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1. Introduction

The standard model for a queueing system has arrivals and service completions occurring as discrete

events. That leads to the number in system over time being a stochastic process with a pure-jump

net input process. Nevertheless, stochastic models with continuous net input processes have proven

to be very useful to understand the behavior and manage the performance of queueing systems.

Prominent among these are the Gaussian queues, the focus of this special issue, where the net

input process is modelled as a Gaussian process; see Mandjes [16] and the other papers in this

special issue.

Continuous Gaussian queueing models typically arise as limits of standard queueing models as

the scale increases. The classic case is the heavy-traffic limit for an open network of queues, as

discussed in Whitt [19], leading to reflected Brownian motion. Models with continuous Gaussian

net input processes also have been applied directly as approximations, as they were for queueing
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networks in Harrison [12] using Brownian motion and for large-deviation limits for queues with

strongly dependent input processes in Mandjes [16] using fractional Brownian motion and related

processes.

We here focus on a Gaussian queueing model that is the heavy-traffic limit of a standard queueing

model with an arrival process that is a path-dependent stationary point process. For a stationary

point process, path dependence is characterized by satisfying a non-ergodic law of large numbers.

The long-run behavior of path-dependent arrival processes depends strongly on their early histo-

ries. Path-dependent processes commonly result from self-reinforcing behavior (e.g., epidemics and

financial contagion) but they are of more general interest for queueing models whenever there is

significant uncertainty about the long-run time average of the net input process; see our previous

paper [9] for more discussion. For models with path-dependent arrival processes, useful descriptions

focus on the transient distributions.

In contrast to the Gaussian models in [12, 16], for the path-dependent arrival processes considered

here, the variance in the number of arrivals in a given interval grows faster than the expected

value. For our Gaussian model of the net input process, and indeed for all counting processes

considered in this paper, the variances grow as order t2, while the expected value is proportional

to t. Consequently, the powerful approximation for the steady-state queue length of a Gaussian

queue in Section 5.4 of Mandjes [16] then does not apply. Nevertheless, Functional Central Limit

Theorems (FCLTs) and Heavy Traffic Limit Theorems (HTLTs) do apply for our model and lead

to useful approximations of the transient behavior.

In our previous paper [9], we established a HTLT for a queue with an arrival process that

is a path-dependent stationary point process. In this paper, we extend our previous results to

queueing networks. Queueing networks have been applied in a variety of contexts including traffic,

network, manufacturing, risk, and reliability theory. In an example from reliability theory described

in [18], different failed component may require service at different sequences of service stations for

diagnosis, repair, assembly, and testing. Here, we study open queueing networks comprised of an
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arbitrary number or queues and Markovian routing with an arbitrary routing matrix determining

the sequence of queues that must be visited.

Following Cha and Badia [2], we allow dependence between the external arrival processes to

the different queues in the network by modeling them as superpositions of independent path-

dependent processes. We show that the workload and queue-length processes then converge to

heavy-traffic limits that are reflected Gaussian processes. We also show that the limit processes

themselves satisfy non-ergodic Laws of Large Numbers (LLN) with tractable distributions. Our

prior simulation results in [9] for a single queue with path dependent arrivals in heavy traffic suggest

that the LLN limits are useful for approximating the distribution of the queue-length distribution

at finite times to first order.

The arrival processes to our queueing network are superpositions of independent Generalized

Polya Processes (GPPs). In Cha and Finkelstein [3], GPPs are described as suitable models for

failure processes in reliability and risk theory. As discussed in [9, 10], GPPs are a generalization of

the classical Polya Process derived in Feller [7] from the Polya urn model, an early example of a

path-dependent process. Stationary GPPs were shown in [9] to have non-ergodic LLN limits.

In Cha and Badia [2], superpositions of GPPs were proposed as models of failure processes

when failures of different components can occur simultaneously. For the model in [2], the failure

process for each component is modeled as the superposition of one GPP representing failures

caused by external shocks and a second GPP representing failures from other causes. The first

GPP, which appears in the superpositions of all components, results in their mutual dependence

through simultaneous failures. We generalize the model in [2] to allow general superpositions of

GPPs but focus here on the case in which the GPPs are stationary.

A FCLT was developed for stationary GPPs in [9] with a stationary Gaussian Markov limit

process. We extend that result here to show that a multivariate process built from superpositions of

stationary GPPs has a stationary multivariate Gaussian Markov limit. The dependence between the

superpositions is captured by the covariance structure of that limit. When centered, the Gaussian

limit process satisfies the self-reinforcing multivariate linear Stochastic Differential Equation (SDE),

G(0) = 0 and dG (t) =−B (A−Bt)
−1

G (t)dt+A1/2dW (t) , t≥ 0, (1)
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where A and −B are positive definite matrices and W is standard multivariate Brownian motion.

We then derive an HTLT where such superpositions are the exogenous inputs to a queueing

network. There are then two sources of dependence between the queue-length or workload processes

of the network’s queues: dependence between the exogenous arrival processes, as described above,

and dependence because of the routing of the same customers through multiple queues. We show

that the limit processes for the queue-length and workload are reflected Gaussian Markov processes

expressing all sources of dependence through their parameters. The results are an extension of

results for a single-server queue derived in [9], where an exact transient distribution and a non-

ergodic LLN were obtained for the queue-length limit process. The transient distribution of the

limit process obtained here for a network of queues remains to be determined, but we succeed in

extending the result from [9] for the non-ergodic LLN.

We also describe how the non-ergodic LLN limits for the Gaussian net input and associated queue

length process are modified by conditioning on an observation of their states at an intermediate

time. We show that the later the observation, the smaller the dispersion of the LLN limit for the

conditioned net input process, the closer the conditioned net input process becomes to a Brownian

motion with drift, and the slower its variance grows with time; see Corollary 3. The results therefore

show how how the system becomes more predictable over finite intervals as our knowledge of its

history grows.

The remainder of the paper is organized as follows: Section 2 reviews the definition and properties

of GPPs and describes their superpositions. Section 3 develops a FCLT for multivariate superpo-

sitions of stationary GPPs with a continuous Gaussian process limit. Section 4 then develops two

HTLTs for a network of queues with such superpositions as the exogenous arrival processes; one is

for the workload process in a fluid model, while the other is for the standard queue length process.

Section 5 derives a non-ergodic LLN for the HTLT limit processes and associated conditional pro-

cesses associated with observation later in time. Finally, Section 6 concludes with a brief discussion

of extensions and remaining problems.
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2. The Stationary Generalized Polya Superposition Process (ψ-GPSP)

In this section, we review the definition and properties of univariate GPPs, as developed in [1], [15],

[9], and [10]. We then define a new class of multivariate point processes constructed by superposing

stationary univariate GPPs.

A univariate GPP with parameter triple (κ (t) , γ, β) is defined in [1] as the orderly point process

{N (t) : t≥ 0} with N (0) = 0 and stochastic intensity function

λ∗ (t |Ht ) = (γN (t−)+β)κ (t) ,

where Ht denotes the internal history of N up to time t and κ (t) is a positive integrable real-valued

function, while β and γ are positive real numbers. For any time t≥ 0, N (t) is a count of the number

of arrivals from the GPP up to t. The point process N is an element of the space D ≡D [0, ∞)

of right-continuous real-valued functions with left-hand limits on [0, ∞), endowed with one of

the Skorohod topologies and Borel sigma-field, as in [19]. By the definition of an orderly point

process, a univariate GPP is regular, which means that the probability of simultaneous arrivals is

zero. A Non-Homogenous Poisson Process (NHPP) is the special case of a GPP where γ = 0. For

background on point processes and their intensity functions, see Section 3.3 and 7.2 of [5].

A GPP N is stationary (meaning that it has stationary increments) if

κ (t) =
1

(γt+1)
, t≥ 0. (2)

As in [9], we then say that N is the ψ−GPP with parameter pair (γ,β), where ψ is a mnemonic

for “stationary increments”. A univariate GPP is a ψ-GPP if and only if it has a constant rate, as

Remark 2 of [10] discusses. When (2) holds,

E [N (t)] = βt and Cov [N (s) ,N (t)] = βs+βγst, and 0≤ s≤ t, (3)

so that N has constant rate β and V ar(N(t) = βt+βγt2, which is of order t2 as t increases.

