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Abstract

Motivated by telephone call centers, we study large-scale service systems with multiple customer

classes and multiple agent pools, each with many agents. For the purpose of delicately balancing service

levels of the different customer classes, we propose a family of routing controls called Fixed-Queue-

Ratio (FQR) rules. A newly available agent next serves the customer from the head of the queue of the

class (from among those he is eligible to serve) whose queue length most exceeds a specified propor-

tion of the total queue length. We show that the proportions can be set to achieve desired service-level

targets for all classes; these targets are achieved asymptotically as the total arrival rate increases. The

FQR rule is a special case of the Queue-and-Idleness-Ratio (QIR) family of controls which in a pre-

vious paper where shown to produce an important state-space collapse (SSC) as the total arrival rate

increases. This SSC facilitates establishing asymptotic results. In simplified settings, SSC allows us

to solve a combined design-staffing-and-routing problem in a nearly optimal way. Our analysis also

establishes a diminishing-returns property of flexibility: Under FQR, very moderate cross-training is

sufficient to make the call center as efficient as a single-pool system, again in the limit as the total arrival

rate increases.
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1 Introduction

Large call centers usually serve multiple classes of customers having different service requirements and

different perceived value. The services provided by the call center agents usually require special skills, but

it is usually not possible or cost-effective for all agents to have all skills. With current technology, call

centers have the capability of routing calls to appropriate agents with the required skills, using some form

of Skill-Based Routing (SBR), but it remains challenging to perform SBR effectively; see Section 5 of Gans

et al. [17].

Call centers usually specify their operational objectives in the form of Quality-of-Service (QoS) con-

straints. Following common practice, we will focus on the x-y service-level (SL) constraint, which stipu-

lates that x% of the calls should be answered within y seconds. Typically, the call center will have different

SL objectives for different classes; e.g., a call center with both regular and VIP customers might aim to

respond to 80% of regular customers within 30 seconds, but 80% of VIP customers within 10 seconds.

The Three Basic Problems. Three basic problems must be solved: (i) What SBR system should be used?

Given the set of customer classes, which agent pools should be used? what skills should the agents have?

(design) (ii) How many agents with each different skill set does the call center need? (staffing), and (iii)

How should agents be assigned to customers in real time? (routing or on-line control).

The total problem is quite complex, so that it is unproductive to search for an optimal solution. The

size of large call centers tends to rule out most candidate algorithms. Thus we look for a good solution,

which produces near-optimal performance in a relatively simple way. In particular, we hope to turn the

large scale into an advantage instead of a disadvantage by finding relatively simple procedures that become

more effective as the scale increases. Indeed, we want to find an approach that is asymptotically optimal for

specified problems as the scale increases. Our goal is to achieve simplicity and asymptotic optimality.

A Simplified Aggregate Approach to Staffing. Our approach to staffing illustrates our emphasis on sim-

plicity: We propose choosing the total number of agents by acting, as much as possible, as if all agents had

all skills and the call center operated as a single-class single-skill call center. We use a linear program (LP)

to allocate the total number of agents to service pools, having designated skill sets. That drastic simplifica-

tion is clearly not appropriate in general. To make that approach feasible, we must carry out the remaining
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design and routing steps appropriately. In the design phase, we provide the required flexibility by ensuring

that the agents have enough skills. In basic settings, the routing graph (showing which customer classes

can be served by which agent pools) can be a connected generalized M model (see Figure 6), where each

class is served by two pools and each pool serves at most two classes. For the routing phase, we develop an

approach that provides the required service-levels for the various classes. Indeed, our main contribution in

this paper is to propose a routing scheme that helps make the simple aggregate approach to staffing work.

Several recent papers have proposed this simplified aggregate approach to staffing. Theoretical support

is contained in Armony [2] and Armony et. al. [4]. These papers establish asymptotic optimality of that

staffing approach with appropriate routing for special classes of models as the total arrival rate increases. The

first paper considers models with a single customer class and multiple agent types, while the second consid-

ers symmetric models with multiple customer classes but a single agent pool. Their asymptotic optimality

follows Borst et al. [11], which formulates and establishes asymptotic optimality for the single-class, single-

pool M/M/N queue. The asymptotic framework is the now-familiar many-server heavy traffic regime, in-

troduced by Halfin and Whitt [22], which is also known as the Quality-and-Efficiency-Driven (QED) regime.

In the QED regime the arrival rate and numbers of servers both increase, while the service-time distribu-

tion remains unchanged. These two limits are coordinated so that the probability of delay approaches a

limit strictly between 0 and 1. Borst et al. [11] show that the QED regime arises naturally from economic

considerations. We will be considering the QED regime throughout this paper.

The simplified aggregate approach to staffing is also a central idea in Wallace and Whitt [30], which

develops a simulation-based iterative algorithm for staffing an SBR call center that starts by choosing an

initial total number of agents by acting as if the call center were a single-class single-skill call center.

After initial skill requirements are assigned, simulation is used iteratively to find detailed staffing and skill

requirements so that the SL and other QoS constraints are met. For specified approaches to the design and

routing, simulation results show that the performance requirements are met with a total number of agents

that is very close to what would be required for a single-class single-skill call center (usually within a

single agent out of about 100). That good performance is achieved with a conventional routing scheme

based on priority matrices. The most important requirement is that there be sufficient cross-training, but it

suffices to have only limited cross-training; specifically, it suffices for each agent to have only two skills.

The simulation experiments show that only minimal cross-training provides the required flexibility. The

diminishing-returns property of cross-training for call centers has been proved under certain conditions by
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Akşin and Karaesmen [1].

The approach in Wallace and Whitt [30] has two shortcomings, which we address here. First, that

approach requires an iterative simulation algorithm to adjust staffing levels and skill assignments in order

to satisfy the class-dependent QoS constraints. Since service is performed in a relatively short time scale

compared to staffing, we think it should be more effective to primarily rely on the routing rather than the

staffing in order to achieve desired service differentiation. In this paper we provide a way to do that. Second,

while the approach in Wallace and Whitt [30] seems to become more effective as the scale increases, it has

not yet been shown to be asymptotically optimal as the scale increases. Here, in contrast, we establish

asymptotic optimality for the scheme we propose.

A Simple Intuitive Routing Rule: FQR. When considering possible controls, we think we should seek

controls that are intuitive and structurally simple. Controls that lack any evident structure or insight are

unlikely to be used by call center managers. A good example of a simple and intuitive control that is

applicable to very general network structures (but essentially limited to single-agent service pools) is the

generalized-cµ (Gcµ) rule, first introduced by Van-Meighem [28] for the multi-class and single-agent V

model (see Figure 1), and generalized to more complicated networks by Mandelbaum and Stolyar [25].

A parallel to Mandelbaum and Stolyar [25] in a many-server setting has been provided by Atar [6], who

characterizes a family of controls that achieve asymptotically optimal performance in the QED regime. We

refer the reader to our subsequent paper [20] for a more elaborate discussion of this literature. While the

controls in [6] can be easily implemented in a computerized environment, they are not nearly as simple as

the Gcµ rule. It seems desirable, if possible, to find a family of controls for many-server systems that will

bridge the gap between the simple and intuitive Gcµ rule and the more complicated controls in [6].

With that goal in mind, we propose Fixed-Queue-Ratio (FQR) routing. We assume that there is a queue

for each customer class. When an agent becomes free, he chooses the customer from the head of the line

(from one of the classes he can serve) for which the queue length most exceeds a fixed proportion pi of

the total queue length (for all classes). The proportions pi in turn are chosen to depend on the specified

SL constraints. The FQR rule is a special case of the Queue-and-Idleness-Ratio (QIR) family of controls

that we introduced in our previous paper [19]. A consequence of our analysis in [19] is that FQR makes

the separate queue lengths asymptotically equal to the fixed proportions of the total queue length. In other

words, FQR produces a very important state-space collapse (SSC), causing the vector-valued queue-length
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process to evolve, asymptotically, as a one-dimensional process. In particular, FQR is a simple balancing

rule reminiscent of the Gcµ rule and, like the Gcµ rule, it is a highly decentralized control. Indeed, in

our paper [20] we show that, when assuming pool dependent service rates, the QIR family of controls

asymptotically minimizes convex holding costs, paralleling for many-server systems the role that Gcµ plays

in the case of single-server stations. (In general, that optimality requires going beyond FQR to allow state-

dependent proportions.)

In addition to proposing the FQR control for SBR call center models, we make several other contribu-

tions in this paper: On the routing front, we characterize network and parameter conditions under which one

may use FQR to achieve service-level differentiation while asymptotically minimizing the staffing costs. On

the design front, we use FQR to rigorously support the diminishing-return property of flexibility, by showing

that it suffices to consider structures where most of the agents have a single skill and only a small proportion

of the agents have two skills. In particular, there is no need for agents with more than two skills in their

skill set. On the staffing front, we find asymptotic optimal staffing levels for several staffing optimization

problems. The aggregate approach to staffing is mostly preserved, with the exception of the need to solve an

additional LP. (For basic models, the LP is only used to allocate the total number of agents to the agent pools

having designated skill sets.) Although the asymptotic optimality results are not for the most general mod-

els, the general feasibility result in this paper and the simulation-based solution algorithm that we propose

in the subsequent paper [15], show that our FQR-based solution can be applied in very general settings to

obtain an extremely simple and practical solution with only minor compromise in terms of cost optimality.

Related Literature. An important feature of our work is that we simultaneously address the three prob-

lems of design, staffing and routing. Conventionally, these are treated separately and hierarchically. Wallace

and Whitt [30] also addressed the three problems of design, staffing and routing together, but the only pre-

vious work we are aware of that establishes asymptotic optimality for all three problems has been done by

Bassamboo et. al. [9] and [10]. They consider a staffing problem for an SBR system and aim at minimizing

a cost function which reflects the costs of waiting times, abandonments and customer rejections but not

QoS constraints. They focus on uncertainty in the arrival rates. As a consequence, they consider a differ-

ent asymptotic regime, the efficiency-driven (ED) regime instead of the QED regime. Their general setting

allowing for uncertainty in the arrival rates comes at the price of having to restrict the analysis to a cruder

notion of asymptotic optimality than the one we use here; Our finer analysis, while more limited in its scope,
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allows us to identify key system characteristics and, in turn, to construct intuitive routing schemes. More-

over, it allows us to tackle directly waiting-time tail-probability service-level constraints that are widely used

in the industry but can not be covered in the framework of [9, 10].

It should be mentioned that within the context of single-server stations, several papers have tackled the

problem of service-level constraint satisfaction. The most relevant is probably Van-Meighem [29] which

embeds the constraint-satisfaction problem into the convex-holding-cost setting of his paper [28], rather

than dealing with it directly.

The analysis in this paper relies heavily on our previous paper [19], which establishes SSC results for

the QIR generalization of FQR; see [19] for additonal discussion about SSC and more references.

Organization. We begin in §2 by formulating our staffing-under-SL-constraints optimization problem for

the V model – see (1) – and proposing, first a feasible solution, and then an asymptotically optimal solution,

based on FQR. For asymptotic optimality, a key step is a modified best-effort formulation; see (7). The

relatively simple V model serves well to illustrate the essential ideas in the application of FQR to the staffing

problem, but the results are also interesting in their own right, because the formulation and results need to

be altered for more complex models.

In §3 we consider more general models, present more general versions of FQR and, based on [19],

identify conditions on the network structure under which the control admits the important SSC. Throughout

we focus on Markovian models, assuming mutually independent Poisson arrival processes, exponential

service times and exponential times to abandon (when we consider customer abandonment).

In §4 we consider the multi-pool SBR setting with pool-dependent service rates and discuss also the

implications to the special case with common service rate, which is similar to the model of Wallace and

Whitt [30]. In §5 we introduce a waiting-time based version of FQR, which we call the fixed-waiting-

ratio (FWR) rule. We show that FWR is asymptotically equivalent to FQR. We state conclusions in §6 and

discuss some important directions for future research. For the sake of readability, we place some proofs and

auxiliary results in an appendix.
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2 The V Model

We start with the most elementary SBR design, known as the V model; it is depicted in Figure 1. The

V model consists of a set I := {1, . . . , I} of customer classes. Class-i customers arrive to the system

according to a Poisson process {Ai(t), t ≥ 0} with rate λi, independently of all other classes. There is a

queue for each customer class with unlimited capacity. Let λ :=
∑

i∈I λi be the aggregate arrival rate. All

customers are served by agents from a single agent pool and all service times are assumed to be independent

and identically distributed (i.i.d.) exponential random variables with common rate µ, regardless of the

customer class. (We do not consider customer abandonment at this point.)

N

.  .  .  . 1 2 3 J

1 2 3 J

Figure 1: The V model

Our proposed staffing-and-routing optimization problem involves minimizing the total number of agents,

N , subject to SL constraints. These constraints are expressed in terms of the proportion of class-i customers

who wait more than Ti units of time before starting service. We call Ti the class-i SL target. Letting W π
i

be the steady-state waiting time of class-i customers under a control rule π (assuming it is well defined), we

consider the initial optimization problem:

minimize N

subject to: P{W π
i > Ti} ≤ α, i ∈ I,

N ∈ Z+, π ∈ Π.

(1)

where α is a specified probability satisfying 0 < α < 1 and Z+ is the set of positive integers. We call α

the SL probability. The number of agents, N , and the routing control, π, are the decision variables. The
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routing control π is assumed to belong to a family of admissible controls Π, which will be described in

greater detail later in this section.

Remark 2.1 (common SL probability α) Our analysis exploits the requirement that the SL probability α

be common for all classes. That formulation allows service differentiation only through the class-dependent

SL targets Ti. We believe that this is not a serious restriction from a practical perspective. Indeed, we believe

that the overall control should be easier to manage if only one of the SL parameters – Ti or αi – is allowed

to depend on i. In our formulation, with common SL probability α, having SL targets ordered by T1 < T2

clearly means better quality of service for class 1 than class 2. Of course, that will still be true provided

we have consistent orderings for the SL targets and SL probabilities, such as T1 ≤ T2 ≤ · · · ≤ TI and

α1 ≤ α2 ≤ · · · ≤ αI , but the consequences of inconsistent ordering, such as T1 < T2 and α1 > α2, are not

so evident, and thus more difficult to manage.

It should be noted that optimization problem (1) is not well formulated in its current form, because

we have not sufficiently constrained the policies. So far, the formulation permits giving some customers

satisfactory performance at the expense of giving other customers (in the proportion 1− α) arbitrarily poor

performance. This problem is discussed extensively at the end of §2 of [4], so we will be brief here. To

illustrate the difficulties, note that we could elect not to serve class-i customers who have waited longer

than Ti. Even if we required first-come first-served (FCFS) service within each class, we could satisfy all

the constraints with relatively limited staffing by disallowing any waiting, i.e., by using a pure-loss model.

