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Abstract
This paper develops a Gaussian model for an open network of queues having a path-
dependent net-input process, whose evolution depends on its early history, and satisfies
a non-ergodic law of large numbers. We show that the Gaussian model arises as the
heavy-traffic limit for a sequence of open queueing networks, each with a multivariate
generalization of a Polya arrival process. We show that the net-input and queue-length
processes for the Gaussian model satisfy non-ergodic laws of large numbers with
tractable distributions.
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1 Introduction

The standard model for a queueing system has arrivals and service completions occur-
ring as discrete events. That leads to the number in system over time being a stochastic
process with a pure-jump net input process. Nevertheless, stochastic models with con-
tinuous net input processes have proven to be very useful to understand the behavior
and manage the performance of queueing systems. Prominent among these are the
Gaussian queues, the focus of this special issue, where the net input process is mod-
elled as a Gaussian process; see Mandjes [20] and the other papers in this special
issue.
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Continuous Gaussian queueing models typically arise as limits of standard queue-
ing models as the scale increases. The classic case is the heavy-traffic limit for an open
network of queues, as discussed in Whitt [23], leading to reflected Brownian motion.
Models with continuous Gaussian net input processes also have been applied directly
as approximations, as they were for queueing networks in Harrison [15] using Brow-
nian motion and for large-deviation limits for queues with strongly dependent input
processes in Mandjes [20] using fractional Brownian motion and related processes.

We here focus on a Gaussian queueing model that is the heavy-traffic limit of a
standard queueing model with an arrival process that is a path-dependent stationary
point process. For a stationary point process, path dependence is characterized by sat-
isfying a non-ergodic law of large numbers. The long-run behavior of path-dependent
arrival processes depends strongly on their early histories. Path-dependent processes
commonly result from self-reinforcing behavior (e.g., epidemics and financial con-
tagion), but they are of more general interest for queueing models whenever there is
significant uncertainty about the long-run time average of the net input process; see
our previous paper [10] for more discussion.

For models with path-dependent arrival processes, useful descriptions focus on the
transient distribution of the associated queue-length process. Because of the non-
ergodic nature of a path-dependent arrival process, the queue-length process can
approach infinity with positive probability as time increases, regardless of the mean
traffic intensity. A stationary or steady-state distribution for the unscaled queue-length
process then will not even exist.

In contrast to the Gaussian models in [15, 20], for the path-dependent arrival pro-
cesses considered here, the variance in the number of arrivals in a given interval
grows faster than the expected value. For our Gaussian model of the net input process,
and indeed for all counting processes considered in this paper, the variances grow as
order t2, while the expected value is proportional to t . Consequently, the powerful
approximation for the steady-state queue length of a Gaussian queue in Section 5.4
of Mandjes [20] then does not apply. Nevertheless, functional central limit theorems
(FCLTs) and heavy traffic limit theorems (HTLTs) do apply for our model and lead to
useful approximations of the transient behavior.

In our previous paper [10],we established aHTLT for a queuewith an arrival process
that is a path-dependent stationary point process. In this paper, we extend our previous
results to queueing networks. Queueing networks have been applied in a variety of
contexts including traffic, network, manufacturing, risk, and reliability theory. In an
example from reliability theory described in [22], different failed components may
require service at different sequences of service stations for diagnosis, repair, assembly,
and testing. Here, we study open queueing networks comprised of an arbitrary number
or queues and Markovian routing with an arbitrary routing matrix determining the
sequence of queues that must be visited.

Following Cha and Badia [2], we allow dependence between the external arrival
processes to the different queues in the network bymodeling them as superpositions of
independent path-dependent processes. We show that the workload and queue-length
processes then converge to heavy-traffic limits that are reflected Gaussian processes.
We also show that the limit processes themselves satisfy non-ergodic laws of large
numbers (LLN) with tractable distributions. Our prior simulation results in [10] for a
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single queue with path-dependent arrivals in heavy traffic suggest that the LLN limits
are useful for approximating the distribution of the queue-length distribution at finite
times to first order.

The arrival processes to our queueing network are superpositions of independent
generalized Polya processes (GPPs). In Cha and Finkelstein [3], GPPs are described
as suitable models for failure processes in reliability and risk theory. As discussed in
[10, 11], GPPs are a generalization of the classical Polya process derived in Feller [8]
from the Polya urn model, an early example of a path-dependent process. Stationary
GPPs were shown in [10] to have non-ergodic LLN limits.

In Cha and Badia [2], superpositions of GPPs were proposed as models of failure
processes when failures of different components can occur simultaneously. For the
model in [2], the failure process for each component is modeled as the superposition
of one GPP representing failures caused by external shocks and a second GPP repre-
senting failures from other causes. The first GPP, which appears in the superpositions
of all components, results in their mutual dependence through simultaneous failures.
We generalize the model in [2] to allow general superpositions of GPPs but focus here
on the case in which the GPPs are stationary.

A FCLT was developed for stationary GPPs in [10] with a stationary Gaussian
Markov limit process. We extend that result here to show that a multivariate process
built from superpositions of stationary GPPs has a stationary multivariate Gaussian
Markov limit. The dependence between the superpositions is captured by the covari-
ance structure of that limit. When centered, the Gaussian limit process satisfies the
self-reinforcing multivariate linear stochastic differential equation (SDE),

G(0) = 0 and dG (t) = −B (A − Bt)−1 G (t) dt + A1/2dW (t) , t ≥ 0, (1)

where A and −B are positive definite matrices and W is standard multivariate Brow-
nian motion.

We then derive an HTLT where such superpositions are the exogenous inputs to a
queueingnetwork.There are then two sources of dependence between the queue-length
or workload processes of the network’s queues: dependence between the exogenous
arrival processes, as described above, and dependence because of the routing of the
same customers through multiple queues. We show that the limit processes for the
queue-length and workload are reflected Gaussian Markov processes expressing all
sources of dependence through their parameters. The results are an extension of results
for a single-server queue derived in [10], where an exact transient distribution and a
non-ergodic LLN were obtained for the queue-length limit process. The transient
distribution of the limit process obtained here for a network of queues remains to be
determined.

A significant contribution here is a non-ergodic LLN for the limiting ψ-GMP and
the associated queue length processes. This draws on the instantaneous reflection
map in Sects. 14.2– 14.3 of [23]. Furthermore, we show how the non-ergodic LLN
limits for the Gaussian net input and associated queue length process are modified by
conditioning on an observation of their states at an intermediate time.We show that the
later the observation, the smaller the dispersion of the LLN limit for the conditioned
net input process, the closer the conditioned net input process becomes to a Brownian
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motion with drift, and the slower its variance grows with time; see Corollary 3. The
results therefore show how the system becomes more predictable over finite intervals
as our knowledge of its history grows.

The remainder of the paper is organized as follows: Sect. 2 reviews the definition
and properties of GPPs and describes their superpositions. Section3 develops a FCLT
for multivariate superpositions of stationary GPPs with a continuous Gaussian pro-
cess limit. Section4 then develops two HTLTs for a network of queues with such
superpositions as the exogenous arrival processes; one is for the workload process
in a fluid model, while the other is for the standard queue length process. Section5
derives the non-ergodic LLN for the HTLT limit processes and associated conditional
processes associated with observation later in time. Finally, Sect. 6 concludes with a
brief discussion of extensions and remaining problems.

2 The stationary generalized Polya superposition process (Ã-GPSP)

In this section,we review the definition and properties of univariateGPPs, as developed
in [1], [19], [10], and [11]. We then define a new class of multivariate point processes
constructed by superposing stationary univariate GPPs.

A univariate GPP with parameter triple (κ (t) , γ, β) is defined in [1] as the orderly
point process {N (t) : t ≥ 0} with N (0) = 0 and stochastic intensity function

λ∗ (t |Ht ) ≡ lim
h→0

P (N (t + h) − N (t) = 1 | Ht )

h
= (γ N (t−) + β) κ (t) ,

whereHt denotes the internal history of N up to time t and κ (t) is a positive integrable
real-valued function, while β and γ are positive real numbers. For any time t ≥ 0,
N (t) is a count of the number of arrivals from the GPP up to t . The point process N
is an element of the space D ≡ D [0, ∞) of right-continuous real-valued functions
with left-hand limits on [0, ∞), endowed with one of the Skorohod topologies and
Borel sigma-field, as in [23]. By the definition of an orderly point process, a univariate
GPP is regular, which means that the probability of simultaneous arrivals is zero. A
non-homogenous Poisson process (NHPP) is the special case of a GPP where γ = 0.
For background on point processes and their intensity functions, see Sections 3.3 and
7.2 of [6].

A GPP N is stationary (meaning that it has stationary increments) if

κ (t) = 1

(γ t + 1)
, t ≥ 0. (2)

As in [10], we then say that N is the ψ-GPP with parameter pair (γ, β), where ψ is a
mnemonic for “stationary increments”. A univariate GPP is a ψ-GPP if and only if it
has a constant rate, as Remark 2 of [11] discusses. When (2) holds,

E [N (t)] = βt and Cov [N (s) , N (t)] = βs + βγ st, and 0 ≤ s ≤ t, (3)
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so that N has constant rate β and Var (N (t)) = βt + βγ t2, which is of order t2 as t
increases. In [12], we show that the class of all ψ-GPPs coincides with the class of all
Polya processes, i.e., all mixed Poisson processes that can be represented as �(t�),
t ≥ 0, where � is a Poisson process and � is a real-valued random variable with a
gamma distribution, as in Chapter 4 of Grandell [14]. Furthermore, all Polya point
processes can be represented as a GPP for which (2) holds for some choice of γ and
β.

Before turning to multivariate processes, we describe vector and matrix notation
that we will use throughout this document.

