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Abstract
This paper studies tight upper bounds for the mean and higher moments of the
steady-state waiting time in the GI/GI/1 queue given the first two moments of the
interarrival-time and service-time distributions. We apply the theory of Tchebycheff
systems to obtain sufficient conditions for classical two-point distributions to yield the
extreme values. These distributions are determined by having one mass at 0 or at the
upper limit of support.

Keywords GI/GI/1 queue · Tight bounds · Extremal queues · Bounds for the mean
steady-state mean waiting time · Moment problem
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1 Introduction

In this paper, we apply the theory of Tchebycheff (T) systems from [17] to identify the
extremal interarrival-time and service-time distributions with given first two moments
for the mean and higher moments of the steady-state waiting time in the GI/GI/1
queue. Thus, this paper contributes to a long-standing open problem for the classical
GI/GI/1 queueingmodel: determining a tight upper bound (UB) for themean steady-
state waiting time, and the distributions that attain them, given the first twomoments of
the interarrival-time and service-time distributions; see [10,31] and references therein.
The seminal paper on extremal queues was by B. A. Rogozin in 1966 [23].

This paper is a sequel to [7] inwhichwe applied T systems to determine interarrival-
time and service-time distributions with given moments and other properties that
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maximize or minimize the asymptotic decay rate of the steady-state waiting time
in the GI/GI/k queue. The theory of T systems was previously used for queueing
problems in [11–16,24,25,29,30].

1.1 The GI/GI/1model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come
first-served service discipline. There is a sequence of independent and identically
distributed (i.i.d.) service times {Vn : n ≥ 1}, each distributed as V with cumulative
distribution function (cdf) G, which is independent of a sequence of i.i.d. interarrival
times {Un : n ≥ 1} each distributed as U with cdf F . With the understanding that
the first customer (customer 1) arrives at time 0, Vn is the service time of customer n,
while Un is the interarrival time between customers n and n + 1.

Let ≡ denote equality by definition. Let U have mean E[U ] ≡ 1 and squared
coefficient of variation (scv, variance divided by the square of themean) c2a ; let a service
time V have mean E[V ] ≡ τ ≡ ρ and scv c2s , where ρ < 1, so that the model is stable.

Let Wn be the waiting time of customer n, i.e., the time from arrival until starting
service, assuming that the system starts with an initial workload W0 having cdf H0
with a finite mean. The sequence {Wn : n ≥ 0} is well known to satisfy the Lindley
recursion

Wn = [Wn−1 + Vn −Un]+, n ≥ 1, (1)

where x+ ≡ max {x, 0}. Let Hn be the cdf of Wn , which is determined by (1). Let
W ≡ W∞ (both used) be the steady-state waiting time, satisfying Wn ⇒ W∞ as
n → ∞, where ⇒ denotes convergence in distribution; see §§X.1–X.2 of [2]. The
cdf H∞ of W ≡ W∞ is the unique cdf satisfying the stochastic fixed point equation

W∞
d= (W∞ + V −U )+, (2)

where
d= denotes equality in distribution. If P(W0 = 0) = 1, then Wn

d=
max {Sk : 0 ≤ k ≤ n} for n ≤ ∞, S0 ≡ 0, Sk ≡ X1 + · · · + Xk and Xk ≡ Vk − Uk ,
k ≥ 1. Under the specified finite moment conditions, for 1 ≤ n ≤ ∞, Wn is a proper
random variable with finite mean given by

E[Wn|W0 = 0] =
n∑

k=1

E[S+
k ]

k
< ∞, 1 ≤ n < ∞,

and E[W∞] =
∞∑

k=1

E[S+
k ]

k
< ∞. (3)

1.2 Classical steady-state results: exact, approximate and bounds

For the M/GI/1 special case, when the interarrival time has an exponential distribu-
tion, we have the classical Pollaczek–Khintchine formula
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E[W ] = τρ(1 + c2s )

2(1 − ρ)
= ρ2(1 + c2s )

2(1 − ρ)
. (4)

A natural commonly used approximation for the GI/GI/1 model, inspired by (4),
which we call the heavy-traffic approximation, because it is motivated by the early
heavy-traffic limit in [18], is

E[W ] ≡ E[W (ρ, c2a, c
2
s )] ≈ ρ2(c2a + c2s )

2(1 − ρ)
. (5)

The heavy traffic limit for the mean states that (1−ρ)E[W (ρ, c2a, c
2
s )] → (c2a +c2s )/2

as ρ ↑ 1.
The most familiar UB on E[W ] is the [19] bound

E[W ] ≤ ρ2([c2a/ρ2] + c2s )

2(1 − ρ)
, (6)

which also satisfies the same heavy traffic limit.
A better UB depending on these same parameters was obtained by [9]. In particular,

the [9] UB replaces the term c2a/ρ
2 by (2 − ρ)c2a/ρ, i.e.,

E[W ] ≤ ρ2([(2 − ρ)c2a/ρ] + c2s )

2(1 − ρ)
. (7)

Note that (2 − ρ)/ρ < 1/ρ2 because ρ(2 − ρ) < 1 for all ρ, 0 < ρ < 1.
In contrast to the tight UB that we study, the tight lower bound (LB) for the steady-

state mean has been known for a long time; see §5.4 of [26], §V of [29], Theorem 3.1
of [10] and references there. The LB is

E[W ] ≥ ρ((1 + c2s )ρ − 1)+

2(1 − ρ)
. (8)

The LB is attained asymptotically at a deterministic interarrival time with specified
mean and at any three-point service-time distribution that has all mass on nonnegative-
integer multiples of the deterministic interarrival time. The service part follows from
[22]. (All service-time distributions satisfying these requirements yield the same
mean.)

2 Themain results

In this section, we state our main results. These results will be proved in following
sections.
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2.1 Sets of probability distributions with specifiedmoments

Let Pn be the set of all probability measures on a subset of the positive real line
[0,∞) with specified first n moments. The set Pn is a convex set, because the convex
combination of two probability measures is just the mixture, i.e., for all p, 0 ≤ p ≤ 1,
pP1 + (1 − p)P2 ∈ Pn if P1 ∈ Pn and P2 ∈ Pn , because the nth moment of the
mixture is the mixture of the nth moments, which is just the common value of the
components. Let Pn,k be the subset of probability measures in Pn that have support
on at most k points.