Clearly, in a loss model, all the customers that do enter the system do not experience any wait, and we may

choose the number of agents so that the blocking probability is less than 1−α. That is clearly an undesirable

outcome since many customers are blocked and do not receive service at all. Even when requiring that all

customers be served, highly undesirable polices are possible, consistent with (1), such as the alternating-

priority control discussed by Armony et. al. [4].

We will show later that these difficulties can be overcome by modifying the formulation, but the formu-

lation (1) is of interest because it is commonly used in industry. Thus we begin by showing how to construct

a feasible solution for optimization problem (1). Of course, we will want the solution to be simple and

reasonable. Our solution relies upon FQR. We begin with a version of FQR that is tailored to the V model;

we will introduce a more general version of FQR later. Let Qi(t) be the class-i queue length (not counting

customers in service) at time t and let QΣ(t) :=
∑

i∈I Qi(t) be the aggregate queue length.
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Definition 2.1 (FQR for the V model)

Given a probability vector p := (p1, . . . pI), FQR for the V model is defined as follows:

• Upon arrival, a class-i customer is admitted to service immediately if there are any idle agents, being

assigned to any available agent; otherwise the customer waits in the class-i queue, to be served in

order of arrival.

• Upon service completion, the newly available agent is assigned (and starts serving) the customer

from the head of queue i∗, where i∗ is the queue with the biggest imbalance among all the queues,

i.e., for which the value of Qi(t)− piQΣ(t) is largest. If there are no waiting customers to serve, the

agent goes idle (at the end of an agent queue, assuming we want to maintain fairness for the agents).

Ties are broken in an arbitrary but consistent manner, so that the (I + 1)-dimensional stochastic process

(Q1(t), . . . , QI(t), I(t)) is a continuous-time Markov chain (CTMC) with stationary transition probabili-

ties. An example of a consistent decision rule is to always choose a customer from the class i with the largest

index among the classes that maximize Qi(t)− piQΣ(t).

We observe that, as long as all pi’s are strictly positive, FQR is equivalent to choosing the class for which

the value of Qi(t)/pi is largest. Also, note that at each epoch when an agent becomes free, FQR tries to

drive the system towards a balanced state in which Qi(t) ≈ piQΣ(t) for all i ∈ I. Having Qi(t) actually

be asymptotically equivalent to piQΣ(t) corresponds to the desired state-space collapse. We will prove that

state-space collapse holds in great generality, including for this V model.

This state-space collapse is, in turn, a key component in establishing an asymptotically feasible solution

to (1). There are two other components. The first component is the aggregate queue behavior: Because of

the special structure of the V model, the steady-state overall queue length, QΣ, under any non-idling policy,

has a probability law that is equivalent to the steady-state queue length in a single-class M/M/N queue

with arrival rate λ, service rate µ and FCFS discipline, which we denote by QFCFS
λ,µ (N). It is well known

that QFCFS
λ,µ (N) has an exponential distribution except for an atom at the origin.

The second component is a heavy-traffic Little’s law: In the QED asymptotic regime, we show that

Little’s law nearly holds for the time-dependent random variables (instead of just the steady-state means

and time averages); i.e., Qi(t) ≈ λiWi(t), where Wi(t) is the associated virtual waiting time at time t; see

Theorem 6.1 in [19]. (More precisely, Wi(t) is defined via Wi(t) := inf{s ≥ 0 : Di(t+s) ≥ Q(0)+Ai(t)},
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where Di(t) is the number of class-i customers that have entered service by time t.) As a consequence, under

regularity conditions, Qi ≈ λiWi, where Qi is the steady state version of Qi(t) and Wi is the associated

steady-state waiting time. (Since we have Poisson arrivals, the steady-state actual and virtual waiting times

have the same distribution.) As a further consequence, QΣ ≈
∑

i∈I λiWi.

When combined, these three components suggest a very intuitive, yet feasible, solution to (1):

• Staffing: Single-Class Staffing (SCS): Choose the staffing level N̄Σ by solving a simple M/M/N

problem given by

N̄Σ = min

{
N ∈ Z+ : P

{
QFCFS

λ,µ (N) >
∑

i∈I
λiTi

}
≤ α

}
. (2)

• Control: Fixed-Queue-Ratio (FQR) Use FQR as defined in Definition 2.1 with the p vector

pi :=
λiTi∑

k∈I λkTk
, i ∈ I. (3)

We refer to this overall candidate solution as the Single-Class-Staffing (SCS) and Fixed-Queue-Ratio

(FQR) solution. We expect this SCS & FQR solution to be asymptotically feasible because we have the

following chain of approximations:

P {Wi > Ti} ≈ P {Qi > λiTi} ≈ P {piQΣ > λiTi}

≈ P

{
QΣ >

∑

k∈I
λkTk

}
≈ P

{
QFCFS

λ,µ (N) >
∑

k∈I
λkTk

}
≤ α . (4)

The state-space collapse produced by FQR allows us, then, to construct an extremely simple solution

based on the specified target proportions pi, i ∈ I. The informal analysis in (4) also suggests that we

could obtain an asymptotically equivalent routing control using waiting times instead of queue lengths.

The analogous Fixed-Waiting-Ratio (FWR) rule stipulates that a newly available agent would select the

customer from the head of the queue, from among the queues that he is eligible to serve, that has the largest

ratio Wi/Ti, where Wi here denotes the elapsed waiting time for the customer at the head of the ith queue at

that instant. The special case in which we set a common target time for all customer classes, Ti ≡ T , is the

global first-come-first-served rule. Through most of the paper we focus on FQR instead of FWR because

it usually is easier to implement; knowledge of the current queue lengths is usually more readily available
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than knowledge of the elapsed waiting times. We discuss FWR in §5.

Asymptotic feasibility (or near feasibility) of SCS & FQR is obtained through the QED asymptotic

framework. To this end, we add the superscript λ to all the previous notation. For example, N̄λ
Σ will be

the indexed version of the quantity determined through (2), and Qλ
i and W λ

i will denote, respectively, the

steady-state class-i queue length and waiting time under SCS & FQR, in the model with total arrival rate

λ. We consider a family of V models indexed by the total arrival rate λ and let λ → ∞. For simplicity,

throughout the paper, we will let λ approach ∞ through a sequence of values and, in particular, consider

sequences of systems. We assume that the ratios ai := λi/λ remain constant for all λ. Also we let the

SL target T λ
i scale with λ to put the system into the QED regime. All assumptions stated in the text are

assumed to hold thereafter throughout the paper.

Assumption 2.1 (QED scaling for SL targets)

The SL targets T λ
i , i ∈ I, are scaled so that T λ

i = T̄i/
√

λ, for some strictly positive constants T̄i, i ∈ I.

Assumption 2.1 is important for the asymptotics, but does not affect the solution as it would be used

in applications, because our proposed solution is independent of the scaling and uses only the actual target

values T λ
i and not the T̄i’s. However, the assumption is critical for putting us in the QED regime. That

can be expected because waiting times are known to be of order 1/
√

λ in the QED regime. Extensive

experience shows that these QED approximations exhibit excellent performance; see [11], [4], [27]. We will

substantiate that through a numerical example in §3.

Here is the first supporting theorem of this section:

Theorem 2.1 (asymptotic feasibility and state-space collapse for the V model)

If SCS and FQR are used (and Assumption 2.1 holds), then

lim sup
λ→∞

P{W λ
i > T λ

i } ≤ α, i ∈ I, (5)

and, for any η > 0,

lim
λ→∞

P{|Qλ
i − piQ

λ
Σ| > η

√
λ} = 0, i ∈ I . (6)
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The bound in (5) establishes the feasibility (in an asymptotic sense) of SCS & FQR, while the limit in

(6) establishes the important state-space collapse: It is the asymptotic version of the assertion that Qi(t) ≈
piQΣ(t). Theorem 2.1 is given in steady-state terms. Consistent with the QED literature, the proof is based

on a stochastic-process limit, followed by a limit-interchange argument that extends the state-space collapse

to the corresponding steady-state statement.

We conclude this section with an asymptotic-optimality result, which requires a modification of for-

mulation (1). Following [4], we propose a best-effort formulation closely related to (1), where class I is

assumed (without loss of generality) to be the best-effort class. For this purpose, let π be the routing policy;

let W π,λ :=
∑

i∈I(λi/λ)W π,λ
i be the steady-state waiting time of the entire customer population in model

λ using policy π; and let T λ
I be a new average-speed-of-answer (ASA) target, applying to all classes, but

remove the SL target for class I . The new best-effort optimization problem is:

minimize N

subject to: E[W π,λ] ≤ T λ
I ,

P{W π,λ
i > T λ

i } ≤ α, 1 ≤ i ≤ I − 1,

N ∈ Z+, π ∈ Π.

(7)

Let Nλ∗ be the optimal-staffing level for (7) in model λ. (Since the staffing level is discrete, an optimal

value Nλ∗ necessarily exists for each λ.) Just as in [4], formulation (7) prevents pathologies possible with (1).

Constraining the average waiting time of the entire customer population prevents temporarily compromising

the service level of one class for the benefit of another class, by imposing a certain consistency across all

classes. Another formulation that prevents possible pathologies is one that constraints the average waiting

time of each class rather than the tails of the waiting time distributions. While we discuss this formulation

in Remark 2.2 we prefer to consider formulation (7) which is closer to the original formulation (1) that is

widely used in industry.

The following is an adaptation of SCS and FQR to the setting of (7), which will be explained afterwards:

• Staffing: Single-Class Staffing (S̃CS) Choose the staffing level N̄λ
Σ by solving a simple M/M/N

problem given by

N̄λ
Σ := min

{
N ∈ Z+ : E

[
QFCFS

λ,µ (N)
] ≤ λT λ

I

}
. (8)
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• Control: Fixed-Queue-Ratio (F̃QR) Use FQR with:

pI−1 : P{QFCFS
λ,µ (N̄λ

Σ) > 0}e{−(λI−1/λpI−1)(N̄λ
Σµ−λ)T λ

I−1} = α, and

(9)

pi

pI−1
=

λiT
λ
i

λI−1T λ
I−1

, 1 ≤ i ≤ I − 2.

To distinguish these definitions from the previously defined SCS and FQR, we use the notation S̃CS

and F̃QR. The new single-class staffing S̃CS follows from the constraint on the global waiting time. The

new version of FQR, F̃QR, is a bit more complex due to the best-effort structure of (7) which leaves an

extra degree of freedom to be determined. That extra degree of freedom is applied to the last best-effort

class I . Note that there is no individual SL constraint for class I .

Using our previous reasoning, we expect that under F̃QR, W λ
I−1 ≈ Qλ

I−1/λI−1 ≈ pI−1Q
FCFS
λ,µ (N)/λI−1,

where N = N̄λ
Σ. A similar Little’s law reasoning applies also for the M/M/N system, leading to QFCFS

λ,µ (N) ≈
λWFCFS

λ,µ (N), where WFCFS
λ,µ (N) is the steady-state waiting time in an M/M/N queue with arrival rate

λ, service rate µ and N servers. In particular, we expect that

W λ
I−1 ≈

λ

λI−1
pI−1W

FCFS
λ,µ (N).

Hence, one should choose pI−1 so that

P

{
λ

λI−1
pI−1W

FCFS
λ,µ (N) > T λ

I−1

}
= α,

which is equivalent to the first part of (9), using the known form for the steady-state waiting-time distribution

in the M/M/N model (exponential plus atom at the origin). Once pI−1 is determined, fixing the ratios

pi/pI−1 as proposed in the second line of (9), we expect to have

P{W λ
i > Ti} ≈ P{Qλ

i > λiT
λ
i } ≈ P{(pi/pI−1)Qλ

I−1 > λiT
λ
i } = P{Qλ

I−1 > λI−1T
λ
I−1}

≈ P{W λ
I−1 > T λ

I−1} = α.

Before we state our asymptotic-optimality result, we need to define the family Π of admissible controls

(routing policies). To this end, we make the following definitions: We say that class FCFS holds if cus-
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tomers are served FCFS (first-come first-served) within each class. We say that all customers are served if

it is not allowed to block or overflow customers; i.e., we require that

Qi(t) = Ai(t)−Di(t)− Zi(t) for all t ≥ 0 ,

where Di(t) and Zi(t) are, respectively, the number of class-i departures from the system up to time t and

the number of class-i customers in service at time t.

Let Qπ
i (t) be the queue length and let W π

i (t) be the virtual waiting time of class i at time t under the

control π, and denote by (Qπ(t),W π(t)) = ((Qπ
i (t),W π

i (t)) : i ≤ i ≤ I) the corresponding vector-valued

process including all classes. We say that the control π admits a steady state if there exists a random

vector (Qπ(∞),W π(∞)) such that

(Qπ(t),W π(t)) ⇒ (Qπ(∞),W π(∞)) in R2I as t →∞ ,

where ⇒ denotes convergence in distribution. Then the distribution of (Qπ(∞), W π(∞)) is the steady-

state distribution. As a consequence, there will be an associated steady-state distribution at arrival epochs,

constructed using the classic Palm transformation, see Chapters 1 and 2 of [8], which agrees with the steady-

state distribution at arbitrary times (above) by the PASTA (Poisson Arrivals See Time Averages) property,

because we have exogenous Poisson arrival processes.

We say that a routing policy is non-anticipative if a decision at any time is based on the history up to

that time and not upon future events. We say that a routing policy is non-preemptive if customers stay in

service with the agent first assigned to them until their service is complete once an agent has been assigned.

The detailed definition of Π is, then, as follows:

Definition 2.2 (admissible routing policies)

For a given staffing level N , we say that a routing policy π is admissible if: (1) it is non-anticipative, (2)

it is non-preemptive, (3) it satisfies class FCFS, (4) all customers are served, and (5) the control π admits

a steady state. Let Π be the set of all admissible routing policies.

Given two positive real-valued functions f and g, we say that f(x) is o(g(x)) (as x →∞) if f(x)/g(x) →
0 as x →∞, and f(x) is O(g(x)) if lim supx→∞ f(x)/g(x) < ∞. With the above definitions, we can state

13



our asymptotic optimality result. In passing, we note that our notion of asymptotic optimality is specified

by the last line of (10) in Theorem 2.2.

Theorem 2.2 (asymptotic optimality for the V model)

If S̃CS and F̃QR are used, then

lim sup
λ→∞

P{W π,λ
i > T λ

i } ≤ α, 1 ≤ i ≤ I − 1,

lim sup
λ→∞

E[W π,λ]
T λ

I

≤ 1,

[N̄λ
Σ −Nλ

∗ ]
+

= o(
√

λ) as λ →∞ . (10)

Remark 2.2 (an average-waiting-time formulation) An alternative to formulation (7), which prevents

the pathologies mentioned earlier in this section, is an average-waiting-time formulation in which all the SL

constraints are replaced by average-waiting-time constraints. Specifically, we then minimize N subject to

E[W π,λ
i ] ≤ T λ

i for i ∈ I. The arguments leading to Theorem 2.2 are easily adapted to show that it is then

asymptotically optimal to staff with Nλ
Σ agents, where

Nλ
Σ := min

{
N ∈ Z+ : E

[
QFCFS

λ,µ (N)
] ≤

∑

i∈I
λiT

λ
i

}
,

and, for control, to use FQR with

pi =
λiT

λ
i∑

k∈I λkT
λ
k

, i ∈ I.