Before turning to multivariate processes, we describe vector and matrix notation that we will

use throughout this document.
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Notation. We use the convention that a vector x ≡ (x1, x2, . . . , xm) is a column vector with

coordinates that are indexed through subscripts or superscripts. Superscripts are used for the

coordinate processes of multivariate stochastic processes, which are written in bold font, e.g.,

X ≡ (X1,X2, . . . ,Xm). Subscripts are used for the coordinates otherwise as in x above. The trans-

pose of a vector or matrix x is written as xT . For a vector x, we let diag (x) denote the square

diagonal matrix with (diag (x))i,i = xi and (diag (x))i,j = 0 for i 6= j. For a real matrix Σ, we let

Σ1/2 denote another real matrix of the same dimension satisfying
(
Σ1/2

)(
Σ1/2

)T
= Σ. (When Σ

is real positive definite, Σ1/2 always exists.) Let a ∨ b≡max (a, b) for a and b in R and (c∨ d)≡

((c1 ∨ d1) , (c2 ∨ d2) , . . . , (ck ∨ dk)) for c and d in Rk. Let Dm be the m-dimensional product space

of functions in D, endowed with the product topology. If x and y are in Dm for some m≥ 1, let

x ◦ y denote their coordinate-wise composition in Dm, i.e., (x ◦ y)i = xi ◦ yi. We define Hadamard

notation for other coordinate-wise operations on two vectors. In particular, for two vectors x and y

of the same size, let x⊙y be their coordinate-wise product, i.e., (x⊙ y)i = xiyi. Also let x⊙v denote

coordinate-wise exponentiation of the vector x by the real scaler v, i.e., (x⊙v)i = xv
i .

We now define a stationary multivariate point process constructed from superpositions of inde-

pendent univariate ψ-GPPs. We define a multivariate ψ−GPP as any multivariate point process

with coordinate processes that are univariate ψ−GPP s. Let V ≡ (V 1, V 2, . . . , V m) form≥ 2 be the

multivariate ψ−GPP in Dm with independent coordinate process V i that is a univariate ψ−GPP

with parameter pair (γi, βi) for i= 1, . . . ,m. Let γ ≡ (γ1, γ2, . . . , γm) and β ≡ (β1, β2, . . . , βm). We

then say that V has parameters (γ,β).

The paper [2] provides motivation for the superposition process that we will define. There,

m+ 1 independent GPPs are mapped into m superpositions with each superposition of the form

Ni = Vi+Vm+1 for 1≤ i≤m. Here, we consider only superpositions of ψ−GPPs, but we otherwise

generalize the model in [2] in two ways. First, we mapm independent ψ-GPPs into k superpositions

for any 1 ≤ k ≤m by multiplying a vector of independent ψ −GPPs by a matrix. Second, the

elements of the matrix are non-negative integers, so that the coefficients used by the superposition
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can be greater than one. The resulting superpositions are therefore counting processes (integer-

valued) but can have jumps greater than one.

Definition 1. A process N in Dk for k ≥ 1 is a stationary Generalized Polya Superposition

Process (ψ-GPSP) with parameters (γ,β,M) if

N ≡
(
N1,N2, . . . ,Nk

)
=MV

where V is a multivariate ψ-GPP in Dm for m ≥ k with independent coordinate processes and

parameters (γ,β), and M is a matrix of non-negative integers with dimension k×m.

The superpositions are mutually dependent when they contain univariate ψ-GPPs in common.

They are not, in general, regular. When superpositions contain univariate ψ-GPPs in common, an

arrival from a common ψ-GPP results in simultaneous arrivals for the superpositions in which it

appears. When the matrix M contains elements greater than one, the individual superpositions

have jumps greater than one, which also correspond to simultaneous arrivals.

The mean and covariance functions of a ψ-GPSP depend on time in the same way as a ψ-GPP.

Proposition 1 (Mean and covariance function of a ψ-GPSP). For a ψ-GPSP N with

parameters (γ,β,M),

E [N (t)] =Mβt and Cov [N (s) ,N (t)] =M diag (β)MT s+M diag (β⊙ γ)MT st

for 0≤ s≤ t.

Proof. Using Definition 1, N =MV , where

E [V (t)] = βt and Cov [V (s) ,V (t)] = diag (βs+(β⊙ γ)st) for 0≤ s≤ t.

The result for the mean then follows trivially, and the result for the covariance follows because

Cov [N (s) ,N (t)] = E

[
(MV (t)−Mβt) (MV (s)−βMs)

T
]

= MCov [V (s) ,V (t)]MT , 0≤ s≤ t.

The coordinate processes of a multivariate ψ-GPP need not be independent. Here is an example

where the coordinate processes are dependent.
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Proposition 2 (A multivariate GPP with dependence). When N in Dk is the ψ-GPSP

with parameters (γ,β,M), where γ1 = γ2 = . . .= γm = γ̂ > 0, and the matrix M contains only zeros

and ones, then the coordinate process N j is a univariate GPP with parameter pair
(
γ̂, (Mβ)j

)
for

j =1, . . . , k.

Proof. This result follows immediate from Theorem 1 of [2].

Because the coordinate processes in Proposition 2 are univariate GPPs, they are individually

regular. Such processes are called “marginally regular” in [2], where “marginal process” has the

same meaning as “coordinate process”.

We conclude this section by giving a concrete example from [2].

Example 1. (motivating example) Consider a multivariate ψ−GPP with independent marginal

one-dimensional ψ−GPP ’s of dimensionm= 3. Let V ≡ (V 1, V 2, V 3) be the multivariate ψ−GPP

in D3 with independent coordinate processes V i that are univariate ψ −GPP ’s with parameter

pairs (γi, βi) for i= 1, . . . ,3. Let N be the associated ψ-GPSP with parameters (γ,β,M), whereM

is the 2× 3 matrix

M =



1 0 1

0 1 1


 (4)

Then Proposition 1 holds with

E [N (t)] = ((β1 +β3) t, (β2 +β3) t) and (5)

Cov [N (s) ,N (t)] =




(β1 +β3)s+(β1γ1 +β3γ3)st β3s+β3γ3st

β3s+β3γ3st (β2 +β3)s+(β2γ2 +β3γ3)st


 (6)

for 0≤ s≤ t.

For further insight, we now consider the symmetric case with parameter pairs (γi, βi) = (γ̂, β̂) for

i= 1, . . . ,3. Hence, there is only the single parameter pair (γ̂, β̂). Then Proposition 1 holds with

E [N i(t)] = 2β̂t for i= 1,2 and

Cov [N (s) ,N (t)] =



2β̂s(1+ γ̂t) β̂s(1+ γ̂t)

β̂s(1+ γ̂t) 2β̂s(1+ γ̂t)


 , (7)
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so that

V ar [N i(t)] = 2β̂t(1+ γ̂t) and V ar [N 1(t)+N2(t)] = 6β̂t(1+ γ̂t). (8)

The dependence makes the variance of the sum 3 times the variance of one term. The index of

dispersion (IDC) of N i(t) is thus Ii(t)≡ V ar [N i(t)]/E [N i(t)] = 1 + γ̂t for each i. The index of

dispersion of the sum is thus 1.5(1+ γ̂t). Hence, for small γ̂t, either due to small γ̂ or small t or

both, the processes behave locally like a Poisson process, but for larger γ̂t, the process is much

more highly variable.

It is significant that the structure of the ψ−GPSP exposed by this example also applies to the

mean and variance of the limiting Gaussian ψ−GMP net input process, introduced in the next

section, because that structure is inherited by the limit; see Remark 2 at the end of §3.2. Recall

that a Gaussian process is fully determined by its mean and covariance functions.

3. Functional central limit theorem for ψ-GPSPs

We now derive a FCLT for a sequence of ψ-GPSPs. We will show that these converge in distribution

to a multivariate Gaussian Markov Process with stationary increments, called a ψ-GMP, studied

in [8].

3.1. ψ-GMPs

We first review the definition and properties of a ψ-GMP from [8].

Definition 2. A process G in Dk ≡Dk [0, ∞) for k≥ 1 is a ψ-GMP with parameters (A,B) if

it is a zero-mean Gaussian process with G (0) = 0 and

Cov [G (s) ,G (t)] =E
[
G (t)Gt (s)

]
= s (A−Bt) , 0≤ s≤ t <∞,

where A and B are symmetric matrices of k×k real scalars, A is positive definite, and B is negative

definite.

The definition of a ψ-GMP in [8] requires B only to be symmetric, but it may then be necessary to

restrict G to Dk [0, T ] for some T <∞. By Theorem 3 of [8], G has a representation as a solution to

the linear stochastic differential equation (SDE) in (1), where W is standard k-variate Brownian
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motion (with mean zero and covariance matrix I, the identity matrix). It follows that a ψ-GMP

has almost surely continuous sample paths. When A and B have the assumed properties, A1/2

exists, and (A−Bt)
−1

always exists because A−Bt is positive definite for all t ≥ 0. If we relax

the negative definite assumption for B and assume that B = 0, then G is a multivariate Brownian

motion with zero drift and Cov [G (s) ,G (t)] = sA for 0≤ s≤ t <∞.