Notation.Weuse the convention that a vector x ≡ (x1, x2, . . . , xm) is a column vec-
tor with coordinates that are indexed through subscripts or superscripts. Superscripts
are used for the coordinate processes of multivariate stochastic processes, which are
written in bold font, e.g., X ≡ (

X1, X2, . . . , Xm
)
. Subscripts are used for the coordi-

nates otherwise as in x above. The transpose of a vector ormatrix x is written as xT . For
a vector x , we let diag (x) denote the square diagonal matrix with (diag (x))i,i = xi
and (diag (x))i, j = 0 for i �= j . Depending on the context, 0 will denote a scalar,
vector, or matrix with all elements equal to zero. For a real matrix 	, we let 	1/2

denote another real matrix of the same dimension satisfying
(
	1/2

) (
	1/2

)T = 	.
(When 	 is real positive definite, 	1/2 always exists.) Let a ∨ b ≡ max (a, b) for a
and b inR and (c ∨ d) ≡ ((c1 ∨ d1) , (c2 ∨ d2) , . . . , (ck ∨ dk)) for c and d inRk . Let
Dm be the m-dimensional product space of functions in D, endowed with the product
topology. If x and y are in Dm for some m ≥ 1, let x ◦ y denote their coordinate-wise
composition in Dm , i.e., (x ◦ y)i = xi ◦ yi . We define Hadamard notation for other
coordinate-wise operations on two vectors. In particular, for two vectors x and y of
the same size, let x � y be their coordinate-wise product, i.e., (x � y)i = xi yi . Also
let x�v denote coordinate-wise exponentiation of the vector x by the real scalar v, i.e.,(
x�v

)
i = xv

i .
We now define a stationary multivariate point process constructed from superpo-

sitions of independent univariate ψ-GPPs. We define a multivariate ψ-GPP as any
multivariate point process with coordinate processes that are univariate ψ − GPPs.
Let V ≡ (

V 1, V 2, . . . , Vm
)
for m ≥ 2 be the multivariate ψ − GPP in Dm with

independent coordinate process V i that is a univariate ψ-GPPs with parameter pair
(γi , βi ) for i = 1, . . . ,m. Let γ ≡ (γ1, γ2, . . . , γm) and β ≡ (β1, β2, . . . , βm). We
then say that V has parameters (γ, β).

The paper [2] provides motivation for the superposition process that we will define.
There, m + 1 independent GPPs are mapped into m superpositions with each super-
position of the form Ni = Vi + Vm+1 for 1 ≤ i ≤ m. Here, we consider only
superpositions of ψ − GPPs, but we otherwise generalize the model in [2] in two
ways. First, we map m independent ψ-GPPs into k superpositions for any 1 ≤ k ≤ m
bymultiplying a vector of independentψ −GPPs by a matrix. Second, the elements of
the matrix are non-negative integers, so that the coefficients used by the superposition
can be greater than one. The resulting superpositions are therefore counting processes
(integer-valued) but can have jumps greater than one.
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Definition 1 A process N in Dk for k ≥ 1 is a stationary generalized Polya superpo-
sition process (ψ-GPSP) with parameters (γ, β, M) if

N ≡
(
N 1, N 2, . . . , Nk

)
= MV

where V is a multivariate ψ-GPP in Dm for m ≥ k with independent coordinate
processes and parameters (γ, β), and M is a matrix of non-negative integers with
dimension k × m.

Coordinate processes of a ψ-GPSP are mutually dependent superpositions when
they have univariate ψ-GPPs in common. They are not, in general, regular. When
superpositions contain univariate ψ-GPPs in common, an arrival from a common ψ-
GPP results in simultaneous arrivals for the superpositions in which it appears. When
the matrix M contains elements greater than one, the individual superpositions have
jumps greater than one, which also correspond to simultaneous arrivals.

The mean and covariance functions of a ψ-GPSP depend on time in the same way
as a ψ-GPP.

Proposition 1 (Mean and covariance function of a ψ-GPSP) For a ψ-GPSP N with
parameters (γ, β, M),

E [N (t)] = Mβt and Cov [N (s) , N (t)] = M diag (β) MT s + M diag (β � γ ) MT st

for 0 ≤ s ≤ t .

Proof Using Definition 1, N = MV ,
where

E [V (t)] = βt and Cov [V (s) , V (t)] = diag (βs + (β � γ ) st) for 0 ≤ s ≤ t .

The result for the mean then follows trivially, and the result for the covariance follows
because

Cov [N (s) , N (t)] = E

[
(MV (t) − Mβt) (MV (s) − βMs)T

]

= MCov [V (s) , V (t)]MT , 0 ≤ s ≤ t .

�

The coordinate processes of a multivariate ψ-GPP need not be independent. Here

is an example where the coordinate processes are dependent.

Proposition 2 (A multivariate GPP with dependence) When N in Dk is the ψ-GPSP
with parameters (γ, β, M), where γ1 = γ2 = . . . = γm = γ̂ > 0, and the matrix
M contains only zeros and ones, then the coordinate process N j is a univariate GPP
with parameter pair

(
γ̂ , (Mβ) j

)
for j = 1, . . . , k.

Proof This result follows immediate from Theorem 1 of [2]. �
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Because the coordinate processes in Proposition 2 are univariate GPPs, they are
individually regular. Such processes are called “marginally regular” in [2], where
“marginal process” has the same meaning as “coordinate process”.

We conclude this section by giving a concrete example from [2].

Example 1 (motivating example) Consider a multivariate ψ-GPP with independent
marginal one-dimensional ψ-GPP’s of dimension m = 3. Let V ≡ (

V 1, V 2, V 3
)

be the multivariate ψ-GPP in D3 with independent coordinate processes V i that are
univariate ψ-GPP’s with parameter pairs (γi , βi ) for i = 1, . . . , 3. Let N be the
associated ψ-GPSP with parameters (γ, β, M), where M is the 2 × 3 matrix

M =
(
1 0 1
0 1 1

)
(4)

Then, Proposition 1 holds with

E [N (t)] = ((β1 + β3) t, (β2 + β3) t) and (5)

Cov [N (s) , N (t)] =
(

(β1 + β3) s + (β1γ1 + β3γ3) st β3s + β3γ3st
β3s + β3γ3st (β2 + β3) s + (β2γ2 + β3γ3) st

)
(6)

for 0 ≤ s ≤ t .
For further insight, we now consider the symmetric case with parameter pairs

(γi , βi ) = (γ̂ , β̂) for i = 1, . . . , 3. Hence, there is only the single parameter pair
(γ̂ , β̂). Then, Proposition 1 holds with E [N i (t)] = 2β̂t for i = 1, 2 and

Cov [N (s) , N (t)] =
(
2β̂s(1 + γ̂ t) β̂s(1 + γ̂ t)
β̂s(1 + γ̂ t) 2β̂s(1 + γ̂ t)

)
, (7)

so that

Var [N i (t)] = 2β̂t(1 + γ̂ t) and Var [N1(t) + N2(t)] = 6β̂t(1 + γ̂ t). (8)

The dependence makes the variance of the sum 3 times the variance of one term. The
index of dispersion (IDC) of N i (t) is thus Ii (t) ≡ Var [N i (t)] /E [N i (t)] = 1 + γ̂ t
for each i . The index of dispersion of the sum is thus 1.5(1+ γ̂ t). Hence, for small γ̂ t ,
either due to small γ̂ or small t or both, the processes behave locally like a Poisson
process, but for larger γ̂ t , the process is much more highly variable.

It is significant that the structure of the ψ − GPSP exposed by this example
also applies to the mean and variance of the limiting Gaussian ψ − GMP net input
process, introduced in the next section, because that structure is inherited by the limit;
see Remark 2 at the end of Sect. 3.2. Recall that a Gaussian process is fully determined
by its mean and covariance functions.
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3 Functional central limit theorem forÃ-GPSPs

We now derive a FCLT for a sequence of ψ-GPSPs. We will show that these converge
in distribution to a multivariate Gaussian Markov process with stationary increments,
called a ψ-GMP, studied in [9].

3.1 Ã-GMPs

We first review the definition and properties of a ψ-GMP from [9].

Definition 2 A process G in Dk ≡ Dk [0, ∞) for k ≥ 1 is aψ-GMPwith parameters
(A, B) if it is a zero-mean Gaussian process with G (0) = 0 and

Cov [G (s) , G (t)] = E
[
G (t) GT (s)

]
= s (A − Bt) , 0 ≤ s ≤ t < ∞,

where A and B are symmetric matrices of k × k real scalars, A is positive definite,
and B is negative definite.

The definition of a ψ-GMP in [9] requires B only to be symmetric, but it may then
be necessary to restrict G to Dk [0, T ] for some T < ∞. By Theorem 3 of [9], G has
a representation as a solution to the linear stochastic differential equation (SDE) in
(1), where W is standard k-variate Brownian motion (with mean zero and covariance
matrix I , the identity matrix). It follows that a ψ-GMP has almost surely continuous
sample paths.When A and B have the assumedproperties, A1/2 exists, and (A − Bt)−1

always exists because A− Bt is positive definite for all t ≥ 0. If we relax the negative
definite assumption for B and assume that B = 0, then G is a multivariate Brownian
motion with zero drift and Cov [G (s) , G (t)] = s A for 0 ≤ s ≤ t < ∞. In [12], we
show that an equivalent representation for a ψ-GMP is

G(t) = N(0,−B)t + √
AW(t), t ≥ 0, (9)

whereW(t) is a standardmultivariate Brownianmotion that is independent of a normal
random vector N(0,−B).