Let P2(m, c2) be the subset of all cdf’s in P2 with support in the interval [0,∞)

having mean m and second moment m2(c2 + 1). Let P2(m, c2, M) be subset of
P2(m, c2) denoting all cdf’s with support in the closed interval [0, M], where 1 +
c2 < M < ∞. (The last property ensures that the set is non-empty.) Let subscripts
a and s denote sets for the inter-arrival and service times, respectively. Therefore,
Pa,2(1, c2a, Ma) is the set of all interarrival-time cdf’s F with mean 1, scv c2a and
compact support within [0, Ma], while Ps,2(ρ, c2s , Ms) is the set of all service-time
cdf’s G with mean ρ, scv c2s and compact support within [0, ρMs].

A special role is played by two-point distributions, which necessarily have finite
support. LetP2,2(m1, c2, M) be the set of all two-point distributionswithmeanm1 and
second momentm2 = m2

1(c
2 +1) with support in [0,m1M]. The set P2,2(m1, c2, M)

is a one-dimensional parametric family. Any element is determined by specifying one
mass point. Let F (2)

b be the cdf that has probability mass c2/(c2 + (b − 1)2) on m1b,
and mass (b − 1)2/(c2 + (b − 1)2) on m1(1− c2/(b − 1)) for 1+ c2 ≤ b ≤ M . The
cases b = 1 + c2 and b = M constitute the two extremal distributions.

Sinceweare only interested in the extremal cdf’s here,wewill use different notation.
We let F0 ≡ F (2)

1+c2
, because it is the unique element that has lower mass point 0 and

we let Fu ≡ F (2)
M , because it is the unique element that has upper mass pointm1M . We

use this definition for both the cdf’s we consider: F of U and G of V , but recall that
our parameter specification with E[U ] = 1 makes the support of Fu be [0, Ma], while
the support of Gu is [0, ρMs]. Therefore, with Ma ≥ 1 + c2a for F and Ms ≥ 1 + c2s
for G, we have:

• F0 : c2a/(1 + c2a) on 0 and 1/(1 + c2a) on 1 + c2a ;
• Fu : (Ma − 1)2/(c2a + (Ma − 1)2) on 1 − c2a/(Ma − 1) and c2a/(c

2
a + (Ma − 1)2)

on Ma ;
• G0 : c2s /(1 + c2s ) on 0 and 1/(1 + c2s ) on ρ(1 + c2s );
• Gu : (Ms −1)2/(c2s + (Ms −1)2) on ρ(1− c2s /(Ms −1)) and c2s /(c

2
s + (Ms −1)2)

on ρMs .

2.2 Extremal distributions for higher moments ofW

Ever since [3] (see p. 97 of [26]), it is known that the extremal theory is quite orderly for
higher moments (and cumulants) even though it is challenging for the mean. Thus, we
start by applying the T system theory to the higher moments. To treat higher moments,
we require that the service time V has a finite moment generating function (mgf) and
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that implies the same is true for the transient and steady-state waiting time; see §3 of
[7] and references there. For a nonnegative random variable Z , we say that it has a
finite mgf if there exists t∗ > 0 such that

E[et Z ] < ∞ for t < t∗. (9)

That implies that all moments of Z are finite. We remark that condition (9) can be
relaxed. In order for E[Wk] to be finite for k ≥ 1, it suffices to have E[V (k+1)] < ∞;
for example, see §10.2 of [2].

Theorem 1 (higher steady-state moments) Consider the GI/GI/1 model where F ∈
Pa,2(1, c2a) and G ∈ Ps,2(ρ, c2s ).

(a) Let the service-time cdf G be fixed satisfying (9). Then,

E[W (Fu,G)k] ≤ E[W (F,G)k] ≤ E[W (F0,G)k] (10)

for all F ∈ Pa,2(1, c2a, Ma) and k ≥ 2. For each F and k ≥ 2, these extrema are
unique.

(b) Let the interarrival-time cdf F be fixed. Then,

E[W (F,G0)
k] ≤ E[W (F,G)k] ≤ E[W (F,Gu)

k] (11)

for all G ∈ Ps,2(ρ, c2s , Ms) and k ≥ 2. For each G and k ≥ 2, these extrema are
unique.

(c) Suppose that neither F nor G is fixed. Then,

E[W (Fu,G0)
k] ≤ E[W (F,G)k] ≤ E[W (F0,Gu)

k] for all k ≥ 2 (12)

for all F ∈ Pa,2(1, c2a, Ma) and G ∈ Ps,2(ρ, c2s , Ms) with Ms < ∞. For each k ≥ 2,
these extrema are unique.

We prove Theorem 1 in Sect. 4 by first establishing results for the transient mean
and then taking limits. We apply stochastic comparison results from [25] and [11],
which are intimately related to T systems. We apply a variant of Theorem 1 in Sect.
6 to establish a natural condition for the continuity of the mean steady-state waiting
time in the GI/GI/1 queue. This provides an extension of the continuity theorem in
§X.6 of [2]. We do so by applying the bounds to establish uniform integrability.

Given Theorem 1, it is natural to expect that corresponding results also hold for
the steady mean E[W ]. However, the proof does not apply to that case. Moreover,
counterexamples to the natural analogs of Theorem 1 (a) and (b) above (without
additional conditions) were provided, respectively, in §8 of [31] and in Sect. V of
[29]. Indeed, counterexamples for (b) are provided by Theorem 2 (b) in Sect. 2.3.
However, we conjecture that the analog of Theorem 1 (c) is valid. Accordingly, we
directly studied the distribution of W (F0,Gu) and its limiting behavior as Ms → ∞
in [5]. Theorem 2 there provides a tractable bound for the limit of E[W (F0,Gu)] as
Ms → ∞, which serves as an excellent approximation of the conjectured tight upper
bound.
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2.3 Extremal distributions for the steady-state mean

We now turn to the more challenging problem of the mean E[W ]. To obtain corre-
sponding comparison results for the steady-state mean approaching Theorem 1, we
will exploit stochastic-order properties for cdf’s of nonnegative random variables; for
example, see §8 of [20] and Ch. 1 of [28]. Recall that a hyperexponential (Hk , mix-
tures of k exponentials) distribution is completely monotone (CM), which in turn has
strictly decreasing failure rate (DFR), which has a strictly decreasing pdf, which has
a strictly concave cdf, i.e., we have the implications

Hk �→ CM �→ DFR �→ strictly concave cdf. (13)

To show the dependence of random variables on the cdf assigned to them, we will
include the cdf in parentheses, so we write U (F) (V (G)) for an interarrival time U
with cdf F (service time V with cdf G). LetW (F,G) denote the steady-state waiting
time when the pair (U , V ) have the pair of cdf’s (F,G). When we write sums of
random variables as occurs in the Lindley recursion (1), we assume that the random
variables are independent.

We prove part (a) of the following theorem in Sect. 5 and then apply the same
methods to prove parts (b) and (c) in later sections.