The following results describe properties of ψ-GMPs:

Proposition 3 (Linear map of a ψ-GMP). If Ĝ is a ψ-GMP in Dm with parameters
(
A= Â,B = B̂

)
as defined in Definition 2, and M is a real matrix of dimension k × m with

rank (M) = k, where 1≤ k≤m, then G=MĜ is a ψ-GMP in Dk with parameters

(
A=MÂMT ,B =MB̂MT

)
.

Proof. Because Ĝ is a zero-mean Gaussian process with Ĝ (0) = 0, the process G ≡MĜ has

those same properties. Using the definition of a ψ-GMP,

Cov [G (s) ,G (t)] =E
[
G (t)GT (s)

]
= E

[
MĜ (t) Ĝ

T
(s)MT

]

= s
(
MÂMT −MB̂MT t

)
for 0≤ s≤ t.

With the assumed properties of Â, B̂, andM , the parameter matrix A=MÂMT is symmetric pos-

itive definite and B =MB̂MT is symmetric negative definite. Therefore, G satisfies the definition

of a ψ-GMP with parameters (A,B).

If G is a ψ-GMP in Dk and ω is a vector in Rk, then the process X (t)≡ ωt+G (t) for 0≤ t <∞

is called a ψ-GMP with drift ω. The next two lemmas describe conditional ψ-GMPs with drift as

defined by their conditional finite-dimensional distributions. The first of those lemmas states that

conditioning a ψ−GMP with drift on its state at the end of an interval results in a multivariate

Brownian bridge with a new drift on the interval.

Proposition 4 (Lemma 2 of [8]). If X (t)≡ ωt+G (t) in Dk for t≥ 0, where ω is a vector

in Rk and G is a ψ-GMP in Dk with parameters (A,B) as defined in Definition 2, and

X t (s)≡ (X (s) |X (t)) for 0≤ s≤ t,
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then Xt (s) = st−1
X (t) +U t (s) a.e. for 0 ≤ s ≤ t, where U t is a zero-mean Brownian bridge (a

Gaussian process) in Dk, independent of X (t), with U t (0) = 0 and

Cov [U t (s1) ,U t (s2)] =E
[
U t (s2)U

T
t (s1)

]
= s1

(
A− s2t

−1A
)

for 0≤ s1 ≤ s2 ≤ t.

Remark 1. Under the more permissive definition of a ψ-GMP from [8], where the parameter

matrixB need only be symmetric but need not be negative definite,U t is a ψ-GMP with parameters

(A, t−1A). Because the conclusions of Proposition 4 do not depend on B, the same process Xt is

obtained as B→ 0 and X then approaches a multivariate Brownian motion with drift. The process

X t therefore can be described as a Brownian motion with drift conditioned on its end state and

therefore a Brownian bridge.

The next proposition is analogous to the restart property for GPPs from [1]; see also Proposition

1 of [9] for a statement of that result. In this case, the ψ-GMP is conditioned on its state at the

start of an interval.

Proposition 5 (Lemma 4 of [8]). If X (t)≡ ωt+G (t) in Dk for t≥ 0, where ω is a vector

in Rk and G is a ψ-GMP in Dk with parameters (A,B) as in Definition 2, and

X
s (t)≡ (X (t+ s)−X(s)|X (s)) for 0< s≤ t+ s,

then X
s (t) = ωst+G

s (t) a.e. for t ≥ 0, where ωs = ω −B (A−Bs)
−1

(X (s)− sω) and G
s is a

ψ-GMP in Dk, independent of X (s), with parameters
(
A, Bs =B (A−Bs)

−1
A
)
.

3.2. Convergence to a ψ-GMP

We show convergence of a normalized sequence of ψ-GPSPs to a ψ-GMP with zero drift. For k ≥ 1,

let (Dk,WM1) denote the space Dk ≡Dk [0,∞) endowed with the Skorohod weak M1 topology,

and let ⇒ denote convergence in distribution in (Dk,WM1); see Sections 12.3 and 12.9 of [19]

for background. When the limit processes are continuous, as all limits in this paper will be, the

WM1 topology reduces to the topology of uniform convergence on compact sets (u.o.c.) in each
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of the coordinates. We will use the WM1 topology primarily to avoid measurability issues with

the uniform topology discussed in Section 11.5.3 of [19]. The Borel σ−field generated by the

WM1 topology coincides with the Kolmogorov σ−field generated by the coordinate projections.

Throughout, n will always refer to the sequence index used for limit theorems. When n is used as

a superscript for a process, it is not to be confused with a coordinate index or an exponent.

The following result for convergence of multivariate ψ-GPPs with independent coordinate pro-

cesses is the immediate consequence of a result for convergence of univariate ψ-GPPs from Theorem

4 of [9] and presented in a more convenient form for the application here in Proposition 4 of [10].

Theorem 4 of [9] describes a FCLT for sums of i.i.d. ψ-GPPs as the number becomes becomes

large. Because a single ψ−GPP with parameter β = nb has the same distribution as a sum of n

ψ-GPPs with parameter β = b, Proposition 4 of [10] provides a FCLT with the same limit as in

Theorem 4 of [9] for a sequence of individual ψ-GPPs, but where the parameter β is scaled by the

sequence index. The scaling therefore differs from the scaling of time used by Donsker’s theorem

to obtain a Brownian motion limit for ergodic processes. Donsker’s theorem is applied in Section 4

to obtain Brownian motion limits for the service and routing process for queueing network models.

Lemma 1 (Proposition 4 of [10]). If V n is a multivariate ψ-GPP in Dm with independent

coordinate processes and parameters (γ,β = nb), where n ≥ 1 is a positive integer and b ≥ 0 is a

vector in Rm, and V n (t)≡ n−1/2 (V n (t)−nbt), then V n ⇒V in (Dm,WM1) as n→∞, where V

is the ψ-GMP with parameters
(
A= diag (b) , B =−diag (b⊙ γ)

)
.

Proof. Using the assumed independence of the coordinate processes V
n,i for i = 1, . . . ,m, the

result follows from Proposition 4 of [10] and Theorem 11.4.4 of [19].

We can now state and prove a result for convergence of ψ-GPSPs to a ψ-GMP.

Theorem 1 (Convergence to a ψ−GMP ). If N
n in Dk is the ψ-GPSP with parameters

(γ,β = nb,M), where n≥ 1 is a positive integer and rank (M) = k, and if

Nn (t)≡ n−1/2 (Nn (t)−nMbt) , (9)

then Nn ⇒ N in (Dk,WM1) as n → ∞, where N is the ψ − GMP with parameters

(A=M (diag (b))MT ,B =−M (diag (b⊙ γ))MT ).
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Proof. Because (Dk,WM1) is a product topology, mappings on it are continuous if they are con-

tinuous in each coordinate. Multiplication by a matrixM can be viewed for each coordinate process

in D as a combination of addition and multiplication by constants. In general, addition is not a

continuous mapping on (D,WM1), but Corollary 12.7.1 of [19] states that it is continuous when

the limit process is continuous, as it is here. Remark 12.71 on page 411 of [19] implies that addition

is measurable on (D,WM1). Hence, in the case that is relevant here, multiplication by the matrix

M is a continuous measurable mapping on (Dk,WM1). By Definition 1, Nn =MV
n, where V n is

defined in Lemma 1. Lemma 1 and Theorem 3.4.3 of [19] then imply thatNn =MV n ⇒MV ,where

V is also defined in Definition 1. The result thatMV =N then follows from Proposition 3. Clearly,

A =M (diag (b))MT is symmetric positive definite, and B = −M (diag (b⊙ γ))MT is symmetric

negative definite.

Remark 2. A comparison of Proposition 1 and Theorem 1 shows that the prelimit process Nn

has the same covariance function as the limit process N for all n≥ 1.

4. HTLTs for queueing networks with ψ-GPSP arrivals

We now state and prove HTLTs for the multivariate workload (buffer content) and queue-length

processes for queueing networks with infinite buffers.

For our model of the workload process, work arrives to each queue exogenously (from outside the

network) in discrete quanta but departs from each queue as a fluid. Proportions of work departing

each queue are routed out of the network or to other queues for service.

For our model of the queue-length process, customers arrive to each queue as a point process,

receive service, and then are routed out of the network or to other queues for service.

4.1. The reflection map

The HTLTs for both models will involve the multidimensional reflection map, which we now

describe. Let P be a substochastic matrix (non-negative with row sums less than or equal to one)

of dimension k× k. Let Q= P T be such that Qp → 0 as p→∞. The multidimensional reflection
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map (φ,ψ)≡ (φ,ψ)Q : Dk →D2k is a mapping of any x in Dk into a unique (y, z) = (φ (x) ,ψ (x))

in D2k such that

z = x+(I −Q) y≥ 0,

yi is nondecreasing with yi (0) = 0 for i=1,2, . . . , k, and
∫ ∞

0

zi (t)dyi (t) = 0 for i=1,2, . . . , k.

