

0.80 0.125 0.500 0.569 0.587 0.629 2.95% 0.625 0.641

0.90 0.194 0.500 0.530 0.538 0.807 1.38% 0.556 0.559

0.95 0.224 0.500 0.514 0.518 0.902 0.65% 0.526 0.527

0.98 0.240 0.500 0.505 0.507 0.960 0.27% 0.510 0.510

0.99 0.245 0.500 0.503 0.503 0.980 0.14% 0.505 0.505

easy to analyze because each of the sets Pa,2,2 and Ps,2,2 is one-dimensional, as indicated in §1.3.

The G0 counterexample from §8 of Wolff and Wang (2003) also falls in this set.

6.1. Simulation Experiments

To analyze the mean waiting times for the two-point interarrival-time and service-time distribu-

tions, we primarily use stochastic simulation. (We also verify for lower traffic intensities by applying

the multinomial representation in §5.2 for finite n.)

We study various simulation approaches in Chen and Whitt (2018). For the transient mean

E[Wn], we use direct numerical simulation, but for the steady-state simulations we mostly use the

simulation method in Minh and Sorli (1983) that exploits the representation of E[W ] in terms of

the steady-state idle time I and the random variable Ie that has the associated equilibrium excess

distribution, i.e.,

E[W ] =−
E[X2]

2E[X]
−E[Ie] =−

E[X2]

2E[X]
−
E[I2]

2E[I]
=
ρ2c2s + c2a +(1− ρ)2

2(1− ρ)
−
E[I2]

2E[I]
; (52)
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which is also used in Wolff and Wang (2003). For each simulation experiment, we perform multiple

(usually 20− 40) i.i.d. replications. Within each replication we look at the long-run average after

deleting an initial portion to allow the system to approach steady state if deemed helpful. It is well

known that obtaining good statistical accuracy is more challenging as ρ increases, e.g., see Whitt

(1989), but that challenge is largely avoided by using (52). There is also a well known issue of one

long run versus multiple replications, e.g., see Whitt (1991).

We do not report confidence intervals for all the individual results, but we did do a careful study of

the statistical precision. To illustrate, Table 3 compares the 95% confidence intervals associated with

estimates of the steady-state mean E[W (F0,Gu)] for the parameter triple (ρ, c2a, c
2
s) = (0.5,4.0,4.0)

obtained by making the statistical t test to multiple replications of runs of various length. The

table compares the standard simulation for various run lengths N (number of arrivals) and the

Minh and Sorli (1983) algorithm for various run lengths T (length of time, over which we average

the observed idle periods) and numbers of replications n. (See Chen and Whitt (2018) for more

discussion.)

Table 3 Confidence interval halfwidths for estimates of the steady-state mean E[W (F0,Gu)] for the parameter

triple (ρ, c2a, c
2

s) = (0.5,4.0,4.0)

Monte Carlo simulation Minh and Sorli simulation

replications N = 1E+05 N = 1E+06 N = 1E+07 T = 1E+05 T =1E+06 T =1E+07

20 6.64E-02 2.45E-02 8.01E-03 1.58E-03 4.81E-04 1.55E-04

40 5.59E-02 1.27E-02 4.22E-03 1.20E-03 3.20E-04 9.89E-05

60 3.69E-02 1.20E-02 4.23E-03 8.44E-04 2.88E-04 8.03E-05

80 3.52E-02 1.17E-02 3.72E-03 7.54E-04 2.27E-04 9.55E-05

100 2.61E-02 9.94E-03 3.13E-03 6.06E-04 2.02E-04 7.20E-05

6.2. The Impact of the Interarrival-Time Distribution

Figure 1 reports simulation results for E[W20] (left) and E[W ] (right) in the case ρ=0.5, c2a = c2s =

4.0 and Ma =Ms = 30. (The maximum 95% confidence interval was less than 10−4.) We focus on
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the impact of ba (for F ) in the permissible range [5,30] for six values of bs (for G) ranging from 5

to 30. (Recall that the parameter b was defined in §1.3.)
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Figure 1 Simulation estimates of the transient mean E[W20] (left) and the steady-state mean E[W ] (right) as a

function of ba for six cases of bs the in the case ρ= 0.5, c2a = c2s = 4.0 and Ma =Ms = 30.

Figure 1 shows that the mean waiting times tend to be much larger at the extreme left, which

is associated with ba = 5 or F0. However, we see some subtle behavior. For example, for bs = 20,

we clearly see that the mean is not monotonically decreasing in ba, but nevertheless, F0 is clearly

optimal.

On the other hand, a close examination of the extreme case bs = 5 shows that the largest value

of ba does not occur for ba = 5, but in fact occurs at a slightly higher value. That turns out

to be the counterexample. In particular, Tables 4 and 5 present detailed simulation estimates of

E[W ] and E[W20]. In both Tables 4 and 5 we see that the maximum mean waiting time value

in the first row, i.e., over ba when bs = 5 is not attained at ba = 5.0, but is instead attained at

ba = 5.25. For emphasis, in each case we highlight both the maximum entry in the first row and

the maximum entry in the table. Therefore, for that service-time distribution (which is G0), the

extremal inter-arrival time is not F0.

Note that F0 is optimal for all other bs and the difference between max{E[W (F,G0)] : F} −

E[W (F0,G0)] is very small. Moreover, consistent with Conjecture 1, the overall UB is attained at

the pair (F0,Gu). Finally, note that the difference across each row tends to be greater than the

difference across each column.
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Table 4 Simulation estimates of E[W ] as a function of ba and bs when ρ= 0.5, c2a = c2s = 4.0 and

Ma =7<Ms =10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.0

5.0 3.110 3.134 3.117 3.083 3.040 2.997 2.950 2.910 2.863

5.5 3.179 3.026 3.019 3.009 2.975 2.938 2.901 2.860 2.823

6.0 3.191 3.065 2.932 2.907 2.905 2.876 2.844 2.809 2.767

7.0 3.181 3.067 2.942 2.797 2.748 2.720 2.713 2.691 2.670

8.0 3.195 3.056 2.934 2.810 2.664 2.611 2.591 2.564 2.553

9.0 3.239 3.092 2.931 2.792 2.663 2.525 2.472 2.467 2.449

10.0 3.282 3.142 2.986 2.812 2.640 2.507 2.367 2.350 2.349

Table 5 Simulation estimates of E[W20] as a function of ba and bs when ρ= 0.5, c2a = c2s = 4.0 and

Ma =7<Ms =10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00

5.0 2.497 2.530 2.518 2.497 2.469 2.439 2.406 2.371 2.335

5.5 2.557 2.414 2.420 2.422 2.402 2.378 2.351 2.320 2.288

6.0 2.561 2.447 2.328 2.318 2.328 2.312 2.290 2.266 2.239

7.0 2.549 2.447 2.331 2.204 2.165 2.149 2.154 2.150 2.132

8.0 2.556 2.430 2.319 2.208 2.074 2.029 2.021 2.010 2.007

9.0 2.598 2.456 2.310 2.183 2.068 1.937 1.895 1.903 1.898

10.0 2.626 2.506 2.353 2.188 2.043 1.921 1.786 1.779 1.789

6.3. The Impact of the Service-Time Distribution

Figure 1 also shows the impact of the service-time distribution, but that impact is more compli-

cated. For E[W ] with bs = 0.5, we see that the curve crosses the other curves in the middle. We

now investigate what is the optimal value of bs over [1 + c2s,Ms] for E[Wn] and E[W ]. For that

purpose, Figure 2 plots the values of E[W10] (left) and E[W20] (right) as a function of bs in the

case ρ= 0.5, c2a = c2s = 4.0, Ms = 300 and ba = (1+ c2a). For Figure 2, we use the optimization in §5
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with a numerical method to directly compute a good finite truncation of objective in the nonlinear

program (50). For these cases, we find b∗s(10) = 35.10 and b∗s(20) = 41.12.
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Figure 2 The transient mean waiting time E[Wn] for n = 10,20 as a function of bs up to Ms = 300. b∗s(10) =

35.10, b∗s(20) = 41.12.

As a function of bs, the transient mean waiting time E[Wn] is approximately first increas-

ing and then decreasing at all traffic levels. Therefore, for each n, there exists b∗s(n) such that

E[W (F0, b
∗
s(n))]≥E[W (F0, bs);F ∈Pa,2,2]. Another important observation is that b∗s(n) is a func-

tion of n and b∗s(20)> b
∗
s(10) under traffic level ρ= 0.3.

Now we investigate the extremal b∗s(n) as a function of n. Figure 3 shows E[Wn] as a function

of n for the light traffic ρ= 0.2 (left) and ρ= 0.3 (right). Figure 3 shows that b∗s(n) tends to be

increasing with n given ba = (1+ c2a), but is not uniformly so. In particular, for ρ= 0.3 on the right,

we see a dip at n=15.
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Figure 3 Performance of b∗s(n) associated with E[Wn] for 5≤ n≤ 50.

Nevertheless, the upper bound queue over Pa,2,2 ×Ps,2,2 for transient mean waiting time E[Wn]

is F0/Gb∗s(n)
/1 with b∗s(n) primarily increasing with n.

We next directly examine the steady-state mean waiting time E[W ] for set ba = (1 + c2a) and

Ms = 100. We use Minh and Sorli (1983) method with simulation length over a time interval of

length 106 and 40 i.i.d. replications. (The maximum 95% confidence interval was again less than

10−4.) To illustrate, Figure 4 shows the results for the traffic levels ρ=0.3 (left) and ρ= 0.9 (right).
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Figure 4 E[W (F0,G)] for G∈Ps,2,2 as a function of bs given ba = (1+ c2a).

Just as in Figure 3, Figure 4 shows that the steady-state mean E[W ] is eventually increasing

in bs, given ba = (1+ c2a), strongly supporting the conclusion that the upper bound is attained at
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(F0,Gu). Hence, the optimal bs is Ms. Since E[Wn]→E[W ], we must also have b∗s(n)→ b∗s =Ms

as n→∞.

7. Conclusions

We have established new results about tight upper bounds for the mean steady-state waiting time in

the GI/GI/1 model given the first two moments of the interarrival time and service time, specified

by the parameter vector (1, c2a, ρ, c
2
s). Theorem 1 in §2 shows that the upper bounds (overall and

with one distribution fixed) are attained at distributions with support on at most three points.

Theorem 3 in §3 provides an analog of Theorem 1 for the transient mean in §3. Theorem 4 in §4

exposes additional structure of the extremal distributions when one distribution is given.