Theorems 2.1 and 2.2 will be proved as special cases of much more general results later. The intuition

developed for the V model allows us next to take one step up in complexity and analyze a more general SBR

model.

3 General SBR systems

In §2 we restricted ourselves both in terms of the design (the V model) and the underlying parameters (equal

service rate). In this section we begin the description and construction of solutions for more general SBR
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models. These models require a more detailed discussion of the design decision, the FQR control and the

dependency between them. As before, FQR will be defined as in Definition 3.3, but we will also introduce

another notion called Generalized FQR (GFQR) based on Atar [6].

Here is the outline for this section: after stating the general staffing problem, we formulate a fundamental

mathematical program – see (16) – that does two important things: (i) it characterizes the allowed designs

and (ii) it gives a first-order estimate of the optimal staffing levels. Based on the solution of this optimization

problem, we characterize a set of structural and parametric conditions that guarantee that FQR will achieve

some form of state-space collapse. This section is dedicated mainly to the analysis of FQR in general

settings, with emphasis on its dependency on the design and staffing.

We begin by redefining the model: we consider a system with a set I = {1, . . . , I} of customer classes

and a set J = {1, . . . , I} of agent types. The number of agents of type j (which will be a decision variable)

is denoted by Nj and we let N be the corresponding vector N = (N1, . . . , NJ). As before, class-i customers

arrive according to a Poisson process with rate λi and λ =
∑

i∈I λi is the aggregate arrival rate. Let µi,j

be the service rate at which a type-j agent can serve a class-i customer. Alternatively, the mean handling

time of a class-i customer by a type-j agent is 1/µi,j . We set µi,j = 0 whenever type-j agents do not have

the required skill to serve class-i customers. The possible-routing graph for this SBR system has a natural

representation as a bipartite graph with vertices V = J ⋃ I, i.e., V is the union of the set of customer

classes and the set of agent pools. Then the only edges we consider connect customer classes to agent pools:

E = {(i, j) ∈ I × J : µi,j > 0}. An edge (i, j) is present in the routing graph if class-i customers can be

served by type-j agents. In addition to the above agents of type-j will incur a cost of cj per unit of time and

we will allow the system to impose additional constraints on the staffing vector to reflect union contracts,

hiring and training constraints or other managerial considerations. As before, for the asymptotic analysis we

will construct a sequence of SBR systems indexed by the aggregate arrival rate λ. The service rates µi,j and

the routing graph are held fixed. To make this structure explicit we define the general SBR model below:

Definition 3.1 (the general SBR model)

The general SBR model is defined through the following:

• Arrivals: Class-i customers arrive according to a Poisson process with rate λi. Let λ :=
∑

i∈I λi

and ai := λi/λ.

15



• Customer Abandonment: Class-i customers have an exponential patience with rate θi, so that setting

θi ≡ 0 reduces the model to the non-abandonment model.

• Service Times: The service time of a class-i customer by a type j agent has an exponential distribution

with rate µi,j . Let µi,j = 0 if type-j agents are not allowed to serve class-i customers.

• Routing Graph: The routing graph is a sub-graph of E := {(i, j) ∈ I × J : µi,j > 0}.

• Agents Costs: Type-j agents incur a cost of cj per unit of time.

• System Constraints: We allow constraints of the form N ∈ Aλ := Aλ
b , where Aλ

b = {N ∈ ZJ
+ :

A ·N ≤ bλ}, for some matrix A ∈ Rd×J , d ∈ Z+ and bλ = λb̂ for some b̂ ∈ Rd. Let Ãλ := Ãλ
b be the

set obtained fromAλ by relaxing the integrality assumptions. That is, Ãλ = {N ∈ RJ
+ : A ·N ≤ bλ}.

3.1 The Optimization Problem and the Fundamental Mathematical Program

Our next step is to generalize the SBR optimization problems in (1) and (7) to this more general setting.

While stability is almost trivial in the setting of §2, that is no longer the case in this SBR system. To avoid

issues of stability, we now look at a slightly different formulation involving long-run averages instead of

steady-state quantities. Towards that end, let W̄ λ,T be the average waiting time of all customers that arrived

up to time T ; let F λ,T
i (·) be the empirical distribution of the waiting time of class-i customers up to time T ;

and let F̄ λ,T
i (·) be its complement; i.e.,

W̄ λ,T :=

∑I
i=1

∑Aλ
i (T )

k=1 wλ
i,k

Aλ(T )
and F̄ λ,T

i (y) :=

∑Aλ
i (T )

k=1 1{wλ
i,k > y}

Aλ
i (T )

, (11)

where Aλ(T ) :=
∑

i∈I Aλ
i (T ), wλ

i,k is the realized waiting time of the kth class-i customer to arrive to the

system after time 0 and 1B is the indicator of the event B, which is equal to 1 if B occurs and 0 otherwise.

The initial SBR optimization problem is given by:

minimize
∑

j∈J cjNj

subject to: lim sup
T→∞

F̄ λ,T
i (T λ

i ) ≤ α, 1 ≤ i ≤ I − 1,

N ∈ Aλ, π ∈ Π.

(12)

The SBR analogue of the best-effort optimization problem (7) of §2 is obtained by replacing the SL
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constraint of class I with a global waiting time constraint to get the SBR best-effort optimization problem:

minimize
∑

j∈J cjNj

subject to: lim sup
T→∞

W̄ λ,T ≤ T λ
I ,

lim sup
T→∞

F̄ λ,T
i (Ti) ≤ α, 1 ≤ i ≤ I − 1,

N ∈ Aλ, π ∈ Π.

(13)

We begin to consider the limiting behavior as λ → ∞. With that in mind, we observe that there is an

evident connection between the problem (12) above and its natural deterministic counterpart:

Minimize
∑

j∈J cjNj

Subject to:
∑

j∈J µi,jNjyi,j ≥ λi, i ∈ I,
∑

i∈I yi,j ≤ 1, j ∈ J ,

N ∈ Ãλ, yi,j ≥ 0, i ∈ I, j ∈ J ,

(14)

where the service-level constraints have been replaced by simple flow constraints. By the definition of Ãλ

and recalling that λi = aiλ, (14) then is equivalent to the mathematical program:

Minimize
∑

j∈J cjνj

Subject to:
∑

j∈J µi,jνjxi,j ≥ ai, i ∈ I,
∑

i∈I xi,j ≤ 1, j ∈ J ,

Aν ≤ b, νj ≥ 0, xi,j ≥ 0, i ∈ I, j ∈ J .

(15)

We claim that, if there exists an optimal solution (ν̄, x̄) to (15), then there also exists an optimal so-

lution (ν̄, x′) for which the constraints
∑

j∈J µi,j ν̄jx
′
i,j ≥ ai hold as equalities. Indeed, if one of these

inequalities is strict, then we can always decrease the value of xi,j for some i ∈ I and j ∈ J to replace this

inequality with equality. Hence, we may consider, without loss of generality, the following fundamental

mathematical program:
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Minimize
∑

j∈J cjνj

Subject to:
∑

j∈J µi,jνjxi,j = ai, i ∈ I,
∑

i∈I xi,j ≤ 1, j ∈ J ,

Aν ≤ b, νj ≥ 0, xi,j ≥ 0, i ∈ I, j ∈ J .

(16)

Clearly, a feasible solution (N, y) for (14) corresponds to a solution (ν̄, x̄) for (16) through ȳ = x̄ and

N = ν̄λ. If the problem (16) has multiple solutions, then we will select one, and make further assumptions

about that solution. The first additional assumption is a critical-loading assumption, to be in force hereafter.

This assumption is needed to place the system in the QED heavy-traffic limiting regime.

Assumption 3.1 (critical loading) Let (ν̄, x̄) be the selected optimal solution to (16). For any x′ such that

(ν̄, x′) is a feasible solution to (16), we require that
∑

i∈I x′i,j = 1 for all j ∈ J .

We now offer an intuitive explanation of this assumption: For a given feasible solution (ν̄, x′) to (16),

we interpret
∑

i∈I x′i,j as a first-order estimate of the proportion of time that pool j agents are busy giving

service. Accordingly, 1 − ∑
i∈I x′i,j is the first-order approximation for the proportion of time they are

idle. Intuitively, then, Assumption 3.1 ensures that, for the fixed staffing vector ν̄, there exists no allocation

of the agents to customers so that one of the agent pools experiences significant idleness. In other words,

Assumption 3.1 requires that all of the agents are busy almost all the time. Finally, we note that whenever

the service rates are pool-dependent or class-dependent, i.e., when µi,j = µi for all j ∈ J or µi,j = j for

all i ∈ I, the constraints
∑

j∈J µi,j ν̄jx
′
i,j = ai, i ∈ I will automatically guarantee that

∑
i∈I x′i,j = 1 for

all j ∈ J .

Remark 3.1 (alternative fomulations) If we replace (12) with a best-effort formulation as in (7), then

we still obtain the same deterministic counterpart (14) and in turn to the same mathematical program (16).

Hence, all our results in this section apply equally well to both formulations.

Remark 3.2 (replacing (16) with an LP) In the introduction we mentioned the need to solve linear pro-

grams (LP’s), but both optimization problems (14) and (16) are clearly nonlinear in their stated form. How-

ever, with the restriction to optimal solutions that satisfy (3.1), they can be converted into LP’s. First, the

set of optimal solutions to (16) that satisfy Assumption 3.1 is obtained simply by replacing the inequality

constraint
∑

i∈I xi,j ≤ 1 with an equality constraint. Henceforth in this remark assume that has been done.
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The LP is obtained by introducing the variables Ni,j = Njyi,j , i ∈ I, j ∈ J in (14) and the variables

νi,j = νjxi,j , i ∈ I, j ∈ J in (16). For example, assuming the dimensions of the matrix A are d × J , we

define the LP
Minimize

∑
j∈J cj

(∑
i∈I νi,j

)

Subject to:
∑

j∈J µi,jνi,j = ai, i ∈ I,
∑J

j=1 Ak,j

(∑
i∈I νi,j

) ≤ bj , ∀k = 1, . . . , d,

νi,j ≥ 0, i ∈ I, j ∈ J .

(17)

This LP is equivalent, in terms of the set of optimal solutions, to (16). To see this, note that from an

optimal solution νj , j ∈ J and xi,j , i ∈ I, j ∈ J , for (16), we can construct a solution for (17) with the

same objective function value by setting νi,j = νjxi,j , i ∈ I, j ∈ J . Also, from any feasible solution,

νi,j , i ∈ I, j ∈ J , for (17), we can construct a feasible solution, νj , j ∈ J and xi,j , i ∈ I, j ∈ J for

(16) by setting νj =
∑

i∈I νi,j and xi,j = νi,j/νj whenever
∑

i∈I νi,j > 0 and setting νj and xi,j to 0

otherwise. Observe that in the last step we used the fact that we are only interested in optimal solutions

with
∑

j∈J xi,j = 1. As a consequence, there is an equivalence between the optimal solutions for the

optimization problems (16) that satisfy Assumption 3.1 and the set of optimal solution for (17). A similar

construction and equivalence argument works for (14) and its associated LP. Hence, there is no need to solve

a nonlinear program to obtain these allocation values. Greater computational efficiency can be obtained by

solving the LP and then converting its solution.

Henceforth we only refer to optimal solutions of (16); the way they were obtained is immaterial for

our discussion. When the choice of solution (ν̄, x̄) is clear from the context we will occasionally use the

notation J when actually referring to the subset of J with elements j such that ν̄j > 0.

The solution to the mathematical program (16) can be regarded as a first-order deterministic fluid ap-

proximation for the SBR system, as in [33]. From that point of view, given a selected solution (ν̄, x̄), we

would then use ν̄ to provide an initial estimate of the staffing and x̄ to provide an initial estimate of the

appropriate routing. For the staffing, that is precisely what we do, but the story for the routing is very

different.

We start by explaining what happens with the staffing: With Nλ∗ being the optimal staffing vector solu-

tion for (12) when the arrival rate is λ, we expect that |c ·Nλ∗ − c · ν̄λ| = o(λ). This intuitive result will be

rigorously established in Theorem 3.3. Actually, we will prove that |c ·Nλ∗ − c · νλ| = O(
√

λ). Toward that

end, we define the following square-root-safety-staffing rule:
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Definition 3.2 (square-root-safety-staffing rule: SRSS)

Given an optimal solution (ν̄, x̄) to (16), we say that the system is staffed according to the square-

root-safety-staffing rule SRSS(ν̄), if for j ∈ J with ν̄j > 0, we set Nλ
j = dν̄jλ + γj

√
λe for some

γj ∈ (−∞,∞), and Nλ
j = 0 otherwise. We define Nλ

Σ =
∑

j∈J Nλ
j .

We now indicate how we apply x̄ from the chosen optimal solution (ν̄, x̄) for the fundamental mathe-

matical program (16). Since we intend to use FQR for the routing, we do not use x̄ for the routing, but x̄

plays a critical role in the design. Specifically, we omit all edges with x̄i,j = 0 from the network routing

graph; i.e., we do not allow any class i customers to be routed to pool j if x̄i,j = 0. The routing graph

design includes all edges with x̄i,j > 0; we stipulate that the routing graph is {(i, j) ∈ I × J : x̄i,j > 0}.
If, a priori, pool j is unable to serve class i or if we do not want pool j to serve class i, then we enforce that

by imposing the constraint xi,j ≤ 0 in the mathematical program. When fixing a solution (ν̄, x̄) for (16) we

define I(j)(ν̄, x̄) = {i ∈ I : x̄i,j > 0}. We will often just use I(j) when the solution (ν̄, x̄) that is being

used is clear from the context.

The system design, which is determined by x̄, is in turn closely linked to the dynamic control. The

characterization of that dependence is the main subject of this section. To facilitate the discussion, we should

have a clear notion of the network graphs under consideration. Our network graphs are simple undirected

bipartite graphs, i.e., with at most one edge connecting any two nodes, and with edges only between a

customer class and an agent pool. Beyond this basic feature, the first important structural assumption we

impose is the following:

Assumption 3.2 (connected routing graph) The selected optimal solution (ν̄, x̄) for (16) produces a rout-

ing graph determined by the edges E(ν̄, x̄) := {(i, j) ∈ I × J : x̄i,j > 0} that is a connected subgraph of

G(V, E).