The element y is called the regulator component and z is called the content component of the

reflection map. The element x is called the reflection map’s net input. For background, including

proof of existence and uniqueness of the multidimensional reflection map, see Chapter 14 of [19].

4.2. Queueing network fluid model

Our model for the queueing-network workload process is based on the fluid model developed in

Sections 14.2 and 14.6 of [19]. Work will arrive to each queue from outside the network in successive

quanta. Each queue’s server will process and output work continuously at a constant rate whenever

the queue is not empty. The quanta sizes for any queue will have a unit mean and finite variance, but

the quanta variance and rate at which work is served may vary from queue to queue. A proportion

0≤ Pij ≤ 1 of the output of work from queue i will be routed to queue j to serve as input, and a

proportion 1−∑j Pij > 0 will leave the network. The matrix P ≡ (Pij) will be called the routing

matrix. Because we represent multivariate processes as column vectors, it will be convenient to

define Q≡ P T , which we assume has the property that Qp → 0 as p→∞ so that work eventually

leaves the network. The transposed matrix Q is called the reflection matrix. A queue’s workload

(or total buffer content content) at each point in time is the work that has arrived to the queue

but has not yet been served.

4.2.1. Net input process for the fluid model. We define the queueing network’s net input

process and prove a FCLT for it. The limit will be a multivariate ψ−GMP with drift.

We consider a sequence of models indexed by n ≥ 1. Each model has a network of k queues

and the k × k reflection matrix Q, which is the same for all models. In the nth model, quanta
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of work arrive to the queueing network from outside as a ψ-GPSP N
n in Dk with parameters

(γ,β = nb,M). The coordinate processNn,i is the exogenous arrival process of work quanta to queue

i. The sequence of work quanta from successive arrivals to queue i is the sequence {Vj,i : j ≥ 1} of

i.i.d random variables with E [Vj,i] = 1 and Var [Vj,i] = c2si. The same sequence will apply for queue i

in all models. We assume that the sequences {Vj,i : j ≥ 1} for different queue indices i are mutually

independent and independent of the exogenous arrival process. Let Sn ≡ (Sn,1, Sn,2, . . . , Sn,k), where

Sn,i (t)≡
∑⌊nt⌋

j=1 Vj,i, and

Sn (t)≡ n−1/2 (Sn (t)−ntI) , t≥ 0.

Then, the classical Donsker’s theorem in Section 4.3 of [19] implies that

Sn ⇒ diag (cs)W in
(
Dk,WM1

)
as n→∞, (10)

where cs = (cs1, cs2, . . . csk), and W is standard k-variate Brownian motion. Our assumptions about

the distribution of work quanta enter into the results that follow only through that limit. As

discussed in [10], the same limit holds with a different interpretation of cs when the assumption

that {Vj,i : j ≥ 1} is an i.i.d. sequence is relaxed in various ways.

The total exogenous input process of work to model n is T n ≡ (T n,1, T n,2, . . . , T n,k), where

T n,i (t)≡
Nn,i(t)∑

j=1

Vj,i for i= 1, . . . , k.

The random variable T n,i (t) represents the total service requirements of all exogenous arrivals in

Nn,i to queue i over the interval [0, t]. For the nth model, let nrni be the service rate of work at

queue i, where rn ≡ (rn1 , r
n
2 , . . . , r

n
k )> 0 is in Rk. Then the net input process of work for model n is

defined as

X
n (t) ≡ T

n (t)+Qnrnt−nrnt

= T
n (t)− (I −Q)nrnt, t≥ 0. (11)

The random variable Xn,i (t), which can be negative, represents what the content of queue i would

be at time t if the queues were initially empty and always busy, so that the output from all queues
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occurred continuously at their respective rates nrj for j = 1,2, . . . , k without interruption due to

idleness.

We now state and prove a FCLT for joint convergence of the net input process and other

processes. Let e≡ e (t) = t, and

Nn (t)≡ n−1/2 (Nn (t)−nMbt) , T n (t)≡ n−1/2 (T n (t)−nMbt) ,

and Xn (t)≡ n−1/2
X

n (t) , t≥ 0 and n≥ 1. (12)

Lemma 2 (FCLT for the net input process). If (Nn, T n,Xn) in D3k are defined as in

(12), where N
n from (9) is the ψ-GPSP with parameters (γ,β = nb,M), and

n1/2 (Mb− (I −Q) rn )→ ω in R
k as n→∞, (13)

then (Nn, T n,Xn) ⇒ (N , T ,X) in (D3k,WM1) as n → ∞, where N is a ψ-GMP with

parameters (A=M (diag (b))MT ,B =−M (diag (b⊙ γ))MT ), T is the ψ-GMP with parameters

(A=M (diag (b))MT + diag (c⊙2
s ⊙Mb) ,B =−M (diag (b⊙ γ))MT ), and X = T +ωe.

Proof. By Theorem 1, Nn ⇒ N . Coordinate-wise composition is continuous on (Dk,WM1)

because (Dk,WM1) is a product topology, and composition is continuous in (D,WM1) in each

coordinate under the conditions of Theorem 13.3.1 of [19]. Then

T n ≡ n−1/2 (T n −nMbe)

= n−1/2
(
S

n ◦
(
n−1Nn

)
−nMbe

)

= n−1/2
((
n1/2

Sn + Ine
)
◦
(
n−1

N
n
)
−nMbe

)

= Sn ◦
(
n−1/2

Nn +Mbe
)
+Nn ⇒ diag (cs)W ◦ (Mbe)+N ,

where the convergence follows from (10) and Theorem 3.4.3 of [19]. Because

Cov (W (s) ,W (t)) = sI for s≤ t,

it follows that T n ⇒T . Using the above result and (13),

Xn≡ n−1/2
X

n = n−1/2 (T n −nMbe)+n1/2 (Mb− (I −Q) rn)e

⇒ T +ωe.

Joint convergence follows from the continuous mapping theorem in Theorem 3.4.3 of [19].
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4.2.2. HTLT for the fluid model. The potential output rate from each queue is equal to

its constant service rate when the queue has positive content. Some of that potential output will

be lost when the queue is empty. The multivariate workload process for a network of queues is

obtained from the net input process by adjusting for the cumulative lost potential output process.

If, for the nth model, Zn in Dk is the workload process, Ln in Dk is the cumulative lost potential

output process, and X
n is the net input process from (11), then

Z
n (t) = Z

n (0)+T
n (t)+Q (nrnt−L

n (t))− (nrnt−L
n (t))

= Z
n (0)+X

n (t)+ (I −Q)Ln (t)≥ 0 for all t≥ 0.

For Ln to have the interpretation as the cumulative lost potential output, its coordinate processes

Ln,i must each be non-decreasing with Ln,i (0) = 0 and must increase only at times when Zn,i is

equal to zero. We recognize those properties from the description of the reflection map (φ,ψ) :

Dk →D2k in Section 4.1 and define

(Zn,Ln)≡ (φ (Zn (0)+X
n) ,ψ (Zn (0)+X

n))

and

(Zn,Ln)≡
(
n−1/2

Z
n, n−1/2

L
n
)
. (14)

Theorem 2 (HTLT for the workload process). Under the assumptions and definitions of

Lemma 2 and (14), if Zn (0)⇒Z (0)≥ 0 in Rk, then

(Nn, T n,Xn,Zn,Ln )⇒ (N , T ,X,Z,L) in
(
D5k,WM1

)
as n→∞,

where (Z,L)≡ (φ (Z (0)+X) ,ψ (Z (0)+X)).

Proof. The result follows from Lemma 2, Theorem 14.5.2 of [19] for the continuity of the reflection

map, and Theorem 3.4.3 of [19] for the joint convergence.
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4.3. Standard open queueing network model

The standard Open Queueing Network (OQN) model defined below for the queue-length process

is based on the framework developed in Section 14.7 of [19] for queueing networks with service

interruptions that occur regardless of whether queues are idle. Here, we consider the special case

without such service interruptions. Each queue has a single server with the first-in first-out dis-

cipline. We again consider a sequence of models indexed by n ≥ 1. The queueing network for all

models will consist of k queues. For each pair of queues (i, j), let Ri,j (p)≥ 0 for p≥ 1 be the total

number of customers immediately routed to queue j among the first p departures from queue i,

such that
∑n

j=1R
i,j (p)≤ p. We call R the routing process, which will be the same for all models

in the sequence of models.

For the nth model, customers arrive to the queueing network from outside as the ψ-GPSP N
n in

Dk with parameters (γ,β = nb,M). The coordinate process Nn,i is the exogenous arrival process

of customers to queue i.