In the rest of the paper, including the e-companion, we applied numerical methods to further

identify the extremal distributions. From a practical engineering perspective, we have addressed the

important question about the tight upper bound. The combination of mathematical and numer-

ical results strongly supports Conjecture 1 in §5.3, which states that the overall upper bound is

attained by E[W (F0,Gu∗)], i.e., at the extremal two-point distributions, modified by a limit, as

many have thought. However, because the analysis is partly numerical, it still remains to provide a

mathematical proof. We also provided a new upper bound analytical formula (51), which is a valid

bound under Conjecture 1. Drawing on algorithms to compute E[W (F0,Gu∗)] in Chen and Whitt

(2018), Tables 1 and 2 illustrate that the new UB formula is quite accurate, providing significantly

improvement over previous bounds.

There are many remaining problems for research. In addition to providing a full mathematical

proof of Conjecture 1, it remains to identify the extremal distributions with one distribution given,

as in parts (a) and (b) of Theorem 1, that go beyond Theorem 4. It also remains to establish similar

results for other models. The method of proof here can be adapted to other settings, as illustrated

by the proof of Theorem 3 for the transient mean.
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e-Companion to “Extremal GI/GI/1 Queues” by Y. Chen and
W. Whitt

EC.1. Overview

In this appendix to the main paper, we provide postponed proofs and then we present additional

tables and plots. First, in §EC.2 we complete the proof of Theorem 1 showing the existence of three-

point extremal queues. In §EC.3 we present the proof of Theorem 4 identifying explicit extremal

distributions under an extra monotonicity assumption. In §EC.4 we present an alternative way to

identify the explicit extremal distributions by means of Tchebycheff systems. Then in §EC.5 we

prove Theorem 6, which establishes the new UB formula given Conjecture 1. In §EC.6 we discuss

the extension to unbounded support.

We next provide additional numerical results. First, in §EC.7 we present additional numerical

comparisons of the bounds and approximations, supplementing Tables 1 and 2 in §7. §EC.8 we

present numerical values of E[Wn(F0,Gu)] from the optimization and optimal search in §5 that

complement Table EC.8. In §EC.9 we present additional counterexamples to strong conclusons

with one distribution fixed. In §EC.10 we present additional numerical results for the upper bound

of the steady-state mean E[W ] when one distribution is deterministic, further supplementing §6.

EC.2. More on the Proof of Theorem 1.

We have given the first step of the proof of part (a) in §2.2. We now elaborate on Steps 2-4 for

part (a) and give the proof for (b) and thus (c) in Step 5 here.

Step 2. Existence by the Kakutani Fixed Point Theorem. We now show that the set

P∗
a,2 of fixed points in (21) is nonempty. Recall that P∗

a,2 is the set of all fixed points of the map

η :Pa,2(Ma)→ 2Pa,2(Ma), where η(F1) is the set of all maximizers of ζ(F1) in (20). For this purpose,

we apply the Kakutani fixed point theorem; e.g., see Kakutani (1941) and Border (1985), so we

state it here.

Theorem EC.1. (Kakutani fixed point theorem) If S is a non-empty compact and convex subset

of some Euclidean space R
d and ψ : S→ 2S is a set-valued function with a closed graph such that
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ψ(x) is non-empty and convex for all x ∈ S, then the map ψ has a fixed point, i.e., there exists

x∈ S such that x∈ ψ(x).

In order to be able to work within the Euclidean space R
d, we first restrict attention to the set

of probability measures with finite support in [0,Ma]; that is homeomorphic to a convex compact

subset of Rn. We use an asymptotic argument to get the the entire set Pa,2(Ma) in Step 4. Thus,

for k≥ 3, let Pe
a,2,k+1 be the subset of cdf’s F with support

Sk+1 ≡{x1, . . . , xk+1 : 0≤ x1 < · · ·<xk+1 ≤ xu}= Se
k+1 ≡{jMa/k : 0≤ j ≤ k}.

The space Pe
a,2,k+1 is homeomorphic to a non-empty compact and convex subset of Rk+1. (If desired,

we can let k = 2l, making the subsets indexed by l nested, Se
l+1 ⊆ Se

(l+1)+1.) Hence, we can apply

the Kakutani fixed point theorem to show that the set of fixed points P∗
a,2 in (21) is nonempty

when we restrict F to Pe
a,2,k+1.

To apply Theorem EC.1, we let ψ in Theorem EC.1 be η, where η(F1) is the set of all maximizers

of ζ(F1) in (20). Thus, we need to show that η(F1) has a closed graph and that η(F1) is nonempty

and convex for each F1. Recall that a set-valued function ψ is said to have a closed graph (or be

upper-hemicontinuous) if for all sequences {(xn, yn) : n≥ 1} such that yn ∈ ψ(xn) for all n, xn → x

and yn → y, we also have y ∈ψ(x).

To show that η has a closed graph, we apply the Berge maximum theorem, e.g., Berge (1963),

a version of which we state here.

Theorem EC.2. (Berge maximum theorem) Let S be a compact metric spaces; let w : S×S→R

be a continuous function; let w↑(x1) ≡ sup{w(x1, x2) : x2 ∈ §}; and let η : S → 2S be the set of

x2 ∈ S such that w(x1, x2) = w↑(x1). Then η has a closed graph (is upper-hemicontinuous), η(x1)

is nonempty, compact and w↑ : S→R is continuous.

.

To establish the continuity condition in our context, we use the continuity of the mean steady-

state waiting time as a function of the interarrival-time cdf F within the set Pa,2(Ma) with specified

finite first two moments, see §X.6 of Asmussen (2003).
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It remains to show that η(F1) is convex for each F1 when η(F1) is the set of all maximizers of

ζ(F1) in (20), but that convexity follows from the linearity in F2 of the integral in (24). The set

η(F ) is also nonempty because we are maximizing a continuous function over a compact metric

space. Hence the proof of Step 2 is complete.

Step 3a. Application of Theorem 2 in case (a). We show that P∗
a,2 is a subset of Pa,2,3(Ma)

by exploiting Theorem 2. Most of the proof of this step has been completed in the sketch in §2.2,

but we repeat for clarity. We first write (20) in the form of (14). In particular, for G the fixed cdf

of the service time V and H the cdf of a candidate waiting time W (F ∗,G) with finite mean where

F ∗ ∈P∗
a,2, we can write

sup{E[(W (F ∗,G)+V −UF2
)+] : F2 ∈Pa,2}= sup{

∫ Ma

0

φ(u)dF : F ∈Pa,2(Ma)} (EC.1)

for φ expressed as the double integral

φ(u)≡

∫ ∞

0

∫ ∞

0

(x+ v−u)+ dG(v)dH(x), 0≤ u≤Ma. (EC.2)

Next observe that φ in (EC.2) is a bounded continuous real-valued function of u because the cdf

H has bounded mean. Hence, we can apply Theorem 2 to deduce that, for any pair of cdf’s (G,H)

of (V,W ), we may take F2 ∈Pa,2,3(Ma).

Step 3b. Uniqueness via duality. We now show that, for any F ∗ in P∗
a,2, the optimal solution

in (EC.1) is unique, so that the fixed point solution F ∗ necessarily is in Pa,2,3(Ma). To do so, we

impose regularity conditions on the two cdf’s F and G, but later in Steps 4b and 4c we show that

these regularity conditions can be relaxed. At first, our conclusion will depend on these regularity

conditions.

To establish the uniqueuess, we consider the dual problem associated with the optimization in

Theorem 2 as in (3) of Smith (1995). In particular, we are focusing on φ in (EC.2). The objective

of the dual problem is to find the vector λ∗ ≡ (λ∗
0, λ

∗
1, λ

∗
2) that attains the infimum

γ(m1,m2)≡ inf
λ≡(λ0,λ1,λ2)

{λ0 +λ1m1 +λ2m2}, (EC.3)
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where mi ≡E[U i], i= 1,2 and λi are the decision variables (which are unconstrained), such that

ψ(u)≡ λ0 +λ1u+λ2u
2 ≥ φ(u) for all u∈F (EC.4)

where F is the support of F and

φ(u)≡

∫ ∞

0

∫ ∞

0

(x+ v−u)+dH(x)dG(v) =

∫ ∞

0

(x−u)+dΓ(x) (EC.5)

where Γ is the cdf of W +V , as in (EC.2). We see that the constraints produce quadratic functions

ψ(u) in (EC.4) that are required to dominate φ(u) in (EC.2).

To apply the Kakutani fixed point theorem in Step 2, we initially restrict attention to cdf’s

F with finite support, which we assume contain the endpoints 0 and Ma. Hence, we impose this

condition on the cdf F , so that the optimization in Step 3 and the dual above are actually standard

LP’s. Thus, to establish uniqueness of optimal solution in the LP of step 3, we apply the following

lemma; e.g., see pp. 1128-9 of Appa (2002).

Lemma EC.1. (non-degeneracy and uniqueness in LP) A standard LP has a unique optimal solu-

tion if and only if its dual has a non-degenerate optimal solution.

To show that the dual problem has a non-degenerate optimal solution, we first determine the

structure of the function φ in (EC.2) for case (a), which is where we introduce the regularity

condition on the cdf G in Lemma 2.

For our detailed proof of uniqueness in part (a), we use Lemma 2, showing that, under regularity

conditions, the function φ in (EC.2) is continuous, strictly positive, strictly decreasing and strictly

convex. We start knowing that both the dual LP and the primal LP (EC.1) have feasible solutions

in each optimization of Step 3, and thus they both have at least one optimal solution. Recall that

we are working with standard LP’s, where the cdf F has finite support set F . But note that the

support set F always contains the two endpoints, which we have assumed are 0 and Ma. First, if

Ma =m2, then the primal has the unique feasible, and thus optimal, solution F0. So henceforth

assume that Ma >m2 as well.
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We will show that the primal LP (EC.1) has a unique solution by applying Lemma EC.1 and

showing that all optimal solutions of the dual cannot be degenerate. That implies that the dual

has at least one non-degenerate optimal solution. Hence, we will show that we cannot have the

optimal λ∗
i be 0 for any i. First, we must have λ0 ≥ φ(0)> 0, so we cannot have λ∗

0 = 0.

Next, suppose that λ1 = 0. In this setting, with λ∗
0 > 0 and λ∗

1 = 0, if λ∗
2 ≥ 0, then ψ can intersect

φ only at 0, which cannot correspond to a feasible solution of the primal. On the other hand, if

λ∗
2 < 0, then ψ can only intersect φ at the two endpoints (without crossing), but that does not

correspond to a feasible solution of the primal, assuming that Ma >m2. Hence, we cannot have a

degenerate optimal solution with λ∗
1 = 0.