This connected-routing-graph assumption is assumed to hold throughout the rest of the paper. By saying

that the graph is connected, we follow the common graph theory terminology. That is, a graph is connected

if there exists a path between every two nodes in the graph. This connected-graph assumption is crucial

for the ability to instantaneously balance the system; see Section 2.7 of Atar [6] for elaboration. We will

actually need a finer characterization of the network graph beyond its connectedness. More specifically,

connected graphs can be cyclic or acyclic (following common terminology - a graph is acyclic if there is a
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unique path between each pair of nodes). This distinction will be important for our results, because FQR

will work well with cyclic networks only when certain parametric conditions hold; see Theorem 3.1. For a

more elaborate discussion we refer the reader to Remark 3.1 in [19].

3.2 Definition of FQR

In order to define FQR and state the necessary results, let Zλ
i,j(t) be the number of type-j servers busy giving

service to class-i customers, so that Xλ
i (t) := Qλ

i (t)+
∑

j∈J Zλ
i,j is the overall number of class-i customers

present in the system at time t, and Iλ
j (t) = Nλ

j −
∑I

i=1 Zλ
i,j(t) be the number of idle agents in pool j at

time t in the λth system. Accordingly, Iλ
Σ(t) :=

∑J
j=1 Iλ

j (t) is the total number of idle agents in the system.

Let Xλ
Σ(t) be the overall number of customers in the system (in service and in queue), i.e.,

Xλ
Σ(t) :=

I∑

i=1

Xλ
i (t) =

I∑

i=1


Qλ

i (t) +
J∑

j=1

Zλ
i,j(t)


 .

In work-conserving models, where idle agents and waiting customers do not co-exist, the identities

Qλ
Σ(t) = [Xλ

Σ(t) −Nλ
Σ]+ and Iλ

Σ(t) = [Xλ
Σ(t) −Nλ

Σ]+, hold. The V-model from §2 is a classical example

of such a system. These identities need not hold in more complex systems, but we expect them to hold

approximately for efficient systems; i.e., we expect [Xλ
Σ(t) − Nλ

Σ]+ and [Xλ
Σ(t) − Nλ

Σ]− to be reasonable

proxies for the overall queue length, Qλ
Σ(t), and the overall number of idle agents Iλ

Σ(t). Our general

version of FQR exploits the proxy for Iλ
Σ(t) instead of its actual value. In doing so, we note that the intuitive

reasoning and simplicity of FQR are preserved. In fact, the resulting state-space collapse can be equivalently

given either in terms of (Qλ
Σ(t), Iλ

Σ(t)) or [Xλ
Σ(t) − Nλ

Σ]+ and [Xλ
Σ(t) − Nλ

Σ]−, since FQR will guarantee

that [Xλ
Σ(t)−Nλ

Σ]+ ≈ Qλ
Σ(t) and [Xλ

Σ(t)−Nλ
Σ]− ≈ Iλ

Σ(t).

Below we use argmax and let it have the standard definition; i.e., given a function f : A 7→ R, with A

a finite set, let argmax f := {y ∈ A : f(y) = maxx∈A f(x)}.

Definition 3.3 (FQR for the SBR model)

Given two probability vectors v := {vj : j ∈ J } and p := {pi : i ∈ I}, FQR for the SBR model is

defined as follows:

• Upon arrival of a class-i customer at time t, the customer will be routed to an available agent in
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pool j∗, where

j∗ ≡ j∗(t) ∈ argmax
j∈J(i),Iλ

j (t)>0

{Iλ
j (t)− vj [Xλ

Σ(t)−Nλ
Σ]−};

i.e., the customer will be routed to an agent pool with the greatest idleness imbalance. If there are no

such agents, the customer waits in queue i, to be served in order of arrival.

• Upon service completion by a type-j agent at time t, the agent will admit to service the customer

from the head of queue i∗ where

i∗ ≡ i∗(t) ∈ argmax
i∈I(j),Qλ

i (t)>0

{
Qλ

i (t)− pi[Xλ
Σ(t)−Nλ

Σ]+
}

;

i.e., the agent will admit a customer from the queue with the greatest queue imbalance. If there are no

such customers, the agent will remain idle.

Ties are broken in an arbitrary but consistent manner, so that the vector-valued stochastic process

(Qλ, Zλ) := (Qλ
i (t), Zλ

i,j(t); i ∈ I, j ∈ J )) (18)

is a CTMC with stationary transition probabilities.

To explicitly express the dependence on the vectors p and v we will use the notation FQR(p, v). We

point out that if pi > 0 for all i ∈ I, FQR is equivalently given by choosing upon service completion to

serve the customer from the head of queue i∗ where

i∗ ≡ i∗(t) ∈ argmax
i∈I(j),Qλ

i (t)>0

{
Qλ

i (t)
pi

}
, (19)

which makes the use of [Xλ
Σ(t) − Nλ

Σ]+ unnecessary. Also, note that our definition of consistency here is

somewhat different than it was in the case of the V model. The reason is that in a system with multiple

customer classes, multiple agent pools and general service rates, it is not guaranteed that there exists a

control under which the process (Qλ, Iλ) will be a Markov process, since we will have to take account of

the number of agents busy with each customer class to determine the transition rates. The process (Qλ, Iλ)

might still be a Markov process in an SBR system with a common service rate, like the one we analyze in

this section, but we choose to make the more general definition for future use.
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3.3 State-Space Collapse Under FQR

We next define the scaled and normalized processes of interest:

Definition 3.4 (scaled and normalized processes using SRSS(ν̄)) Fix an optimal solution (ν̄, x̄) for (16)

for which the edges in E(ν̄, x̄) induce a connected routing graph. Fix a staffing vector Nλ determined

through SRSS(ν̄). Then, we define the following scaled processes:

X̂λ
Σ(t) :=

Xλ
Σ(t)−Nλ

Σ√
λ

; Îλ
Σ(t) :=

Iλ
Σ(t)√

λ
; X̂λ

i (t) :=
Xλ

i (t)−∑
j∈J x̄i,jN

λ
j√

λ
, i ∈ I;

Q̂λ
i (t) :=

Qλ
i (t)√
λ

, i ∈ I; Îλ
j (t) :=

Iλ
j (t)√

λ
, j ∈ J ; Ẑλ

i,j(t) :=
Zλ

i,j(t)− x̄i,jN
λ
j√

λ
, (i, j) ∈ I × J .

Towards the presentation of the state-space collapse result, we let Dd := Dd[0,∞) be the space of all

RCLL (Right Continuous with Left Limits) functions with values in d-dimensional Euclidean space Rd,

equipped with the Skorohod J1 metric; e.g., see [32]. Below, we will denote by 0 the function in Dd that

is identically 0. We will also consider a weaker notion of convergence, using the space Dd− := Dd(0,∞),

where the domain is treated as open at the left instead of closed. We again let convergence (to continuous

limits) be characterized by uniform convergence over bounded intervals. The restriction to the domain

(0,∞) means that we exclude uniform convergence for intervals of the form [0, b]. We have Y λ(t) ⇒ 0 in

Dd(0,∞) if and only if, for each 0 < s < T < ∞, ‖Y λ‖∗s,T ⇒ 0. Our state-space-collapse result under

FQR is:

Theorem 3.1 (state-space collapse under FQR for general SBR models)

Fix an optimal solution (ν̄, x̄) for (16) for which the edges in E(ν̄, x̄) induce a connected routing graph.

Fix the two probability vectors p and v. Let FQR and SRSS(ν̄) be used, following Definitions 3.3 and 3.2.

Suppose that at least one of the following conditions holds with respect to (ν̄, x̄):

• C- 1 Only one pool has cross-trained agents: There exists at most one j ∈ J with skill set

I(j)(ν̄, x̄) containing more than one element; denote this pool by j∗. Also, we require that v = ej∗ .

• C- 2 The service rates depend only on the agent type: For all (i, j) ∈ E(ν̄, x̄), µi,j = µj .

• C- 3 The service rates depend only on the customer class: For all (i, j) ∈ E(ν̄, x̄), µi,j = µi.
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If, in addition, (X̂λ(0), Ẑλ(0)) ⇒ (X̂(0), Ẑλ(0)) in RI+I·J , then we have state-space collapse:

Q̂λ
i (t)− piQ̂

λ
Σ(t) ⇒ 0 in D− as λ →∞, i ∈ I, (20)

and

Îλ
j (t)− vj Î

λ
Σ(t) ⇒ 0 in D− as λ →∞, j ∈ J . (21)

The convergence is replaced with convergence in D if we assume, in addition, that

Q̂λ
i (0)− piQ̂

λ
Σ(0) ⇒ 0, i ∈ I, and Îλ

j (0)− vj Î
λ
Σ(0) ⇒ 0, j ∈ J .

Finally, if condition C-1 holds, then,

1√
λ

Ẑλ
i,j(t) ⇒ 0 in D as λ →∞, i ∈ I, j ∈ J . (22)

If both conditions C-2 and C-3 fail to hold, state-space collapse is guaranteed under FQR only for acyclic

networks that satisfy condition C-1. Primary examples of such networks are given in Figure 2. Atar con-

structs a control, which we denote by GFQR, that achieves the same state-space collapse when generalizing

condition C-1 to the weaker requirement of a tree structure. The price of the applicability of GFQR to

arbitrary tree structures is the complexity of the control when compared to FQR. The definition of GFQR

depends heavily on the precise tree structure through the solution of a specific linear program. We refer the

reader to §4.2 of [19] for a precise definition of the control and only state here the corresponding state-space

collapse result for completeness.

Theorem 3.2 (state-space collapse under GFQR)

Fix two probability vectors p and v and an optimal solution (ν̄, x̄) for (16). Suppose that GFQR and

SRSS(ν) are used, and that the following holds with respect to (ν̄, x̄):

• C- 4 Under (ν̄, x̄), the graph induced by the edges E(ν̄, x̄) is a tree.

If, in addition (X̂λ(0), Ẑλ(0)) ⇒ (X̂(0), Ẑ(0)) in RI+I·J , then the conclusions of Theorem 3.1 hold and

1√
λ

Ẑλ
i,j(t) ⇒ 0 in D as λ →∞, i ∈ I, j ∈ J . (23)
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V-Model N-Model M-Model -Model

Figure 2: The V, N, M and
∧

Models

Remark 3.3 (decomposition of excluded models) At first, it might seem that FQR and GFQR combined

should cover arbitrary network structures, but that is not the case. With arbitrary service rates, when neither

of the conditions 2 or 3 holds, some rather basic models - like the X model depicted in the left hand side of

Figure 3) - are ruled out. This is not a merely a limitation of our proof technique, but a true limitation of these

controls. Simulations (initially conducted by Ohad Perry) show that there exist parameter combinations such

that the X model with FQR will lead the system to explode.

11x22x

12x 21x

22x

11x 22x

111 x 122 x 211x 222 x1 2

11x

Figure 3: The X model

While the X model itself does not satisfy the conditions of FQR, we can decompose the original X

model to construct an alternative model with two separate components, such that the overall model still has

the same first order cost c1ν̄1 + c2ν̄2. Even though the original model does not satisfy Assumption 3.2, each

of the components of the new model do satisfy the conditions of FQR. To be concrete, assume that (x̄, ν̄)
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is the optimal solution of (16) that induces the X model, and consider the following alternative: assume in

addition to agent type 1 and 2 we add to the model agents types 11 and 12, with agent type 1i, i = 1, 2 being

able to serve only type i customers. Costs and rates remain the same, so that c1i = c1, i = 1, 2. Similarly,

we define agents types 2i, i = 1, 2. We re-solve (16) with the additional agents pools. Then, an optimal

solution to the new problem (although not the only one) would be given (in terms of the original optimal

solution) by ν̄ji = ν̄j x̄i,j , i = 1, 2, j = 1, 2, suggesting the pair of inverted V models on the right hand

side of Figure 3.

Thus we have obtained two models, the initial X model and an alternative pair of inverted V systems,

with essentially different structures but the same associated deterministic costs. Moreover, FQR is applicable

in each component of the new model. However, this, by no means, makes FQR more general, because

we still can not apply FQR directly to the X model. But it does have important implications: If FQR is

important, then we can find a way to apply it by changing the system design. Care is needed, however,

because changing the design in order to be able to apply FQR may come at the price of diminished system

flexibility, as is indeed the case in this simple X-model example.

What are the practical implications then? Clearly, when neither of the conditions 2 or 3 holds, FQR

should not be used in the X model. We thus may elect to change the design. However, while we can

evaluate the performance in the decomposed system with FQR, in the absence of a reasonable theory for the

X model in the QED asymptotic regime, we do not have a control for the X model to use as a benchmark

for comparison to the decomposed system. In particular we can not evaluate the price of the diminished

flexibility. Flexibility, seems especially important when arrival-rate estimates may be inaccurate. However,

in the presence of reliable arrival-rate estimates, it seems reasonable to use the decomposed system with the

simple FQR control. We have this shown that it may be possible to expand the domain of applicability of

FQR.

Recall that we use optimization problem (12) for asymptotic feasibility and optimization problem (13)

for asymptotic optimality. Focusing on formulation (12), we have the following result, where we fix p∗ to

be as defined by p∗i = λiT
λ
i /

∑
i∈I λiT

λ
i . Also, γj , j ∈ J are the coefficients of the square-root terms in

the definition of SRSS; see Definition 3.2.

Theorem 3.3 (feasibility of a SRSS(ν̄)) Consider a sequence of SBR systems staffed with SRSS(ν̄), and

using FQR(p∗, v) with any probability vector v. Then, there exists β > 0 such that, if
∑

j∈J γj = β, all
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constraints in (12) hold asymptotically, i.e, for each ε > 0, there exists T ∗(ε) such that, for all T ≥ T ∗(ε),

lim sup
λ→∞

P
{

F̄ λ,T
i (T λ

i ) ≥ α + ε
}
≤ ε, i ∈ I, (24)

In particular, determining Nλ through SRSS(ν̄) with
∑

j∈J γj = β, we have that

[c ·Nλ − c ·Nλ
∗ ]+ = O(

√
λ),

where Nλ∗ is an optimal staffing vector for (12).

Remark 3.4 (steady-state quantities and alternatives) Our notion of asymptotic feasibility is embedded

in Theorem 3.3 above. In particular, the limits in (24) imply that we regard a combination of design,

staffing and control as asymptotically feasible if for any ε > 0 there exists a time t∗(ε) after which we are

asymptotically ε away from feasibility. Although mathematically different, this is practically the same as

the steady-state asymptotic feasibility notion used in §2. To see this, note that for fixed λ requiring that

P{W λ
i (∞) > Ti} be less than α is like requiring the existence of a function T ∗(ε) as above. Still, although

the notion above and the one used in §2 should be regarded as the same for all practical purposes, they are

mathematically different and a limit-interchange argument is required to connect the two. Specifically, in the

presence of an interchange argument the two notions will be equivalent. The limit-interchange argument for

the V-Model analyzed in the previous section is quite simple, but that is not the case for more general SBR

models, so that the ability to interchange the limits remains an open problem. For an example of techniques

that may apply, see Gamarnik and Zeevi [16], Budhiraja and Lee [13], and Gurvich and Zeevi [21]. Here

we settle for the weaker notion of feasibility expressed in Theorem 3.3 and in Theorem 4.2 below.