Theorem 2 (Extremal distributions for the steady-state mean) Consider the class of
G I/GI/1 queues with F ∈ Pa,2(1, c2a) and G ∈ Ps,2(ρ, c2s ), 0 < ρ < 1, where Pa,2
and Ps,2 are non-empty.

(a) If the service-time cdf G ∈ Ps,2 is completely monotone and 1 + c2a ≤ Ma ≤ ∞,
then

W (Fu,G) ≤icx W (F,G) ≤icx W (F0,G) for all F ∈ Pa,2(1, c
2
a, Ma) (14)

so that

E[W (Fu,G)] ≤ E[W (F,G)]
≤ E[W (F0,G)] for all F ∈ Pa,2(1, c

2
a, Ma). (15)

The extrema in (14) and (15) are uniquely attained.
(b) If the interarrival-time cdf F ∈ Pa,2 is strictly concave and 1 + c2s ≤ Ms < ∞,

then

W (F,Gu) ≤icx W (F,G) ≤icx W (F,G0) for all F ∈ Pa,2(1, c
2
a, Ma)

(16)

so that

E[W (F,Gu)] ≤ E[W (F,G)]
≤ E[W (F,G0)] for all F ∈ Pa,2(1, c

2
a, Ma). (17)
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If the cdf F has support in [0, Ma] and is strictly convex, then (16) and (17) hold
with the roles of G0 and Gu switched.

(c) If Ms < ∞ and

E[(W (F0,Gu) + V (G) −U (F) − t)+]
≤ E[(W (F0,Gu) + V (Gu) −U (F0) − t)+] for all t, (18)

then W (F,G) ≤icx W (F0,Gu) and E[W (F,G)] ≤ E[W (F0,Gu)]. If (18) holds
for all F ∈ Pa,2(1, c2a) and G ∈ Ps,2(ρ, c2s , Ms), then

sup {E[(F,G)] : (F,G) ∈ Pa,2(1, c
2
a) × Ps,2(ρ, c2s , Ms)} = E[W (F0,Gu)].

(19)

It is worthwhile to mention the E[W (Fu,G0)] is not a lower bound (see numerical
study in [6]). We regard Theorem 2 (c) as a promising tool to do further analysis
togetherwith the algorithms and properties ofW (F0,Gu) developed in [5]. From those
results, it suggests a tractable way to justify the optimum by solving an approximate
version of the stochastic optimization in (18), i.e., we solve, for all t ≥ 0,

sup

{
1

n

n∑

i=1

(Wi (F0,Gu) + Vi (G) −Ui (F) − t)+ : F ∈ F ,G ∈ G
}

= E[W (F0,Gu)], (20)

where F is a proper finite support over [0, Ma] and G is also a proper finite support
over [0, ρMs].

3 Connecting to basic T system theory

As indicated above, we apply the theory of T systems, as reviewed in §2 of [7], which
draws on [17]. In particular, we apply Lemma2.1 in §2.3 of [7], which is a consequence
of the tractable Wronskian condition for a T system.

Definition 1 (T System) Consider a set of n + 1 continuous real-valued functions
{ui (t) : 0 ≤ i ≤ n} on the closed interval [a, b]. This set of functions constitutes a T
system if the (n+1)st-order determinant of the (n+1)×(n+1)matrix formedbyui (t j ),
0 ≤ i ≤ n and 0 ≤ j ≤ n, is strictly positive for all a ≤ t0 < t1 < · · · < tn ≤ b.

Equivalently, except for an appropriate choice of sign, we could instead require that
every non-trivial real linear combination

∑n
i=0 aiui (t) of the n+1 functions (called a

u-polynomial; see §I.4 of [17]) possesses at most n distinct zeros in [a, b]. (Non-trivial
means that

∑n
i=0 a

2
i > 0.)

We next state a consequence of Lemma 2.1 in §2.3 of [7]. Let φ(n) denote the nth
derivative of the function φ.

123



108 Queueing Systems (2021) 97:101–124

Lemma 1 (From the (n + 1)st derivative to a T system) Consider the real-valued
functions ui (t) ≡ t i , 0 ≤ i ≤ n, and φ on the interval [a, b] for 0 ≤ a < b <

∞. Suppose that φ has n + 1 continuous derivatives. If φ(n+1)(t) > 0 for a ≤
t ≤ b, then {u0(t), u1(t), . . . , un(t), φ(t)} is a T system of functions on [a, b]. If
(−1)n+1φ(n+1)(t) > 0 for a ≤ t ≤ b, then {u0(t), u1(t), . . . , un(t),−φ(t)} is a T
system of functions on [a, b].

As reviewed in §2 of [7], Lemma 1 applies to our setting when n = 2. For Theorem
2 (a), we want the UB and LB of the integral

∫ Ma

0
φ(u) dF(u), (21)

so that we will be applying Lemma 1 over the interval [0, Ma]. In part (a) of our
queueing extremal problem we work with the integral form in (21) with integrand

φ(u) ≡
∫ ∞

0
h((y − u)+) d�(y) = h(0)�(u) +

∫ ∞

u+
h(y − u) d�(y), 0 ≤ u ≤ Ma,

(22)

where � is a cdf of a nonnegative real-valued random variable Y with a finite moment
generating function (mgf), i.e., satisfying (9).

The following lemma combines Lemma 1 with the known extremal distributions
in a T system, as given in Theorem 2.4 of [25].

Lemma 2 If the condition of Lemma 1 is satisfied with n = 2 and (−1)3φ(3)(u) > 0
for 0 ≤ u ≤ Ma, then

sup

{∫ Ma

0
φ(u) dF(u) : F ∈ Pa,2(1, c

2
a, Ma)

}
=

∫ Ma

0
φ(u) dF0(u) (23)

and

inf

{∫ Ma

0
φ(u) dF(u) : F ∈ Pa,2(1, c

2
a, Ma)

}
=

∫ Ma

0
φ(u) dFu(u). (24)

If the condition of Lemma 1 is satisfied with n = 2 and (−1)3φ(3)(u) < 0 for 0 ≤
u ≤ Ma, then the roles of F0 and Fu are switched in (23) and (24).