Finally, suppose that λ∗
2 = 0, which makes ψ linear. Then again ψ can only meet φ at the two

endpoints without crossing, but that does not correspond to a feasible solution of the primal,

assuming that Ma>m2 (as we have done).

Step 4. Two Asymptotic Arguments.

We now complete the proof of Theorem 1 (a) by carrying out two asymptotic arguments.

Step 4a. The first asymptotic argument. For each k ≥ 2, let F (k) be a fixed point with

support Se
k+1. Since all these cdf’s have common finite first two moments, the sequence {F (k) : k≥

2} is necessarily tight, so that there exists a subsequence {F (kj) : j ≥ 1} such that F (kj)⇒ F ∗ as

j→∞. Moreover, since the cdf’s have finite second moments, we have convergence of the associated

steady-state waiting times Wkj
⇒W ∗ and moments E[Wkj

]→E[W ∗] as j→∞, again by virtue of

§X.6 of Asmussen (2003). The limit then yields the desired fixed point in Pa,2(Ma). To summarize,

we have seen that F (kj)∈Pa,2(Ma) for all j and that

E[Wkj
] =E[(Wkj

+V −UF (kj))
+] for all j ≥ 1,

where the three random variables on the right are regarded as mutually independent. Then the

validity extends to the limit as j→∞, giving F ∗ ∈Pa,2(Ma) and

E[W ∗] =E[(W ∗ +V −UF∗)+] for all j ≥ 1,
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where the three random variables on the right are again regarded as mutually independent.

Step 4b. The second asymptotic argument. So far, we have established the existence of the

fixed point in Pa,2,3(Ma) for all fixed G in Kn

⋂

Ps,2, where Kn are the distributions with rational

Laplace transform, as in Smith (1953) or §II.5.10 of Cohen (1982). (This regularity condition was

used in Lemma 2 to guarantee that φ is strictly positive, strictly decreasing and strictly convex,

which in turn was used in the uniqueness proof in Step 3c.) We use the following basic lemma to

extend the result beyond that class.

Lemma EC.2. (a dense subset) The subset Kn

⋂

Ps,2 is a dense subset of Ps,2.

Proof. Observe that any point mass on the positive halfline can be expressed as the limit of

Erlang En distributions (which are in Kn) with fixed mean and variance approaching 0 as n→∞.

Thus, any distribution with finite support is the limit of finite mixtures of En distributions (which

also are in Kn). Since arbitrary distributions can be expressed as limits of distributions with finite

support, we see that the conclusion holds.

Hence, we can apply essentially the same argument as in Step 4b to prove that the result can

be extended to an arbitrary cdf G in Ps,2. For any fixed G in Ps,2 and n ≥ 1, let Gn be a cdf in

Kn

⋂

Ps,2 such that Gn ⇒G as n→∞. Let Fn be a fixed point in Pa,2,3(Ma) associated with Gn

for each n≥ 1. Since, the sequence {Fn : n≥ 1} is tight, it contains a convergent subsequence with

limit F ∗, which is in Pa,2,3(Ma) because it is compact. As in Step 4b, that limiting F ∗ is the fixed

point associated with the limiting G.

Step 5. Application of Theorem 2 in case (b). We now treat case (b). The first two steps

are essentially the same, but there are some differences in the third step. We reduce the proof to

case (a) by using a reverse-time representation.

Step 5a. A Reverse-Time Representation. Instead of (20), we have

ζ(G1)≡ sup{E[(W1 +V −U)+] :GV ∈Ps,2(Ms)}, (EC.6)

where GV is understood to be the cdf of V , W1 is the steady-state waiting time associated with

G1 and the three variables W1, V and U in (20) are taken to be mutually independent. Now we
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introduce a reverse-time construction, i.e., focusing on Ms− v instead of v. In particular, we write

(EC.6) in the form of (14) after changing the underlying measure from the cdf G of V to the cdf

GMs−V of Ms −V . The optimization becomes

sup{E[(W +V −U)+] :GV ∈Ps,2(Ms)}= sup{

∫ Ms

0

φs(v)dGMs−v :GMs−v ∈Ps,2(Ms)} (EC.7)

for φs expressed as the double integral

φs(v)≡

∫ ∞

0

∫ ∞

0

(x+Ms − v−u)+ dF (u)dH(x), 0≤ v≤Ms. (EC.8)

A tricky part is the value of the moments. The formula for a moment has a fixed form for any

measure. Hence, when we change the measure, we necessarily change the values of the moments.

In our context, new values for the moments are

m̂k ≡E[(Ms −V )k], k ≥ 1. (EC.9)

Since E[V ] = ρ, we obtain m̂1 =Ms − ρ and m̂2 =M 2
s − 2ρMs+ ρ2(c2s +1).

Hence, paralleling (26)-(28), the new dual problem is

γ(m1,m2)≡ inf
λ≡(λ0,λ1,λ2)

{λ0 +λ1m̂1 +λ2m̂2}, (EC.10)

where m̂i ≡E[(Ms−V )i], i=1,2 and λi are the decision variables (which are unconstrained), such

that

ψ(v)≡ λ0 +λ1v+λ2v
2 ≥ φs(v) for all v ∈ G (EC.11)

where G is the support of G and φs(v) is in (EC.8)

Next observe that, as before, φs in (EC.8) is a bounded continuous real-valued function of v

because and the cdf H has bounded mean. Hence, we can apply Theorem 2 to deduce that, for any

pair of cdf’s (F,H) of (U,W ), we may take G ∈Ps,2,3(Ms).

We now exhibit the structure of the function φs and show that it has the same essential structure

as φ in part (a). First, we write

φs(v) = E[(W +Ms − v−U)+] =E[(X − v)+] for X ≡Ms+W −U. (EC.12)

We use the following basic result in our analysis.
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Lemma EC.3. For any GI/GI/1 queue with F ∈Pa,2, G∈Ps,2 and ρ < 1, P (W =0)> 0.

We now characterize the structure of φs under regularity conditions imposed on the interarrival-

time cdf F .

Lemma EC.4. If, as occurs when the cdf F of U is in Kn, (i) the cdf F is differentiable with a

strictly positive pdf f that can be expressed as

f(u) =

∫ u

0

ḟ(x)dx, u≥ 0, (EC.13)

where ḟ is integrable, and (ii) W has a cdf H with H(0)> 0 and

H(x) =H(0)+

∫ x

0

h(w)dw x≥ 0, (EC.14)

where h is strictly positive and integrable over the halfline, then φs in (EC.12) can be expressed as

φs(v) =H(0)E[(Ms −U − v)+] +

∫ ∞

0

h(w)E[(w+Ms −U − v)+]dw > 0, (EC.15)

so that the first two derivatives of φs in (EC.12) and (EC.15) exist for v > 0 and, with satisfy

φ̇s(v) = Θ(v)− 1=−H(0)F (Ms− v)−

∫ ∞

0

h(w)F (w+Ms − v)dw< 0,

φ̈s(v) = θ(v) =H(0)f(Ms− v)+

∫ ∞

0

h(w)f(w+Ms − v)dw > 0, v≥ 0, (EC.16)

where Θ(v)≡ P (W +Ms−U ≤ v) and F c ≡ 1−F , so that φs is strictly positive, strictly decreasing

and strictly convex on [0, ρMs]. Moreover, from (EC.16) we see that if f is strictly decreasing, then

φ̈s(v) is strictly increasing as well.

Proof. After carefully treating the atom, we can apply the same proof as for Lemma 2. The first

line of (EC.16) follows from Lemma EC.3. Given that P (W = 0) > 0 and U has support on the

entire halfline, it is clear that Θ(v)< 1 for all v > 0, so that φ̇s(v)< 0 for all v≤Ms.

Given that the structure of the dual problem is the same as for the previous one, we can use our

proof of uniqueness in case (a). That completes the proof of Theorem 1.
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Remark EC.1. (the special case of M/GI/1 for case (b))

For M/GI/1 in case (b), we already know the answer. In this case, we know that the E[W ] is

insensitive to the service-time cdf beyond its first two moments. For any steady-state waiting time

W with cdf H, let its Laplace transform be

ĥ(s)≡E[e−sW ] =

∫ ∞

0

e−sw dH(w), (EC.17)

noting that (EC.17) includes a term for the atom H(0).

For this case, we show that φs is a relatively simple function. In particular, since

∫ v

0

(v−u)e−udu = v− ve−v −

∫ v

0

ue−udu

= v− ve−v + ve−v + e−v − 1= v+ e−v − 1, (EC.18)

φs(v) = e−Ms ĥ(1)ev +E[W ] +Ms − v− 1, (EC.19)

so that, in addition to φs(u)> 0 from (EC.15), we have

φ̇s(v) = e−Ms ĥ(1)ev − 1< 0, and

φ̈s(v) = e−Ms ĥ(1)ev > 0. (EC.20)

Hence, φs(v) is a linear combination of {1, v, ev}. Therefore, the system {1, v, v2, φs(v)} is a T-

system for any steady-state waiting time distribution W . So we can deduce that either G0 or Gu

must be contained in the fixed point set P∗
s,2.

Finally, we note that even though the mean steady-state waiting time E[W ] depends on G

only via its first two moments in the M/GI/1 model, the full distribution of W depends on the

full service-time distribution, being uniquely characterized, as can be seen from the Pollaczek-

Khintchine transform for M/GI/1. Thus, in the fixed-point iteration, there is a unique optimum,

but that fixed-point iteration also depends on the distribution of W to begin the iteration.
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EC.3. Proof of Theorem 4.

We first give a detailed proof of case (a). By Theorem 1 (a), we know that there is an extremal

distribution with at most three points in its support. We want to further reduce the possibilities

to a two-point distribution or even to the natural candidate F0.

For the following, we assume that the service-time cdf G has the regularity conditions assumed

in Lemma 2 and the interarrival-time cdf a fixed point solution obtained from the proof of Theorem

1, i.e., F ∗ ∈P∗
a,2(Ma) in (21).

Lemma EC.5. Suppose that G ∈Kn and F ∗ ∈ P∗
a,2(Ma) in (21). If Ma is sufficently large, then

Ma is not in the support of F ∗.

Proof. We prove thatMa cannot be part of an optimal solution ifMa is suitably large by showing

that the associated dual for (a) in (26)-(28) cannot have Ma in a solution. We first observe that the

objective function in (26) is independent of Ma, provided only that the choice of Ma is consistent

with the specified moments. Hence, we will be focusing on the constraints in (27). The function φ

in (27) depends onMa and so do the optimal solution (λ0, λ1, λ2). Henceforth, these are understood

to be the optimal values.