Theorem 3.3 implies that one can search for the feasible β through simulation while keeping the vector

p fixed and pre-determined through the SL targets independently of the resulting β or the network structure.

This observation can simplify significantly the search of practical solutions to the general SBR problem. We

take that approach in the subsequent paper [15] . There are some cases, however, when more can be said

and we can solve, in an asymptotically optimal way, the best-effort formulation introduced in §2, but now

for more general SBR models with multiple agents types. Such is the case of pool-dependent service rates

of which a specific case is the case of equal service rates. We address these two cases in §4 below. First,

however, we end this section with an example.
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Example 3.1 (optimization through simulation in a two-class model) We now present an example that

emphasizes three important points: First, even though the initial network configuration may not satisfy

the conditions for FQR to be effective, there may exist an optimal solution to the fundamental mathematical

program that has the desired properties. Second, state-space collapse is clearly evident in systems of medium

size. Finally, we will use this example to illustrate Theorem 3.3.

Toward these ends, consider a system with two customer classes, I = {1, 2}, and three possible agents

types, J = {1, 2, 3}. Let the arrival rates be λ1 = λ2 = 200. Assume there is no abandonment. Agents

of type 1 can serve both class-1 and class-2 customers. They serve class-1 customers at rate µ11 = 1 and

class-2 customers at rate µ21 = 3. Agents of type 2 can only serve class 2, and do so with rate µ22 = 3.

Agents of type 3 are cross-trained agents and can give service to both classes, and they do so with rates

µ13 = 2 and µ23 = 3.

Suppose that system managers have imposed an extra constraint requiring that at least half of class-1

customers are served by the type-1 agents. This is imposed by adding the constraint µ11N1 ≥ λ1/2. This

constraint comes at a price, because these agents are more expensive. In particular, it is assumed that c1 = 22

dollars/hour, while c2 = c3 = 8 dollars/hour.

Before solving the mathematical program in (16), it looks like this system is not covered by our the-

orems, as certain staffing decisions may lead to a cyclic system with service rates that are both class-

dependent and pool-dependent. Solving the mathematical program (16) reveals, however, a different story.

Since c2 = c3, the mathematical program (16) has multiple optimal solutions. For example, (ν̄1, ν̄2, ν̄3) =

(1/4, 3/40, 13/60) is one optimal solution for (16), which does not satisfy the condition for state-space col-

lapse under FQR as given in Theorem 3.1. Fortunately, however, there exists an optimal solution that does

satisfy these conditions. Specifically, a better optimal solution for us is (ν̄1, ν̄2, ν̄3) = (1/4, 0, 7/24) with

corresponding x̄ values given by x̄1,1 = 1, x̄1,3 = 3/7, x̄2,3 = 4/7, and x̄i,j = 0 otherwise. This solution

translates to an N model (see Figure 2). We staff this N model using SRSS(ν̄) with ν̄ = (1/4, 0, 7/24)

and γ = (0, 0, 0). We see, then, that by a judicious choice of the solution to the mathematical program, we

obtain a routing graph that satisfies our theorem, and in particular one that allows us to use the simple FQR

control in order to achieve state-space collapse.

In Example 3.1 in [19] we simulate a single realization of this same N model under FQR for given ratio

vectors p and v. The simulation illustrates how strongly state-space collapse holds even for the medium-size

system in consideration; see Figure 3 in [19].
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We now illustrate Theorem 3.3 through the same N -model. We use the SL targets T1 = T2 = 0.2

(corresponding to T̄1 = T̄2 = 4 in Assumption 2.1) and the SL probability 0.2. The corresponding SL

constraints are then lim supT→∞ F T
i (0.2) ≤ 0.2 for i = 1, 2. We use FQR with the ratio vector p =

(0.5, 0, 5) as recommended in Theorem 3.3. Also, we fix v = (0.5, 0, 5) which implies that the idleness will

be divided evenly between the two pools. To construct the SRSS staffing, we let ν̄ = (1/4, 0, 7/24) and

N1 = 0.25λ (corresponding to γ1 = 0), and find γ2 such that with N2 = 7/24λ + γ2

√
λ the SL constraints

will be satisfied. Specifically, we use simulation to to search over values of N2 ≥ 7/24λ, while keeping the

ratios p and v fixed. We find that N2 = 120 suffices, see the right-hand graph in Figure (4), in which the

probability of violating the SL target, 0.2, at time t, P{W (t) > T} is plotted as a function of time for each

of the customer classes (W (t) should be interpreted as the virtual waiting time at time t). We observe that,

at least for λ = 400, N2 = 120 corresponds to β = γ2 = 1/6.
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Figure 4: Delay probabilities under FQR for λ = 400 and λ = 1600

Theorem 3.3 claims, however, that β should be invariant to λ for all λ large enough. To show this, we

consider next the same N model but now with arrival rates λ1 = λ2 = 800, so that λ = 1600, and using the

targets T λ
i = T̄1/

√
λ = 4/

√
1600 = 0.1. By Theorem 3.3, we should be able to use the same value of β for

this larger system. Accordingly, we set N1 = 0.25 ∗ 1600 = 400 and N2 = b7/24 ∗ λ + 1/6
√

λc = 473.

The right-hand graph in Figure (4) shows that the constraints are indeed satisfied.
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4 Pool-Dependent Service Rates

In this section we show that the aggregate approach to staffing, as applied in §2 to the simplified V -model

setting, can be extended to more general SBR models, as long as the service rates are pool-dependent, i.e.,

if µi,j = µj for all i ∈ I and j ∈ J . Throughout we will assume, without loss of generality, that the service

rates are labelled in decreasing order:

µ1 ≥ . . . µ2 ≥ . . . ≥ µJ .

We further restrict the general model of §3 by assuming that customers do not abandon; we discuss how

to partially remove this assumption in Remark 4.2. All other assumptions from §3 remain unchanged.

We consider the two formulations (12) and (13). Following the discussion in §2, we establish asymptotic

optimality only for the best-effort formulation (13), while restricting the discussion of the initial optimization

problem (12) to asymptotic feasibility.

asymptotic optimality. Our solution in §2 was based on a reduction of the V model to the associated

M/M/N queue. Such a reduction is no longer possible now, but again our solution will be based on a

reduction of the SBR system to a simpler model, namely, the inverted-V (or
∧

) model, in which multiple

agent types serve a single customer class. Specifically, given an SBR system, the associated
∧

model

is one with the same set of agent-pools J , the same staffing levels {Nj , j ∈ J } and the same service

rates {µj , j ∈ J }, but with all the I customer classes merged into a single super-class with arrival rate

λ =
∑

i∈I λi. An example of an SBR system and its corresponding
∧

model is given in Figure 5.

Clearly, the
∧

model is not as simple as the M/M/N queue. However, when it is optimally operated,

its asymptotic performance leads to simple expressions for staffing, as has been shown by Armony [2]. We

will exploit the results in Armony [2] here. We begin with the best-effort formulation (12), and establish a

lower bound on the feasible staffing vectors.

Theorem 4.1 (lower-bound capacity) Fix a sequence of staffing vectors {Nλ} that satisfy

lim inf
λ→∞

Nλ
j

λ
> 0, j ∈ J .
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SBR -Model

1 2 3 = 1+ 2+ 3

Figure 5: An SBR model and its corresponding
∧

model

Then,

lim sup
λ→∞

P

{
W̄ λ,T

T λ
I

≥ 1 + ε

}
≤ ε (25)

for all ε > 0 only if the sequence Nλ satisfies

∑

j∈J
µjN

λ
j ≥ λ + β∗

√
λ + o(

√
λ), (26)

where β∗ is the unique solution to
Pµ1(β)

β
=
√

λT λ
I =: T̄I , (27)

and

Pµ1(β) :=


1 +

β√
µ1

Φ
(

β√
µ1

)

φ
(

β√
µ1

)


−1

.

Theorem 4.1 is a consequence of a feasibility result for the
∧

model and a stochastic-order result com-

paring the SBR model to the
∧

model. In contrast to the SBR system, customers in the
∧

model have access

to all agent pools. It is intuitively clear, then, that if a given staffing vector is not sufficient for the given

aggregate-waiting-time target in the
∧

model, it will also not be sufficient in the less efficient SBR system.

However, building on [2], we will show that a staffing vector that is feasible for the
∧

model in terms of the

aggregate-waiting-time constraint must satisfy (26). This in turn implies the result for the SBR system. The
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detailed proof appears in the appendix.

We now turn to the asymptotic optimality. We first observe that any staffing solution to (13) must also

satisfy (14). Theorem 4.1 implies that an asymptotic lower bound on the optimal cost in (13) is given by the

solution of the following mathematical program:

Minimize
∑

j∈J cjNj

Subject to:
∑

j∈J µjNj ≥ λ + β∗
√

λ,
∑

j∈J µjNjyi,j ≥ λi, i ∈ I,
∑

i∈I yi,j ≤ 1, j ∈ J ,

N ∈ Ãλ, yi,j ≥ 0, i ∈ I, j ∈ J ,

(28)

We observe that (28) is equivalent to (14) if one replaces β∗ with zero. Consequently, as (28) adds only

a O(
√

λ) terms to solutions of (14), the intuitive “fluid” counterpart for both math programs is identical and

is given by (16).

We denote a staffing vector determined through the solution of (28) as a
∧

-based staffing. We will show

that using the
∧

-based staffing is asymptotically optimal as long as it is used in combination with FQR with

the ratio vectors (p∗ and v∗), where p∗ is the unique solution to

pI−1 = Pµ1(β
∗)e

− λI−1
λpI−1

β∗
√

λT λ
I−1 = α and

pi

pI−1
=

λiT
λ
i

λI−1T λ
I−1

, (29)

and v∗ = (0, 0, . . . , 1).

Since
√

λT λ
I = T̄i (see Assumption 2.1) and λi/λI−1 = ai/aI−1, the value of p∗I−1 is independent of

λ. Consequently, so are the values p∗i for i 6= I−1. We remark that the construction of p is more subtle than

in (9), which was based on the reduction of the V model to the M/M/N queue. The current construction is

based on asymptotic expressions for the delay probability in the
∧

model under the control proposed in [2];

see Lemma B.2 in the appendix as well as Propositions 4.4 and 4.6 in [2]. Still, the two constructions are

consistent as they are asymptotically equivalent under the assumption of equal service rates; see §4.1.

Here is the asymptotic optimality result for this section:

Theorem 4.2 (asymptotic optimality for the SBR model with pool-dependent rates) Suppose that any

optimal solution for (16) has ν̄j > 0 for all j ∈ J . Suppose that Nλ is determined through the
∧

-based
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staffing and FQR(p∗, v∗) is used, where p∗ is as in (29) and v∗ = (0, · · · , 0, 1). Then, for each ε > 0, there

exists T ∗(ε) such that, for all T ≥ T ∗(ε),

lim sup
λ→∞

P
{

F̄ λ,T
i (T λ

i ) ≥ α + ε
}
≤ ε, 1 ≤ i ≤ I − 1, (30)

lim sup
λ→∞

P

{
W̄ λ,T

T λ
I

≥ 1 + ε

}
≤ ε. (31)

Finally, any other sequence (Ñλ, πλ) of staffing vectors and routing rules that satisfy (30) and (31),

must satisfy,

[c ·Nλ − c · Ñλ]
+

= o(
√

λ) as λ →∞ . (32)

Remark 4.1 (choosing the ratio vector v∗) In light of our state-space collapse result Theorem 3.1, the

choice v∗ = (0, 0, . . . , 1) will cause all the idleness to be concentrated in pool J , which is the slowest

agent-pool. This choice guarantees that all the faster servers will be constantly busy, thus maximizing the

depletion rate of customers from the system. Informally, then, this choice of v∗ minimizes the aggregate

queue length in the system by maximizing the depletion rate. As this observation holds for any staffing level,

this choice of v∗, is essential for the minimization of the number of agents required to achieve the aggregate

waiting time constraints. Once the aggregate queue length is minimized, it only remains to distribute it in

a proper way so as to guarantee the service-level constraints. The queue-ratio vector, p∗, takes care of this

task.

Theorem 4.2 illustrates one of the key benefits of FQR. Although, the
∧

model is a more efficient system,

FQR allows the SBR system to work as efficiently, asymptotically, making the staffing of the inverted-V

model sufficient also for the SBR system.

asymptotic feasibility. We now establish asymptotic feasibility for the initial SBR optimization problem

(12). We re-define p∗ in accordance with (3) to be

p∗i =
λiT

λ
i∑

i∈I λiT λ
i

,
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and re-define β∗ to be the unique solution of

Pµ1(β)e−β
√

λ
P

i∈I
λi
λ

T λ
i = α. (33)

As before, we observe that the vector p∗ is independent of λ, since λi/λ = ai and Assumption 2.1 holds.

Theorem 4.3 (asymptotic feasibility for the SBR model with pool-dependent rates) Suppose that any

optimal solution for (16) has ν̄j > 0 for all j ∈ J . Suppose that the
∧

-based staffing is used as well as

FQR(p∗, v∗), where p∗ and v∗ are as in 4.2. Then, for each ε > 0, there exists T ∗(ε) such that, for all

T ≥ T ∗(ε),

lim sup
λ→∞

P
{

F̄ λ,T
i (T λ

i ) ≥ α + ε
}
≤ ε, i ∈ I. (34)

Remark 4.2 (adding customer abandonment) When there is customer abandonment, it is natural to con-

sider quality-of-service constraints that limit the number of customer abandonments, in addition to the

quality-of-service constraints we have used so far. However, assuming that the same formulations are main-

tained, the asymptotic feasibility and optimality results of Theorems 4.2 and 4.3 hold partially in an exten-

sion of this SBR model where we allow customer abandonment, provided that the times to abandon are i.i.d.

and have an exponential distribution with a common rate θ. However, this extension is only partial, because

asymptotic optimality can be established only within the set of work-conserving policies; i.e., policies, that

do not idle an agent on purpose when there are customers waiting in any of the queues this agent is eligible

to serve. With this restriction, the results of Theorems 4.2 and 4.3 continue to hold after the asymptotic

expressions for the
∧

model are replaced with those for a
∧

model with abandonment. These expressions

can be obtained from Armony and Mandelbaum [3]. If all service rates are equal, i.e, µj ≡ µ, j ∈ J , then

more can be said; see Remark 4.3.

adding designated-service constraints. In practice, it is natural to require that most customers receive

their designated service, i.e., service by the type of agent that the system designates for them. A good

example is a multilingual call center, where one would prefer that Spanish-speaking customers be served

by agents whose dominant language is Spanish, French-speaking customers be served by agents whose

dominant language is French, and so forth. In other settings, the interpretation of designated service might
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be different. To treat designated-service constraints, we now assume that, for each customer class i, there

is one agent type designated to provide service to that class; the agent type designated for class i is j({i});
that pool of agents can only serve class i.

