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Abstract 

Traffic measurements from communication networks have shown that many quantities charecterizing network performance 
have long-tail probability distributions, i.e., with tails that decay more slowly than exponentially. File lengths, call holding 
times, scene lengths in MPEG video streams, and intervals between connection requests in Internet traffic all have been 
found to have long-tail distributions, being well described by distributions such as the Pareto and Weibull. It is known that 
long-tail distributions can have a dramatic effect upon performance, e.g., long-tail service-time distributions cause long-tail 
waiting-time distributions in queues, but it is often difficult to describe this effect in detail, because performance models with 
component long-tail distributions tend to be difficult to analyze. We address this problem by developing an algorithm for 
approximating a long-tail distribution by a hyperexponential distribution (a finite mixture of exponentials). We first prove 
that, in prinicple, it is possible to approximate distributions from a large class, including the Pareto and Weibull distributions, 
arbitrarily closely by hyperexponential distributions. Then we develop a specific fitting alogrithm. Our fitting algorithm is 
recursive over time scales, starting with the largest time scale. At each stage, an exponential component is fit in the largest 
remaining time scale iand then the fitted exponential component is subtracted from the distribution. Even though a mixture 
of exponentials has an exponential tail, it can match a long-tail distribution in the regions of primary interest when there 
are enough exponential components. When a good fit is achieved, the approximating hyperexponential distribution inherits 
many of the difficulties of the original long-tail distribution: e.g., it is still difficult to obtain reliable estimates from simulation 
experiments. However, some difficulties are avoided; e.g., it is possible to solve some queueing models that could not be solved 
before. We give examples showing that the fitting procedure is effective, both for directly matching a long-tail distribution 
and for predicting the performance in a queueing model with a long-tail service-time distribution. 0 1998 Elsevier Science 
B.V. 
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1. Introduction 

A major challenge for engineering the emerging high-speed integrated-services communication networks 
is to develop models that can realistically capture the performance effects of the complex traffic that will be 
offered to and carried by these networks. Evidence of traffic complexity appears in many forms, such as in 
the long-range dependence and self-similarity found in the statistical analysis of traffic measurements (e.g., 
[35]). There is also strong evidence of important phenomena at several different time scales (e.g., [41]). 

The complexity revealed by these traffic measurements have led some to suggest that this traffic cannot 
be analyzed by available traffic models. However, we contend that available traffic models can represent 
remarkably complex behavior. Most comparisions between traffic models and traffic data have been made 
with rather weak strawmen, such as the simple Poisson process or the batch Poisson process. A good 
example of a more powerful traffic model is the Murk&an arrival process (MAP) or its extension, the 
batch Murkoviun a-r-iv&process (BMAP), also known as the virtual Markovian point process, see [4,36,43, 
Chap. 51. The potential power of a MAP is dramatically demonstrated by a theoretical result due to Asmussen 
and Koole [7]. They proved that any stationary point process can be approximated arbitrarily closely by a 
MAP (The meaning of “close” is defined in Section 2.) 

This is not to say that there are no difficulties. It is challenging to analyze models with elaborate MAPS 
and BMAPs constructed to capture complex traffic behavior, but new effective computational schemes are 
being developed, e.g., [15,37]. This is also not to say that new models should not be sought and examined. 
However, the main theme of this paper is that there is more that we can do with the tools at hand than might 
be expected. 

In this paper we focus on one phenomenon that seems to underlie much of the observed traftic complexity: 
long-tail probability distributions. Let F be a cumulative distributionfunction (cdf) and let the associated 
complementary cdf(ccdf) be FC(t) = 1 - F(t). We say that a cdf F (or its associated ccdf FC) has a long 

tail (also known as fat tail or heavy tail) if the ccdf FC decays more slowly than exponentially, i.e., if 

eYtFC(t)+oo ast+oo forally>O. (1.1) 

In contrast, we say that cdf F has a short tail if its ccdf FC decays exponentially, i.e., if there exists some 
y > 0 such that 

eY’F”(t) -+ 0 as t -+ 00. (1.2) 

Neither (1.1) nor (1.2) describes the actual decay rates of the ccdf’s well; they are intended for general 
classification. A typical long-tail cdf might have a power tail, i.e., 

FC(t) - atm8 as t -+ 00, (1.3) 

where a! and p are positive constants and f(t) - g(t) as t + ca means that f(t)/g(t) + 1 as t + oo, 
whereas a typical short-tail cdf might have bounded support ( FC (t) = 0 for some t) or an exponential tail, 
i.e., 

FC(t) - a e-@ as t + 00 

for positive constants a and n. 