For each Ma, the support of F ∗ ≡F ∗(Ma) can be identified by the roots of the equation

ψ(r)≡ λ0 +λ1r+λr2 = φ(r), (EC.21)

where ψ and λi correspond to the optimal solution. We use the knowledge of the sign of these

optimal values. In particular, λ0 ≥ φ(0) =E[W (F ∗,G)]+ ρ > 0 and λ1 < 0<λ2.

By Theorem 1, equation (EC.21) has at most three roots. Because the mean of F ∗ is necessarily

1, the least root r1(Ma) satisfies 0≤ r1(Ma)< 1 for all Ma. We will assume that Ma is also a root

and show that leads to a contradiction when Ma is sufficiently large.

Given that r1(Ma)< 1 and Ma are roots of (EC.21), we can look at the difference

ψ(r1(Ma))−ψ(Ma) = λ1(Ma)(r1(Ma)−Ma)+λ2(Ma)(r1(Ma)
2 −M 2

a )

= φ(r1(Ma))−φ(Ma), (EC.22)
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so that, after dividing by Ma − r1(Ma),

−λ1(Ma) = λ2(Ma)(r1(Ma)+Ma)+
φ(r1(Ma))−φ(Ma)

Ma − r1(Ma)

≤ λ2(Ma)(1+Ma)+
φ(0)

Ma − 1
. (EC.23)

As a consequence of (EC.23),

limsup
Ma→∞

{−λ1(Ma)/λ2(Ma)Ma} ≤ 1. (EC.24)

We now develop a contradiction with (EC.24). To do so, we consider the quadratic equation

ψ(x)−φ(Ma) = 0, x≥ 0. (EC.25)

The solutions of this quadratic equation are

x=
−λ1(Ma)±

√

λ1(Ma)2− 4λ2(Ma)(λ0(Ma)−φ(Ma))

2λ2(Ma)
. (EC.26)

Since we have tentatively assumed that Ma is in the optimal solution, Ma is necessarily a root of

this quadratic equation. Since φ(x) ↓ 0, the quadratic equation in (EC.25) has two real roots, one

at Ma and one greater than Ma. but we cannot have any roots less than Ma. Hence, we must have

−λ1(Ma)/2λ2(Ma)≥Ma, which implies that

lim inf
Ma→∞

{−λ1(Ma)/λ2(Ma)Ma} ≥ 2, (EC.27)

but that contradicts (EC.24).

We next introduce conditions on the pdf γ of W (F ∗,G)+VG that guarantee that there must be

a two-point extremal distribution.

Lemma EC.6. Suppose that G∈Kn and F ∗ ∈P∗
a,2(Ma) in (21). If γ is unimodal, then the support

of F ∗ must be in Pa,2,2.
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Proof. We first show that, if γ is unimodal, then the extremal distribution cannot have support

{0, x,Ma} for some x, 0< x<Ma. Afterwards, we show that the support of F ∗ must be in Pa,2,2

if γ is unimodal.

Step 1. We now show that if γ is unimodal, then F ∗ cannot have support {0, x1,Ma} for some

x, 0<x1 <Ma. Suppose that F
∗ does have support {0, x1,Ma} for some x1, 0<x1 <Ma. Because

0 is in the support of F ∗, we have ψ(0) = φ(0) and ψ̇(0)≥ φ̇(0). We consider the three alternatives

for the second derivative.

Case (i). If ψ̈(0)> φ̈(0), ψ̇(x)− φ̇(x) is a first increasing, then decreasing and finally increasing

function between [0, x1]. Therefore, there exists at least two zeros for φ̈(x) = ψ̈(x) when x∈ [0, x1].

But F ∗ has support on Ma, so there exists at least one zero for φ̈(x) = ψ̈(x) when x ∈ (x1,Ma].

There are at least three zeros for φ̈(x) = ψ̈(x) when x ∈ [0,Ma], which contradicts with γ being

unimodal.

Case (ii). If ψ̈(0) = φ̈(0), then unimodal γ implies there exists at most one zero for φ̈(x) = ψ̈(x)

when x ∈ (0,Ma]. We observe the ψ̇(x)− φ̇(x) is a first decreasing and then increasing function

between [0, x1]. So there exists at least one zero for φ̈(x) = ψ̈(x) when x ∈ [0, x1]. But F ∗ has

support on Ma, so we obtain at least two zeros for φ̈(x) = ψ̈(x) for x ∈ (0,Ma]. Hence, that also

leads to a contradiction.

Case (iii). Finally, if ψ̈(0) < φ̈(0), then ψ̇(x) − φ̇(x) is a first decreasing and then increasing

function between [0, x1]. So there exists at least one zero for φ̈(x) = ψ̈(x) when x ∈ [0, x1]. F
∗ has

support on Ma leads to at least two zeros φ̈(x) = ψ̈(x) when x∈ [0,Ma]. But if γ is unimodal with

ψ̈(0)< φ̈(0), then there exists at most one zero for φ̈(x) = ψ̈(x) when x ∈ [0,Ma]. That also leads

to a contradiction.

Step 2. We now turn to the second part. we now show that the support of F ∗ must be in Pa,2,2

if γ is unimodal. For the second part, we assume that F ∗ is attained at the three points xi with

0≤ x1 <x2 <x3 <Ma. (The argument is essentially the same in the other case: 0<x1 <x2 <x3 ≤

Ma.) We will show that γ cannot be unimodal. To do so, we observe that if γ is unimodal, then the
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equation c− γ(x) = 0 cannot have at least three zeros in either the open interval [0,Ma) or (0,Ma]

(including at most one endpoint) for some c > 0. However, if F ∗ is attained at the three points

xi with 0 ≤ x1 < x2 < x3 < Ma, then D(x) ≡ ψ(x) − φ(x) must have four extreme points in the

open interval (0,Ma): the two minima x2 and x3 and the two maxima in the intervals (x1, x2) and

(x2, x3). These four extreme points of D(x)≡ ψ(x)− φ(x) are attained at the points x satisfying

Ḋ(x) = 0. Next observe that, since D(x)≥ 0 for 0≤ x≤Ma, that as a consequence, Ḋ(x) must have

three extreme points in (0,Ma). Since γ(x) = D̈(x), that implies that the the equation c−γ(x) = 0

must have three zeros, and so cannot be unimodal.

We conclude by giving a brief sketch of the proof of Theorem 4 (b). First, we are so far unable

to prove an analog of Lemma EC.5 for (b), so that does not appear in (b). The problem in (b)

differs from the problem in (a), because in (b) the objective function depends strongly on Ms, as

can be seen from (EC.9) and (EC.10).

However, the proof of Lemma EC.6 extends directly to (b) with the time reversal. Thus, we can

conclude that, if f is unimodal, then G∗ ∈ Ps,2,2. Moreover, we see that, if f is strictly monotone

decreasing, then θ in by (EC.16) in Lemma EC.4 is strictly monotone increasing, which implies

that either G0 or Gu must be an extremal distribution.

Lemma EC.7. In the setting of Theorem 1 (b), suppose that F ∈Kn and G∗ ∈ P∗
s,2(Ms) in the

analog of (21). If θ is monotone, then G0 is an extremal distribution.

Proof. We first show that either G0 or Gu must be an extreme point. Then we show that it can

only be G0. For the first step, the argument is a minor variant of the second step in the proof of

Lemma EC.6 except we have one less point. We now assume that G∗ is attained at two interior

points, i.e., at the two points xi with 0<x1 <x2 <Ms. Then D(x)≡ ψ(x)−φs(x) must have three

extreme points in the open interval (0,Ms): the two minima x1 and x2 and the maximum in the

interval (x1, x2). These three extreme points of D(x)≡ ψ(x)− φ(x) are attained at the points x

satisfying Ḋ(x) = 0. Next observe that, since D(x)≥ 0 for 0≤ x≤Ms, that as a consequence, Ḋ(x)

must have two extreme points in (0,Ms). Since θ(x) = D̈(x), that implies that the the equation
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c− θ(x) = 0 must have two zeros, and so θ cannot be monotone. Hence there must be only one

interior point. Finally, we observe that the extremal cdf must be G0 by looking at the derivative

at the one interior point x, which must be positive, preventing another root at Ms.

EC.4. Tchebycheff Systems and Two-Point Extremal Distributions

A variant of the proof of Theorem 1 can yield two-point extremal distributions if we can show

that the function φ in (EC.2) for case (a) together with the basic functions 1, u and u2 is a T

(Tchebycheff) system.

In particular, for these results we apply the Markov-Krein theorem from Karlin and Studden

(1966), Johnson and Taaffe (1993), Gupta and Osogami (2011). The functions {f0, ..., fn} form a

Tchebycheff system over [a, b] provided the Tchebycheff determinants are strictly positive whenever

a≤ x0 <x1, ..., xn−1 <xn ≤ b.

Theorem EC.3. (Markov-Krein) If {f0, ..., fn} and {f0, ..., fn, φ} are T systems on the interval

[0,M ], then there exists unique extremal distributions µL and µU of m= {1,m1, ...,mn} such that

infimum and supremum of the following two moment problems,

inf
µ∈D

{E[φ(u)] :E[fi(u)] =mi, i= 0,1,2, ..., n},

sup
µ∈D

{E[φ(u)] :E[fi(u)] =mi, i= 0,1,2, ..., n}

are attained. For the case n= 2 with fi(u)≡ ui, the extremal distributions are F0 and Fu in P2,2.

D is the set includes all non-negative probability measures.

In order to apply the Markov-Krein theorem to our problem, it remains to show that the assumed

T-system property holds. Note that the functions 1, u, u2 and −(x−u)+ do not form a T system,

because the function −(x−u)+ is piecewise linear, but in (a) the integration in φ(u) with respect

to a positive density can help. The following is a direct consequence of Theorem EC.3 and the

proof of Theorem 1.

Theorem EC.4. (Further reduction to the classic extremal two-point distributions) In the setting

of Theorem 1, let F ∗(G)∈Pa,2,3(Ma),G
∗(F )∈Ps,2,3(Ms) be fixed point solutions from Theorem 1.
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Let φ(u) = E[(W (F ∗(G),G)] + VG − u)+] for u ∈ [0,Ma] and φs(v) =E[(W (F,G∗(F )) +Ms − v−

UF )
+] for v ∈ [0, ρMs].