We now give sufficient conditions on h and the cdf � in (22) for the system
{1, u, u2,−φ(u)} to be a T system on [0, Ma]. For a real-valued function h of a
real variable that has at least k continuous derivatives, let h(k) denote its kth derivative;
let h(0) ≡ h. Let 1A be the indicator function of the set A, which equals 1 on A and
0 on its complement. For part of this result, we will be assuming that the cdf � has a
smooth pdf γ , but we will relax that assumption in Sect. 7.1.
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Lemma 3 (Condition for the third derivative to be negative) Consider a nonnegative
real-valued random variable Y with a finite mgf (satisfying (9)) and the cdf � with
support in [a, b] or [a, b) such that

0 ≤ a < Ma ≤ b ≤ ∞. (25)

For φ in (22), in order to have

(−1)3φ(3)(u) > 0 for 0 ≤ u ≤ Ma, (26)

so that {1, u, u2,−φ(u)} is a T system on [0, Ma], implying that F0 attains the UB in
(23), while Fu attains the LB (24), each of the following is a sufficient condition:

(i) h(x) ≡ x and � has a positive pdf γ that is differentiable with γ (1)(x) < 0 for
a ≤ x ≤ Ma,

(ii) h(x) ≡ x2 and � has a positive pdf γ for a ≤ x ≤ Ma,
(iii) h(x) ≡ h(x; p) ≡ x p for p ≥ 3,

(iv) h(x) ≡ h(x; t) ≡ etx − t x − (t x)2

2 − (t x)3

6 = 1 + ∑∞
k=4

(t x)k

k! for t > 0,
(v) h(k)(x) > 0, a < x ≤ Ma, 0 ≤ k ≤ 3 and h(k)(a) = 0, 1 ≤ k ≤ 2.

For the function h(x) ≡ x in condition (i), the condition on γ is necessary as well as
sufficient, given that γ has a continuous positive derivative. In condition (i), if instead
γ (1)(x) > 0 for 0 ≤ x ≤ Ma, then the roles of F0 and Fu are switched in (23) and
(24).

Proof First, observe that condition (9) implies that all integrals are finite. Next, we
consider what happens if 0 ≤ u ≤ a with a > 0 or u > b. First, if u ≤ a, then
φ(u) = E[h(Y − u)], 0 ≤ u ≤ a, so that the desired property of φ holds over [0, a].
In particular,

φ(3)(u) = −
∫ ∞

a
h(3)(y − u) d�(y) < 0, 0 ≤ u ≤ a. (27)

On the other hand, if u ≥ b, then φ(u) = h(0), so that the desired property cannot
hold for u > b. However, we have ruled that case out by assuming that Ma ≤ b. It
suffices for � to have a pdf over [a, Ma].

In each case, we can apply Lemmas 1 and 2 with (22). To do so, we apply the
Leibniz rule for differentiation of an integral with (22). Using that condition with
a ≤ u ≤ Ma , we have

φ(u) =
∫ ∞

a
h((y − u)+) d�(y) =

∫ ∞

u
h(y − u) d�(y) + h(0)�(u) and

φ(1)(u) = −
∫ ∞

u
h(1)(y − u) d�(y) − h(0)γ (u) + h(0)γ (u)

= −
∫ ∞

u
h(1)(y − u) d�(y). (28)
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For h(x) ≡ x in condition (i), we have h(1)(x) = 1 for all x , so that

φ(1)(u) = −
∫ ∞

u
h(1)(y − u) d�(y) = −

∫ ∞

u
d�(y) = −(1 − �(u)), (29)

so that, by the condition on �,

φ(2)(u) = γ (u) > 0 and φ(3)(u) = γ (1)(u) < 0 for u ≥ a. (30)

From the form of φ(3)(u) in (30), we see that the condition on γ is necessary as well
as sufficient. We also see that the UB and LB are switched if instead γ (1)(u) > 0.

Turning to h(x) = x2 in condition (ii), we use h(1)(0) = 0 and h(2)(x) = 2 for all
x with the second line of (28) to get

φ(2)(u) =
∫ ∞

u
h(2)(y − u) d�(y) = 2

∫ ∞

u
d�(y) = 2(1 − �(u)) > 0, (31)

so that φ(3)(u) = −2γ (u) < 0 for a ≤ u ≤ Ma .
Conditions (iii) and (iv) are both special cases of condition (v), which implies that

φ(3)(u) = −
∫ ∞

u
h(3)(y − u) d�(y) < 0. (32)

�

4 Proof of Theorem 1

We prove Theorem 1 by establishing results for the transient higher moments. We
do so by applying stochastic comparison results from [11,25], which are intimately
connected to the theory of T systems. From Theorem 2.1 of [25], the stochastic partial
order X1 ≤2,n X2 holds for any n with n ≥ 2 if and only if

E[((X1 − t)+)n] ≤ E[((X2 − t)+)n] for all t ∈ R. (33)

From Theorem 3.2 of [11], the stochastic partial order X1 ≤3−cx X2 holds if and only
if both X1 ≤2,2 X2 and E[(X1)

j ] = E[(X2)
j ] for j = 1, 2. Hence, X1 ≤3−cx X2

implies that X1 ≤2,2 X2. Moreover, X1 ≤2,2 X2 implies X1 ≤2,n X2 for all n > 2,
as shown in Corollary 1 to Theorem 2.1 in [25]. As shown in §5 of [11], for random
variables X(F) with cdf F on the bounded interval [0, M],

X(F0) ≤3−cx X(F) ≤3−cx X(Fu). (34)

We need two lemmas:
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Lemma 4 (Order for differences of random variables) If U1 ≤3−cx U2 and V1 ≤3−cx

V2, where Ui and Vi are independent real-valued random variables for each i , then

V1 −U2 ≤3−cx V2 −U1. (35)

Proof Combine Propositions 3.10 and 3.11 (vi) of [11]. �
Lemma 5 (Preservation of order for positive-part function) If U1 ≤2,n U2, then

(U1 − t)+ ≤2,n (U2 − t)+ for all t ∈ R. (36)

Proof This is an easy consequence of the definition in (33). �
We can apply the above to prove an ordering of all the transient waiting times in

the GI/GI/1 queue. The proof of Theorem 1 follows directly from the following
theorem.

Theorem 3 (Order for transient and steady-statewaiting times) Let Wi,n be the waiting
time of customer n in twoGI/GI/1 queueswith pairs of interarrival-time and service-
time distributions (Ui , Vi ), i = 1, 2. Let the systems start empty or with ordered initial
waiting times W1,0 ≤2,2 W2,0. If U1 ≥3−cx U2 and V1 ≤3−cx V2, then

W1,n ≤2,2 W2,n for all n ≥ 1 (37)

and

W1 ≤2,2 W2 (38)

for the associated steady-state waiting times.

Proof We carry out the proof by mathematical induction. If the systems start empty,
we get W1,1 ≤2,2 W2,1 by combining Lemmas 4 and 5. Given W1,n−1 ≤2,2 W2,n−1,
we get W1,n ≤2,2 W2,n by applying the preservation of order under convolution by
(C) in §2.1 of [25] and the positive part function in Lemma 5.We get the final order for
the steady-state waiting times from the preservation under convergence Wi,n ⇒ Wi

as n → ∞ for each i using §2.1 of [25]. �
We conclude this section by providing a simulation illustration and sanity check

for Theorems 3 and 1. Figure 1 plots simulation estimates of the transient second
moments E[Wn(F,G)2] for seven values of n for (F,G) = (Fu, E2), (E2, E2) and
(F0, E2) (left) and (F,G) = (E2,G0), (E2, E2) and (E2,Gu) (right) for the case
c2a = c2s = 0.5, ρ = 0.5 and Ma = Ms = 10.