To specify the service time process for queue i, first let
{
Ši (t) : t≥ 0

}
in D for i= 1,2, . . . , k be

a renewal counting process associated with a sequence of positive i.i.d random variables having

mean µ−1
i > 0 and coefficient of variation (standard deviation divided by the mean) csi. We also

assume that the processes Ši for i = 1, . . . , k are mutually independent and independent of the

arrival process. We next introduce an additional scaling depending on n to introduce a drift in the

limit, as we will need for the HTLT in Theorem 3 below. In particular, let

S̃n,i (t)≡ Ši (ηn,it) , Sn,i (t)≡ S̃n,i (nt) , and Si
n (t)≡ n−1/2

(
Sn,i (t)−µint

)
, t≥ 0. (15)

The counting process Sn,i is the potential service process for queue i, i.e., the process of service

completions that would occur at queue i if queue i were always busy. Let µ ≡ (µ1, µ2, . . . µk),

cs ≡ (cs1, cs2, . . . csk), ηn ≡ (ηn,1, ηn,2, . . . , ηn,k), S
n ≡ (Sn,1, Sn,2, . . . , Sn,k), and Sn ≡ (S1

n, S
2
n, . . . , S

k
n).

Lemma 3 (Convergence of service process to multivariate BM with drift). If

√
n (ηn − 1)→ η in Rk as n→∞, (16)
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where 1 is the vector of 1s in Rk, then

Sn ⇒ diag
(
µ⊙1/2 ⊙ cs

)
W s+µ⊙ ηe in

(
Dk,WM1

)
as n→∞.

where W s is standard k− dimensional Brownian motion.

Proof. For the nth model, let Ši
n be the standard scaling of Ši for its FCLT involving translation,

time scaling by n and spatial scaling by
√
n, i.e.

Ši
n (t)≡ n−1/2

(
Ši (nt)−µint

)
, t≥ 0.

By Donsker’s theorem, Theorem 4.3.1 of [19], and the equivalence between FCLT’s for partial sums

and associated counting processes, from Corollary 7.3.1 of [19],

Ši
n ⇒ µ

1/2
i csiW

i
s in (D,WM1) as n→∞,

where W i
s is standard Brownian motion independent of W j

s for j 6= i. The result in Lemma (16)

then follows coordinate-wise from Theorem 13.3.1 of [19]; see the proof of Corollary 3 of [9] for

essentially the same argument. Convergence in Dk then follows from the assumed independence of

the coordinate processes using Theorem 11.4.4 of [19].

In Section 14.7 of [19] the routing process is assumed to satisfy a FCLT with a long term rate

(translation term) Pi,j corresponding to the long-term proportion of customers routed from queue

i to queue j. To obtain a limit for the queue-length process that is a multivariate reflected ψ-

GMP with drift, we must make more specific assumptions about the routing process than those

required in Section 14.7 of [19]. In particular, we will consider the common case of Markovian

routing, where the probability a customer departing from queue i is routed to queue j is equal to

Pi,j, independently of prior routing decisions and the arrival and service processes, where P is a

nonnegative substochastic k × k matrix with transpose Q ≡ P T satisfying the assumptions for a

reflection matrix of Section 4.1. Then,

Rn (t)≡ n−1/2 (R (⌊nt⌋)−Pnt) ⇒ R̂ (t)

≡
((

Γ1
)1/2

W r1 (t) ,
(
Γ2
)1/2

W r2 (t) , ...,
(
Γk
)1/2

W rk (t)
)T

(17)
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in
(
Dk2 ,WM1

)
for t≥ 0, where W ri for i= 1, . . . , k are independent standard Brownian processes

in Dk, independent of the arrival and service processes, and Γi for i= 1 . . . , k are k× k covariance

matrices with

Γi
j,j =Qj,i

(
1−Qj,i

)
and Γi

j,l =−Qj,iQl,i for j 6= l;

(Recall that the Markovian routing induces the multinomial distribution and thatQ is the transpose

of P ; see (7.6) on page 178 of [11].)

With the above definitions, the arrival process Nn,i(t) and potential service process Sn,i(t)

already grow at a mean rate proportional to nt. For consistency with the time scaling used in

Theorem 14.7.4 of [19], we define An,i(t)≡Nn,i(t/n), t≥ 0, and note that S̃n,i (t) = Sn,i (t/n), t≥ 0

by (15). We will thus get our original processes back without change when we scale time by n as in

Theorem 14.7.4 of [19] and Theorem 3 below. We can now describe the queue-length process Zn,i

for the ith queue in the nth model as

Zn,i (nt) =Zn,i (0)+An,i (nt)+
k∑

j=1

Rj,i

(
S̃n,j

(
Bn,j (nt)

))
− S̃n,i

(
Bn,i (nt)

)
, t≥ 0, (18)

where

Bn,i (t)≡
∫ t

0

1{Zn,i(s)>0}ds. (19)

The process Bn,i (t) has the interpretation as the cumulative busy time of server i during the

interval [0, t]. Let Zn ≡ (Zn,1,Zn,2, . . . ,Zn,k) and B
n ≡ (Bn,1,Bn,2, . . . ,Bn,k). By Theorem 14.7.1 of

[19], there is a unique solution (Zn,Bn) in D2k with those properties.

A key step in Section 14.7 of [19] is representing the queue length process defined above as the

image of the reflection map applied to an appropriate potential net input process. Theorem 14.7.2

of [19] constructs such a potential net input process, which appears in (7.5)-(7.8) on p. 498 of [19].

It’s jth coordinate process is

Xn,j (nt) ≡
(

k∑

i=1

Mj,ibi +
k∑

i=1

Pi,jµi −µj

)
nt +

[
An,j (nt)−n

k∑

i=1

Mj,ibit

]

+
k∑

i=i

[
Ri,j

(
S̃n,i

(
Bn,i (nt)

))
−Pi,jS̃

n,i
(
Bn,i (nt)

)]
+

k∑

i=i

Pi,j

[
S̃n,i

(
Bn,i (nt)

)
−µiB

n,i (nt)
]

−
[
S̃n,j

(
Bn,j (nt)

)
−µjB

n,j (nt)
]

(20)
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for 1≤ j ≤ k. In (20) above as in (7.5)-(7.8) of [19], there are terms that cancel in order to group the

terms to correspond to those of the net input limit process obtained below. Theorems 14.7.2 of [19]

shows that queue-length process in (18) can be represented as Zn = φ (Xn), where X
n is defined

by (20) and φ is the content component of the reflection map from Section 4.1 with Q= P T . The

representation in (20) therefore will support a HTLT showing joint convergence of the net input

and queue-length processes.

We now state and prove the HTLT for the standard OQN with Markovian routing and the ψ-

GPSP arrival process. In the statement of the result, X is the limit for the sequence of normalized

net input processes, and its reflection Z is the limit of the sequence of normalized queue length

processes. The limit for the net input process is remarkably tractable because it is a ψ-GMP and

thus a Gaussian process.

Theorem 3 (HTLT for the net input and queue-length processes). If

Nn (t) ≡ n−1/2 (Nn (t)−nMbt) , Xn (t)≡ n−1/2
X

n (nt) , Zn (t)≡ n−1/2
Z

n (nt) ,

Sn (t)≡ n−1/2 (Sn (t)−µnt) , X̂n (t)≡ n−1
X

n (nt) , Ẑn (t)≡ n−1
S

n (nt) ,

Ŝn (t)≡ n−1
S

n (t) , and B̂n (t)≡ n−1
B

n (nt) for t≥ 0,

where N
n is the ψ-GPSP with parameters (γ,β = nb,M) as in Theorem 1 and the definitions in

(15) and (18)-(20) apply, and if Zn (0)⇒Z (0)> 0 in Rk, µ≡ (I −Q)
−1
Mb, and (16) and (17)

apply, then

Xj
n =N j

n +
k∑

i=1

(Rn)i,j ◦ Ŝi
n ◦ B̂i

n +
k∑

i=1

Pi,jS
i
n ◦ B̂i

n −Sj
n ◦ B̂j

n for j = 1,2, . . . , k, (21)

Zn = φ (Zn (0)+Xn) where φ is the content component of the reflection map (φ,ψ) ≡ (φ,ψ)Q :

Dk →D2k, and

(Nn,Sn,Xn,Zn)⇒ (N ,S,X,Z) in
(
D4k,WM1

)
as n→∞,
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where

N is the ψ-GMP with parameters
(
A=M (diag (b))MT , B =−M (diag (b⊙ γ))MT

)
,

S = diag
(
µ⊙1/2 ⊙ cs

)
W

s
+µ⊙ ηe,

W
s
is standard Brownian motion in Dk,

X ≡N + R̂
T
µ⊙1/2 − (I −Q)S is the ψ-GMP with drift ω ≡− (I −Q) (µ⊙ η) ,

and parameters
(
A=M (diag (b))MT +

k∑

i=1

Γiµi +(I −Q)diag
(
µ⊙ c⊙2

s

)
(I −Q)

T
,

B =−M (diag (b⊙ γ))MT
)
, and

Z = φ (Z (0)+X) .