The following results describe properties of ψ-GMPs:

Proposition 3 (Linear map of a ψ-GMP) If Ĝ is a ψ-GMP in Dm with parameters(
A = Â, B = B̂

)
as defined in Definition 2, and M is a real matrix of dimension

k ×m with rank (M) = k, where 1 ≤ k ≤ m, then G = M Ĝ is a ψ-GMP in Dk with
parameters

(
A = M ÂMT , B = MB̂MT

)
.

Proof Because Ĝ is a zero-mean Gaussian process with Ĝ (0) = 0, the process G ≡
M Ĝ has those same properties. Using the definition of a ψ-GMP,
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Cov [G (s) , G (t)] = E

[
G (t) GT (s)

]
= E

[
M Ĝ (t) Ĝ

T
(s) MT

]

= s
(
M ÂMT − MB̂MT t

)
for 0 ≤ s ≤ t .

With the assumed positive definiteness of Â and −B̂, and the assumed rank constraint
for M , the parameter matrix A = M ÂMT is symmetric positive definite and B =
MB̂MT is symmetric negative definite. Therefore, G satisfies the definition of a ψ-
GMP with parameters (A, B). �


If G is aψ-GMP in Dk and ω is a vector inRk , then the process X (t) ≡ ωt+G (t)
for 0 ≤ t < ∞ is called a ψ-GMP with drift ω. The next two propositions (lemmas
from [9]) describe conditional ψ-GMPs with drift as defined by their conditional
finite-dimensional distributions. The first of those propositions states that conditioning
a ψ − GMP with drift on its state at the end of an interval results in a multivariate
Brownian bridge with a new drift on the interval.

Proposition 4 (Lemma 2 of [9]) If X (t) ≡ ωt + G (t) in Dk for t ≥ 0, where ω is a
vector inRk and G is aψ-GMP in Dk with parameters (A, B) as defined in Definition
2, and

X t (s) ≡ (X (s) |X (t)) for 0 ≤ s ≤ t,

then X t (s) = st−1X (t) + U t (s) a.e. for 0 ≤ s ≤ t , where U t is a zero-mean
Brownian bridge (a Gaussian process) in Dk, independent of X (t), with U t (0) = 0
and

Cov [U t (s1) ,U t (s2)] = E

[
U t (s2)UT

t (s1)
]

= s1
(
A − s2t

−1A
)

for 0 ≤ s1 ≤ s2 ≤ t .

Remark 1 Under the more permissive definition of a ψ-GMP from [9], where the
parameter matrix B need only be symmetric but need not be negative definite, U t is
a ψ-GMP with parameters

(
A, t−1A

)
. Because the conclusions of Proposition 4 do

not depend on B, the same process X t is obtained as B → 0 and X then approaches
a multivariate Brownian motion with drift. The process X t therefore can be described
as a Brownian motion with drift conditioned on its end state and therefore a Brownian
bridge.

The next proposition is analogous to the restart property for GPPs from [1]; see
also Proposition 1 of [10] for a statement of that result. In this case, the ψ-GMP is
conditioned on its state at the start of an interval.

Proposition 5 (Lemma 4 of [9]) If X (t) ≡ ωt + G (t) in Dk for t ≥ 0, where ω is a
vector inRk and G is aψ-GMP in Dk with parameters (A, B) as in Definition 2, and

Xs (t) ≡ (X (t + s) − X(s)|X (s)) for 0 < s ≤ t + s,
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then Xs (t) = ωs t+Gs (t) a.e. for t ≥ 0, whereωs = ω−B (A − Bs)−1 (X (s) − sω)

and Gs is a ψ-GMP in Dk, independent of X (s), with parameters(
A, Bs = B (A − Bs)−1 A

)
.

3.2 Convergence to aÃ-GMP

We show convergence of a normalized sequence of ψ-GPSPs to a ψ-GMP with zero
drift. For k ≥ 1, let

(
Dk,WM1

)
denote the space Dk ≡ Dk [0,∞) endowed with

the Skorohod weak M1 topology, and let ⇒ denote convergence in distribution in(
Dk,WM1

)
; see Sections 12.3 and 12.9 of [23] for background. When the limit pro-

cesses are continuous, as all limits in this paper will be, theWM1 topology reduces to
the topology of uniform convergence on compact sets (u.o.c.) in each of the coordi-
nates. We will use theWM1 topology primarily to avoid measurability issues with the
uniform topology discussed in Section 11.5.3 of [23]. The Borel σ -field generated by
the WM1 topology coincides with the Kolmogorov σ -field generated by the coordi-
nate projections. Throughout, n will always refer to the sequence index used for limit
theorems. When n is used as a superscript for a process, it is not to be confused with
a coordinate index or an exponent.

The following result for convergence of multivariate ψ-GPPs with independent
coordinate processes is the immediate consequence of a result for convergence of
univariate ψ-GPPs from Theorem 4 of [10] and presented in a more convenient form
for the application here in Proposition 4 of [11]. Theorem 4 of [10] describes a FCLT
for sums of i.i.d.ψ-GPPs as the number becomes large. Because a single ψ-GPP with
parameter β = nb has the same distribution as a sum of n ψ-GPPs with parameter
β = b, Proposition 4 of [11] provides a FCLT with the same limit as in Theorem
4 of [10] for a sequence of individual ψ-GPPs, but where the parameter β is scaled
by the sequence index. The scaling therefore differs from the scaling of time used by
Donsker’s theorem to obtain a Brownianmotion limit for ergodic processes. Donsker’s
theorem is applied in Sect. 4 to obtain Brownian motion limits for the service and
routing process for queueing network models.

Lemma 1 (Proposition 4 of [11]) If V n is a multivariate ψ-GPP in Dm with inde-
pendent coordinate processes and parameters (γ, β = nb), where n ≥ 1 is a positive
integer and b ≥ 0 is a vector inRm, andV n (t)≡ n−1/2 (V n (t) − nbt), thenV n ⇒ V
in (Dm,WM1) as n → ∞, where V is the ψ-GMP with parameters

(
A = diag (b) ,

B = −diag (b � γ )
)
.

Proof Using the assumed independence of the coordinate processes V n,i for i =
1, . . . ,m, the result follows from Proposition 4 of [11] and Theorem 11.4.4 of [23]. �


We can now state and prove a result for convergence of ψ-GPSPs to a ψ-GMP.

Theorem 1 (Convergence to a ψ-GMP) If Nn in Dk is the ψ-GPSP with parameters
(γ, β = nb, M), where n ≥ 1 is a positive integer and rank (M) = k, and if

Nn (t) ≡ n−1/2 (
Nn (t) − nMbt

)
, (10)
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then Nn ⇒ N in
(
Dk,WM1

)
as n → ∞, where N is the ψ-GMP with parameters(

A = M (diag (b)) MT , B = −M (diag (b � γ )) MT
)
.

Proof Because
(
Dk,WM1

)
is a product topology, mappings on it are continuous if

they are continuous in each coordinate. Multiplication by a matrix M can be viewed
for each coordinate process in D as a combination of addition and multiplication
by constants. In general, addition is not a continuous mapping on (D,WM1), but
Corollary 12.7.1 of [23] states that it is continuouswhen the limit process is continuous,
as it is here. Remark 12.71 on page 411 of [23] implies that addition is measurable on
(D,WM1). Hence, in the case that is relevant here, multiplication by the matrix M
is a continuous measurable mapping on

(
Dk,WM1

)
. By Definition 1, Nn = MV n ,

where V n is defined in Lemma 1. Lemma 1 and Theorem 3.4.3 of [23] then imply that
Nn = MV n ⇒ MV ,where V is also defined inDefinition 1. The result thatMV = N
then follows fromProposition 3. Clearly, A = M (diag (b)) MT is symmetric positive
definite, and B = −M (diag (b � γ )) MT is symmetric negative definite. �

Remark 2 A comparison of Proposition 1 and Theorem 1 shows that the prelimit
process Nn has the same covariance function as the limit process N for all n ≥ 1.

4 HTLTs for queueing networks withÃ-GPSP arrivals

We now state and prove HTLTs for the multivariate workload (buffer content) and
queue-length processes for queueing networks with infinite buffers.

For our model of the workload process, work arrives to each queue exogenously
(from outside the network) in discrete quanta but departs from each queue as a fluid.
Proportions of work departing each queue are routed out of the network or to other
queues for service.

For ourmodel of the queue-length process, customers arrive to each queue as a point
process, receive service, and then are routed out of the network or to other queues for
service.

4.1 The reflectionmap

The HTLTs for both models will involve the multidimensional reflection map, which
we now describe. Let P be a substochastic matrix (non-negative with row sums less
than or equal to one) of dimension k × k. Let Q = PT be such that Qp → 0 as
p → ∞.

Definition 3 The multidimensional reflection map (φ,ψ) ≡ (φ,ψ)Q : Dk → D2k

is a mapping of any x in Dk into a unique (y, z) = (φ (x) , ψ (x)) in D2k such that

z = x + (I − Q) y ≥ 0,

yi is nondecreasing with yi (0) = 0 for i = 1, 2, . . . , k, and
∫ ∞

0
zi (t) dyi (t) = 0 for i = 1, 2, . . . , k.
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The element y is called the regulator component and z is called the content com-
ponent of the reflection map. The element x is called the reflection map’s net input.
For background, including proof of existence and uniqueness of the multidimensional
reflection map, see Chapter 14 of [23]. Theorem 14.2.3 of [23] describes the equiva-
lence of Definition 3 and Definition 14.2.1 on page 462 of [23].