5 Proof of Theorem 2 (a)

We next prove Theorem 2 (a): finding the extremal interarrival-time cdf F on [0, Ma]
for the mean E[W (F,G)] for any given service-time cdfG. We again apply the theory
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Fig. 1 Simulation estimates of E[Wn(F,G)2] for various (F,G) with c2a = c2s = 0.5, Ma = Ms =
10, ρ = 0.5

of T systems. After treating part (a), we apply the same methods to treat Theorem 2
(b) and (c). The remaining details in the proof of Theorem 2 (b) and (c) are given in
Sects. 7.2 and 7.3.

There are several steps in the proof of Theorem 2 (a). First, we apply increasing
convex stochastic order to show that (39) in Theorem 4 is a sufficient condition for all
the desired conclusions. Then, Theorems 5 and 6 are devoted to providing sufficient
conditions to establish (39), as stated in Theorem 2 (a). The T -system theory enters
in the proof of Theorem 5.

5.1 Exploiting increasing convex stochastic order

For Theorem 2 (a), we apply Lemma 3 (i) with the random variable Y being the sojourn
time, i.e., the time spent by the arrival in the system, also called the response time.
It is the sum of two independent nonnegative random variables, one being a service
time V and the other steady-state waiting time W or the transient waiting time Wn

for n ≥ 0. Let Y ≡ W + V and let Yn ≡ Wn + V . Let H and Hn be the cdf of W
and Wn , respectively. Let Yn(H0, F,G) and Y (F,G) denote the dependence of Yn
and Y on the underlying cdf triple (H0, F,G) of (W0,U , V ) and similarly for other
random variables. (Recall that the steady-state distributions are independent of the
initial conditions, assuming a finite mean E[W0]). We can apply the previous results
to deduce the following two theorems.

For the first theorem, we exploit increasing convex stochastic order, denoted by
≤icx , and state results in that form. For real-valued random variables, Z1 ≤icx Z2
if E[ f (Z1)] ≤ E[ f (Z2)] for all non-decreasing convex functions f for which the
expectations are well defined; for example, see §1.5 of [20].

Theorem 4 (A one-step condition for ordered steady-state means) Consider the

GI/GI/1 model with given service-time cdf G satisfying (9). Let W0
d= W (F1,G)

and Y0
d= Y (F1,G), where W (F,G) and Y (F,G) are the steady-state waiting time

and sojourn time using F ∈ Pa,2(1, c2a, Ma). For any F2 ∈ Pa,2(1, c2a, Ma), if
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∫ Ma

0
E[(Y0(F1,G) − t − u)+] dF2(u)

≤
∫ Ma

0
E[Y0(F1,G) − t − u)+] dF1(u) for all t ≥ −Ma, (39)

then

Wn(F2,G) ≤icx Wn−1(F2,G) and Yn(F2,G) ≤icx Yn−1(F2,G) for n ≥ 1

(40)

for

Yn(Fi ,G) ≡ Wn(Fi ,G) + V (G) for n ≥ 2,

Y1(Fi ,G) ≡ W0 + V (G) = W (F1,G) −U (Fi ))
+,

Wn(Fi ,G) ≡ (Yn−1(Fi ,G) −U (Fi ))
+ for n ≥ 2

and W1(Fi ,G) ≡ (Y0 −U (Fi ))
+. (41)

Hence,

W (F1,G) ≥icx W (F2,G) and Y (F1,G) ≥icx Y (F2,G) (42)

and thus

E[W (F1,G)] ≥ E[W (F2,G)] and E[Y (F1,G)] ≥ E[Y (F2,G)]. (43)

Proof We start by observing that the increasing convex stochastic ordering

Y (F1,G) −U (F1) ≥icx Y (F1,G) −U (F2), (44)

where the random variables Y andU are independent, is equivalent to the expectation
orderings

E[(Y (F1,G) −U (F1) − t)+] ≥ E[(Y (F1,G) −U (F2) − t)+] for all t, (45)

by virtue of Theorem 1.5.7 of [20]. We can then rewrite (45) equivalently as

∫ Ma

0
E[(Y (F1,G) − u − t)+] dF1(u)

≥
∫ Ma

0
E[(Y (F1,G) − u − t)+] dF2(u) for all t . (46)

SinceU has support in [0, Ma], we only need to consider t ≥ −Ma . Thus, the condition
in (39) is equivalent to each of the expressions in (44)–(46).
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Now, given (44), because (x)+ is a non-decreasing convex function, we have

W0 ≡ W (F1,G)
d= (Y (F1,G) −U (F1))

+ ≥icx (Y (F1,G) −U (F2))
+ ≡ W1,

(47)

where W1 ≡ W1(F1, F2,G) ≡ [W (F1,G) + V (G) − U (F2)]+. Then, by Theorem
1.5.5 (b) of [20], we see that the order is maintained if we add the same independent
random variable from both sides. That gives

Y0 ≡ W0 + V (G) ≥icx W1 + V (G) ≡ Y1, (48)

where independence is assumed in the sums, as usual. Then, by Theorem 1.5.5 (b) of
[20] again, we see that the order is maintained if we subtract the same independent
random variable from both sides. Hence, from (48) we deduce that

Y0 −U (F2) ≥icx Y1 −U (F2). (49)

Then, because (x)+ is a non-decreasing convex functions of x , we have

W1 = (Y0 −U (F2))
+ ≥icx (Y1 −U (F2))

+ ≡ W2, (50)

By the same reasoning, we deduce recursively, and usingmathematical induction, that

Wn−1 ≥icx Wn and Yn−1 ≥icx Yn for all n ≥ 1. (51)

But then observe that (Wn,Yn) ⇒ (W (F2,G),Y (F2,G)) as n → ∞, so that we can
apply Theorem 1.5.9 of [20] to deduce (42), which of course implies (43). �

It now remains to provide a sufficient condition for condition (39) in Theorem 4 in
terms of the steady-state sojourn time Y (F0,G). We remark that it is known that the
steady-state waiting-time cdf is always new worse than used (NWU), is concave if the
service-time cdf is has decreasing failure rate (is DFR), and is completely monotone
if the service-time cdf is completely monotone; see §§1.7–1.9 of [28]. However, these
properties are not preserved under convolution in general.