Proof. The assumptions of Theorem 14.7.4 of [19] hold with H = 1/2. We elaborate on the

proof there because the net input process is not clearly identified on lines 6-7 on p. 502. From

the convergence established on line 3 from the bottom of p. 501 and (7.5)-(7.7), we get X̂ i
nj

⇒ 0e

through the subsequence where the busy-time process converges. By Theorems 14.2.5 and 14.7.2,

we then get B̂i
nj

⇒ e and apply Theorem 11.4.5 to establish the Functional Weak Law of Large

Numbers (FWLLN) (X̂nj
, Ẑnj

, B̂nj
)⇒ (0,0,1e) (where 0 and 1 in that context are the vectors of

all zeros and ones in Rk). Since that limit holds for all subsequences, we get the full sequence

converging as stated there. The essential mathematical tool for proving convergence of (21) to the

net input limit then is the preservation in the limit of composition with linear centering as in

Section 13.3 of [19], in particular by application of Corollary 13.3.2.

In (7.18) of [19], λ ≡Mb, µ and R, and P are independent of n, while the displayed limits

in (7.20) are established earlier in this paper. Since we have assumed that there are no service

interruptions when the content of each queue is positive, Dn ≡ 0 in (7.20) there. The condition

that the joint limit is in D1 w.p.1 (i.e., that it can have discontinuities in only one coordinate at

a time) is satisfied because the limit processes have no discontinuities. The limits in (7.21) there

holds because the matrix P and the normalization constants used for the definitions of Nn and

Sn do not depend on n. The limit in (7.22) there holds with c ≡ 0 since we have assumed that
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µ≡ (I −Q)
−1
Mb, i.e., µ is the solution of the traffic rate equation described in (5.7.1) on page 271

of [17]. The conclusions then follow from (7.23) and (7.24) there and the results of Theorem 1 and

Lemma 3 here. The drift for the net input process limit is the result of the drift from the potential

service process limit, as established by Lemma 3.

Example 2. (a symmetric two-queue example.) We start by constructing a symmetric two-

queue example with Markovian routing. We first consider the standard case with Brownian motion

limits for the arrival, service, and routing processes discussed in Remarks 14.7.1-14.7.4 of [19] and

then afterwards extend to the case of a ψ-GMP limit for the arrival process. Let the 2× 2 routing

matrix P be symmetric with P1,2 = P2,1 = θ, 0 ≤ θ < 1, and P1,1 = P2,2 = 0, so that there is no

immediate feedback. We adopt all the simplifications in Remarks 14.7.1-14.7.4 of [19], so that the

limit process for the net input process will be Brownian Motion (BM) with drift, while the limit

for the queue length process will be Reflected Brownian Motion (RBM). In particular, we assume

that N i
n (t) ≡ n−1/2 (Nn,i (nt)−λint)⇒ caiW

i
a (t), i = 1,2, for the arrival process, where W 1

a and

W 2
a are independent standard Brownian motions. To simplify expressions, we let µ= (1,1) and λ=

(I −Q)µ= (1− θ,1− θ), as will be needed so that traffic intensities approach one for the sequence

of systems. As in Lemma 3, we then assume that Si
n (t)≡ n−1/2 (Sn,i (t)−nt)⇒ csiW

i
s (t)+ ηit for

the service process, where W 1
s and W 2

s are independent standard Brownian motions.. Let Rn be

the normalized routing process defined in (17), and let R̂ be its limit.

Because the arrival, service, and routing processes are assumed to be independent,

(Nn,Sn,Rn)⇒
(
N ,S, R̂

)
in

(
D2×D2 ×D2×2 ≡D8,WM1

)
as n→∞,

where N = diag (ca)W a, S = diag (cs)W s + ηe, and
(
R̂

T
)i

= (Γi)
1/2

W ri (t) with W a, W s, and

W ri for 1 = 1, ..., k being independent standard k-dimensional Brownian motions, while Γi
j,j =

Pi,j (1−Pi,j) and Γi
j,l =−Pi,jPi,l for j 6= l. (For each i, the routing produces a k-dimensional multi-

nomial distribution.) The model is therefore determined by three parameter vectors (ca, cs, η) and

the probability θ.
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It now remains to exhibit the limit process X for the net input process. Applying Theorem 3

with the modification to the assumptions about the arrival process (and recalling that X depends

on − (I −Q)S), it follows thatX is a 2-dimensional BM having a Gaussian distribution with mean

vector E [X(t)] =− (η1 − θη2, η2 − θη1) t and covariance function

Cov [X (s) ,X (t)] = s



c2a1 + c2s1 + θ2c2s2 + θ (1− θ) −θ (c2s1 + c2s2)

−θ (c2s1 + c2s2) c2a2 + c2s2 + θ2c2s1 + θ (1− θ)


 (22)

for s≤ t.

Now we change the model. We now assume that the arrival process is a ψ-GPSP with parameters

(γ,β = nb,M), which makes its limit process from Theorem 1 a ψ-GMP. We assume that the matrix

M is the one in (4) of Example 1. The random variable X(t) again has a Gaussian distribution

with mean vector E [X(t)] =− (η1 − θη2, η2 − θη1) t. By Theorem 3, the covariance function changes

to

Cov [X (s) ,X (t)] = s



b1 + b3 + c2s1 + θ2c2s2 + θ (1− θ) b3 − θ (c2s1 + c2s2)

b3 − θ (c2s1 + c2s2) b2 + b3 + c2s2 + θ2c2s1 + θ (1− θ)




+ st



b1γ1 + b3γ3 b3γ3

b3γ3 b2γ2 + b3γ3


 for s≤ t. (23)

5. Non-ergodic law of large numbers for the limit processes

In Theorem 2 for the fluid model and Theorem 3 for the OQN model, the limit X for the net

input process is a ψ-GMP with drift, and the limit Z for the workload or queue length process is

a multidimensional reflection of X. For (X,Z) with those properties, we state and prove a non-

ergodic LLN, which then applies for the limit processes from both theorems. The LLN depends on

the parameters of X, which are specified differently by Theorems 2 and 3. The result and its proof

generalize the result and proof of Corollary 7 in [9].

For the statement of the result, let N (m,Σ) denote a normal random vector in Rk with mean

vector m and covariance matrix Σ, so that

P (N (m,Σ)≤ y) =

∫

x≤y

n (x;m,Σ)dx
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for y in Rk, where n (x;m,Σ) is the multivariate normal density. Let N f (m,Σ) denote the random

vector with cumulative distribution function

P
(
N

f (m,Σ)≤ y
)
=

∫

f(x)≤y

n (x;m,Σ)dx,

where f :Rk →Rk.

Theorem 4 (Non-ergodic LLN for the limit processes). If X in Dk is a ψ-GMP with

parameter matrices (A,B) and drift vector ω, (Z,L) ≡ (φ (Z (0)+X) ,ψ (Z (0)+X)), where

(φ,ψ)≡ (φ,ψ)Q : Dk →D2k is the reflection map, and Z (0) is independent of X, then

n−1 (X (n) ,Z (n) ,L (n))⇒
(
N (ω,−B) ,NfZ (ω,−B) ,NfL (ω,−B)

)
in R

3k

as n→∞, where fZ (x)≡ x+(I −Q)
−1

(−x)∨ 0 and fL (x)≡ (I −Q)
−1

(−x)∨ 0.

The proof of Theorem 4 will rely on the following FWLLN for the net input process.

Lemma 4 (FWLLN for a tied-down ψ-GMP with drift). If X in Dk is a ψ-GMP with

parameter matrices (A,B) and drift vector ω,

X̄n,x (s)≡ n−1 (X (ns) |X (n) = nx) for 0≤ s≤ 1 and n≥ 1,

and

(
Z̄n,x, L̄n,x

)
≡
(
φ
(
n−1

Z (0)+ X̄n,x

)
,ψ
(
n−1

Z (0)+ X̄n,x

))
,

where (φ,ψ)≡ (φ,ψ)Q : Dk →D2k is the reflection map, and Z (0) is independent of X, then

(
X̄n,x.Z̄n,x, L̄n,x

)
⇒
(
xe,xe+(I −Q)

−1
(−xe)∨ 0, (I −Q)

−1
(−xe)∨ 0

)

in (D3k [0,1] ,WM1) as n→∞.