4.2 Queueing network fluidmodel

Our model for the queueing-network workload process is based on the fluid model
developed in Sections 14.2 and 14.6 of [23]. Work will arrive to each queue from
outside the network in successive quanta. Each queue’s server will process and output
work continuously at a constant rate whenever the queue is not empty. The quanta
sizes for exogenous arrivals at any queue will have a unit mean and finite variance, but
the quanta variance and rate at which work is served may vary from queue to queue.
A proportion 0 ≤ Pi j ≤ 1 of the output of work from queue i will be routed to queue
j to serve as input, and a proportion 1 − ∑

j Pi j > 0 will leave the network. The
matrix P ≡ (

Pi j
)
will be called the routing matrix. Because we represent multivariate

processes as column vectors, it will be convenient to define Q ≡ PT , whichwe assume
has the property that Qp → 0 as p → ∞ so that work eventually leaves the network.
The transposed matrix Q is called the reflection matrix. A queue’s workload (or total
buffer content) at each point in time is the work that has arrived to the queue but has
not yet been served.

4.2.1 Net input process for the fluid model

We define the queueing network’s net input process and prove a FCLT for it. The limit
will be a multivariate ψ − GMP with drift.

We consider a sequence of models indexed by n ≥ 1. Each model has a network
of k queues and the k × k reflection matrix Q, which is the same for all models. In
the nth model, quanta of work arrive to the queueing network from outside as a ψ-
GPSP Nn in Dk with parameters (γ, β = nb, M). The coordinate process Nn,i is the
exogenous arrival process of work quanta to queue i . The sequence of work quanta
from successive arrivals to queue i is the sequence

{
Vj,i : j ≥ 1

}
of i.i.d random

variables with E
[
Vj,i

] = 1 and Var
[
Vj,i

] = c2si . The same sequence will apply for
queue i in all models. We assume that the sequences

{
Vj,i : j ≥ 1

}
for different queue

indices i are mutually independent and independent of the exogenous arrival process.
Let Sn ≡ (

Sn,1, Sn,2, . . . , Sn,k
)
, where Sn,i (t) ≡ ∑�nt�

j=1 Vj,i , and

Sn (t) ≡ n−1/2 (
Sn (t) − nt I

)
, t ≥ 0.

Then, the classical Donsker’s theorem in Section 4.3 of [23] implies that

Sn ⇒ diag (cs)W in
(
Dk,WM1

)
as n → ∞, (11)
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where cs = (cs1, cs2, . . . csk), and W is standard k-variate Brownian motion. Our
assumptions about the distribution of work quanta enter into the results that follow
only through that limit. As discussed in [11], the same limit holds with a different
interpretation of cs when the assumption that

{
Vj,i : j ≥ 1

}
is an i.i.d. sequence is

relaxed in various ways.
The total exogenous input process ofwork tomodeln isT n ≡ (

T n,1, T n,2, . . . , T n,k
)
,

where

T n,i (t) ≡
Nn,i (t)∑

j=1

Vj,i for i = 1, . . . , k.

The randomvariable T n,i (t) represents the total service requirements of all exogenous
arrivals in Nn,i to queue i over the interval [0, t]. For the nth model, let nrni be the
service rate of work at queue i , where rn ≡ (

rn1 , rn2 , . . . , rnk
)

> 0 is in R
k . Then, the

net input process of work for model n is defined as

Xn (t) ≡ Tn (t) + Qnrnt − nrnt

= Tn (t) − (I − Q) nrnt, t ≥ 0. (12)

The random variable Xn,i (t), which can be negative, represents what the content of
queue i would be at time t if the queues were initially empty and always busy, so
that the output from all queues occurred continuously at their respective rates nr j for
j = 1, 2, . . . , k without interruption due to idleness.
We now state and prove a FCLT for joint convergence of the net input process and

other processes. Let e ≡ e (t) = t , and

Nn (t)≡ n−1/2 (
Nn (t) − nMbt

)
, Tn (t)≡ n−1/2 (

Tn (t) − nMbt
)
,

and Xn (t)≡ n−1/2Xn (t) , t ≥ 0 and n ≥ 1. (13)

Lemma 2 (FCLT for the net input process) If (Nn, Tn, Xn) in D3k are defined as in
(13), where Nn from (10) is the ψ-GPSP with parameters (γ, β = nb, M), and

n1/2
(
Mb − (I − Q) rn

) → ω in R
k as n → ∞, (14)

then (Nn, Tn, Xn) ⇒ (N, T , X) in
(
D3k,WM1

)
as n → ∞, where N is a ψ-GMP

with parameters
(
A = M (diag (b)) MT , B = −M (diag (b � γ )) MT

)
, T is the

ψ-GMP with parameters
(
A = M (diag (b)) MT + diag

(
c�2
s � Mb

)
, B = −M

(diag (b � γ )) MT
)
, and X = T + ωe.

Proof By Theorem 1, Nn ⇒ N . Coordinate-wise composition is continuous on(
Dk,WM1

)
because

(
Dk,WM1

)
is a product topology, and composition is continu-

ous in (D,WM1) in each coordinate under the conditions of Theorem 13.3.1 of [23].
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Then

Tn ≡ n−1/2 (
Tn − nMbe

)

= n−1/2
(
Sn ◦

(
n−1Nn

)
− nMbe

)

= n−1/2
((

n1/2Sn + I ne
)

◦
(
n−1Nn

)
− nMbe

)

= Sn ◦
(
n−1/2Nn + Mbe

)
+ Nn ⇒ diag (cs)W ◦ (Mbe) + N,

where the convergence follows from (11) and Theorem 3.4.3 of [23]. Because

Cov (W (s) ,W (t)) = s I for s ≤ t,

it follows that Tn ⇒ T . Using the above result and (14),

Xn≡ n−1/2Xn = n−1/2 (
Tn − nMbe

) + n1/2
(
Mb − (I − Q) rn

)
e

⇒ T + ωe.

Joint convergence follows from the continuous mapping theorem in Theorem 3.4.3 of
[23]. �


4.2.2 HTLT for the fluid model

The potential output rate from each queue is equal to its constant service rate. Some of
that potential output will be lost when the queue is empty. The multivariate workload
process for a network of queues is obtained from the net input process by adjusting
for the cumulative lost potential output process. If, for the nth model, Zn in Dk is the
workload process, Ln in Dk is the cumulative lost potential output process, and Xn is
the net input process from (12), then

Zn (t) = Zn (0) + Tn (t) + Q
(
nrnt − Ln (t)

) − (
nrnt − Ln (t)

)

= Zn (0) + Xn (t) + (I − Q) Ln (t) ≥ 0 f or all t ≥ 0.

For Ln to have the interpretation as the cumulative lost potential output, its coordinate
processes Ln,i must each be non-decreasing with Ln,i (0) = 0 and must increase only
at times when Zn,i is equal to zero.We recognize those properties from the description
of the reflection map (φ,ψ) : Dk → D2k from Definition 3 and define

(
Zn, Ln) ≡ (

φ
(
Zn (0) + Xn) , ψ

(
Zn (0) + Xn))

and

(Zn, Ln) ≡
(
n−1/2Zn, n−1/2Ln

)
. (15)
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Theorem 2 (HTLT for the workload process) Under the assumptions and definitions
of Lemma 2 and 15, if Zn (0) ⇒ Z (0) ≥ 0 in R

k , where Zn (0) is independent of
(Nn, Tn, Xn) for all n, then

(Nn, Tn, Xn, Zn, Ln ) ⇒ (N, T , X, Z, L) in
(
D5k,WM1

)
as n → ∞,

where (Z, L) ≡ (φ (Z (0) + X) , ψ (Z (0) + X)) and Z (0) is independent of
(N, T , X).

Proof The result follows from Lemma 2, Theorem 14.5.2 of [23] for the continuity of
the reflection map, and Theorem 3.4.3 of [23] for the joint convergence. �


4.3 Standard open queueing networkmodel

The standard Open Queueing Network (OQN) model defined below for the queue-
length process is based on the framework developed in Section 14.7 of [23] for
queueing networks with service interruptions that can occur at busy queues. Here,
we consider the special case from [23] without such service interruptions. (An exten-
sion to the case from [23] with service introductions would introduce no new technical
issues.) Each queue has a single server with the first-in first-out discipline. We again
consider a sequence of models indexed by n ≥ 1. The queueing network for all models
will consist of k queues. For each pair of queues (i, j), let Ri, j (p) ≥ 0 for p ≥ 1
be the total number of customers immediately routed to queue j among the first p
departures from queue i , such that

∑n
j=1 R

i, j (p) ≤ p. We call R the routing process,
which will be the same for all models in the sequence of models.

For the nth model, customers arrive to the queueing network from outside as the
ψ-GPSP Nn in Dk with parameters (γ, β = nb, M). The coordinate process Nn,i is
the exogenous arrival process of customers to queue i .

To specify the service time process for queue i , first let
{
Ši (t) : t ≥ 0

}
in D

for i = 1, 2, . . . , k be a renewal counting process associated with a sequence of
positive i.i.d random variables having mean μ−1

i > 0 and coefficient of variation

(standard deviation divided by the mean) csi . We also assume that the processes Ši

for i = 1, . . . , k are mutually independent and independent of the arrival process. We
next introduce an additional scaling depending on n to introduce a drift in the limit,
as we will need for the HTLT in Theorem 3. In particular, let

S̃n,i (t) ≡ Ši
(
ηn,i t

)
, Sn,i (t) ≡ S̃n,i (nt) , and Sin (t) ≡ n−1/2

(
Sn,i (t) − μi nt

)
, t ≥ 0.

(16)

The counting process Sn,i is the potential service process for queue i in the nth
model, i.e., the process of service completions that would occur at queue i if
queue i were always busy. Let μ ≡ (μ1, μ2, . . . μk), cs ≡ (cs1, cs2, . . . csk),
ηn ≡ (

ηn,1, ηn,2, . . . , ηn,k
)
, Sn ≡ (

Sn,1, Sn,2, . . . , Sn,k
)
, and Sn ≡ (

S1n , S
2
n , . . . , S

k
n

)
.