(a) For any specified G∈Ps,2, if −φ(u) in (28) with {1, u, u2} consists of a T system, then

w↑
a(G)≡ sup{w(F,G) : F ∈Pa,2}= sup{w(F,G) : F ∈Pa,2,2}=w(F0,G). (EC.28)

(b) For any specified F ∈Pa,2, if −φs(v) in (EC.12) with {1, v, v2} consists of a T system, then

w↑
s(F )≡ sup{w(F,G) :G ∈Ps,2(Ms)}= sup{w(F,G) :G∈Ps,2,2(Ms)}=w(F,Gu). (EC.29)

(c) If both conditions in (a) and (b) are satisfied, then

w↑ ≡ sup{w(F,G) : F ∈Pa,2(Ma),G∈Ps,2(Ms)}= sup{w(F,G) : F ∈Pa,2,2(Ma),G∈Ps,2,2(Ms)}

=w(F0,Gu). (EC.30)

EC.5. Proof of Theorem 6

In this section we prove Theorem 6, which provides an UB for E[W ] in the conjectured F0/Gu∗/1

extremal GI/GI/1 queue. The notation Gu∗ means the limit of Gu as Ms →∞.

Following §10 of Daley et al. (1992), we concentrate on the class Pa,2 × Ps,2 and attempt to

determine the best choices of functions a(ρ), b(ρ) such that

E[W ]≤
a(ρ)c2a+ b(ρ)c2s

2(1− ρ)
. (EC.31)

We apply Delay’s decomposition in the subsequent Theorem EC.5 to limMs→∞E[W (F,Gu)] to

obtain

lim
Ms→∞

E[W (F,Gu)] =E[W (F,D)]+ lim
Ms→∞

E[W (D,Gu)] =E[W (F,D)]+
c2s

2(1− ρ)
. (EC.32)

Consequently, b(ρ)≥ bLB(ρ) = 1. From (EC.32), the lower bound of a(ρ) can be given by

a(ρ)≥ aLB(ρ) = inf
c2a>0

{
2(1− ρ)

c2a
sup

F∈Pa,2

E[W (F,D)]}. (EC.33)
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The aLB(ρ) is the best choice (if it exists) when set b(ρ) = 1. The aLB(ρ) and bLB(ρ) can give a

new upper bound for GI/GI/1, so that we obtain

E[W (F,G)]≤E[W (F0,Gu∗)]≤
aLB(ρ)c

2
a + c2s

2(1− ρ)
≤
a(ρ)c2a + b(ρ)c2s

2(1− ρ)
. (EC.34)

Now we are left to determine the aLB(ρ). At this point we focus on the candidate bounding

system F0/GI/1, so we obtain a proof only for this case. We obtain an alternative representation in

Chen and Whitt (2018), which we state here. In particular, we can convert the queue F0/GI/1 into

D/RS(V,p)/1 where RS(V,p) =
∑N(p)

k=1 Vk is a random sum of i.i.d. variables distributed as V , N(p)

is a geometric random variable on the positive integers having E[(N(p))] = 1/p with 1/p= 1+ c2a.

Here is the specific lemma:

Lemma EC.8. (Theorem 1 in Chen and Whitt (2018)) For the F0/GI/1 model with service time

V having mean ρ and scv c2s, the mean steady-state waiting time can be expressed as

E[W (F0(p)/GI/1)] = E[W (D(1/p)/RS(V,p)/1)]+ (E[N(p)]− 1)E[V ]

= E[W (D(1/p)/RS(V,p)/1)]+ ρ(1− p)/p

= E[W (D(1/p)/RS(V,p)/1)]+ ρc2a. (EC.35)

Proof. The F0 interarrival time means that a random number of arrivals, distributed as N(p),

arrive at deterministic intervals with deterministic value 1/p = c2a + 1. So the model has batch

arrivals. The result in (EC.35) follows from Halfin (1983) or Theorem 1 of Whitt (1983a), which

states that the delay of an arbitrary customer in the batch is distributed the same as the

delay of the last customer in the batch when the batch-size distribution is geometric. Because

E[W (D(1/p)/RS(V,p)/1)] is the expected delay of the first customer in a batch, we need to add

the second term in (EC.35) to get the delay of the last customer in the batch; e.g., see §III of Whitt

(1983a).

Hence, we apply Lemma EC.8 to write

E[W (F0,G)] =E[W (D,RS(V,p))]+ ρc2a. (EC.36)
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For the rest, we use a stochastic comparison argument involving convex stochastic order, as in §9.5

of Ross (1996) or in §1.7 and Chapter 5 of Stoyan (1983). Let convex order be denoted by ≤c. In

particular, consider an F0/GI/1 system for which S ≤c S
′ where S′ denotes a exponential random

variable with mean E[S]. Then for two sequences of i.i.d. variables {Sn} and {S′
n},

S1 + ...+SN(p) ≤c S
′
1 + ...+S′

N(p). (EC.37)

However, the righthand side is distributed as an exponential random variable with mean N(p)E[S],

where N(p) is a geometric random variable with mean E[N(p)] = 1+ c2a. Hence, we obtain

(S1 + ...+SN(p))/E[N(p)]≤c S
′. (EC.38)

Consequently,

(1+ c2a)
−1W (D,RS(V,p)) =d W ((1+ c2a)D,S1+ ...+SN(p))

=d W (D, (S1+ ..+SN(p))/(1+ c2a))

≤c W (D,S′) =W (D,M). (EC.39)

Hence,

(1+ c2a)
−1E[W (D,RS(V,p))]≤EW [(D,M)] = δρ/(1− δ). (EC.40)

where δ = exp(−(1− δ)/ρ).

Finally, combine (EC.33), (EC.36) and (EC.40) to obtain

aLB(ρ) = inf
c2a>0

2(1− ρ) supF∈Pa,2
E[W (F,D)]

c2a

= inf
c2a>0

2(1− ρ)E[W (F0,D)]

c2a
≤ inf

c2a>0
{2ρ(1− ρ)+

(1+ c2a)δρ/(1− δ)2(1− ρ)

c2a
}

→
ρ(2− 2ρ)

1− δ
(as c2a →∞). (EC.41)

So aLB(ρ)≤ ρ(2− 2ρ)/(1− δ) and

E[W (F0,Gu∗)]≤
aLB(ρ)c

2
a+ c2s

2(1− ρ)
≤

2(1− ρ)ρ/(1− δ)c2a+ ρ2c2s
2(1− ρ)

. (EC.42)
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EC.6. Extension to Unbounded Intervals of Support

In this section we discuss what happens when we increase the intervals of support [0,Ma] and

[0, ρMs]. Throughout this section we assume that the UB for finite support has been shown to be

(F0,Gu). We ask what happens as we let Ma →∞ and Ms →∞.

EC.6.1. Unbounded Support for the Interarrival Time

First, for the interarrival-time cdf F , the cdf F0 is optimal for the UB for all Ma, and thus remains

optimal as Ma → ∞. In contrast, for the lower bound, which we mostly do not discuss here,

the extremal interarrival-time cdf is Fu, which places positive mass on Ma. Then the extremal

interarrival-time cdf Fu ≡Fu(Ma) converges to the deterministic distribution with mean 1 asMa →

∞, which of course has c2a = 0, which is likely to be inconsistent with the specified parameter.

Nevertheless, the mean waiting time converges to the value E[W (D,G)] of the associated D/GI/1

model, as we saw in Tables 1-2. Moreover, as discussed in Theorem 3.1 of Daley et al. (1992), that

yields the well-known tight LB.

EC.6.2. Unbounded Support for the Service Time

The situation is more complicated when we let Ms → ∞ for the upper bound. Just as for the

interarrival-time cdf Fu, the service-time cdf Gu ≡Gu(Ms) converges to the deterministic cdf with

the mean ρ of Gu as Ms → ∞. However, the mean waiting time fails to converge to the mean

waiting time of the associated GI/D/1 queue.

We propose two approaches to this problem. The first way is to exploit the representation in

terms of the idle time in (52), as was done in Minh and Sorli (1983) and Wolff and Wang (2003).

It turns out that the mean idle time does converge as Ms → ∞. We discuss this approach in

Chen and Whitt (2018). The second approach is to exploit the Daley decomposition from §10 of

Daley et al. (1992), which we discuss next.
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EC.6.3. The Daley Decomposition and Conjectures

We now discuss a decomposition for the mean steady-state waiting time E[W ] and three conjectures

in §10 of Daley et al. (1992). The decomposition appears in equation (10.2) of Daley et al. (1992),

where it is attributed to unpublished by D. J. Daley in 1984. We state it in the following theorem.

Let Gu∗ be shorthand for the limit E[W (F,Gu)] as Ms →∞ and let Dm denote a deterministic cdf

with mass 1 on m.

Theorem EC.5. (the Daley decomposition in (10.2) of Daley et al. (1992)) Consider the GI/GI/1

model with specified interarrival-time cdf F ∈ Pa,2(1, c
2
a) and unspecified service-time cdf G ∈

Ps,2(ρ, c
2
s,Ms). As Ms →∞,

E[W (F,Gu∗)]≡ lim
Ms→∞

E[W (F,Gu(Ms))] = E[W (F,Dρ)]+E[W (D1,Gu∗)]

= E[W (F,Dρ)]+
ρ2c2s

2(1− ρ)
. (EC.43)

Proof. We only give a brief overview. We do a regenerative analysis to compute the mean waiting

time, looking at successive busy cycles starting empty. We exploit the classic result that the steady-

state mean waiting time is the expected sum of the waiting times over one cycle divided by the

expected length of one cycle; e.g., see §3.6 and §3.7 of Ross (1996).

AsMs increases, the two-point cdf Gu ≡Gu(Ms) necessarily places probability of order O(1/M 2
s )

onMs and the rest of the mass on a point just less than the mean service time, ρ. For very largeMs,

there will be only rarely, with probability of order O(1/M 2
s ), a large service time of order O(Ms).

In the limit, most customers never encounter this large service time, so that we get a contribution

to the overall mean E[W ] corresponding to E[W (F,Dρ)] in the first term on the right in (EC.43).

On the other hand, the total impact of the very large waiting time of order Ms is roughly the

area of the triangle with height O(Ms) and width O(Ms), which itself is O(M 2
s ). When combined

with the O(1/M 2
s ) probability, this produces an additional O(1) impact on the steady-state mean,

which is given by the second term on the right in (EC.43). Moreover, because we can use a law-

of-large-numbers argument to treat this large service time, the asymptotic impact of that large
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service time is independent of the interarrival-time cdf beyond its mean, so we can substitute D1

for the original interarrival-time cdf F with mean 1 in the second term.