(1.4) 

Two familiar long-tail distributions are the Pareto distribution and the Weibull distribution. One form of 
the Pareto distribution, which we refer to as Pareto (a, b), has ccdf 
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F(t) = (1 + r$t)-a (1.5) 

for positive parameter a and b; see [31, p. 2331. One form of the Weibull distribution, which we refer to as 
Weibull (c, a), has ccdf 

FC(t) = ,-(~l~)” (1.6) 

for positive parameters a and c; see [31 Chap. 201. From (1.5) it is easy to see that the Pareto ccdf in 
(1.5) has a power tail and so always has a long tail. The Weibull ccdf in (1.6) has a long tail according to 
Definition (1.1) if c c 1, and we will only consider that case. The Weibull cdf with c < 1 has a long tail, 
but not a power tail. 

There has been a long history of traffic measurements, but the identification of long-tail distributions has 
been a major theme in recent years; see [44]. Marshall and Morgan [38] note that the empirical distributions 
of local-area network traffic have longer tails than an exponential distribution. Meier-Hellstern et al. [39] 
observed high variability in their interarrival times of packets that seems best described with long-tail 
distributions. The analysis of a large dataset of local area Internet IP traffic collected at Bellcore showed 
that traftic is highly variable over several time scales. Measurements of source on and off times (high 
and low activity times) of individual network sources within the Bellcore dataset have indicated long-tail 
distributions [35], and Willinger et al. [59] have proved that such long-tailed on and off times for individual 
sources can explain the self-similarity in the aggregate traffic. 

Paxson [45,46] and Paxson and Floyd [47] find that long-tail distributions yield statistically better models 
for the tail behavior of durations, number of bytes, and burst bytes of ftp connections on the Internet. 
Feldmann [22,23] has shown that the intervals between conection requests in Internet traffic have long-tail 
distributions. Csiceres et al. [ 141 present further evidence of long-tail distributions in Internet traffic. Recent 
analysis by Crovella and Bestavros [ 181 of the durations of world wide web transfers have led to scrutinizing 
the file length distribution on file servers. Both distributions have been found to be long-tailed. Mogul’s 
[40] investigation of a very busy world-wide-web server indicates that inter-arrival times of accesses have 
long tails. Jelenkovic et al. [30] find that the lengths of scenes in MPEG video streams have a long-tail 
distribution. Izquierdo and Reeves [27] show that the number of cells in VBR encoded video sequences has 
a long-tail distribution. Even telephone call holding-time distributions have been found to be long-tailed; 
e.g., see [12,21]. 

The accumulated evidence is clear: many important probability distributions associated with network 
traffic have long tails. Moreover, it is known that long-tail distributions can have a dramatic impact upon 
network performance. For example, in 1973 Cohen [ 171 showed that the steady-state waiting-time distribu- 
tion in a single-server queue with unlimited waiting space inherits the long-tail property of a service-time 
distribution with a power tail. For more recent work in this direction, see [ 1,6,16,19,20,25,29]. However, 
the impact of a lon,g-tail distribution depends on the context and requires careful analysis. For example, in 
the single-server queue, large delays are caused by large service times and short interarrival times, e.g., see 
[55]. In some distributions, long tails imply that small values are more likely too, but exceptionally long 
interarrival times by themselves typically do not cause large delays. 

Not only are long-tail distributions prevalent and important, but they are difficult to analyze. For example, 
even the relatively simple M/G/ 1 queue is difficult to analyze when the service-time distribution is Pareto. 
Abate et al. [l] calculate performance measures for the GI/G/ 1 queue when the general interarrival-time 
and service-time distributions are long-tailed using numerical transform inversion [2], but it is necessary to 
have the Laplace transforms of these distributions, and there evidently is no convenient expression for the 
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Laplace transform of the Pareto distribution. This difficulty would seem to confirm the negative attitude 
about available models mentioned at the outset, but we contend that there are effective ways to circumvent 
this difficulty. 