123



Queueing Systems

Lemma 3 (Convergence of service process to multivariate BM with drift) If

√
n (ηn − 1) → η in Rk as n → ∞, (17)

where 1 is the vector of 1s in Rk , then

Sn ⇒ diag
(
μ�1/2 � cs

)
W s + μ � ηe in

(
Dk,WM1

)
as n → ∞.

where W s is standard k − dimensional Brownian motion.

Proof For the nth model, let Šin be the standard scaling of Ši for its FCLT involving
translation, time scaling by n and spatial scaling by

√
n, i.e.

Šin (t) ≡ n−1/2
(
Ši (nt) − μi nt

)
, t ≥ 0.

By Donsker’s theorem, Theorem 4.3.1 of [23], and the equivalence between FCLT’s
for partial sums and associated counting processes, from Corollary 7.3.1 of [23],

Šin ⇒ μ
1/2
i csiW

i
s in (D,WM1) as n → ∞,

where Wi
s is standard Brownian motion independent of W j

s for j �= i . The result in
Lemma 3 then follows coordinate-wise from Theorem 13.3.1 of [23]; see the proof of
Corollary 3 of [10] for essentially the same argument. Convergence in Dk then follows
from the assumed independence of the coordinate processes using Theorem 11.4.4 of
[23]. �


In Section 14.7 of [23], the routing process is assumed to satisfy a FCLT with a
long-term rate (translation term) Pi, j corresponding to the long-term proportion of
customers routed from queue i to queue j . To obtain a limit for the queue-length
process that is a multivariate reflectedψ-GMPwith drift, we must make more specific
assumptions about the routing process than those required in Section 14.7 of [23].
In particular, we will consider the common case of Markovian routing, where the
probability a customer departing from queue i is routed to queue j is equal to Pi, j ,
independently of prior routing decisions and the arrival and service processes, where
P is a nonnegative substochastic k × k matrix with transpose Q ≡ PT satisfying the
assumptions for a reflection matrix from Definition 3. Then,

Rn (t) ≡ n−1/2 (R (�nt�) − Pnt) ⇒ R̂ (t)

≡
((

�1
)1/2

W r1 (t) ,
(
�2

)1/2
W r2 (t) , . . . ,

(
�k

)1/2
W rk (t)

)T

(18)

in
(
Dk2 ,WM1

)
for t ≥ 0, where W ri for i = 1, . . . , k are independent standard

Brownian processes in Dk , independent of the arrival and service processes, and �i
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for i = 1 . . . , k are k × k covariance matrices with

�i
j, j = Q j,i

(
1 − Q j,i

)
and �i

j,l = −Q j,i Ql,i for j �= l;

(Recall that the Markovian routing induces the multinomial distribution and that Q is
the transpose of P; see (7.6) on page 178 of [13].)

With the above definitions, the arrival process Nn,i (t) and potential service process
Sn,i (t) already grow at a mean rate proportional to nt . For consistency with the time
scaling used in Theorem14.7.4 of [23], we define An,i (t) ≡ Nn,i (t/n), t ≥ 0, and note
that S̃n,i (t) = Sn,i (t/n), t ≥ 0 by (16). We will thus get our original processes back
without change when we scale time by n as in Theorem 14.7.4 of [23] and Theorem 3.
We can now describe the queue-length process Zn,i for the i th queue in the nth model
as

Zn,i (nt) = Zn,i (0) + An,i (nt) +
k∑

j=1

R j,i

(
S̃n, j

(
Bn, j (nt)

))
− S̃n,i

(
Bn,i (nt)

)
, t ≥ 0,

(19)

where

Bn,i (t) ≡
∫ t

0
1{Zn,i (s)>0}ds. (20)

Theprocess Bn,i (t)has the interpretation as the cumulative busy timeof server i during
the interval [0, t]. Let Zn ≡ (

Zn,1, Zn,2, . . . , Zn,k
)
and Bn ≡ (

Bn,1, Bn,2, . . . , Bn,k
)
.

By Theorem 14.7.1 of [23], there is a unique solution (Zn, Bn) in D2k with those
properties.

A key step in Section 14.7 of [23] is representing the queue length process defined
above as the image of the reflection map applied to an appropriate potential net input
process. Theorem 14.7.2 of [23] constructs such a potential net input process, which
appears in (7.5)–(7.8) on p. 498 of [23]. It’s j th coordinate process is

Xn, j (nt) ≡
(

k∑

i=1

Mj,i bi +
k∑

i=1

Pi, jμi − μ j

)

nt +
[

An, j (nt) − n
k∑

i=1

Mj,i bi t

]

+
k∑

i=i

[
Ri, j

(
S̃n,i

(
Bn,i (nt)

))
− Pi, j S̃

n,i
(
Bn,i (nt)

)]

+
k∑

i=i

Pi, j
[
S̃n,i

(
Bn,i (nt)

)
− μi B

n,i (nt)
]

−
[
S̃n, j

(
Bn, j (nt)

)
− μ j B

n, j (nt)
]

(21)

for 1 ≤ j ≤ k. In (21) above as in (7.5)–(7.8) of [23], there are terms that cancel in order
to group the terms to correspond to those of the net input limit process obtained below.
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Theorems 14.7.2 of [23] shows that queue-length process in (19) can be represented
as Zn = φ (Xn), where Xn is defined by (21) and φ is the content component of the
reflection map from Section (4.1) with Q = PT . The representation in (21) therefore
will support a HTLT showing joint convergence of the net input and queue-length
processes.

We now state and prove the HTLT for the standard OQN with Markovian routing
and the ψ-GPSP arrival process. In the statement of the result, X is the limit for the
sequence of normalized net input processes, and its reflection Z is the limit of the
sequence of normalized queue length processes. The limit for the net input process is
remarkably tractable because it is a ψ-GMP and thus a Gaussian process.

Theorem 3 (HTLT for the net input and queue-length processes) If

Nn (t) ≡ n−1/2 (
Nn (t) − nMbt

)
, Xn (t) ≡ n−1/2Xn (nt) , Zn (t) ≡ n−1/2Zn (nt) ,

Sn (t) ≡ n−1/2 (
Sn (t) − μnt

)
, X̂n (t) ≡ n−1Xn (nt) , Ẑn (t) ≡ n−1Zn (nt) ,

Ŝn (t) ≡ n−1Sn (t) , and B̂n (t) ≡ n−1Bn (nt) for t ≥ 0,

where Nn is the ψ-GPSP with parameters (γ, β = nb, M) as in Theorem 1 and the
definitions in (16) and (19)-(21) apply, and if Zn (0) ⇒ Z (0) > 0 inRk , where Zn (0)
is independent of (Nn, Sn, Xn) for each n ≥ 1, μ ≡ (I − Q)−1 Mb, and (17) and
(18) apply, then

X j
n = N j

n +
k∑

i=1

(Rn)i, j ◦ Ŝin ◦ B̂i
n +

k∑

i=1

Pi, j S
i
n ◦ B̂i

n − S j
n ◦ B̂ j

n for j = 1, 2, . . . , k,

(22)

Zn = φ (Zn (0) + Xn) where φ is the content component of the reflection map
(φ,ψ) ≡ (φ,ψ)Q : Dk → D2k , and

(Nn, Sn, Xn, Zn) ⇒ (N, S, X, Z) in
(
D4k,WM1

)
as n → ∞,

where

N is the ψ-GMP with parameters
(
A = M (diag (b)) MT , B = −M (diag (b � γ )) MT )

,

S = diag
(
μ�1/2 � cs

)
Ws + μ � ηe,

Ws is standard Brownian motion in Dk ,

X ≡ N + R̂
T
μ�1/2 − (I − Q) S is the ψ-GMP with drift ω ≡ − (I − Q) (μ � η) ,

and parameters
(
A = M (diag (b)) MT +

k∑

i=1

�iμi + (I − Q) diag
(
μ � c�2

s

)
(I − Q)

T
,

B = −M (diag (b � γ )) MT )
, and

Z = φ (Z (0) + X) .
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Proof The assumptions of Theorem 14.7.4 of [23] hold with H = 1/2. We elaborate
on the proof there because the net input process is not clearly identified on lines 6–7
on p. 502. From the convergence established on line 3 from the bottom of p. 501
and (7.5)–(7.7), we get X̂ i

n j
⇒ 0e through the subsequence where the busy-time

process converges. By Theorems 14.2.5 and 14.7.2, we then get B̂i
n j

⇒ e and apply
Theorem 11.4.5 to establish the functional weak law of large numbers (FWLLN)
(X̂n j , Ẑn j , B̂n j ) ⇒ (0, 0, 1e) (where 0 and 1 in that context are the vectors of all zeros
and ones in R

k). Since that limit holds for all subsequences, we get the full sequence
converging as stated there. The essential mathematical tool for proving convergence
of (22) to the net input limit then is the preservation in the limit of composition with
linear centering as in Section 13.3 of [23], in particular by application of Corollary
13.3.2.