Conjecture 1 shows that sup{E[W (GI,D)] : F}=E[W (F0,D)]. Hence, we can apply Theorem

EC.5 to obtain the following corollary, which verifies (more strongly supports) Conjectures I and

II on p. 209 of Daley et al. (1992).

Corollary EC.1. (decomposition of the upper bound) For the GI/GI/1 model with unspecified

interarrival-time cdf F ∈Pa,2(1, c
2
a) and unspecified service-time cdf G∈Ps,2(ρ, c

2
s,Ms),

lim
Ms→∞

sup{E[W (F,G)] : F,G}=E[W (F0,Gu∗)] =E[W (F0,Dρ)]+
ρ2c2s

2(1− ρ)
. (EC.44)

Table EC.1 provides a numerical verification of Corollary EC.1 (and thus also Theorem EC.5).

Table EC.1 reports simulation results using 20 i.i.d. replications, each with run length with 107.

We show results for the four cases with c2a = 0.5,4.0 and c2s = 0.5,4.0 across a wide range of ρ.

Table EC.1 A comparison of two algorithms for computing E[W (F0,Gu∗)] in the four cases c2a = 0.5,4.0 and

c2s = 0.5,4.0

c2a = c2s = 4 c2a = c2s = 1/2 c2a =4, c2s = 1/2 c2a =1/2, c2s =4

ρ Daley’s Reduction F0/Gu∗/1 Daley’s Reduction F0/Gu∗/1 Daley’s Reduction F0/Gu∗/1 Daley’s Reduction F0/Gu∗/1

0.10 0.422 0.422 0.053 0.053 0.403 0.403 0.072 0.072

0.20 0.904 0.904 0.113 0.113 0.816 0.816 0.200 0.200

0.30 1.500 1.499 0.184 0.184 1.275 1.274 0.409 0.409

0.40 2.304 2.304 0.280 0.280 1.837 1.835 0.746 0.746

0.50 3.469 3.471 0.414 0.414 2.596 2.595 1.289 1.289

0.60 5.296 5.295 0.638 0.638 3.719 3.709 2.213 2.213

0.70 8.439 8.442 1.017 1.017 5.582 5.563 3.875 3.875

0.80 14.91 14.92 1.821 1.822 9.310 9.293 7.422 7.422

0.90 34.73 34.72 4.294 4.295 20.53 20.53 18.47 18.47

0.95 74.52 74.62 9.281 9.284 43.00 43.00 40.87 40.87

0.98 194.7 194.6 24.29 24.27 109.3 110.5 108.3 108.3

0.99 394.0 394.5 49.32 49.27 221.3 223.0 220.9 220.8

Our numerical results in Tables 1 and 2 also show that, while the UB approximation in (51) is an

excellent approximation, it is not exact, which contradicts Conjecture III on p. 211 of Daley et al.



e-companion to Chen and Whitt: Extremal Queues ec21

(1992). On the positive side, Corollary EC.1 provides the basis for an effective way to compute the

overall upper bound E[W ].

EC.7. Numerical Comparison of the Bounds and Approximations

We now supplement Tables EC.2,EC.3 by making numerical comparions for the scaled means

(1− ρ)E[W ]/ρ2 in two other cases: (c2a, c
2
s) = (4.0,0.5), (0.5,4.0). Tables EC.4-EC.7 then present

the corresponding unscaled values.

Table EC.2 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = 4.0 and c2s = 0.5

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 2.250 36.251 36.252 0.000 0.00% 38.250 200.250
0.15 0.000 2.250 22.934 22.946 0.001 0.05% 24.917 89.139
0.20 0.000 2.250 16.328 16.362 0.007 0.21% 18.250 50.250
0.25 0.000 2.250 12.436 12.493 0.020 0.45% 14.250 32.250
0.30 0.000 2.250 9.911 9.981 0.041 0.71% 11.583 22.472
0.35 0.000 2.250 8.161 8.239 0.070 0.96% 9.679 16.577
0.40 0.000 2.250 6.890 6.972 0.107 1.16% 8.250 12.750
0.45 0.000 2.250 5.933 6.014 0.152 1.35% 7.139 10.127
0.50 0.000 2.250 5.190 5.270 0.203 1.51% 6.250 8.250
0.55 0.000 2.250 4.606 4.677 0.261 1.53% 5.523 6.862
0.60 0.000 2.250 4.133 4.196 0.324 1.50% 4.917 5.806
0.65 0.000 2.250 3.744 3.799 0.393 1.45% 4.404 4.984
0.70 0.036 2.250 3.418 3.466 0.467 1.39% 3.964 4.332
0.75 0.083 2.250 3.145 3.184 0.546 1.23% 3.583 3.806
0.80 0.125 2.250 2.912 2.943 0.629 1.06% 3.250 3.375
0.85 0.162 2.250 2.710 2.734 0.716 0.86% 2.956 3.018
0.90 0.194 2.250 2.537 2.552 0.807 0.59% 2.694 2.719
0.95 0.224 2.250 2.384 2.392 0.902 0.31% 2.461 2.466
0.98 0.240 2.250 2.301 2.305 0.960 0.17% 2.332 2.332
0.99 0.245 2.250 2.275 2.277 0.980 0.09% 2.290 2.291
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Table EC.3 A comparison of the bounds and approximations for the scaled steady-state mean (1− ρ)E[W ]/ρ2

in the GI/GI/1 model as a function of ρ for the case c2a = 0.5 and c2s = 4.0

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 2.250 6.500 6.500 0.000 0.00% 6.750 27.000
0.15 0.000 2.250 4.833 4.837 0.001 0.07% 5.083 13.111
0.20 0.000 2.250 4.002 4.014 0.007 0.30% 4.250 8.250
0.25 0.500 2.250 3.506 3.530 0.020 0.68% 3.750 6.000
0.30 0.833 2.250 3.182 3.216 0.041 1.08% 3.417 4.778
0.35 1.071 2.250 2.959 2.999 0.070 1.32% 3.179 4.041
0.40 1.250 2.250 2.799 2.840 0.107 1.47% 3.000 3.563
0.45 1.389 2.250 2.678 2.721 0.152 1.58% 2.861 3.235
0.50 1.500 2.250 2.577 2.628 0.203 1.91% 2.750 3.000
0.55 1.591 2.250 2.516 2.553 0.261 1.45% 2.659 2.826
0.60 1.667 2.250 2.458 2.493 0.324 1.40% 2.583 2.694
0.65 1.731 2.250 2.413 2.444 0.393 1.26% 2.519 2.592
0.70 1.786 2.250 2.373 2.402 0.467 1.23% 2.464 2.510
0.75 1.833 2.250 2.333 2.367 0.546 1.41% 2.417 2.444
0.80 1.875 2.250 2.319 2.337 0.629 0.74% 2.375 2.391
0.85 1.912 2.250 2.299 2.310 0.716 0.48% 2.338 2.346
0.90 1.944 2.250 2.280 2.288 0.807 0.32% 2.306 2.309
0.95 1.974 2.250 2.264 2.268 0.902 0.15% 2.276 2.277
0.98 1.990 2.250 2.255 2.257 0.960 0.06% 2.260 2.260
0.99 1.995 2.250 2.253 2.253 0.980 0.03% 2.255 2.255
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Table EC.4 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 4.0 and c2s =4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 0.044 0.422 0.422 0.000 0.00% 0.444 2.244
0.15 0.000 0.106 0.653 0.654 0.001 0.05% 0.706 2.406
0.20 0.000 0.200 0.904 0.906 0.007 0.19% 1.000 2.600
0.25 0.042 0.333 1.182 1.187 0.020 0.40% 1.333 2.833
0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114
0.35 0.202 0.754 1.868 1.883 0.070 0.79% 2.154 3.454
0.40 0.333 1.067 2.304 2.326 0.107 0.94% 2.667 3.867
0.45 0.511 1.473 2.829 2.859 0.152 1.06% 3.273 4.373
0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000
0.55 1.069 2.689 4.272 4.321 0.261 1.13% 4.889 5.789
0.60 1.500 3.600 5.295 5.352 0.324 1.07% 6.000 6.800
0.65 2.089 4.829 6.632 6.698 0.393 1.00% 7.429 8.129
0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933
0.75 4.125 9.000 11.014 11.102 0.546 0.80% 12.000 12.500
0.80 6.000 12.800 14.917 15.017 0.629 0.67% 16.000 16.400
0.85 9.208 19.267 21.484 21.597 0.716 0.53% 22.667 22.967
0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200
0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100
0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040
0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020