Proof. Because X̄n,x is continuous, it suffices to prove joint convergence in the space C3k [0,1]

of continuous functions on the interval [0,1] with the uniform topology. Because X̄n,x (s) ≡

n−1
Xn,x (ns), where Xn,x (t) ≡ (X (t) |X (n) = nx) for 0 ≤ t ≤ n, Proposition 4 implies that

X̄ i
n,x (s) = xis+ Ū

i
n (s) for 0≤ s≤ 1, where Ū i

n is a zero-mean Gaussian Markov process (a Brownian
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bridge) in C [0,1] with Ū i
n (0) = 0 and Cov

[
Ū i

n (s1) , Ū
i
n (s2)

]
= n−1Aiis1 (1− s2) → 0 for 0 ≤ s1 ≤

s2 ≤ 1 as n→∞. It follows that the covariance matrix for
(
Ū i

n (s1) , Ū
i
n (s2) , . . . , Ū

i
n (sp)

)
converges

to zero as n→∞ for all positive integers p and all time points 0≤ s1 ≤ s2 ≤ . . .≤ sp ≤ 1. By Levy’s

convergence theorem, U i
n →f.d. 0, where →f.d. denotes convergence of finite dimensional distribu-

tions. From the covariance function for Ū i
n, it also follows that Ū i

n =d n
−1/2Ū i

1, where =d denotes

equality of distributions. If ν
(
Ū i

n, δ
)
is the modulus of continuity defined in (6.2) on page 388 of

[19], then ν
(
Ū i

1, δ
)
→ 0 as δ→ 0 because Ū i

1 is continuous, and ν
(
Ū i

n, δ
)
for δ > 0 is a decreasing

function of n. It follows from Theorem 11.6.4 of [19] that Ū i
n ⇒ 0e in C [0,1], so that X̄

i

n,x ⇒ xie

in C [0,1]. We conclude that X̄n,x ⇒ xe in Ck [0,1] using Theorem 11.6.4 of [19]. We then easily

deduce the other limits using the continuous mapping theorem and properties of the reflection

map.

As a corollary of Lemma 4, we obtain a WLLN for a ψ−GMP with drift and its multivariate

reflection.

Corollary 1 (WLLN for the conditioned process). Under the assumptions of Theorem

4, if

Xn,x (t)≡ (X (t) |X (n) = nx)

Zn,x (t)≡ (Z (t) |X (n) = nx) and Ln,x (t)≡ (L (t) |X (n) = nx)

for 0≤ t≤ n and n≥ 1, then

(
Xn,x (n)

n
,
Zn,x (n)

n
,
Ln,x (n)

n

)
⇒
(
x,x+(I −Q)

−1
(−x)∨ 0, (I −Q)

−1
(−x)∨ 0

)

in R3k as n→∞.

Proof. By the definitions of Xn,x above and X̄n,x from Lemma 4,

Xn,x = nX̄n,x ◦
(
n−1e

)
on [0, n] .
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Using the rescaling properties of the reflection map from Theorem 14.2.6 of [19],

(
n−1

Xn,x, n
−1
Zn,x, n

−1
Ln,x

)
=
(
n−1

Xn,x, n
−1φ (Z (0)+Xn,x) , n

−1ψ
(
Z (0)+Xn,x

))

=
(
X̄n,x ◦

e

n
,φ
(
n−1

Z (0)+ X̄n,x ◦
e

n

)
,ψ
(
n−1

Z (0)+ X̄n,x ◦
e

n

))

=
(
X̄n,x ◦

e

n
,φ
(
n−1

Z (0)+ X̄n,x

)
◦ e
n
,ψ
(
n−1

Z (0)+ X̄n,x

)
◦ e
n

)

=
(
X̄n,x ◦

e

n
, Z̄n,x ◦

e

n
, L̄n,x ◦

e

n

)
w.p.1 on [0, n] .

Therefore,

(
Xn,x (n)

n
,
Zn,x (n)

n
,
Ln,x (n)

n

)
=
(
X̄n,x ◦

e

n
(n) , Z̄n,x ◦

e

n
(n) , L̄n,x ◦

e

n
(n)
)

=
(
X̄n,x (1) , Z̄n,x (1) , L̄n,x (1)

)
w.p.1

in R3k as n→∞, and the claimed result follows from Lemma 4.

We now apply Corollary 1 to provide an elementary proof for Theorem 4.

Proof. (Theorem 4) Using the definition of a ψ-GMP X with parameter matrices (A,B) and

drift vector ω,

n−1
X (n) =N

(
ω,
n (A−Bn)

n2

)
⇒N (ω,−B) in R

k as n→∞,

as follows from Levy’s convergence theorem since the covariance matrix for n−1
X (n) converge to

−B as n→∞. Likewise,

P
(
n−1

Z (n)≤ z
)
=

∫
P
(
n−1

Z (n)≤ z|n−1
X (n) = x

)
P
(
n−1

X (n)∈ dx
)

=

∫
P
(
n−1

Z (n)≤ z|n−1
X (n) = x

)
n

(
x;ω,

n (A−Bn)

n2

)
dx

→
∫

1x+(I−Q)−1(−x)∨0≤zn (x;ω,−B)dx as n→∞

by Corollary 1 and the bounded convergence theorem. The limit for n−1
L (n) is obtained in the

same way, and the joint limit follows from the continuous mapping theorem.

Remark 3. Our previous simulation results in Figure 1 of [9] illustrate that the time average

of a ψ −GPP rapidly approaches a limiting value for each sample path. We have verified that
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the empirical distribution of those values (for an ensemble of independent sample paths) is well

approximated by the LLN limit. Figure 2 of [9] suggests that the same is true for the time average

of the queue-length limit process for a single queue with ψ −GPP arrivals in heavy traffic. We

expect similar results for queueing networks with ψ-GPSP arrivals. The LLN limit provides a first-

order approximation for the transient queue-length distribution with details lost because of its

normalization of the queue-length by time. The LLN limit in Theorem 4 has an atom at zero that

describes the probability that the queue-length limit process remains finite as time increases. The

rest of the LLN distribution then describes the rate at which the queue-length limit process explodes

when it does not remain finite. The probability of an explosion provided by the LLN distribution

is fundamental to the understanding of queueing networks with path-dependent arrivals.

Our next result will show how conditioning on an intermediate state induces a changes of param-

eters for the LLN limit. For real s, t≥ 0, let

X̂
s (t)≡ (X (t+ s)−X (s) |X (s) ,Z (s)) ,

Ẑ
s (t)≡ (Z (t+ s) |X (s) ,Z (s)) and L̂

s (t)≡ (L (t+ s)−L (s) |X (s) ,Z (s)) .

Corollary 2 (conditional LLN). If (X,Z,L) ≡ (X, ψ (Z (0)+X) , φ (Z (0)+X)) in D3k

where X is a ψ-GMP with parameter matrices (A,B) and drift vector ω, (ψ,φ)≡ (ψ,φ)Q : Dk →

D2k is the reflection map, and Z (0) in Rk is independent of X, then X̂
s
is a ψ-GMP with param-

eters (A, Bs) and drift ωs, and

(
X̂

s
(n)

n
,
Ẑ

s
(n)

n
,
L̂

s
(n)

n
,

)
⇒
(
N (ωs,−Bs) ,N

fZ (ωs,−Bs) ,N
fL (ωs,−Bs)

)

in R3k as n→∞, where Bs =B (A−Bs)
−1
A, ωs = ω−B (A−Bs)

−1
s (s−1

X (s)−ω), and fZ and

fL are defined as in Theorem 4.

Proof. Defining X
n as in Proposition 5,

(
X̂

s
, Ẑ

s
, L̂

s
)

=
(
X̂

s
, φ
(
Z (0)+ X̂

s
)
,ψ
(
Z (0)+ X̂

s
))

=d (Xs, φ (Z (0)+X
s) ,ψ (Z (0)+X

s)) , (24)
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where the equality follows from the memoryless property of the reflection map from Theorem 1

of [14], and the equality in distribution follows from the Markov property of X. The result then

follows by applying Theorem 4 with the modified parameters from Proposition 5.

The next corollary shows that a multivariate ψ-GMP with drift, conditioned on its time average

at time s, behaves increasingly like a multivariate Brownian motion with drift equal to that time

average as s becomes large. In the statement of the result, we say that f(s) = o(g(s)) for a scaler-

valued function g and vector- or matrix-valued function f if f(s) is asymptotically equal to the

zero vector or matrix for large s after dividing by g(s).

Corollary 3 (Asymptotic behavior of conditional process). If X is a ψ-GMP in Dk

with parameter matrices (A,B) and drift vector ω, then

(
X (t+ s)−X(s)|s−1

X (s) = x
)
= ωs,xt+G

s,x (t)a.e. for s, t≥ 0, (25)

and

(
n−1

X (n) | s−1
X (s) = x

)
⇒N (ωs,x,−Bs,x) as n→∞, (26)

where G
s,x is a ψ-GMP in Dk with parameters (A,Bs,x), ωs,x = x+ s−1AB−1 (x−ω)+ o (s−1) and

−Bs,x = s−1A+ o (s−1) as s→∞.