In (7.18) of [23], λ ≡ Mb, μ, R, and P are independent of n, while the displayed
limits in (7.20) are established earlier in this paper. Since we have assumed that there
are no service interruptions when the content of each queue is positive, Dn ≡ 0
in (7.20) there. The condition that the joint limit is in D1 w.p.1 (i.e., that it can have
discontinuities in only one coordinate at a time) is satisfied because the limit processes
have no discontinuities. The limits in (7.21) there holds because the matrix P and the
normalization constants used for the definitions of Nn and Sn do not depend on n. The
limit in (7.22) there holds with c ≡ 0 since we have assumed thatμ ≡ (I − Q)−1 Mb,
i.e.,μ is the solution of the traffic rate equation described in (5.7.1) on page 271 of [21].
The conclusions then follow from (7.23) and (7.24) there and the results of Theorem
1 and Lemma 3 here. The drift for the net input process limit is the result of the drift
from the potential service process limit, as established by Lemma 3. �


Example 2 (a symmetric two-queue example.) We start by constructing a symmetric
two-queue example with Markovian routing. We first consider the standard case with
Brownian motion limits for the arrival, service, and routing processes discussed in
Remarks 14.7.1−14.7.4 of [23] and then afterwards extend to the case of a ψ-GMP
limit for the arrival process. Let the 2× 2 routing matrix P be symmetric with P1,2 =
P2,1 = θ , 0 ≤ θ < 1, and P1,1 = P2,2 = 0, so that there is no immediate feedback.
We adopt all the simplifications in Remarks 14.7.1−14.7.4 of [23], so that the limit
process for the net input process will be Brownian Motion (BM) with drift, while
the limit for the queue length process will be Reflected Brownian Motion (RBM). In
particular, we assume that Ni

n (t) ≡ n−1/2
(
Nn,i (nt) − λi nt

) ⇒ caiW i
a (t), i = 1, 2,

for the arrival process, whereW 1
a andW 2

a are independent standard Brownianmotions.
To simplify expressions, we let μ = (1, 1) and λ = (I − Q) μ = (1 − θ, 1 − θ), as
will be needed so that traffic intensities approach one for the sequence of systems. As
in Lemma 3, we then assume that Sin (t) ≡ n−1/2

(
Sn,i (t) − nt

) ⇒ csiW i
s (t)+ηi t for

the service process, where W 1
s and W 2

s are independent standard Brownian motions..
Let Rn be the normalized routing process defined in (18), and let R̂ be its limit.

Because the arrival, service and routing processes are assumed to be independent,

(Nn, Sn, Rn) ⇒
(
N, S, R̂

)
in

(
D2 × D2 × D2×2 ≡ D8,WM1

)
as n → ∞,
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where N = diag (ca)Wa , S = diag (cs)W s + ηe, and
(
R̂
T
)i = (

�i
)1/2

W ri (t)

withWa ,W s , andW ri for i = 1, 2 being independent standard 2-dimensional Brow-
nian motions, while �i

j, j = Pi, j
(
1 − Pi, j

)
and �i

j,l = −Pi, j Pi,l for j �= l. (For
each i , the routing produces a 2-dimensional multinomial distribution.) The model is
therefore determined by three parameter vectors (ca, cs, η) and the probability θ .

It now remains to exhibit the limit process X for the net input process. Applying
Theorem 3 with the modification to the assumptions about the arrival process (and
recalling that X depends on − (I − Q) S), it follows that X is a 2-dimensional BM
having aGaussian distributionwithmean vectorE [X(t)] = − (η1 − θη2, η2 − θη1) t
and covariance function

Cov [X (s) , X (t)] = s

(
c2a1 + c2s1 + θ2c2s2 + θ (1 − θ) −θ

(
c2s1 + c2s2

)

−θ
(
c2s1 + c2s2

)
c2a2 + c2s2 + θ2c2s1 + θ (1 − θ)

)

(23)

for s ≤ t .
Now we change the model. We now assume that the arrival process is a ψ-GPSP

with parameters (γ, β = nb, M), which makes its limit process from Theorem 1 a
ψ-GMP. We assume that the matrix M is the one in (4) of Example 1. The ran-
dom variable X(t) again has a Gaussian distribution with mean vector E [X(t)] =
− (η1 − θη2, η2 − θη1) t . By Theorem 3, the covariance function changes to

Cov [X (s) , X (t)] = s

(
b1 + b3 + c2s1 + θ2c2s2 + θ (1 − θ) b3 − θ

(
c2s1 + c2s2

)

b3 − θ
(
c2s1 + c2s2

)
b2 + b3 + c2s2 + θ2c2s1 + θ (1 − θ)

)

+ st

(
b1γ1 + b3γ3 b3γ3

b3γ3 b2γ2 + b3γ3

)
for s ≤ t . (24)

5 Non-ergodic law of large numbers for the limit processes

In Theorem 2 for the fluid model and Theorem 3 for the OQN model, the limit X
for the net input process is a ψ-GMP with drift, and the limit Z for the workload or
queue length process is a multidimensional reflection of X . For (X, Z) with those
properties, we state and prove a non-ergodic LLN, which then applies for the limit
processes from both theorems. The LLN depends on the parameters of X , which are
specified differently by Theorems 2 and 3. The result and its proof generalize the result
and proof of Corollary 7 in [10].

For the statement of the result, let N (m, 	) denote a normal random vector in Rk

with mean vector m and covariance matrix 	, so that

P (N (m, 	) ≤ y) =
∫

x≤y
n (x;m, 	) dx
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for y in R
k , where n (x;m, 	) is the multivariate normal density. Let N f (m, 	)

denote the random vector with cumulative distribution function

P
(
N f (m, 	) ≤ y

)
= E

[
1 f (x)≤y

] ≡
∫

f (x)≤y
n (x;m, 	) dx,

where f : Rk → R
k .

Theorem 4 (Non-ergodic LLN for the limit processes) If X in Dk is a ψ-GMP with
parametermatrices (A, B)anddrift vectorω, (Z, L) ≡ (φ (Z (0) + X) , ψ (Z (0) + X)),
where (φ,ψ) ≡ (φ,ψ)Q : Dk → D2k is the reflection map, and Z (0) is independent
of X , then

n−1 (X (n) , Z (n) , L (n)) ⇒
(
N (ω, −B) , N fZ (ω,−B) , N fL (ω,−B)

)
in R

3k

as n → ∞,

where fL(x) inRk is the unique solution to fL (x) = (Q fL (x) − x)∨0 and fZ (x) ≡
x + (I − Q) fL (x).

The proof of Theorem 4 will rely on the following FWLLN for the net input process,
which draws on Proposition 4 from Sect. 3.1.

Lemma 4 (FWLLN for a tied-down ψ-GMP with drift) For any x in Rk , if X in Dk is
a ψ-GMP with parameter matrices (A, B) and drift vector ω,

X̄n,x (s) ≡ n−1 (X (ns) |X (n) = nx) for 0 ≤ s ≤ 1 and n ≥ 1,

and

(
Z̄n,x , L̄n,x

) ≡
(
φ

(
n−1Z (0) + X̄n,x

)
, ψ

(
n−1Z (0) + X̄n,x

))
,

where (φ,ψ) ≡ (φ,ψ)Q : Dk → D2k is the reflection map, and Z (0) is independent
of X , then

(
X̄n,x .Z̄n,x , L̄n,x

) ⇒ (xe, φ (xe) , ψ (xe)) in
(
D3k [0, 1] ,WM1

)
as n → ∞,

where ψ (xe) is the unique solution to ψ (xe) = (Qψ (xe) − xe) ∨ 0 and φ (xe) =
xe + (I − Q)ψ(xe).

Proof Because X̄n,x is continuous, it suffices to prove joint convergence in the space
C3k [0, 1] of continuous functions on the interval [0, 1] with the uniform topology.
Because X̄n,x (s) ≡ n−1Xn,x (ns), where Xn,x (t) ≡ (X (t) |X (n) = nx) for 0 ≤
t ≤ n, Proposition 4 implies that X̄ i

n,x (s) = xi s+Ū i
n (s) for 0 ≤ s ≤ 1, where Ū i

n is a
zero-mean Gaussian Markov process (a Brownian bridge) in C [0, 1] with Ū i

n (0) = 0
and Cov

[
Ū i
n (s1) , Ū i

n (s2)
] = n−1Aii s1 (1 − s2) → 0 for 0 ≤ s1 ≤ s2 ≤ 1 as

n → ∞. It follows that the covariance matrix for
(
Ū i
n (s1) , Ū i

n (s2) , . . . , Ū i
n

(
sp

))
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converges to zero as n → ∞ for all positive integers p and all time points 0 ≤
s1 ≤ s2 ≤ . . . ≤ sp ≤ 1. By Levy’s convergence theorem, Ui

n → f .d. 0, where
→ f .d. denotes convergence of finite dimensional distributions. From the covariance
function for Ū i

n , it also follows that Ū i
n =d n−1/2Ū i

1, where =d denotes equality of
distributions. If ν

(
Ū i
n, δ

)
is the modulus of continuity defined in (6.2) on page 388 of

[23], then ν
(
Ū i
1, δ

) → 0 as δ → 0 because Ū i
1 is continuous, and ν

(
Ū i
n, δ

)
for δ > 0

is a decreasing function of n. It follows from Theorem 11.6.4 of [23] that Ū i
n ⇒ 0e

in C [0, 1], so that X̄
i
n,x ⇒ xi e in C [0, 1]. We conclude that X̄n,x ⇒ xe in Ck [0, 1]

using Theorem 11.6.4 of [23].
By Theorem 14.5.2 of [23], L̄n,x ⇒ ψ (xe). Let y (t) ≡ ψ (xe) (t) ≥ 0. Theorem

14.2.2 of [23] implies that y is the unique solution to

y (t) = sup
0≤s≤t

(Qy (s) − xs) ∨ 0 for 0 ≤ t ≤ 1, (25)

where y(0) = 0. We now show that (25) is solved by

y (t) = t y (1) , 0 ≤ t ≤ 1, where y (1) = (Qy (1) − x) ∨ 0. (26)

By Corollary 14.3.3 of [23], the fixed point equation for y (1) in (26) has a unique
solution. In agreement with (25),

y (t) = t y (1) = (Qty (1) − xt) ∨ 0 = sup
0≤s≤t

(Qsy (1) − xs) ∨ 0 = sup
0≤s≤t

(Qy (s) − xs) ∨ 0

(27)

for 0 ≤ t ≤ 1, where the first, second, and last equalities follow immediately from
(26) and the third equality follows because (Qsy (1) − xs) is either a nondecreasing
nonnegative function or a negative function of s ≥ 0 in each coordinate. By the first
and second equalities of (27), y (t) = (Qy (t) − xt) ∨ 0 for 0 ≤ t ≤ 1, which is
written more compactly as ψ (xe) = (Qψ (xe) − xe) ∨ 0. By the definition of the
reflection map, φ (xe) = xe+ (I −Q)ψ (xe), and the joint convergence follows from
the continuous mapping theorem. �

Remark 3 Comparing Lemma 4 and Corollary 14.3.3 of [23] reveals a relationship
between a reflection map applied to a net input process that is a linear function of time
and the instantaneous reflection map defined in Section 14.3 of [23]. The values of
their regulator components at the end of an interval are the same when the latter’s net
input is equal to zero except for a single jump at the end of the interval equal to the
value of the former’s net input at that time. By Corollary 14.3.3 of [23], the fixed point
equation ψ (xe) = (Qψ (xe) − xe) ∨ 0 is a version of the linear complementarity
problem (LCP) described on page 474 of [23]. There are well-known algorithmic
solutions to LCPs; see, for example, Cottle, Pang and Stone [5].