Table EC.5 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 4.0 and c2s =0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 0.025 0.403 0.403 0.000 0.00% 0.425 2.225
0.15 0.000 0.060 0.607 0.607 0.001 0.05% 0.660 2.360
0.20 0.000 0.113 0.816 0.818 0.007 0.21% 0.913 2.513
0.25 0.000 0.188 1.036 1.041 0.020 0.45% 1.188 2.688
0.30 0.000 0.289 1.274 1.283 0.041 0.71% 1.489 2.889
0.35 0.000 0.424 1.538 1.553 0.070 0.96% 1.824 3.124
0.40 0.000 0.600 1.837 1.859 0.107 1.16% 2.200 3.400
0.45 0.000 0.828 2.184 2.214 0.152 1.35% 2.628 3.728
0.50 0.000 1.125 2.595 2.635 0.203 1.51% 3.125 4.125
0.55 0.000 1.513 3.096 3.144 0.261 1.53% 3.713 4.613
0.60 0.000 2.025 3.720 3.777 0.324 1.50% 4.425 5.225
0.65 0.000 2.716 4.519 4.586 0.393 1.45% 5.316 6.016
0.70 0.058 3.675 5.583 5.662 0.467 1.39% 6.475 7.075
0.75 0.188 5.063 7.077 7.165 0.546 1.23% 8.063 8.563
0.80 0.400 7.200 9.317 9.417 0.629 1.06% 10.400 10.800
0.85 0.779 10.838 13.055 13.168 0.716 0.86% 14.238 14.538
0.90 1.575 18.225 20.546 20.668 0.807 0.59% 21.825 22.025
0.95 4.037 40.613 43.033 43.168 0.902 0.31% 44.413 44.513
0.98 11.515 108.045 110.479 110.667 0.960 0.17% 111.965 112.005
0.99 24.008 220.523 222.971 223.167 0.980 0.09% 224.483 224.503
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Table EC.6 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 0.5 and c2s =4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 0.025 0.072 0.072 0.000 0.00% 0.075 0.300
0.15 0.000 0.060 0.128 0.128 0.001 0.07% 0.135 0.347
0.20 0.000 0.113 0.200 0.201 0.007 0.30% 0.213 0.413
0.25 0.042 0.188 0.292 0.294 0.020 0.68% 0.313 0.500
0.30 0.107 0.289 0.409 0.414 0.041 1.08% 0.439 0.614
0.35 0.202 0.424 0.558 0.565 0.070 1.32% 0.599 0.762
0.40 0.333 0.600 0.746 0.757 0.107 1.47% 0.800 0.950
0.45 0.511 0.828 0.986 1.002 0.152 1.58% 1.053 1.191
0.50 0.750 1.125 1.289 1.314 0.203 1.91% 1.375 1.500
0.55 1.069 1.513 1.692 1.716 0.261 1.45% 1.788 1.900
0.60 1.500 2.025 2.212 2.244 0.324 1.40% 2.325 2.425
0.65 2.089 2.716 2.913 2.950 0.393 1.26% 3.041 3.129
0.70 2.917 3.675 3.875 3.923 0.467 1.23% 4.025 4.100
0.75 4.125 5.063 5.250 5.325 0.546 1.41% 5.438 5.500
0.80 6.000 7.200 7.422 7.477 0.629 0.74% 7.600 7.650
0.85 9.208 10.838 11.075 11.129 0.716 0.48% 11.263 11.300
0.90 15.750 18.225 18.470 18.530 0.807 0.32% 18.675 18.700
0.95 35.625 40.613 40.871 40.932 0.902 0.15% 41.088 41.100
0.98 95.550 108.045 108.307 108.373 0.960 0.06% 108.535 108.540
0.99 195.525 220.523 220.783 220.853 0.980 0.03% 221.018 221.020
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Table EC.7 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 0.5 and c2s =0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(4) (51) (6) (5)

0.10 0.000 0.006 0.053 0.053 0.000 0.00% 0.056 0.281
0.15 0.000 0.013 0.082 0.082 0.001 0.11% 0.088 0.301
0.20 0.000 0.025 0.113 0.113 0.007 0.54% 0.125 0.325
0.25 0.000 0.042 0.146 0.148 0.020 1.35% 0.167 0.354
0.30 0.000 0.064 0.184 0.189 0.041 2.36% 0.214 0.389
0.35 0.000 0.094 0.228 0.235 0.070 3.16% 0.269 0.432
0.40 0.000 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.45 0.000 0.184 0.342 0.357 0.152 4.43% 0.409 0.547
0.50 0.000 0.250 0.414 0.439 0.203 5.72% 0.500 0.625
0.55 0.000 0.336 0.515 0.540 0.261 4.62% 0.611 0.724
0.60 0.000 0.450 0.637 0.669 0.324 4.71% 0.750 0.850
0.65 0.000 0.604 0.800 0.837 0.393 4.45% 0.929 1.016
0.70 0.058 0.817 1.017 1.065 0.467 4.53% 1.167 1.242
0.75 0.188 1.125 1.312 1.388 0.546 5.42% 1.500 1.563
0.80 0.400 1.600 1.822 1.877 0.629 2.95% 2.000 2.050
0.85 0.779 2.408 2.646 2.700 0.716 1.99% 2.833 2.871
0.90 1.575 4.050 4.295 4.355 0.807 1.38% 4.500 4.525
0.95 4.037 9.025 9.284 9.344 0.902 0.65% 9.500 9.512
0.98 11.515 24.010 24.271 24.338 0.960 0.27% 24.500 24.505
0.99 24.008 49.005 49.265 49.336 0.980 0.14% 49.500 49.503
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EC.8. The UB Transient Mean from the Optimization and Numerical Search

To illustrate our results, we report results from a further experiment in which we performed a

numerical search over the candidate two-point service-time distributions Gu,n for the mean waiting

time E[Wn(F0,Gu,n)] as a function of n using the multinomial exact representation in §5.2 for a

class of models (ρ = {0.1, ...,0.9}, c2a = {1/2,4}, c2s = {1/2,4},Ma =Ms = 10), and n = 1,5, ...,50.

For all these cases, we first found by the optimization that the local optimum was obtained at

(F0,Gu,n). We then conducted the search to carefully identify the optimal values among these

candidate Gu,n. (See the next section for details.). Table EC.8 presents numerical results for the

case c2a = c2s = 4.0 for a range of n and ρ. Tables EC.9-EC.11 present results for the other three

cases (c2a, c
2
s) = (4.0,0.5), (0.5,4.0) and (0.5,0.5)).

Table EC.8 Numerical values of E[Wn(F0,Gu,n)] from the optimization and numerical search for c2a = c2s = 4.0

n ρ=0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ=0.5 ρ= 0.6 ρ= 0.7 ρ=0.8 ρ= 0.9

1 0.080 0.160 0.240 0.320 0.400 0.489 0.579 0.668 0.758

5 0.269 0.538 0.813 1.095 1.414 1.777 2.140 2.505 2.882

10 0.357 0.716 1.102 1.525 2.056 2.634 3.228 3.869 4.555

15 0.386 0.778 1.220 1.744 2.410 3.137 3.949 4.832 5.776

20 0.395 0.804 1.281 1.871 2.626 3.508 4.499 5.602 6.808

25 0.399 0.814 1.313 1.948 2.781 3.782 4.933 6.242 7.693

30 0.400 0.820 1.332 1.999 2.896 3.992 5.291 6.794 8.508

35 0.400 0.822 1.343 2.032 2.979 4.163 5.590 7.270 9.185

40 0.400 0.824 1.349 2.056 3.040 4.299 5.846 7.696 9.858

45 0.400 0.824 1.354 2.072 3.088 4.411 6.067 8.075 10.423

50 0.400 0.825 1.356 2.084 3.126 4.505 6.260 8.421 11.002

Of course, we witness the well known property that E[Wn] is increasing in n, c2a and c2s. We also

see that E[Wn] tends to be slightly smaller for the pair (0.5,4.0) than for the pair (4.0,0.5), but
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these are similar, as suggested by the HT limit. In support of the corresponding result for E[W ],

we see convergence well before the final n= 50 for the lower traffic intensities.

We also report optimization results for E[Wn] from (50) for the special cases of the GI/D/1 and

D/GI/1 models with (c2a = 4.0,Ma = 100) and (c2s = 4.0,Ms = 100), respectively, in Tables EC.12

and EC.13. For the GI/D/1 model, the optimization terminates with the same extremal two-point

cdf F0. For the D/GI/1 model, as in Tables 1-2, we perform an additional search to identify the

optimal distribution Gu,n for each n.

We now supplement Table EC.8 with corresponding numerical values of E[W (F0,Gu,n)] obtained

from the SQP optimization followed by a detailed numerical search to find the best possible two-

point service cdf Gu,n. Tables EC.9-EC.11 present corresponding results for the cases (c2a, c
2
s) =

(4.0,0.5), (0.5,4.0) and (0.5,0.5).

Table EC.9 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 4.0 and c2s =0.5

n ρ=0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ=0.5 ρ= 0.6 ρ= 0.7 ρ=0.8 ρ= 0.9

1 0.080 0.160 0.240 0.320 0.400 0.481 0.563 0.644 0.725

5 0.269 0.538 0.807 1.078 1.356 1.638 1.920 2.207 2.499

10 0.357 0.714 1.073 1.447 1.831 2.241 2.702 3.203 3.740

15 0.386 0.772 1.167 1.590 2.074 2.621 3.225 3.902 4.660

20 0.395 0.792 1.206 1.679 2.228 2.860 3.603 4.449 5.411

25 0.399 0.799 1.230 1.730 2.324 3.039 3.888 4.893 6.053

30 0.400 0.803 1.242 1.759 2.393 3.169 4.118 5.262 6.615

35 0.400 0.805 1.248 1.779 2.439 3.268 4.306 5.579 7.114

40 0.400 0.805 1.252 1.791 2.474 3.347 4.460 5.857 7.567

45 0.400 0.806 1.254 1.800 2.498 3.408 4.591 6.102 7.982

50 0.400 0.806 1.256 1.806 2.517 3.458 4.702 6.319 8.364
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Table EC.10 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 0.5 and c2s =4.0

n ρ=0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ=0.5 ρ= 0.6 ρ= 0.7 ρ=0.8 ρ= 0.9

1 0.033 0.082 0.147 0.220 0.305 0.400 0.500 0.600 0.700

5 0.051 0.147 0.303 0.515 0.780 1.097 1.465 1.874 2.301

10 0.051 0.151 0.331 0.607 0.982 1.458 2.043 2.723 3.477

15 0.051 0.152 0.335 0.636 1.075 1.654 2.400 3.301 4.338

20 0.051 0.152 0.337 0.647 1.122 1.779 2.648 3.744 5.033

25 0.051 0.152 0.337 0.652 1.148 1.864 2.836 4.097 5.624

30 0.051 0.152 0.337 0.653 1.163 1.923 2.981 4.392 6.141

35 0.051 0.152 0.337 0.654 1.172 1.965 3.096 4.642 6.600

40 0.051 0.152 0.337 0.655 1.177 1.995 3.190 4.857 7.015

45 0.051 0.152 0.337 0.655 1.181 2.018 3.268 5.046 7.395

50 0.051 0.152 0.337 0.655 1.183 2.034 3.333 5.214 7.744

Table EC.11 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 0.5 and c2s =0.5

n ρ=0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ=0.5 ρ= 0.6 ρ= 0.7 ρ=0.8 ρ= 0.9

1 0.033 0.069 0.106 0.145 0.187 0.230 0.274 0.317 0.361

5 0.050 0.106 0.171 0.248 0.347 0.472 0.626 0.802 1.008

10 0.050 0.107 0.176 0.265 0.386 0.557 0.793 1.096 1.483

15 0.050 0.107 0.176 0.268 0.398 0.590 0.872 1.271 1.813

20 0.050 0.107 0.176 0.268 0.402 0.606 0.917 1.388 2.067

25 0.050 0.107 0.176 0.268 0.404 0.615 0.943 1.471 2.273

30 0.050 0.107 0.176 0.268 0.404 0.619 0.961 1.533 2.446

35 0.050 0.107 0.176 0.268 0.405 0.622 0.973 1.580 2.593

40 0.050 0.107 0.176 0.268 0.405 0.623 0.982 1.616 2.722

45 0.050 0.107 0.176 0.268 0.405 0.624 0.988 1.645 2.834

50 0.050 0.107 0.176 0.268 0.405 0.624 0.993 1.668 2.935

Of course, we witness the well known property that E[Wn] is increasing in n, c2a and c2s. We also

see that E[Wn] tends to be slightly smaller for the pair (0.5,4.0) than for the pair (4.0,0.5), but

these are similar, as suggested by the HT limit. In support of the corresponding result for E[W ],

we see convergence well before the final n= 50 for the lower traffic intensities.