Theorem 5 (Strict concavity condition for F0) Consider the GI/GI/1 model with
given service-time V having cdf G with support in [a,∞) for 0 ≤ a < ρ = E[V ]
and a finite mgf (satisfying (9)). If the sojourn-time cdf �(x) ≡ P(Y (F0,G) ≤ x)
is strictly concave in x over [a,∞), then condition (39) in Theorem 4 is satisfied for
F1 = F0 and for all F2 ∈ Pa,2(1, c2a, Ma), so that

Y (F,G) ≤icx Y (F0,G) for all F ∈ Pa,2(1, c
2
a, Ma) (52)

and

sup
{
E[W (F,G)] : F ∈ Pa,2(1, c

2
a, Ma)

}
= E[W (F0,G)]. (53)
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If the sojourn-time cdf �(x) ≡ P(Y (F,G) ≤ x) is strictly concave in x over [a,∞)

for all F ∈ Pa,2(1, c2a, Ma), then condition (39) in Theorem 4 is satisfied for all
F2 = Fu and F1 = F for all F in Pa,2(1, c2a, Ma), so that

Y (Fu,G) ≤icx Y (F,G) for all F ∈ Pa,2(1, c
2
a, Ma), (54)

and

inf
{
E[W (F,G)] : F ∈ Pa,2(1, c

2
a, Ma)

}
= E[W (Fu,G)]. (55)

Proof The condition on the cdf � in Theorem 5 implies condition (39) in Theorem
4. That implication follows by applying Lemma 3 (i) when the service-time cdf has
a strictly decreasing pdf, which we have not yet assumed. However, it is possible to
treat the more general case by an additional asymptotic argument, as we indicate in
Sect. 7.1. In particular, we apply Lemmas 6 and 7. The concavity of the cdf � over
the entire interval [a,∞) is important for covering the subtraction by t in condition
(39). �

We now provide a sufficient condition for the strict concavity conditions on the
sojourn-time distribution in Theorem 5. Recall that a cdf G on [0,∞) is completely
monotone if it is a mixture of exponential cdf’s, i.e., if

G(x) =
∫ ∞

0
(1 − e−λx ) dP(λ)

for some probability measure P .

Theorem 6 (Hyperexponential sojourn-time distribution) In the GI/GI/1 queue, if
the service-time distribution is Hk, then so is the sojourn-time distribution. Hence,
the concavity conditions on the sojourn-time cdf � in Theorem 5 are satisfied for
all F ∈ Pa,2(1, c2a, Ma) if the service-time cdf G is hyperexponential or completely
monotone.

Proof For the GI/PH/1 queue with any interarrival-time cdf, it is known that the
waiting time and sojourn time cdf’s inherit the phase-type (PH) matrix structure of
the service-time cdf; see pp. 46 and 151 of [21] or Corollary 2.2 of [1]. From the
diagonal structure of the substochastic matrix in the PH representation when the PH
distribution is Hk , we see that the distributions of W and Y are also Hk when the cdf
G of V is Hk .

We continue to provide a detailed proof, referring to [21] and using notation there.
To do so, we use the known fact that the waiting-time cdf is Hk with an atom at the
origin; see §II.5.10 of [8] or Theorem 1.9 D (i) of [28]. Thus, from equation (4.1.41)
of [21], we deduce that the matrix function�(x) that appears there in the cdf ofW and
is characterized in previous equations, is a diagonal matrix with exponential functions
e−μi x appearing on the diagonal. (The constant matrices appearing there are all strictly
positive, so that there is no cancellation.) Hence, this must also be true for the matrix
	(x) in equation (4.1.40) of [21]. Thus, the ODE for the function 	1(x) appearing
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there involves diagonal matrices S and 	(x). Hence, 	1(x) has a diagonal matrix
function solution. Thus, the distribution of Y given in equation (4.1.44) is a mixture
of exponentials. Given that Hk structure, the cdf � has a strictly decreasing pdf, so
that the concavity condition is satisfied. The general completely monotone case can
be represented as the limit of Hk cdf’s, using §7.1. The asymptotic argument was used
for the GI/GI/k waiting time by [27] �

We now observe that the concavity condition for the sojourn-time cdf cannot be
satisfied for any GI/Ek/1 queue for k ≥ 2 or any queue where the service time is a
finite mixture of Ek distributions all of which have k ≥ 2.

Proposition 1 (Negative results for Erlang service) For any service-time cdf G that
has a pdf g that is differentiable and strictly increasing over [0, x] for some x > 0,
the pdf γ of the associated steady-state sojourn-time Y ≡ W + V must be strictly
increasing over [0, x], so that the cdf � cannot be strictly concave.

Proof Let H be the cdf of W , which has an atom at 0. Given that V has a continuous
pdf, Y ≡ V + W has a pdf γ , where

γ (t) = H(0)g(t) +
∫ t

0+
g(t − u) dH(u), t ≥ 0. (56)

Consequently, the derivative satisfies

γ (1)(t) = H(0)g(1)(t) +
∫ t

0+
g(1)(t − u) dH(u), (57)

which is strictly positive for 0 ≤ t ≤ x for sufficiently small x by the assumption on
g. �

6 Continuity of themean steady-state waiting time

In this section, we use a variant of Theorem 1 to show that the mean steady-state
waiting time is continuous as a function of the underlying pair of cdf’s (F,G) under a
natural condition. This section thus provides an extension to Corollary X.6.4 in [2] by
establishing uniform integrability (UI) of the sequence of waiting times; for example,
see §5 of [4].

For this result, we relax condition (9) and instead assume that the third moment of
the service time V is specified as well as the parameters (1, c2a, ρ, c2s ). Let

νs,3 ≡ E[V 3]
E[V ]3 = ρ3E[V 3], (58)

which we assume to be finite. Our new continuity result is

Theorem 7 (Continuity of the mean waiting times) Consider a sequence of G I/GI/1
queueing models indexed by k with underlying interarrival-time and service-time
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random variables (Uk, Vk) having the pair of cdf’s (Fk,Gk) with the fixed model
parameters (1, c2a, ρ, c2s , νs,3) (to be used in each time period n). Let W (k)

n be the
transient waiting time in time period n and let W (k) be the steady-state waiting time
for model k. Suppose that Fk ⇒ F and Gk ⇒ G as k → ∞. Then, W (k)

n ⇒ Wn ≡
Wn(F,G) as k → ∞ for each n ≥ 1 and W (k) ⇒ W ≡ W (F,G) as k → ∞,

both {(W (k)
n ) : k ≥ 1} for each n ≥ 1 and {(W (k)) : k ≥ 1} are UI (59)

or, equivalently,

E[(W (k)
n )] → E[Wn] as k → ∞ for each n ≥ 1

and E[(W (k))] → E[W ] as k → ∞. (60)

The proof of the uniform integrability needed for Theorem 7 exploits upper
bounds on the mean waiting times, which are provided by the following variant of
Theorem 1.