As a corollary of Lemma 4, we obtain a WLLN for a ψ − GMP with drift and its
multivariate reflection.
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Corollary 1 (WLLN for the conditioned process) Under the assumptions of Theorem
4, if

Xn,x (t) ≡ (X (t) |X (n) = nx)

Zn,x (t) ≡ (Z (t) |X (n) = nx) and Ln,x (t) ≡ (L (t) |X (n) = nx)

for n ≥ 1, 0 ≤ t ≤ n, and x in Rk , then

(
Xn,x (n)

n
,
Zn,x (n)

n
,
Ln,x (n)

n

)
⇒ (x, fZ (x) , fL (x)) in R3k as n → ∞,

where fZ and fL are defined as in Theorem 4.

Proof By the definitions of Xn,x above and X̄n,x from Lemma 4,

Xn,x = n X̄n,x ◦
(
n−1e

)
on [0, n] .

Using the rescaling properties of the reflection map from Theorem 14.2.6 of [23],

(
n−1Xn,x , n

−1Zn,x , n
−1Ln,x

) = (
n−1Xn,x , n

−1φ
(
Z (0) + Xn,x

)
, n−1ψ

(
Z (0) + Xn,x

))

=
(
X̄n,x ◦ e

n
, φ

(
n−1Z (0) + X̄n,x ◦ e

n

)
, ψ

(
n−1Z (0) + X̄n,x ◦ e

n

))

=
(
X̄n,x ◦ e

n
, φ

(
n−1Z (0) + X̄n,x

) ◦ e

n
, ψ

(
n−1Z (0) + X̄n,x

) ◦ e

n

)

=
(
X̄n,x ◦ e

n
, Z̄n,x ◦ e

n
, L̄n,x ◦ e

n

)
w.p.1 on [0, n] .

Therefore,

(
Xn,x (n)

n
,
Zn,x (n)

n
,
Ln,x (n)

n

)
=

(
X̄n,x ◦ e

n
(n) , Z̄n,x ◦ e

n
(n) , L̄n,x ◦ e

n
(n)

)

= (
X̄n,x (1) , Z̄n,x (1) , L̄n,x (1)

)
w.p.1

in R3k as n → ∞, and the claimed result follows from Lemma 4. �

We now apply Corollary 1 to provide an elementary proof for Theorem 4.

Proof of Theorem 4 Using the definition of a ψ-GMP X with parameter matrices
(A, B) and drift vector ω,

n−1X (n) = N
(

ω,
n (A − Bn)

n2

)
⇒ N (ω,−B) in R

k as n → ∞,
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as follows fromLevy’s convergence theorem since the covariancematrix for n−1X (n)

converge to −B as n → ∞. Likewise,

P

(
n−1Z (n) ≤ z

)
=

∫
P

(
n−1Z (n) ≤ z|n−1X (n) = x

)
P

(
n−1X (n) ∈ dx

)

=
∫

P

(
n−1Z (n) ≤ z|n−1X (n) = x

)
n

(
x;ω,

n (A − Bn)

n2

)
dx

→
∫

1 fZ (x)≤y n (x;ω,−B) dx as n → ∞

by Corollary 1 and the bounded convergence theorem, i.e., the dominated convergence
theorem as applied when the integrand is bounded. The limit for n−1L (n) is obtained
in the same way, and the joint limit follows from the continuous mapping theorem. �


Remark 4 By Theorem 4, P
(
n−1L (n) ≤ y

) → E
[
1 fL (x)≤y

]
as n → ∞, where

fL (x) is the solution to an LCP as in Remark 3, and the expectation is taken
with respect to the multivariate normal distribution on R

k with mean vector ω

and covariance matrix −B. One approach to computing E
[
1 fL (x)≤y

]
numerically

is Monte Carlo simulation. If X i in Rk for i ≥ 1 are independent random sam-
ples from that distribution, then Sn (y) ≡ ∑n

i=1 1 fL (X i )≤y is the sum in R of n
outcomes from 0-1 Bernoulli trials. The law of large numbers then implies that
limn→∞ n−1Sn (y) = E

[
1 fL (x)≤y

]
almost surely. If wewish to choose n large enough

that P

(∣∣
∣∣n

−1Sn (y) − E
[
1 fL (x)≤y

]
∣∣
∣∣ < β

)
> 0.95, where 0 < β < 1, then the nor-

mal approximation to the binomial distribution implies that n ≈ β−2 should suffice;
see example (g) on page 176 of [8]. With that number of samples, the error should be
less than a prescribed value β with 95% confidence. The LLN limit for the content
process Z can be handled similarly.

Remark 5 Our previous simulation results in Fig. 1 of [10] illustrate that the time
average of aψ-GPP rapidly approaches a limiting value for each sample path.We have
verified that the empirical distribution of those values (for an ensemble of independent
sample paths) is well approximated by the LLN limit. Figure 2 of [10] suggests that the
same is true for the time average of the queue-length limit process for a single queue
with ψ-GPP arrivals in heavy traffic. We expect similar results for queueing networks
with ψ-GPSP arrivals. The LLN limit provides a first-order approximation for the
transient queue-length distribution, but with details lost because of its normalization
of the queue-length by time. The LLN limit in Theorem 4 has an atom at zero that
describes the probability that the queue-length limit process remains finite as time
increases. The rest of the LLN distribution then describes the rate at which the queue-
length limit process explodes when it does not remain finite. The probability of an
explosion provided by the LLN distribution is fundamental to the understanding of
the long-run behavior of queueing networks with path-dependent arrivals.
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Our next result will show how conditioning on an intermediate state induces a
changes of parameters for the LLN limit. For real s, t ≥ 0, let

X̂s (t) ≡ (X (t + s) − X (s) |X (s) , Z (s)) ,

Ẑs (t) ≡ (Z (t + s) |X (s) , Z (s)) and L̂s (t) ≡ (L (t + s) − L (s) |X (s) , Z (s)) .

Corollary 2 (conditional LLN) If (X, Z, L) ≡ (X, ψ (Z (0) + X) , φ (Z (0) + X))

in D3k where X is a ψ-GMP with parameter matrices (A, B) and drift vector ω,
(ψ, φ) ≡ (ψ, φ)Q : Dk → D2k is the reflection map, and Z (0) in Rk is independent

of X , then X̂
s
is a ψ-GMP with parameters (A, Bs) and drift ωs , and

(
X̂
s
(n)

n
,
Ẑ
s
(n)

n
,
L̂
s
(n)

n
,

)

⇒
(
N (ωs,−Bs) , N fZ (ωs,−Bs) , N fL (ωs,−Bs)

)

inR3k as n → ∞, where Bs = B (A − Bs)−1 A,ωs = ω−B (A − Bs)−1 s
(
s−1X (s)

−ω), and fZ and fL are defined as in Theorem 4.

Proof of Theorem 4 Defining Xn as in Proposition 5,

(
X̂
s
, Ẑ

s
, L̂

s
)

=
(
X̂
s
, φ

(
Z (0) + X̂

s
)

, ψ
(
Z (0) + X̂

s
))

=d
(
Xs, φ

(
Z (0) + Xs) , ψ

(
Z (0) + Xs)) , (28)

where the equality follows from the memoryless property of the reflection map from
Theorem 1 of [17], and the equality in distribution follows from the Markov property
of X . The result then follows by applying Theorem 4 with the modified parameters
from Proposition 5. �


The next corollary shows that a multivariate ψ-GMP with drift, conditioned on its
time average at time s, behaves increasingly like a multivariate Brownian motion with
drift equal to that time average as s becomes large. In the statement of the result, we
say that f (s) = o(g(s)) for a scalar-valued function g and vector- or matrix-valued
function f if f (s) is asymptotically equal to the zero vector or matrix for large s after
dividing by g(s).

Corollary 3 (Asymptotic behavior of conditional process) If X is a ψ-GMP in Dk

with parameter matrices (A, B) and drift vector ω, then

(
X (t + s) − X(s)|s−1X (s) = x

)
= ωs,x t + Gs,x (t) a.e. for s, t ≥ 0, (29)

and
(
n−1X (n) | s−1X (s) = x

)
⇒ N

(
ωs,x ,−Bs,x

)
as n → ∞, (30)
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whereGs,x is aψ-GMP in Dk with parameters
(
A, Bs,x

)
,ωs,x = x+s−1AB−1 (x − ω)+

o
(
s−1

)
and −Bs,x = s−1A + o

(
s−1

)
as s → ∞.