We also report optimization results for E[Wn] from (50) for the special cases of the GI/D/1 and

D/GI/1 models with (c2a = 4.0,Ma = 100) and (c2s = 4.0,Ms = 100), respectively, in Tables EC.12

and EC.13. For the GI/D/1 model, the optimization terminates with the same extremal two-point
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cdf F0. For the D/GI/1 model, as in Tables 1-2, we perform an additional search to identify the

optimal b∗s(n) for each n. To sum up, these tables support Conjecture 1.

Table EC.12 Numerical values of E[Wn] in the extremal GI/D/1 model with Ma = 100, c2a = 4.0 and c2s =0.0

ρ\n 10 15 20 25 30 35 40 45 50

0.10 0.357 0.386 0.395 0.398 0.400 0.400 0.400 0.400 0.400

0.15 0.536 0.579 0.593 0.598 0.599 0.600 0.600 0.600 0.600

0.20 0.714 0.772 0.791 0.797 0.800 0.802 0.803 0.804 0.804

0.25 0.893 0.965 0.988 1.001 1.009 1.012 1.013 1.014 1.015

0.30 1.071 1.158 1.194 1.217 1.228 1.234 1.237 1.239 1.240

0.35 1.250 1.353 1.413 1.447 1.463 1.474 1.480 1.484 1.486

0.40 1.428 1.562 1.648 1.691 1.719 1.737 1.748 1.756 1.760

0.45 1.607 1.785 1.896 1.958 2.002 2.028 2.047 2.060 2.069

0.50 1.785 2.022 2.159 2.251 2.310 2.353 2.383 2.405 2.421

0.55 1.977 2.274 2.447 2.572 2.656 2.720 2.765 2.800 2.827

0.60 2.183 2.539 2.762 2.922 3.042 3.129 3.200 3.253 3.296

0.65 2.398 2.814 3.100 3.305 3.466 3.590 3.689 3.770 3.836

0.70 2.622 3.106 3.461 3.724 3.931 4.102 4.242 4.358 4.456

0.75 2.859 3.423 3.847 4.182 4.451 4.674 4.865 5.029 5.171

0.80 3.101 3.757 4.262 4.673 5.017 5.309 5.562 5.784 5.982

0.85 3.350 4.108 4.707 5.205 5.631 6.005 6.336 6.632 6.900

0.90 3.611 4.481 5.186 5.784 6.306 6.773 7.194 7.579 7.933

Table EC.13 Numerical values of E[Wn] in the extremal D/GI/1 model with Ms = 10, c2a =0.0 and c2s = 4.0

ρ\n 10 15 20 25 30 35 40 45 50

0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.15 0.012 0.025 0.025 0.012 0.012 0.012 0.012 0.012 0.025

0.2 0.048 0.058 0.058 0.048 0.048 0.048 0.048 0.048 0.058

0.25 0.091 0.115 0.115 0.091 0.091 0.091 0.091 0.091 0.115

0.3 0.174 0.195 0.195 0.174 0.174 0.174 0.174 0.174 0.195

0.35 0.272 0.300 0.301 0.274 0.274 0.274 0.274 0.274 0.301

0.4 0.407 0.441 0.445 0.418 0.419 0.419 0.419 0.419 0.447

0.45 0.568 0.620 0.631 0.601 0.602 0.603 0.603 0.603 0.640

0.5 0.764 0.833 0.862 0.844 0.848 0.851 0.852 0.853 0.892

0.55 0.985 1.086 1.142 1.139 1.154 1.162 1.168 1.171 1.219

0.6 1.241 1.382 1.472 1.514 1.547 1.569 1.585 1.595 1.642

0.65 1.520 1.728 1.860 1.951 2.017 2.064 2.099 2.125 2.176

0.7 1.837 2.121 2.319 2.462 2.574 2.659 2.728 2.783 2.840

0.75 2.183 2.563 2.843 3.035 3.223 3.362 3.477 3.575 3.658

0.8 2.536 3.038 3.422 3.673 3.978 4.186 4.365 4.520 4.657

0.85 2.924 3.568 4.068 4.371 4.826 5.128 5.394 5.632 5.844

0.9 3.317 4.110 4.747 5.120 5.755 6.171 6.545 6.886 7.200
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EC.9. Additional Counterexamples When One Distribution is Given

In this section we report additional experiments to provide more counterexamples when one dis-

tribution is given. Recall that strong evidence has already been given in Tables 4 and 5. For

the steady-state mean E[W ], we use simulation method in Minh and Sorli (1983) with simulation

length T ∗ =1E+06 and 20 i.i.d. replications to compute E[W ] for the case ρ = 0.5, c2a = 4, and

c2s = 4 with ba ∈ [1 + c2a,Ma] (LHS of the following Figure EC.1). For the RHS of Figure EC.1,

we use Monte Carlo simulation method with N =5E+07 and report average results based on 20

identical independent replications for studying the effects of bs on E[W ] for different cases of ba.

It is already known that when ba = (1+ c2a), the E[W ] is increasing with bs.

Figure EC.1 shows simulation estimates of the steady-state mean E[W ] as a function of ba in

[(1+c2a),Ma =7] for bs = 5, i.e., for G0 (left) and as a function of bs in [(1+c2s),Ms =20] for various

ba (right). The optimal values of bs as a function of ba, denoted by b∗s(ba), are: b
∗
s(10) = 5.0, b∗s(15) =

8, b∗s(20) = 11, b∗s(25) = 18, b∗s(30) = 20.
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Figure EC.1 Simulation estimates of the steady-state mean E[W ] as a function of ba in [(1 + c2a),Ma = 7] for

bs =5, i.e., for G0 (left) and as a function of bs in [(1+ c2s),Ms = 20] for various ba (right).

The plot on the left in Figure EC.1 dramatically shows the counterexample fromWolff and Wang

(2003)); it shows that the maximum is not attained at F0 when the service-time cdf is G0. The plot

on the right shows the more complex behavior that is possible for bs (the service-time cdf G) as a



e-companion to Chen and Whitt: Extremal Queues ec31

function of ba (the interarrival-time cdf F ). When ba = 5 (F0), we see that the mean is increasing

in bs, but when ba > 5, we see more complicated behavior. For the three cases ba = 15,20,25, there

exists b∗s(ba)∈ (1+ c2s,Ms) such that the extremal service-time cdf is neither associated with bs on

the left (G0) nor with bs on the right (Gu).

EC.10. When One Distribution is Deterministic

We have already looked at the GI/D/1 and D/GI/1 models in Tables EC.12 and EC.13. They

showed the transient mean waiting times E[Wn] as a function of n and ρ resulting from the

optimization in §5. For all those cases, the transient mean was maximized at (F0,Gu,n). We now

consider the steady-state mean E[W ].

For D/GI/1 and GI/D/1, we implement the same simulation search for different cases of ba, bs

throughout traffic level from ρ = 0.1 to ρ = 0.9. We use Monte Carlo simulation method with

N = 1E+07 and report average of 20 identical independent replications. Tables EC.14 and EC.15

present results that are consistent with optimization results for transient mean waiting time that

the upper bounds of D/GI/1 and GI/D/1 of steady-state mean and transient mean are attained

by Gu and F0.

Table EC.14 Simulation search for GI/D/1 over ba with mean 1 arrival

ba\ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5.0 0.400 0.804 1.242 1.770 2.469 3.496 5.171 8.50 18.41

5.5 0.000 0.450 0.964 1.536 2.262 3.307 5.006 8.34 18.30

6.0 0.000 0.000 0.626 1.271 2.040 3.102 4.812 8.19 18.26

6.5 0.000 0.000 0.206 0.965 1.795 2.896 4.627 8.02 18.01

7.0 0.000 0.000 0.000 0.600 1.526 2.674 4.436 7.83 17.95

7.5 0.000 0.000 0.000 0.163 1.224 2.436 4.232 7.65 17.71

8.0 0.000 0.000 0.000 0.000 0.875 2.182 4.017 7.46 17.50

8.5 0.000 0.000 0.000 0.000 0.468 1.909 3.802 7.26 17.49

9.0 0.000 0.000 0.000 0.000 0.000 1.612 3.573 7.09 17.19

9.5 0.000 0.000 0.000 0.000 0.000 1.277 3.337 6.88 17.05

10.0 0.000 0.000 0.000 0.000 0.000 0.899 3.084 6.68 16.83
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Table EC.15 Simulation search for D/GI/1 over bs with mean 1 arrival

bs\ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.000 0.058 0.195 0.447 0.893 1.670 3.114 6.23 16.00

11 0.004 0.064 0.200 0.457 0.903 1.682 3.129 6.24 16.02

12 0.007 0.067 0.205 0.462 0.911 1.691 3.141 6.26 16.04

13 0.008 0.068 0.210 0.469 0.918 1.702 3.151 6.27 16.05

14 0.009 0.070 0.211 0.474 0.924 1.709 3.160 6.28 16.06

15 0.010 0.073 0.216 0.476 0.929 1.714 3.167 6.29 16.07

16 0.011 0.075 0.218 0.481 0.934 1.721 3.174 6.29 16.08

17 0.011 0.076 0.221 0.484 0.938 1.726 3.179 6.30 16.09

18 0.011 0.077 0.223 0.487 0.941 1.730 3.184 6.31 16.10

19 0.011 0.079 0.224 0.490 0.945 1.734 3.189 6.31 16.10

20 0.012 0.080 0.227 0.492 0.948 1.737 3.193 6.32 16.11

To sum up, for the transient mean waiting time E[Wn], the numerical experiments show

that there exists b∗a = (1 + c2a) and b∗s(n) such that the sup{E[Wn(F,G) : F,G∈Pa,2,2 ×Ps,2,2]} is

attained. We find that b∗s(n) is not strictly increasing, but that there exists an n0 after which it

is increasing In all cases, we find that Gu,n ⇒ Gu as n→∞. For the steady-state mean waiting

time E[W ], the UB is attained when b∗a is (1+ c2a) and b
∗
s =Ms. Hence, the UB for the steady-state

mean waiting time is attained at (F0,Gu).
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