Theorem 8 (Upper bounds for the second moment of the steady-state waiting time)
Consider the set of G I/GI/1 queueing models with F ∈ Pa,2(1, c2a) and G ∈
Ps,3(ρ, c2s , νs,3) for νs,3 in (58).

(a) Let the service-time cdf G ∈ Ps,3(ρ, c2s , νs,3) be fixed. Then,

E[W (F,G)2] ≤ E[W (F0,G)2] < ∞ (61)

for all F ∈ Pa,2(1, c2a), where F0 is the two-point cdf with one mass at 0.
(b) Let the interarrival-time cdf F ∈ Pa,2(1, c2a) be fixed. Then, there exists a cdf

Ĝ ∈ Ps,3(ρ, c2s , νs,3) such that

E[W (F,G)2] ≤ E[W (F, Ĝ)2] < ∞ (62)

for all G ∈ Ps,2(ρ, c2s , νs,3).
(c) Suppose that neither F nor G is fixed. Then, there exists a cdf Ĝ ∈

Ps,3(ρ, c2s , νs,3) such that

E[W (F,G)2] ≤ E[W (F0, Ĝ)2] < ∞ (63)

for all F ∈ Pa,2(1, c2a) and G ∈ Ps,2(ρ, c2s , νs,3).

Proof The proof is a variant of the proof in Theorem 1. As before, we apply T systems.
Since we only draw conclusions about the second moment of the steady-state waiting
time, it suffices to have the bounded thirdmoment ofG in (58). For part (a), we initially
impose the finite support bound Ma on F , but the extremal cdf F0 places no mass on
the upper limits. Thus, the bound is independent of Ma . For parts (b) and (c), we use
the T -system theory again to exploit the specified third moment of G to construct the
extremal upper bound cdf of G given the first three moments, which we denote by Ĝ.
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The extremal cdf Ĝ assigns one point to 0 and the other two points to x1 and x2 with
0 < x1 < x2 < Ms for Ms suitably large; for example, see the tables on p. 137 of
[12]. By Theorem X.2.1 of [2], E[W 2] < ∞ given that νs,3 < ∞. �
Proof of Theorem 7. First, the results for the transient waiting times are elementary,
given the Lindley recursion in (1). For the steady-state mean, Corollary X.6.4 of [2]
implies that W (k) ⇒ W as k → ∞. The condition there that {X+

k : k ≥ 1} be UI for
Xk ≡ Vk −Uk is satisfied because X+

k ≤ Vk and E[V 2
k ] = ρ2(c2s + 1) < ∞ for all k.

To deduce (59), which is equivalent to (60) because the waiting times are nonnegative
(see Theorem 5.4 of [4]), we apply the uniform bound on the second moment provided
by Theorem 8. �

7 Remaining proofs

We now provide the remaining proofs.

7.1 Relaxing the PDF condition in Lemma 3

We now relax the pdf condition on � in Lemma 3 under conditions (i) and (ii) above.
Recall that convergence in distribution can be expressed in terms of cdf’s, i.e., cor-
responds to pointwise convergence at all points x that are continuity points of the
limiting cdf. Let ⇒ denote convergence in distribution.

Lemma 6 (Preservation of optimality) Suppose that {Yn : n ≥ 1} is a sequence of
real-valued random variables such that the conditions of Lemma 3 are satisfied for
each n ≥ 1 and Yn ⇒ Y as n → ∞. If F0 (Fu) yields the UB for (23) and Fu (F0)
yields the LB in (24) for all n ≥ 1, then the same is true for the limit Y .

Proof We directly compare F0 to any alternative cdf F for the UB. First, by the
continuous mapping theorem, we obtain

φn(u) → φ(u) as n → ∞ (64)

for each u from (22). Then, by the dominated convergence theorem,

∫ Ma

0
φ(u) dF(u) = lim

n→∞

∫ Ma

0
φn(u) dF(u) ≤ lim

n→∞

∫ Ma

0
φn(u) dF0(u)

=
∫ Ma

0
φ(u) dF0(u). (65)

Hence, F0 remains optimal for the limit. Essentially, the same argument applies to the
lower bound. �
Lemma 7 (Preservation of optimality for the first two moments) In order to apply
Lemma 6 to condition (i) in Lemma 3 with γ (1)(x) < 0, a ≤ x ≤ Ma, it suffices to
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have, in addition to Yn ⇒ Y , the cdf’s � of Y be strictly concave over [a, Ma], i.e.,
have �(x + δ) − �(x) be strictly decreasing in x over [a, Ma] for all δ > 0. For
condition (ii) in Lemma 3, it suffices to have �(x) be strictly decreasing in x over
[a, Ma].
Proof If � has the stated property, then � can be made the limit of cdf’s �n with the
properties stated in Lemma 3. �

7.2 Proof of Theorem 2 (b)

The proof for part (b) can be short, because we can apply a variant of the proof for
part (a). For part (b), we are concerned with

sup

{∫ ∞

0
E[(W (F,G) + v −U )+]dG(v) : G ∈ Ps,2(ρ, c2s , Ms)

}
. (66)

It is convenient to use a reverse-time formulation and work with the cdf G̃ of
Ṽ ≡ ρMs − V , and adjusting the moments consistently. Then we can focus on

sup

{∫ ∞

0
E[(W (F,G) −U + ρMs − v)+]dG̃(v) : G̃ ∈ Ps,2(ρ̃, c̃2s , Ms)

}
. (67)

We make structural assumptions about the cdf’s F of U and H of W , which can be
relaxed by the asymptotic methods of Sect. 7.1.

Lemma 8 If (i) the cdf F is differentiable with a strictly positive pdf f that can be
expressed as

f (u) =
∫ u

0
f (1)(x) dx, u ≥ 0, (68)

where f (1) is integrable, and (ii) W has a cdf H with H(0) > 0 and

H(x) = H(0) +
∫ x

0
h(w) dw, x ≥ 0, (69)

where h is strictly positive and integrable over the halfline, then the integrand φs in
(67) with k = 1 can be expressed as

φs(v) = H(0)E[(ρMs − v −U )+] +
∫ ∞

0
h(w)E[(w + ρMs − v −U )+] dw > 0,

(70)

so that the first three derivatives of φs exist for v > 0 and satisfy

φ(1)
s (v) = −P(U − W ≤ ρMs − v)
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= −H(0)F(ρMs − v) −
∫ ∞

0
h(w)F(w + ρMs − v) dw < 0,

φ(2)
s (v) = θ(v) = H(0) f (ρMs − v) +

∫ ∞

0
h(w) f (w + ρMs − v) dw > 0,

φ(3)
s (v) = θ̇ (v)

= −H(0) f (1)(ρMs − v) −
∫ ∞

0
h(w) f (1)(w + ρMs − v) dw > 0, v ≥ 0,

(71)

where θ(v) is the pdf of U − W over [0, ρMs] because v ∈ [0, ρMs], so that φs is
strictly positive, strictly decreasing and strictly convex on [0, ρMs]. Moreover, from
(71) we see that if f (1) > 0, then φ

(3)
s (v) < 0 as well.