Proof If s is greater than the spectral radius of AB−1, then

(A − Bs)−1 = −s−1B−1 (
I − s−1AB−1)−1 = −s−1B−1

∞∑

j=0

(
s−1AB−1) j

= −s−1B−1 (
I + s−1AB−1 + o

(
s−1))

as s → ∞. (31)

The result in (29) follows from Proposition 5 and (31). Since Xn =d X̂
n
as in (28),

the result in (30) follows from Corollary 2 and (31). �

Remark 6 When the time s of observation is large, Corollary 3 implies that the subse-
quent mean growth rate for the conditioned process in (29) is approximately equal to
the historic average growth rate, and the parameter matrix Bs,x that distinguishes the
conditioned process from aBrownianmotion is approximately equal to zero, both with
error of order 1/s. Likewise, the variance of the LLN limit in (30) for the conditioned
process is approximately equal to zero, and the limit is then approximately equal to
the historic average growth rate (a constant), also with error order 1/s.

6 Concluding discussion

Weconclude bydiscussing extensions to the results from this paper and openquestions.

6.1 Domain of attraction for aÃ-GMP

A goal for future work is to determine the class of stochastic arrival processes that
lead to the FCLTs and HTLTs with the ψ-GMP limit process. The results of this
paper build on the result for the convergence of a sequence of one-dimensional ψ-
GPPs to a ψ-GMP from Theorem 4 of [10]. That result in turn exploits Hahn’s FCLT
for a sum of i.i.d. processes, reviewed in Section 7.2.1 of [23]. We now observe
that there are other processes in addition to ψ-GPP’s that will lead to a ψ-GMP
limit when we apply Hahn’s theorem. To describe such processes, let

{
Ni : i ≥ 1

} ={{
Ni (t) : t ≥ 0

} : i ≥ 1
}
be a sequence of i.i.d. stationary point processes in D, and

let

Gn (t) ≡ n−1/2
n∑

i=1

(
Ni (t) − E

[
Ni (t)

])
for t ≥ 0.

Theorem 5 (Sufficient conditions for convergence to a ψ-GMP) If a sequence of i.i.d.
stationary point processes

{
Ni : i ≥ 1

}
in D has the properties

i. E
[
Ni (t)

j
]

< ∞ for t ≥ 0 and j = 1, 2, 3, 4,
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ii. Var
[
Ni (1)

]
> E

[
Ni (1)

]
, and

iii.
{
Y (s) ≡ (

Ni (s) |Ni (t)
) : 0 ≤ s ≤ t

}
, defined for any t > 0, has the same dis-

tribution as the empirical process for Ni (t) i.i.d. uniformly distributed random
variables on [0, t],

then Gn ⇒ G in (D,WM1) as n → ∞, where G is the ψ-GMP with parameters(
A = E

[
Ni (1)

]
, B = − (

Var
[
Ni (1)

] − E
[
Ni (1)

]))
.

Proof Using well-known properties of the empirical process for Ni (t) i.i.d. uniformly
distributed random variables on [0, t], E [Y (s)] = st−1Ni (t) and Var [Y (s)] =
Ni (t) st−1

(
1 − st−1

)
, so that E

[
Y (s)2

] = Ni (t) st−1
(
1 − st−1

) + s2t−2Ni (t)
2

for 0 ≤ s ≤ t . Therefore,

Var
[
Ni (s)

]
= E

[
E

[
Y (s)2

]]
− E [E [Y (s)]]2

= E

[
Ni (t)

]
st−1

(
1 − st−1

)
+ s2t−2

E

[
Ni (t)

2
]

− s2t−2
E

[
Ni (t)

]2

(32)

for 0 ≤ s ≤ t . Because Ni is stationary, E
[
Ni (t)

] = tE
[
Ni (1)

]
. Substituting t = 1

and s = u into (32) then shows that

Var
[
Ni (u)

]
= E

[
Ni (1)

]
u +

(
Var

[
Ni (1)

]
− E

[
Ni (1)

])
u2 (33)

for 0 ≤ u ≤ 1. Substituting s = 1 and t = u into (32) then shows that (33) also holds
for u > 1. By assumption (ii), (33) is defined (i.e., is positive) for all u ≥ 0. Therefore,
(33) holds for all u ≥ 0. By the same logic used to derive equation (4) of Theorem 1
in [10], the assumed stationarity and the variance function in (33) imply that

Cov
(
Ni (s) , Ni (t)

)
= E

[
Ni (1)

]
s +

(
Var

[
Ni (1)

]
− E

[
Ni (1)

])
st

= Cov (G (s) ,G (t)) for 0 ≤ s ≤ t .

The remainder of the proof, which verifies that the conditions of Hahn’s theorem are
met, is then essentially the same as the proof of Theorem 4 in [10], except that the
constant c in (31) there is expressed in terms of the first four moments of Ni (1) instead
of their particular expressions for a ψ-GPP from (33) there. �

Remark 7 If we relax the requirement that B is negative for theψ-GMP limit and allow
B to be any real scalar, then we can eliminate assumption (ii). Theorem 5 would then
apply when Var

[
Ni (1)

] = E
[
Ni (1)

]
with no other changes. It would also apply

when Var
[
Ni (1)

]
< E

[
Ni (1)

]
with the change that the time domain is limited to

the finite interval on which the variance function in (33) remains positive.

We now give an example showing that Theorem 5 applies to more processes than
ψ-GPP’s.
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Example 3 A different process for which we can apply Hahn’s theorem to get con-
vergence to a ψ-GMP is the Poisson Generalized Gamma Process (PGGP) discussed
in [4]. An orderly point process {N (t) : t ≥ 0} is a Poisson Generalized Gamma
Process (PGGP) with parameters (λ (t) > 0, ν ≥ 0, k > 0, α > 0, l > 0) if it has the
stochastic intensity function

λ∗ (t |Ht ) = 1

α + �(t)

�ν (k + N (t−) + 1, (α + �(t)) l)

�ν (k + N (t−) , (α + �(t)) l)
λ (t) ,

where λ (t) is integrable, �(t) = ∫ t
0 λ (s) ds, and �ν (k, β) is the generalized gamma

function defined for k, β > 0 by

�ν (k, β) =
∫ ∞

0

yk−1exp (−u)

(y + β)ν
dy.

By Proposition 3.1 of [4], a GPP is a special case of a PGGP where ν = 0. PGGPs are
described in [4] as amore flexiblemodel thanGPPs for point processes with dependent
increments andoverdispersion relative to aPoissonprocess.Whenλ (t) = λt for t ≥ 0,
where λ is a positive real constant, condition (iii) of Theorem 5 is satisfied by Theorem
3.3 of [4]; and the distribution of the PGGP’s increment over an interval depends only
on the interval’s length and not on its position by Theorem 2.1 (ii) of [4]. The PGGP
is then stationary, as follows from the same logic as used by Theorem 1 of [10] to
show when a GPP is stationary. A stationary PGGP satisfies the other conditions of
Theorem 5 as well: condition (i) is satisfied by Theorem 2.2 (ii) of [4], and condition
(ii) is satisfied by Proposition 2.2 of [4] (excluding the special case where the PGGP
is a Poisson process with Var [Ni (t)] = E [Ni (t)]). Using Theorem 2.2 (iii) of [4],
we verify that a stationary PGGP has the mean and variance functions deduced above
for a process satisfying the conditions of Theorem 5.

Theorem 5 describes the limit for univariate superpositions of i.i.d. univariate sta-
tionary point processes. A superposition of n i.i.d. univariate ψ-GPPs has the same
distribution as a single ψ-GPP with the same combined rate. That property enabled
Theorem 4 of [10] to be restated in the form from Proposition 4 of [11], which was
applied in Lemma 1 here. That property has not been established for all processes
satisfying the conditions of Theorem 5. In particular, it has not been established for
PGGPs in the general case. An open question is the domain of attraction for aψ-GMP
when the limit is obtained by scaling the rate parameter of a process rather than by
constructing superpositions.

It is straightforward to generalize Theorem 1 of this paper to apply for the processes
in the domain of attraction described by Theorem 5, including PGGPs. We omit a
formal statement of that result in the interest of brevity.

Remark 8 Theorem 5.1 of [12] provides conditions for any multivariate ψ-GMP to
be obtained as the limit in a FCLT involving a multivariate mixed stationary point
process.
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6.2 Transient distribution

For possible applications, the most obviously useful results in this paper are (i) the
Gaussian approximation for the transient distribution of the net input process (because
it is a ψ-GMP) from Theorem 1 and Lemma 2, and (ii) the non-ergodic LLN for the
queueing processes and the net input process in Theorem 4 (which can serve as a
good approximation for the conditioned process by Corollaries 1 and 2). However, it
remains to find useful expressions for the exact transient distribution for a reflected
multivariate ψ-GMP with drift and general reflection matrix. Corollary 6 of [10]
provided an exact expression for the transient distribution of a univariate reflected
ψ-GMP with drift generalizing the well-known transient distribution for reflected
univariate Brownian motion with drift (e.g., from Sect. 6 of [15]). The special case of
the transient distribution of reflected multivariate Brownian motion with drift is itself
still an open question.

A promising approximation method for open queueing networks is robust queueing
as in [24, 25].Newapproximations for the steady-state distribution of an openqueueing
network are developed in [25] and older ones by [7, 16] are reviewed, but those are not
applicable for path-dependent arrivals. Approximations for the transient distribution
of the queue length process are developed in [24], but so far, just as for the transient
distribution of ψ-GMP in [10], those are limited to a single queue. Extension to
networks remains an important open problem.
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