One can impose a lower-bound constraint on the proportion of customers that receive their designated

service. For that purpose, we let DSi[T ] be the proportion of the arriving class-i customers that are routed

to their designated agents (the agents in pool j({i})) by time T . Then, letting δi > 0 be the non-designated-

service proportion upper bound, the constraints are formulated as

lim inf
T→∞

DSπ
i [T ] ≥ 1− δi, i ∈ I

These constraints can be incorporated in the framework of (12) by choosing A and b̂ so that

{
N ∈ ZJ

+ : Nj({i}) ≥ (1− δ)
λi

µ
, i ∈ I

}
⊆ Aλ, (35)

where δ = mini∈I δi. This definition of the set Aλ is guaranteed to achieve the designated service con-

straints asymptotically. This is proved in the following Proposition

Proposition 4.1 Suppose that the set Aλ satisfies (35). Then, under the conditions of Theorem 4.2 (respec-

tively 4.3), equations (30)-(32) (respectively (34)) hold and, in addition, for any ε > 0 there exists T ∗(ε)

such that for all T > T ∗(ε),

lim inf
λ→∞

P
{

DSλ
i [T ] ≤ 1− δi − ε

}
≤ ε, i ∈ I. (36)

4.1 One Common Service Rate

When all service rates are equal, i.e., when µi,j ≡ µ for all i and j, the staffing solution is simplified even

further. In particular, the
∧

-based staffing and the choice of the ratio vector p∗ are asymptotically equivalent

to S̃CS and F̃QR as defined in equations (8) and (9). The equivalence is in the sense that if Nλ is the
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sequence of vectors obtained through the
∧

-based staffing, then

∑
j∈J Nλ

j − N̄λ
Σ√

λ
→ 0, as λ →∞,

where N̄λ
Σ is obtained through S̃CS. This conclusion is deduced from the following lemma:

Lemma 4.1 (square-root rule) Consider a sequence of M/M/N queues with arrival rate λ for the λth

queue, all with service rate µ. Also, assume that Assumption 2.1 holds and that the λth queue uses N̄λ
Σ

servers. If N̄λ
Σ is defined through SCS - see equation (2) (respectively S̃CS - see equation (8)), then

µN̄λ
Σ − λ√
λ

→ β∗ > 0, as λ →∞, (37)

where β∗ is the unique solution of

Pµ (β∗) exp

{
−β∗

∑

i∈I
aiT̄i

}
= α,

respectively of

Pµ (β∗)
1
β∗

= T̄I .

Setting β∗∗ := β∗/
√

µ, the result of the lemma can also be interpreted as

N̄λ
Σ =

λ

µ
+ β∗∗

√
λ

µ
+ o

(√
λ

µ

)
,

which is the widely known form of the square-root safety staffing rule; see Borst et. al. [11]. We now claim

that, in the case of equal service rates, the two definitions β∗ in (33) and (27) are equivalent to those in

Lemma 4.1. Indeed, this follows from the definitions T λ
i = T̄i/

√
λ and λi/λ = ai. A similar observation

shows that the definition of the vector p in (29) is equivalent to that under F̃QR. Consequently, in the case

of equal service rates, one can use the non-asymptotic expressions in (8) and (9) to determine the staffing

level and the ratio vector p. In particular, instead of using the constraint
∑

j∈J µjNj ≥ λ+β∗
√

λ, to bound
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the aggregate capacity one can use the constraint

∑

j∈J
µjNj = µ

∑

j∈J
Nλ

j ≥ N̄λ
Σ,

where N̄λ
Σ is as defined by (2) in the case of formulation (12) and by (8) in the case of formulation (13).

Remark 4.3 (adding customer abandonment) In this model, with equal service rates, the addition of

abandonments with common abandonment rate θ is quite straightforward. Specifically, we replace QFCFS
λ,µ (N)

in the definition of SCS and S̃CS as well as in the definition of p in (9) by QFCFS
λ,µ,θ (N), where QFCFS

λ,µ,θ (N)

is the steady-state queue length in an M/M/N + M system (+M means Markovian abandonment) with

arrival rate λ, service rate µ and abandonment rate θ. For example, we replace (2) with

N̄Σ = min

{
N ∈ Z+ : P

{
QFCFS

λ,µ,θ (N) >
∑

i∈I
λiTi

}
≤ α

}
. (38)

4.2 The Setting of Wallace and Whitt

This section is dedicated to the setting of Wallace and Whitt [30], i.e, a setting with a common service rate

µ and equal costs for all agents, i.e, cj ≡ c, j ∈ J . The discussion of this simplified model has three

purposes: first, to contrast between the FQR-based solution and the simulation based approach of [30];

second, to illustrate an explicit construction of a system design when costs or system constraints do not pose

significant restrictions, and, third, to illustrate the diminishing-return property of flexibility.

Towards these ends, we start by specifying the optimization problem. We will consider the problem

minimize
∑

j∈J Nj

subject to: lim sup
T→∞

W̄ λ,T ≤ T λ
I

lim sup
T→∞

F̄ λ,T
i (Ti) ≤ α, 1 ≤ i ≤ I − 1,

lim inf
T→∞

DSπ
i [T ] ≥ 1− δi, i ∈ I,

N ∈ ZJ
+, π ∈ Π.

(39)

The optimization problem (39) is obtained from (13) by adding a designated-service constraint and removing
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any system constraints.

The specific design we suggest here is based on a concatenation of M systems, which we call the gener-

alized M (GM) model. An example for a system with three customer classes is depicted in Figure 6. The

generalized M model has a routing graph constructed by allowing only edges of form (i, j({i})), i ∈ I,

and (i, j({i, i + 1})), i = I\I (I excluding the element I). The M model is relatively inexpensive in terms

of cross-training, since it uses agents with at most two skills.

1 2 3

Figure 6: The generalized M model for 3 classes

The solution we propose for (39) is as follows:

• Design: generalized M model (GM). Use a GM model.

• Staffing: Single-Class Staffing (SCS). Determine the overall number of agents, N̄Σ using the Single-

Class Staffing (SCS) rule given by (2). Then allocate agents to the pools by

– Nj({i}) = (1− δ/2)
(

λi
λ

)
N̄Σ, i ∈ {1, I},

Nj({i}) = (1− δ)
(

λi
λ

)
N̄Σ for all i = 2, . . . , I − 1, and

– Nj({i,i+1}) =
(

δ(λi+λi+1)
2λ

)
N̄Σ for all i = 1, . . . , I − 1,

where δ := min {δi : 1 ≤ i ≤ I} > 0.

• Control: Fixed-Queue-Ratio (FQR). Use FQR with p as defined in (9) and v defined by

vj({i,i+1}) :=
1

I − 1
for all i ∈ I\I .
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We could have used any vector v in the control step above. The specific vector we suggested is designed

to increase the amount of designated service by forcing the system to route customers that find agents idle

in both pools j({i}) and j({i, i + 1}) to the designated agents in pool j({i}). One could also modify

FQR so that all customers that find agents idle in more than one agent pool that can serve them will go

to the designated agent pool j({i}). This modification is guaranteed to achieve, asymptotically, the same

performance as FQR. Using the results in §4 and §4.1, the above combined design-staffing-and-control

solution can be easily shown to be asymptotically optimal as the arrival rate grows.

This simple model illustrates, then, how FQR simplifies tremendously the construction of the joint

design-staffing-and-control solution, by allowing one to ignore the SL constraints when making the design

and staffing decisions. FQR will take care of those through a simple choice of the ratio vector. This essential

decoupling of the design, staffing and control decisions is beneficial for applications, as the design and

staffing decisions are often made in advance and can not be easily adjusted in real-time to accommodate

changing environment. This also stands in contrast to Wallace and Whitt [30] where the realized service-

levels are sensitive to the number of agents in each pool, and these need to be fine-tuned through simulation

to meet that SL constraints.

We end this section by observing that the GM design uses only limited flexibility. In particular, it uses

agents that have at most two skills. Still, with this limited amount of flexibility the SBR system performs,

asymptotically, as efficiently as the V model from §2 in which all customers have access to all agents.

5 The Waiting-Time-Based Control - FWR

In this section we introduce a modification of FQR that uses waiting-time information instead of queue-

length information. Such a control is relevant only when the system manager has access to the information

regarding the accumulated waiting time of the customers waiting at the head-of-the-line in each queue. FWR

will be identical to FQR in terms of the action upon customer arrival and differ only in terms of the action

upon service completion. To contrast this control with FQR, we denote it by Fixed-Waiting-Ratio (FWR).

To define FWR we let Wh,i(t) be the accumulated waiting time of the customer waiting at the head of the

class-i queue at time t. The definition of FWR is inspired by Little’s law (L = λW ). It replaces the queue

length Qi(t) in FQR with its approximation λWh,i(t). Specifically, we define FWR as follows:
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Definition 5.1 (FQR for the SBR model)

Given two probability vectors v := {vj : j ∈ J } and p := {pi : i ∈ I}, FWR for the SBR model is

defined as follows:

• Upon arrival of a class-i customer at time t, the customer will be routed to an available agent in

pool j∗, where

j∗ ≡ j∗(t) ∈ argmax
j∈J(i),Iλ

j (t)>0

{Iλ
j (t)− vj [Xλ

Σ(t)−Nλ
Σ]−};

i.e., the customer will be routed to an agent pool with the greatest idleness imbalance. If there are no

such agents, the customer waits in queue i, to be served in order of arrival.

• Upon service completion by a type-j agent at time t, the agent will admit to service the customer

from the head of queue i∗ where

i∗ ≡ i∗(t) ∈ argmax
i∈I(j),Qλ

i (t)>0

{
λiW

λ
h,i(t)− pi[Xλ

Σ(t)−Nλ
Σ]+

}
;

i.e., the agent will admit a customer from the queue with the greatest estimated queue imbalance. If

there are no such customers, the agent will remain idle.

Ties are broken by choosing an agent pool with the largest index among the classes that maximize

Iλ
j (t)−vj [Xλ

Σ(t)−Nλ
Σ]− and choosing a customer from the class i with the largest index among the classes

that maximize W λ
h,i(t)− pi[Xλ

Σ(t)−Nλ
Σ]+.

In contrast to FQR, the process (Qλ, Iλ, Zλ) need not be a Markov chain under FWR, regardless of the

tie-breaking rule. To avoid complications, we have hence explicitly defined the tie-breaking rule. As in the

case of FQR, if p is a strictly positive vector, then we can choose, upon service completion, the customer

from the head the class i∗ queue where,

i∗ ≡ i∗(t) ∈ argmax
i∈I(j),Qλ

i (t)>0

{
W λ

h,i(t)
pi

}

This fact also leads to a nice feature of FWR in the context of SL targets. Specifically, if T1, . . . , TI are

strictly positive SL targets, i.e., Ti > 0, i ∈ I, then FWR with the ratio vector p as defined in equation (3)
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reduces to choosing class i∗ with

i∗ ≡ i∗(t) ∈ argmax
i∈I(j),Qλ

i (t)>0

{
W λ

h,i(t)
Ti

}
.

This is a rather intuitive rule as it suggests serving customers in decreasing order of the violations of their

associated SL targets. We point out that, in contrast to FQR (see (3)), the FWR rule with SL constraints is

completely independent of the arrival rates.

We end this section by establishing the asymptotic equivalence of FQR and FWR. This theorem draws

on the strong from of Little’s law, which was mentioned in §2. Rather than tackling directly the equivalence,

we show that Theorem 3.1 holds when FQR is replaced with FWR with the same ratio vectors. As all

the results in §2-4 build on this state-space collapse, they all hold for FWR just as they do for FQR. For

the following, we let Ŵ λ
h,i(t) =

√
λW λ

h,i(t). Instead of directly assuming that the waiting times of all

the customers initially in the system at time 0 scale properly, we will make the stronger assumption that

all queues are empty at time 0. We believe that the results extend to more general initial conditions, but

the treatment of the augmented hydrodynamic model equations (see §5 of [19]) used to prove state-space

collapse become significantly more complicated. The following is proved in Theorem 4.4 of [20].

Theorem 5.1 (state-space collapse under FWR) In addition to the conditions of Theorem 3.1, assume

that Q̂λ
i (0) = 0 for all λ and all i ∈ I. Then, in addition to the results of Theorem 3.1,

Q̂λ
i (t)− aiŴ

λ
h,i(t) ⇒ 0 in D as λ →∞, i ∈ I. (40)

6 Conclusions and Future Research

In this paper we have proposed the fixed-queue-ratio (FQR) routing scheme, specified in Definition 3.3,

which typically reduces to the decentralized control in (19). The FQR control is important because it pro-

vides a way to achieve desired service-level differentiation in call centers with multiple customer classes

and multiple agent types, operating under service-level constraints. We think that FQR has great appeal

because of its simplicity and transparency. The key is to be able to produce the appropriate ratio probabil-
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ity vector p in (3), exploiting the approximate relations in (4). As a consequence, FQR routing facilitates

tremendously the construction of combined staffing-design-and-routing solutions for some settings of the

complicated skill-based-routing (SBR) problem, with precisely specified goals.

From both the engineering and mathematical perspectives, an important contribution of this paper is

to develop useful asymptotic formulations. As illustrated by our first results, Theorems 2.1 and 2.2, we

consider both asymptotic feasibility and asymptotic optimality. The asymptotic results show that some care

is needed in formulating both the constraints and the notion of asymptotic optimality. The theorems in turn

substantiate the benefits of FQR and the overall approach for large systems.

The ability to demonstrate effectiveness of the proposed FQR solution for large systems, via the limit for

the sequence of models as λ →∞, largely depends on the asymptotic state-space collapse that was proved

in [19] and holds under certain network and parameter conditions. This state-space collapse is achieved

in considerable generality, going well beyond the simple models in §2 and §4 of this paper. This wide

applicability, in turn, suggests that we might be able to use FQR to construct simple solutions for much

more general cases, perhaps using decomposition techniques as in Remark 3.3. On the other hand, we have

observed that applying FQR when the conditions for good asymptotic performance are not satisfied can lead

to serious problems.

Therefore, it is useful to summarize the practical implications of the two main state-space collapse

results: Theorems 3.1 and 3.2. Combined, these two results suggest a simple rule of thumb:

• If there exists an optimal solution (ν̄, x̄) for the fundamental mathematical program (16) for which

the FQR conditions hold - use FQR and SRSS(ν̄).