Thus, the previous proof applies until we come to Theorem 6, but we now need
to replace the steady-state sojourn time Y = W + V by U − W , where W is the
steady-state waiting time. Fortunately, the analog of Theorem 6 is already covered by
Lemma 8.

7.3 Proof of Theorem 2 (c)

The proof here is essentially the same as the proof of Theorem 4. As before, we
establish increasing convex stochastic order as we move from one steady-state distri-
bution to another through a sequence of transient distributions, based on the Lindley
recursion (1).

8 Supporting simulation results

In this section, we present results of simulation experiments illustrating the shape
conditions for parts (a) and (b) of Theorem 2.

8.1 Supporting simulation results for F

We now present supporting simulation results for the shape of the steady-state sojourn
time Y ≡ W +V asserted in Theorem 6 and thus for the extremal results in Theorems
4 and 5. We consider the supreumum and infimum for F , for example,

E[W (F0, Hk)] = sup{E[W (F, Hk)] : F ∈ Pa,2(Ma)}, k ≥ 2. (72)

Figure 2 shows that for the examples F0/H2/1 and Fu/H2/1 (Ma = 10)with balanced
means under traffic level ρ = 0.5, the pdf γ of Y under the same simulation settings
in both cases has a monotone density. In these cases, the estimated mean steady-state
values are E[W (Fu, H2)] = 2.00 and E[W (F0, H2)] = 3.28.

In addition, Fig. 3 shows supporting simulation results for F0/H5/1 and Fu/H5/1
(Ma = 10) where H5 has the service rates [1.0, 1.5, 2.0, 2.5, 3.0] with the respective
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Fig. 2 The shape of the pdf of W (F0, H2) + VH2 and W (Fu , H2) + VH2 for H2 service with Ma = 10,

ρ = 0.5 and c2a = c2s = 4

Fig. 3 The shape of the pdf of W (F0, H5) + VH5 and W (Fu , H5) + VH5 for H5 service (as specified in

the text) with Ma = 10, ρ = 0.5 and c2a = c2s = 4

probabilities [0.1, 0.15, 0.2, 0.25, 0.3]. In these cases, E[W (Fu, H5)] = 1.03 and
E[W (F0, H5)] = 2.75.

Figure 4 shows corresponding results for E2 service. Figure 4 shows that the
pdf of W + V is nearly monotone, but a careful examination shows that the pdf
is increasing over a short interval [0, x]. In these cases, E[W (Fu, E2)] = 0.528 and
E[W (F0, E2)] = 2.55.

8.2 Supporting simulation results for G

In this concluding subsection, we present simulation results supporting Theorem 2.
Figure 5 experimentally confirms the conclusion of Lemma 8 in Sect. 7.2 that the
condition of Theorem 2 (b) can be satisfied by presenting simulation estimates of the
pdf ofW (H2,G0)−UH2 andW (H2,Gu)−UH2 ≤ 0withMs = 10 andρ = 0.5 for the
case c2a = c2s = 4. In these cases, E[W (H2,G0)] = 2.17 and E[W (H2,Gu)] = 2.03.
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Fig. 4 The shape of the pdf pf W (F0, E2) + VE2 and W (Fu , E2) + VE2 for Erlang E2 service with

Ma = 10, ρ = 0.5, c2a = 4 and c2s = 0.5

Fig. 5 The shape of the pdf of W (H2,G0) − UH2 and W (H2,Gu) − UH2 ≤ 0 with H2 interarrival-time

cdf, Ms = 10, ρ = 0.5 and c2a = c2s = 4

Figure 6 presents corresponding simulation results when F has an E2 distribution.
We see that monotonicity fails, just as in Fig. 4. In these cases, E[W (E2,G0)] = 1.01
and E[W (E2,Gu)] = 1.06. Notice that there is a switch of order of G0 and Gu going
from H2 arrivals to E2 arrivals.

9 Conclusions

This paper applies the theory of Tchebycheff (T) systems to identify interarrival-
time and service-time cdf’s that maximize or minimize the transient and steady-state
moments of thewaiting time in theGI/GI/1 queue, given the first twomoments of the
underlying interarrival-time and service-time cdf’s. The extremal cdf’s are classical
two-point distributions that are determined by either having one mass point at 0 or the
upper limit of the support.
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Fig. 6 The shape of the pdf of W (E2,G0) − UE2 and W (E2,Gu) − UE2 ≤ 0 with E2 interarrival-time

cdf, Ms = 10, ρ = 0.5 and c2a = 0.5, c2s = 4

Theorem 1 establishes that higher moments of the steady-state waiting times are
maximized (minimized) over all by interarrival-time cdf’s F with given first two
moments in the GI/GI/1 model by the classical extremal two-point cdf F0 with one
mass on 0 (Fu with one mass on the upper limit of support). Corresponding results are
also obtained for the service times and for the two cdf’s jointly. We prove Theorem
1 in Sect. 4 by combining stochastic comparison results in [25] and [11], which are
intimately related to T systems. In Sect. 6, a variant of Theorem 1 is established to
produce a continuity result for the mean steady-state waiting time in the GI/GI/1
queue, extending Corollary X.6.4 of [2].

Theorem 2 establishes sufficient conditions for corresponding results to hold for
the steady state mean E[W ]. The proofs rely on the tractable characterization of
T systems in Sect. 3 in terms of Wronskians, which was used for the asymptotic
decay rate in [7]. For given service-time cdf G, F0 yields the upper bound if G is
completely monotone. For optimizing over F , a key supporting result was Theorem
5, establishing the concavity of the sojourn-time cdf when the service-time cdf is
completely monotone. For given interarrival-time cdf F , G0 yields the upper bound if
the cdf F is strictly concave, as occurs whenG has a strictly decreasing pdf. Increasing
convex order is used to give a sufficient condition for the overall upper bound to
be E[W (F0,Gu)], as widely conjectured, but the main extremal problem for the
GI/GI/1 queue remains unresolved.
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