Proof. If s is greater than the spectral radius of AB−1, then

(A−Bs)
−1

=−s−1B−1
(
I − s−1AB−1

)−1
= −s−1B−1

∞∑

j=0

(
s−1AB−1

)j

= −s−1B−1
(
I + s−1AB−1 + o

(
s−1
))

as s→∞. (27)

The result in (25) follows from Proposition 5 and (27). Since X
n =d X̂

n
as in (24), the result in

(26) follows from Corollary 2 and (27).

When the time s of observation is large, Corollary 3 implies that the subsequent mean growth

rate for the conditioned process is approximately equal to the historic average growth rate, and

the parameter matrix Bs,x that distinguishes the conditioned process from a Brownian motion is

approximately equal to zero, both with error of order 1/s.
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6. Concluding discussion

We conclude by discussing extensions to the results from this paper and open questions.

6.1. Domain of attraction for a ψ-GMP

A goal for future work is to determine the class of stochastic arrival processes that lead to the

FCLTs and HTLTs with the ψ-GMP limit process. The results of this paper build on the result

for the convergence of a sequence of one-dimensional ψ-GPPs to a ψ-GMP from Theorem 4 of

[9]. That result in turn exploits Hahn’s FCLT for a sum of i.i.d. processes, reviewed in Section

7.2.1 of [19]. We now observe that there are other processes in addition to ψ-GPP’s that will lead

to a ψ-GMP limit when we apply Hahn’s theorem. To describe such processes, let {N i : i≥ 1}=

{{N i (t) : t≥ 0} : i≥ 1} be a sequence of i.i.d. stationary point processes in D, and let

Gn (t)≡ n
−1/2

n∑

i=1

(
N i (t)−E

[
N i (t)

])
for t≥ 0.

Theorem 5 (Sufficient conditions for convergence to a ψ−GMP ). If a sequence of

i.i.d. stationary point processes {N i : i≥ 1} in D has the properties (i) E

[
N i (t)

j
]
< ∞

for t ≥ 0 and j = 1,2,3,4, (ii) Var [N i (1)] > E [N i (1)] for t ≥ 0, and (iii) the pro-

cess {Y (s)≡ (N i (s) |N i (t)) : 0≤ s≤ t}, defined for any t > 0, has the same distribu-

tion as the empirical process for N i (t) i.i.d. uniformly distributed random variables on

[0,t], then Gn ⇒ G in (D,WM1) as n → ∞, where G is the ψ-GMP with parameters

(A=E [N i (1)] ,B =− (Var [N i (1)]−E [N i (1)])).

Proof. Using well-known properties of empirical processes, E [Y (s)] = st−1N i (t) and

Var [Y (s)] =N i (t)st−1 (1− st−1), so that E
[
Y (s)

2
]
=N i (t)st−1 (1− st−1) + s2t−2N i (t)

2
for 0≤

s≤ t. Therefore,

Var
[
N i (s)

]
= E

[
E

[
Y (s)

2
]]

−E [E [Y (s)]]
2

= E
[
N i (t)

]
st−1

(
1− st−1

)
+ s2t−2

E

[
N i (t)

2
]
− s2t−2

E
[
N i (t)

]2
(28)

for 0 ≤ s ≤ t. Because N i is stationary, E [N i (t)] = tE [N i (1)]. Substituting t = 1 and s = u into

(28) then shows that

Var
[
N i (u)

]
=E

[
N i (1)

]
u+

(
Var

[
N i (1)

]
−E

[
N i (1)

])
u2 (29)
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for 0 ≤ u ≤ 1. Substituting s = 1 and t = u into (28) then shows that (29) also holds for u > 1.

By assumption (ii), Var [N i (1)]> E [N i (1)], so that (29) is defined (i.e., is positive) for all u≥ 0.

Therefore (29) holds for all u≥ 0. By the same logic used to derive equation (4) of Theorem 1 in

[9], the assumed stationarity and the variance function in (29) imply that

Cov
(
N i (s) ,N i (t)

)
=E

[
N i (1)

]
s+
(
Var

[
N i (1)

]
−E

[
N i (1)

])
st=Cov (N (s) ,N (t)) for 0≤ s≤ t.

The remainder of the proof, which verifies that the conditions of Hahn’s theorem are met, is then

essentially the same as the proof of Theorem 4 in [9], except that the constant c in (31) there is

expressed in terms of the first four moments of N i (1) instead of their particular expressions for a

ψ-GPP from (33) there.

Remark 4. If we relax the requirement that B is negative for the ψ-GMP limit and allow B

to be any real scaler, then we can eliminate assumption (ii). Theorem 5 would then apply when

Var [N i (1)] = E [N i (1)] with no other changes. It would also apply when Var [N i (1)]< E [N i (1)]

with the change that the time domain is limited to the finite interval on which the variance function

in (29) remains positive.

We now give an example showing that Theorem 5 applies to more processes than ψ-GPP’s.

Example 3. A different process for which we can apply Hahn’s theorem to get convergence

to a ψ-GMP is the Poisson Generalized Gamma Process (PGGP) discussed in [4]. An orderly

point process {N (t) : t≥ 0} is a Poisson Generalized Gamma Process (PGGP) with parameters

(λ (t)> 0, ν ≥ 0, k > 0, α > 0, l > 0) if it has the stochastic intensity function

λ∗ (t|Ht) =
1

α+Λ(t)

Γν (k+N (t−)+ 1, (α+Λ(t)) l)

Γν (k+N (t−) , (α+Λ(t)) l)
λ (t) ,

where λ (t) is integrable, Λ (t) =
∫ t

0
λ (s)ds, and Γν (k,β) is the generalized gamma function defined

for k,β > 0 by

Γν (k,β) =

∫ ∞

0

yk−1exp (−u)
(y+β)

ν dy.

By Proposition 3.1 of [4], a GPP is a special case of a PGGP where ν = 0. PGGPs are describe

in [4] as a more flexible model than GPPs for point processes with dependent increments and
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overdispersion relative to a Poisson process. When λ (t) = λt for t≥ 0, where λ is a positive real

constant, condition (iii) of Theorem 5 is satisfied by Theorem 3.3 of [4]; and the distribution of the

PGGP’s increment over an interval depends only on the interval’s length and not on its position

by Theorem 2.1 (ii) of [4]. The PGGP is then stationary, as follows from the same logic as used

by Theorem 1 of [9] to show when a GPP is stationary. A stationary PGGP satisfies the other

conditions of Theorem 5 as well: condition (i) is satisfied by Theorem 2.2 (ii) of [4], and condition

(ii) is satisfied by Proposition 2.2 of [4] (excluding the special case where the PGGP is a Poisson

process with Var [Ni (t)] = E [Ni (t)]). Using Theorem 2.2 (iii) of [4], we verify that a stationary

PGGP has the mean and variance functions deduced above for a process satisfying the conditions

of Theorem 5.

Theorem 5 describes the limit for univariate superpositions of i.i.d. univariate stationary point

processes. A superposition of n i.i.d. univariate ψ-GPPs has the same distribution as a single ψ-

GPP with the same combined rate. That property enabled Theorem 4 of [9] to be restated in

the form from Proposition 4 of [10], which was applied in Lemma 1 here. That property has not

been established for all processes satisfying the conditions of Theorem 5. In particular it has not

been established for PGGPs in the general case. An open question is the domain of attraction for

a ψ-GMP when the limit is obtained by scaling the rate parameter of a process rather than by

constructing superpositions.

It is straightforward to generalize Theorem 1 of this paper to apply for the processes in the

domain of attraction described by Theorem 5, including PGGPs. We omit a formal statement of

that result in the interest of brevity.

6.2. Transient distribution

For possible applications, the most obviously useful results in this paper are (i) the Gaussian

approximation for the transient distribution of the net input process (because it is a ψ-GMP) from

Theorem 1 and Lemma 2, and (ii) the non-ergodic LLN for the queueing processes and the net

input process in Theorem 4 (which can serve as a good approximation for the conditioned process
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by Corollaries 1 and 2). However, it remains to find useful expressions for the exact transient

distribution for a reflected multivariate psi-GMP with drift and general reflection matrix. Corollary

6 of [9] provided an exact expression for the transient distribution of a univariate reflected ψ-

GMP with drift generalizing the well-known transient distribution for reflected univariate Brownian

motion with drift (e.g., from Section 6 of [12]). The special case of the transient distribution of

reflected multivariate Brown motion with drift is itself still an open question.

A promising approximation method for open queueing networks is robust queueing as in [20, 21].

New approximations for the steady-state distribution of an open queueing network are developed

in [21] and older ones by [6, 13] are reviewed, but those are not applicable for path-dependent

arrivals. Approximations for the transient distribution of the queue length process are developed

in [20], but so far, just as for the transient distribution of ψ-GMP in [9], those are limited to a

single queue. Extension to networks remains an important open problem.
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