• Otherwise, if the conditions above do not hold, but there exists an optimal solution (ν̄, x̄) for (16)

such that condition 4 holds, then use GFQR and SRSS(ν̄).

• Alternatively, if FQR and SRSS(ν̄) cannot be used directly, consider alternative designs, as in Remark

3.3, that would allow FQR and SRSS(ν̄) to be applied.

In [15], we use the above recipes to propose a simple heuristic for the combined design-staffing-and-

routing problem in more general SBR networks, which do not satisfy the condition of pool-dependent service

rates.
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The state-space-collapse results and other results used in the appendix here can be found in [19]. That

paper introduces the more general QIR controls, which allow the ratios to be state-dependent. The more

general QIR rule is also used in in [20], under the assumption of pool-dependent service rates, to minimize

convex holding costs over a finite time horizon, thus extending partially the Gcµ result in [25] to the QED

regime.

Among the many important issues remaining unaddressed in our work, we regard model uncertainty as

an important one. Throughout this paper we have assumed that the arrival rates λi, the numbers of available

servers Nj , and the service rates µi,j are known and fixed. That is clearly an idealization; uncertainty and

estimation errors often lead to unexpected system load. In systems with model uncertainty, more attention

needs to be paid to design issues, as the system flexibility is now expected to play a more important role.

While certain forms of model uncertainty may be treated within the framework in this paper, others will

require different analysis. It is of interest, then, to examine the performance of FQR in settings with different

forms of model uncertainty. That would parallel recent work on model uncertainty by Atar [7], Bassamboo

et al. [9, 10] and Whitt [34].
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Appendix
In this appendix we provide the proofs of all major results in the paper. The proofs for §3 and §4 appear

in §A and §B respectively. Finally, Remark B.1 covers the results of §2.

A Proofs for §3

A.1 Proof of Theorems 3.1 and 3.2

Theorems 3.1 and 3.2 follow, respectively, from Theorems 3.1 and 4.2 of [19], but an additional argument

is needed because the conditions of the Theorems here and in [19] are expressed slightly differently. In

particular, the conditions in [19] are stated in terms of solution to the LP (4) there, whereas Theorem 3.1

here uses the mathematical program (16) here.

Towards this end, fix an optimal solution (ν̄, x̄) of (16) for which the edges of E(ν̄, x̄) induce a connected

graph. By Assumption 3.1, we have that
∑

j∈J µi,j ν̄j x̄i,j = ai for all i ∈ I. Considering (4) in [19] with
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ν fixed to ν̄, we have that x̄ together with ρ = 1 constitute a feasible solution. Moreover, it is an optimal

one. Indeed, if given ν̄, there exists an optimal solution (x, ρ) for (4) in [19] with ρ < 1, then the solution

(ν̄, x) is optimal for (16) contradicting Assumption 3.1. Finally, with (x̄, 1) being the solution for (4) in

[19] associated with ν̄, the routing graph E(x̄) as defined in Assumption 2.3 of is the routing graph E(ν̄, x̄).

Consequently, the former is connected if and only if the latter is.

Also, we note that with the selected solution (ν̄, x̄), the staffing determined through SRSS(ν̄) satisfies

the heavy-traffic conditions in Assumption 2.1 of [19]. Finally, we observe that FQR is a special case of QIR

with the constant ratio functions p(·) ≡ (p1, . . . , pI) and v(·) ≡ (v1, . . . , pI) that are clearly admissible in

the sense of Definition 2.2 in [19].

Theorem 3.2 follows from Theorem 4.2 in [19] using similar arguments.

A.2 Proof of Theorem 3.3

The proof relies on Proposition 5.1 in [19] that connects the tail of the waiting time distribution to the the

limit, X̂Σ(t), of the scaled number-of-customers in the system, X̂λ
Σ(t). The result of the Theorem will then

follow by proving that the family of processes {X̂β(t)}β≥0, where the superscript denotes the dependence

on β, is, in some sense, monotone decreasing in β.

First, to apply Proposition 5.1 from [19], we observe that, under the assumptions of Theorem 3.1, the

sequence X̂λ
Σ(t) is C-Tight. We explain now how this conclusion follows from [19]. First, under condition

C-1, we show in §4.2 in [19], that FQR is equivalent to the GFQR control used in [6]. The C-Tightness

under this condition follows then from Proposition 1 in [6]. For conditions C-2 and C-3, the C-Tightness

follows, respectively, from Theorems 5.1 and 5.3 in [19].

We now fix a convergent subsequence of X̂λ
Σ(t). As our results below will hold for any convergent

subsequence, we assume, without loss of generality, that the whole sequence converges to a limit with

continuous sample paths. Let X̂Σ(t) be this limit. Fixing t > 0, and a ratio vector p, we have by Proposition

5.1 in [19] that

F̄ λ,T
i (y/

√
λ) ⇒ 1

T

∫ T

0
1

{
pi

ai

[
X̂Σ(t)

]+
> y

}
dt in [0, 1] as λ →∞. (A1)
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Equation (24) is now equivalently stated as

P

{
1
T

∫ T

0
1

{
p∗i
ai

[
X̂β

Σ(t)
]+

> T̄i

}
dt ≥ α + ε

}
≤ ε, i ∈ I

where we have added the superscript β to reflect the dependence on β. The proof will be complete, then, if

we show that

lim
β→∞

P

{
1
T

∫ T

0
1

{
p∗i
ai

[
X̂β

Σ(t)
]+

> T̄i

}
dt ≥ α + ε

}
= 0, i ∈ I. (A2)

This follows from the following Lemma by choosing any δ < α.

Lemma A.1 For any δ > 0,

sup
δ≤t≤T

[
X̂β

Σ(t)
]+ P→ 0, as β →∞.

Proof: We start by observing that under any of the conditions C-1, C-3 and C-3, the limit process X̂β
Σ(t)

satisfies

X̂β
Σ(t) ≤ X̂Σ(0)− βt + c1

∫ t

0
[X̂β

Σ(s)]−ds− c2

∫ t

0
[X̂β

Σ(s)]+ds +
√

2B̂(t), (A3)

for some constants c1 > 0, c2 > 0 and where B̂(t) is a standard Brownian motion. This follows from

Theorems 5.1 and 5.3 in [19] under conditions C-2 and conditions C-3 respectively. For condition C-1, this

is a consequence of the diffusion limits in [6] and the equivalence of FQR to GFQR under this condition;

see §4.2 of [19]. Consequently,

X̂β
Σ(t) ≤ X̂β

Σ(0)− βt + c1

∫ t

0
[X̂β

Σ(s)]−ds +
√

2B̂(t).

Define now τβ
0 = inf{t ≥ 0 : X̂β

Σ(t) ≤ ε}. We claim that

τβ
0

P→ 0, as β →∞. (A4)

Indeed, assume that X̂β
Σ(0) = x > ε. Then, for all t ≤ τβ

0 we have that

X̂β
Σ(t) ≤ x− βt +

√
2B̂(t).

Given η > 0, P{τβ
0 ≥ η} = P{inf0≤t≤η x− βt +

√
2B̂(t) ≥ ε} so that τβ

0
P→ 0 readily follows from basic
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properties of Brownian motion. For δ, ε > 0 we now define

τβ
2 = inf{t ≥ τβ

0 : [X̂β
Σ(t)]+ ≥ 2ε}, and τβ

1 = sup{t ≥ τβ
0 , t ≤ τβ

2 : [X̂β
Σ(t)]+ ≤ ε}.

Then,

X̂β
Σ(t) ≤ X̂β

Σ(τβ
2 )− β(t− τβ

2 ) +
√

2B̂(t)−
√

2B̂(τβ
2 ), (A5)

for all τβ
1 ≤ t ≤ τβ

2 . Now,

P



 sup

τβ
0 ≤t≤T

[X̂β
Σ(t)]+ ≥ 2ε



 ≤ P



 sup

τβ
1 ≤s≤t≤τβ

2 ∧T

[X̂β
Σ(t)]+ − [X̂β

Σ(s)]+ ≥ ε



 (A6)

Using (A5) and noting that [X̂β
Σ(t)]+ = X̂β

Σ(t) for τβ
1 ≤ t ≤ τβ

2 it is now straightforward to show that

P



 sup

τβ
1 ≤s≤t≤τβ

2 ∧T

[X̂β
Σ(t)]+ − [X̂β

Σ(s)]+ ≥ ε



 → 0, as β →∞. (A7)

The result now follows by noting that for each δ, ε > 0,

P

{
sup

δ≤t≤T

[
X̂β

Σ(t)
]+
≥ 2ε

}
≤ P{τβ

0 ≥ δ}+ P



 sup

τβ
0 ≤t≤T

[X̂β
Σ(t)]+ ≥ 2ε



 ,

and applying (A4) and (A7). ¥

B Proofs for §4

B.1 Proof of Theorem 4.1

The proof consists of two steps. First, a coupling argument, Lemma B.1 below, shows that the
∧

model

constitutes a lower bound for the SBR system in terms of the aggregate queue length. Lemma B.2 builds on

[2] to argue that any staffing vector for the
∧

model that satisfies the constrain (25) must satisfy the capacity

constraint (26). Together, these steps imply the result of the Theorem.

We start, then, with a stochastic comparison result. The lemma holds for each λ, so the superscript is

omitted from the notation. For the stochastic ordering results, we let SBR(I,
−→
λ ,J , E, N, µ) denote an
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SBR system with a set I of customer classes, arrival-rate vector
−→
λ = (λ1, . . . , λI), a set J of agent pools,

a routing graph E, staffing vector N and pool-dependent service rates given by the vector µ = (µ1, . . . , µj).

The corresponding
∧

model is denoted by
∧

(λ,J , N, µ) and stands for an inverted-V model with arrival

rate λ =
∑

i∈I λi, a set J of agent pools with staffing vector N and service-rate vector µ. The set of

admissible policies for the
∧

model is the set of non-anticipating policies. An example of an SBR system

and its corresponding
∧

model was given in Figure 5.

Given admissible controls π1 and π2 for the SBR and
∧

model, respectively, we let Zπ1
j,SBR(t) and

Zπ2

j,
V(t) be the corresponding number of busy agents in agent pool j in each of the systems under their

respective controls. Similarly, we let Qπ1
Σ,SBR(t) and Qπ2

Σ,
V(t) be the corresponding aggregate queue length

processes. Here, the subscript Σ is used also for the
∧

model only for purposes of notational consistency

and the reader is reminded that the
∧

model has only a single queue. We add a superscript to explicitly

express the dependence on the control.

Lemma B.1 (the
∧

model as a lower bound) Fix the data (I,J , E,N,
−→
λ , µ). Assume that

(Zj,SBR(0), QΣ,SBR(0); j ∈ J ) = (Zj,
V(0), QΣ,

V; j ∈ J ).

Then, given any admissible policy π1 for the SBR system, there exists an admissible policy π2 for the
∧

and

a construction of the sample paths such that almost surely

{Qπ1
Σ,SBR(t), t ≥ 0} = {Qπ2

Σ,
V(t), t ≥ 0}.

Consequently,

{Qπ1
Σ,SBR(t), t ≥ 0} d= {Qπ2

Σ,
V(t), t ≥ 0}.

The proof of Lemma B.1 follows a very simple coupling argument based on the observation that any

customer assignment that can be made in the SBR system also can be made in the corresponding
∧

system.

The complete formal argument is omitted. We proceed to prove a result about the
∧

model. For the

following we W̄ λ,TV be the aggregate averaged waiting time, as defined in (11) but add the superscript
∧

to

denote that it corresponds to the
∧

model rather than with the general SBR system.

Lemma B.2 (a feasibility result for the
∧

model) Fix a sequence of
∧

models with capacity vectors that
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satisfy

lim inf
λ→∞

Nλ
j

λ
> 0, j ∈ J . (A8)

Then,

lim sup
λ→∞

P





W̄ λ,TV

T λ
I

≥ 1 + ε



 ≤ ε (A9)

for all ε > 0 only if the sequence Nλ satisfies

∑

j∈J
µjN

λ
j ≥ λ + β∗

√
λ + o(

√
λ), (A10)

where β∗ is the unique solution to
Pµ1(β)

β
=
√

λT λ
I =: T̄I , (A11)

and

Pµ1(β) :=


1 +

β√
µ1

Φ
(

β√
µ1

)

φ
(

β√
µ1

)


−1

.

Proof: First, we have that

W̄ λ,TV ≥ 1
Aλ(T )

∫ T

0
Qλ

Σ,
V(t)dt.

This inequality follows from a simple inequality for queueing systems which is used often to prove Little’s

law (see for example equation (2.1) in Whitt [31]). By the renewal strong law

lim
λ→∞

√
λ

Aλ(T )

∫ T

0
Qλ

Σ,
V(t)dt = lim

λ→∞
1√
λ

∫ T

0
Qλ

Σ,
V(t)dt,

and the equality holds almost surely. Consequently,

lim sup
λ→∞

P





W̄ λ,TV

T λ
I

≥ 1 + ε



 ≤ ε,

only if

lim sup
λ→∞

P

{
1
T

∫ T

0

Qλ
Σ,
V(t)

λT λ
I

dt ≥ 1 + ε

}
≤ ε. (A12)
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We now apply the results of [2]. Specifically, to reach a contradiction, assume that there exists β̃ < β∗

such that
∑

j∈J µjN
λ
j < λ + β̃

√
λ + o(

√
λ). Fix a subsequence λk such that

lim
k→∞

∑
j∈J µjN

λ
j − λ√

λ
= 0 < β̂ ≤ β̃.

Observe that we have restricted the attention to β̂ > 0. We will later deal with the cases β̂ ≤ 0. We now

focus on this subsequence. As the following arguments will apply to any convergent subsequence we assume

without loss of generality that this holds for the whole sequence. Armony [2] introduces the Fast-Server-

First (FSF) for the
∧

model and shows that it is asymptotically optimal in that it minimizes the steady-state

scaled queue length. Henceforth we assume that FSF is used for control. The argument is extended to

arbitrary controls in the end of the proof. Equation (A8) allows us to apply Proposition 4.2 in [2], and the

continuity of the integral map to have that

lim
λ→∞

1
T

∫ T

0

Qλ
Σ,
V(t)

λT λ
I

dt =
1
T

∫ T

0

[X̂Σ,
V(t)]

+

T̄I
dt, (A13)

Where X̂Σ,
V(t) is the limit in Proposition 4.2 of [2]. Here, we also used Assumption 2.1 to write T λ

I =

T̄I/
√

λ.

By Proposition 4.4 in [2], X̂Σ,
V(t) has a unique stationary distribution. The same conditions that guar-

antee this existence also guarantee that X̂Σ,
V(t) is positive recurrent; see exercise 5.5.40 in page 352 of

[23]. The general theory of regenerative processes then implies that

lim
T→∞

1
T

∫ T

0
g

(
X̂Σ,

V(t)
)

dt = E
[
g

(
X̂Σ,

V(∞)
)]

w.p.1

for any function g(·) that is integrable under the unique invariant measure of X̂Σ,
V(t); see §VI.3 of As-

mussen [5] for the general regenerative-process result and Theorem 3.1 of Khas’miniskii [24] for the

diffusion-process result. Through simple integration, Proposition 4.4 in [2] also shows that E
[[

X̂Σ(∞)
]+

]
=

Pµ1(β̂)/β̂T̄I . Using Lemma B.1 in Borst et. al. [11], it follows that this expectation is decreasing as a func-

tion of its argument, β, and we have that for some ε > 0,

1
T

∫ T

0

[
X̂Σ,

V(t)
]+

T̄I
dt →

E

[[
X̂Σ,

V(∞)
]+

]

T̄I
= Pµ1(β̂)

1

β̂T̄I

> 1 + ε as T →∞ w.p.1 , (A14)
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where the last inequality easily follows from the fact that β̂ < β∗. Combining equations (A12)-(A14) we

have reached a contradiction and in particular that if
∑

j∈J µjN
λ
j = λ + β̂∗

√
λ + o(

√
λ) for 0 < β̂ < β∗,

then (A9) can not hold. It still remains to argue what happens when β̂ ≤ 0. This, however, follows from

our previous argument. Indeed, considering the diffusion process X̂Σ,
V(t) of Proposition 4.2 in [2], it is a

matter of a simple comparison result for diffusions (see e.g. Proposition 5.2.18 in [23]) to show that if for

1
T

∫ T

0

[
X̂Σ,

V(t)
]+

T̄I
> 1 + ε,

for some ε > 0 and all T large enough, then the same holds for all β ≤ β̂ and in particular for β ≤ 0. We

proved, then, that if FSF is used any staffing level that satisfies (A9) and (A8) must also satisfy (A11). To

rule out the possibility that there is a different control under which (A11) is not necessary, we point out that

by Theorem 4.1 of [20] we have that for each T > 0,

lim inf
λ→∞

1
T

∫ T

0

Qπ,λ
Σ,
V(t)

λT λ
I

dt ≥st
1
T

∫ T

0

[X̂Σ,
V(t)]

+

T̄I
dt,

where π is some control other than FSF and Qπ,λ
Σ,
V(t) is the queue-length process under this control. Con-

sequently, repeating all the arguments in the proof we have that if (A12) is violated under FSF, it is also

violated under any other control. The proof is now complete. ¥

Proof of Theorem 4.1 Given Lemmas B.1 and B.2 the proof the Theorem is straightforward. Specifi-

cally, we can construct the sample paths so that

W̄ λ,T ≥ 1
Aλ(T )

∫ T

0
Qλ

Σ,SBR(t)dt ≥ 1
Aλ(T )

∫ T

0
Qλ

Σ,
V(t)dt,

where the first inequality is as in the proof of Lemma B.2 and the second inequality follows from Lemma

B.1. One now repeats the proof of Lemma B.2 for the right hand side to obtain the result of the Theorem.

¥

B.2 Proof of Theorems 4.2 and 4.3

In Theorem 4.1, we established a lower bound on the staffing vector as given by a
∧

-based staffing. Towards

asymptotic optimality and feasibility it remains only to show that such a vector is not only a lower bound but
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is also asymptotically feasible for the SBR system. Towards that end, we need to show that, together with

FQR and the appropriate ratio vectors, the
∧

-based staffing satisfies (30) and (31) in the case of Theorem 4.2

and (34) in the case of Theorem 4.3. These results will be a consequence of two Lemmas. The first, Lemma

(B.3, connects the performance measures for the SBR system with performance measures for the
∧

model.

As before, Q̂λ
Σ,
V(t) is the queue-length process in the

∧
model operated under the Faster-Server-First (FSF)

policy defined in [2].

Lemma B.3 (asymptotic equivalence with the
∧

model) Under the conditions of Theorem 4.2 (respec-

tively Theorem 4.3, we have that for every T ≥ 0 and y ≥ 0

lim
λ→∞

1
T

∫ T

0
1

{
Qλ

Σ,SBR(t) > y
√

λ
}

dt
d= lim

λ→∞
1
T

∫ T

0
1

{
Qλ

Σ,
V(t) > y

√
λ
}

dt, (A15)

and in particular,

lim
λ→∞

F̄ λ,T
i (y/

√
λ) d= lim

λ→∞
1
T

∫ T

0
1

{
pi

ai
Qλ

Σ,
V(t) > y

√
λ

}
dt, i ∈ I. (A16)

Also,

lim
λ→∞

√
λW̄ λ,T d= lim

λ→∞

√
λW̄ λ,TV , (A17)

and in particular,

lim
λ→∞

W̄ λ,T

T λ
I

d= lim
λ→∞

W̄ λ,TV

T λ
I

. (A18)

Proof: By Theorem 1.1 in [19] we have that Q̂λ
Σ(t) ⇒ [X̂Σ(t)]+ as λ → ∞. As in the beginning of the

proof of Proposition 5.1 in [19] we apply the mapping fa(x) = 1
T

∫ T
0 1{x(t) > a} from D[0,∞) to R, to

get

lim
λ→∞

1
T

∫ T

0
1

{
Qλ

Σ,SBR(t) > y
√

λ
}
⇒ 1

T

∫ T

0
1

{[
X̂Σ(t)

]+
dt > y

}
in [0, 1] as λ →∞,

where X̂Σ(t) is the diffusion process from Theorem 5.1 in [19]. Some care is required in applying this

integral mapping and we refer the reader to the proof of Proposition 5.1 in [19] for further details.

53



With the choice of v∗ = (0, 0 . . . , 1) it is evident that this diffusion process has the same law as the one

corresponding to the limit of the
∧

model as given Proposition 4.2 in [2]. Consequently, we also have that

lim
λ→∞

1
T

∫ T

0
1

{
Qλ

Σ,
V(t) > y

√
λ
}
⇒ 1

T

∫ T

0
1

{[
X̂Σ(t)

]+
dt > y

}
in [0, 1] as λ →∞.

The other parts of the Lemma follow from Proposition 5.1 in [19] in the same manner. ¥

The next Lemma shows that the performance measures for the
∧

model that appear in Lemma B.3

indeed satisfy the required bounds.

Lemma B.4 Consider a sequence of
∧

models operated under FSF and satisfying (A8) and

∑

j∈J
µjN

λ
j = λ + β∗

√
λ + o(

√
λ),

with β∗ as given (27) (respectively (33)). Assume that

X̂λ
Σ,
V(0) ⇒ X̂Σ,

V(0), as λ →∞,

and

Q̂λ
Σ,
V(0) ⇒ Q̂Σ,

V(0), as λ →∞.

We then have the following:

1. Suppose that β∗ is determined through (27). Then, for each ε > 0, there exists T ∗(ε) so that for all

T ≥ T ∗(ε),

lim
λ→∞

P





W̄ λ,TV

T λ
I

≥ 1 + ε



 ≤ ε, (A19)

P

{
1
T

∫ T

0
1

{
pI−1Q

λ
Σ,
V(t) > λI−1T

λ
I−1

}
dt ≥ α + ε

}
≤ ε, (A20)

and

P

{
1
T

∫ T

0
1

{
piQ

λ
Σ,
V(t) > λiT

λ
i

}
dt ≥ α + ε

}
≤ ε. (A21)

2. Suppose that β∗ is determined through (33). Then, for each ε > 0 there exists T ∗(ε) so that, for all

54



T ≥ T ∗(ε),

lim
λ→∞

P

{
1
T

∫ T

0
1

{
Qλ

Σ,
V(t) >

∑

i∈I
λiT

λ
i

}
dt ≥ α + ε

}
≤ ε. (A22)

Proof: Equation (A19) is actually proved within the proof of Lemma B.2. In particular, it is proved there

that

lim sup
λ→∞

W̄ λ,TV

T λ
I

⇒ 1, as T →∞.

Equation (A20) follow by applying the argument in the proof of Lemma B.3 to show that for each y > 0,

1
T

∫ T

0
1

{
Qλ

Σ,
V(t) > y

√
λ
}
⇒ 1

T

∫ T

0
1

{
X̂Σ(t) > y

√
λ
}

, as λ →∞,

where X̂Σ(t) is the diffusion limit from Proposition 4.2 in [2] with δ there set equal to β∗. By that same

proposition, and applying the theory of regenerative processes as in the proof of Lemma B.2, we have that

1
T

∫ T

0
1

{
X̂Σ(t) >

∑

i∈I
aiT̄i

}
⇒ Pµ1(β)e−β∗

P
i∈I aiT̄i = α.

Here, the equality follows from the definition of pI−1 in (29) Equation (A21) now follows from the definition

of pi for i 6= I − 1. Equation (A22) is proved in a similar manner using the definition of p in (3). ¥

Proof of Theorem 4.2 Equation (30) follows from the choice of p in (29) and combining (A16), (A20)

and (A21). Equation (31) is obtained by combining (A18) and (A19). Finally, equation (32) follows from

the fact that c ·Nλ is an asymptotic lower bound by Theorem 4.1. ¥

Proof of Theorem 4.3 Equation (34) follows readily by combining (A16) and (A22) and using the

definition of the ratio vector p in (3). ¥

Proof of Proposition 4.1 Let Aλ
ij(t) be the aggregate number class-i customers routed (upon arrival or

service completion) to agents in pool j by time t. By definition, then,

DSλ
i [T ] =

Φλ
ij(T ) + Aλ

ij(T )

Aλ
i (T )
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for j = j({i}). For j = j({i}), however, we have that Zλ
j (t) = Zλ

j (0) + Aλ
ij(T )−Dλ

j (t), where Dλ
j (t) is

the number of service completion in pool j by time t. In particular, Aλ
ij(T ) = Zλ

j (t) − Zλ
j (0) + Dλ

j (t) ≥
−Nλ

j + Dλ
j (t). Hence,

DSλ
i [T ] =

1
Aλ

i (T )
(Aλ

ij(T )) ≥ −Nλ
j + Dλ

j (T )

Aλ
i (T )

.

The result is now established using basic renewal theory, the stochastic boundedness of Iλ
j (t) from Corollary

5.3 in [19], and the definition of Nλ
j . In particular, a direct consequence of Corollary 5.3 in [19] is that

µ
∫ T
0 Zλ

j (s)ds

λ
⇒ µν̃jT,

where ν̃j ≥ (1− δ)ai/µ. Letting Ψλ(T ) := (µ
∫ T
0 Zλ

j (s)ds)/(λT ), we can apply the renewal strong law of

large number and the random-time-change theorem (see Theorem 13.2.1 in [32]), to conclude that

Dλ
j (T )
λiT

=
Sj

(
µ

∫ T
0 Zλ

j (s)ds
)

λiT
⇒ µ

ai
ν̃j , as λ →∞.

In particular,
Dλ

j (T )

Aλ
i (T )

⇒ µ

ai
ν̃j = 1− δ, as λ →∞. (A23)

Finally, since Nλ
j /λ → ν̃j , we can choose T large enough so that

lim sup
λ→∞

Nλ
j

Aλ
i (T )

≤ ε/2. (A24)

Combining (A23) and (A24), we conclude that there exists T large enough so that

P
{

DSλ
i [T ] ≤ 1− δ − ε

}
≤ ε.

Equation (36) now follows by recalling that δ = mini δi. ¥
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B.3 Proof of Lemma 4.1

We prove the result for S̃CS. The proof is similar for SCS. First, note that with a sequence of staffing

levels Nλ = λ/µ + β
√

λ/µ + o(
√

λ/µ), for some β > 0, we have by Theorem 1 of [22] that

QFCFS
λ,µ (Nλ)√

Nλ
⇒ Q̃FCFS(β), in R, as λ →∞,

where P{Q̃FCFS(β) > x} = Pµ(β/
√

µ)e−
β√
µ

x and QFCFS
λ,µ (Nλ) is the steady-state queue length in the

given M/M/N queue. Since Nλ/λ → 1/µ as λ →∞ we also have that

QFCFS
λ,µ (Nλ)√

λ
⇒ Q̂FCFS(β), (A25)

where Q̂FCFS(β) := Q̃FCFS(β)/
√

µ. The convergence in (A25) holds also in expectation by Corollary

1 of [22]. Moreover, E[Q̂FCFS(β)] is a continuous strictly decreasing function of β for β ∈ (0,∞) with

E[Q̂FCFS(β)] ↑ ∞ as β → 0 and E[Q̂FCFS(β)] ↓ 0 as β → ∞ (see [22] as well as Lemmas B.1 and C.1

of [11]). As a consequence, we can choose β∗ so that

E[Q̂FCFS(β∗)] = T̄I . (A26)

We are now ready to prove (37). We will give a proof by contradiction. First, suppose that

lim sup
λ→∞

µN̄λ
Σ − λ√
λ

≥ β∗ + ε,

for some ε > 0. Then, with Nλ = dλ/µ + (β∗ + ε/2)
√

λ/µe we have by equation (A25) that

E

[
QFCFS

λ,µ (Nλ)√
λ

]
→ E

[
Q̂FCFS(β∗ + ε/2)

]
, as λ →∞.

Together with (A26), the above implies that there exist λ large enough with Nλ < N̄λ
Σ and

E

[
QFCFS

λ,µ (Nλ)√
λ

]
≤ T̄I ,
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contradicting the definition of N̄λ
Σ. To complete the argument assume that

lim inf
λ→∞

µN̄λ
Σ − λ√
λ

≤ β∗ − ε,

for some ε > 0. Then, repeating a similar argument we have that for λ large enough

E

[
QFCFS

λ,µ (N̄λ
Σ)√

λ

]
> T̄I ,

contradicting the definition of N̄λ
Σ once again. Overall, we have established that

µN̄λ
Σ = λ + β∗

√
λ + o

(√
λ
)

. (A27)

¥

Remark B.1 (proofs of Theorems 2.1 and 2.2) For the V-Model, the proofs are significantly easier. First,

it is immediate that the conditions of Corollary 6.4 in [19] apply for the V-Model. Indeed, the overall

number of customers in the V-Model under any work-conserving policy is identical to the corresponding

number in the associated M/M/N queue, for which existence of steady-state distributions and tightness of

the sequence of stationary distributions is known from [22]. In particular, in the V Model we can consider

the optimization problem in steady state form as in (1) and (7). Once this is done, the asymptotic feasibility

and optimality are obtained through significant simplification of the proofs given for Theorem 4.2 and 4.3.

More specifically, a detailed proof would be a very simple formalization of the intuitive argument given in

§2 through the use of state-space collapse and the equivalence of the aggregate queue-length in the V model

and the M/M/N model.
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