Our main contribution in this paper is to point out that it is possible to approximate long-tail probability 
distributions by convenient short-tail probability distributions, so that available performance models can be 
effectively analyzed and so that the effect of the long-tail distribution upon performance can be determined. 
(We do rz~t claim that the long-tail distribution has no effect.) Moreover, we develop a remarkably simple 
algorithm for constructing suitable approximating distributions for a large class of long-tail distributions. 
The class of long-tail distributions that can be approximated by the method developed here includes the 
Pareto and Weibull distributions in (1 S) and (1.6) as special cases. 

Although at first it may be surprising that long-tail distributions can be approximated by short-tail distri- 
butions, there is a simple explanation in the notion of time scale. In almost all network performance settings, 
the distribution of interest only matters through its values in some finite interval [tl , t2]. For tt sufficiently 
small and t2 sufficiently large, the precise form of the distribution outside the interval [tl , tz] should not 
matter. (Because of the nature of time scales, it is usually appropriate to measure time logarithmically. 
Thus, we might have tl = 10ea and t2 = 10b for appropriate constants a and b.) The main point is that, 
in principle, it should be possible to approximate any long-tail distribution by a short-tail distribution. A 
simple way to do this is to truncate the distribution at the points tl and t2 and assign the negligible prob- 
abilities of the intervals [0, tl) and (t2, 00) to the points tl and t2, respectively. Although this produces a 
short-tail distribution that captures the essential behavior of the original long-tail distribution, it may not 
be a convenient approximation. 

Here we consider hyperexponential distributions as approximating distributions. A hyper-exponential 

(Hk) distribution is a mixture of k exponentials for some k i.e., the ccdf has the form 

NC(t) = e pi emhit, (1.7) 
i=l 

where pi 2 0 for all i and p1 + 1. . + pk = 1. Our fitting algorithm fits a hyperexponential distribution to 
a given long-tail distribution, aiming to be accurate over a finite interval [tl, t2] for suitably small tl and 
suitably large t2. 

Given data that might be well described by either a Pareto distribution or a hyperexponential distribution, 
we would usually prefer the Pareto distribution for a simple description because it provides a more parsi- 
monious description. The Hk distribution in (1.7) has 2k - 1 parameters, whereas the Pareto distribution 
has only 2. Statistical estimation also tends to work better when there are fewer paremters. 

We primarily suggest replacing long-tail distributions such as the Pareto distribution by hyperexponential 
distributions, because performance models tend to be easier to analyze when component distributions in 
the model are hyperexponential. One reason is that hyperexponential distributions are special phase-type 
distributions, which have been found to make performance models more tractable; see [42]. Another reason 
that we might choose hyperexponential distributions is because they have simple Laplace transforms. The 
Laplace transform of the density h of the ccdf HC in (1.7) and the Laplace-Stieltjes transform of the cdf 
H is 

co co 

i(s) = s ems”h(t) dt = 
s 

k Pi& 
eCS’ dH(t) = c - 

0 0 
i=l Ai + S ’ 

(1.8) 
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The explicit Laplace transform (1.8) makes it possible to analyze many performance models by numerical 
transform inversion, e.g., see [ 1,2,15,16,36,37]. For these numerical transform inversion algorithms, having 
a relatively large number of phases (e.g., 10 or 100) presents no serious difficulty. We will illustrate this 
advantage by considering the M/G/ 1 queue with a long-tail service-time distribution. We have no difficulty 
calculating the steady-state waiting-time distribution in the M/ G/ 1 queue by numerical transform inversion 
after making the hyperexponential approximation. 

We also show that hyperexponential distributions make it easier to obtain Markov stochastic processes, 
which tend to be far easier to analyze than non-Markov stochastic processes. In particular, in Section 8 we 
show that hyperexponential approximations can help analyze superpositions of independent on-off sources, 
where each source sends input at a constant rate (fluid) or as a Poisson process when it is on. If the on or 
off periods have long-tail distributions, then the aggregate input model tends to be intractable, but if the 
on and off periods of each source have hyperexponential distributions, then the aggregate input becomes 
a Markov-modulatled fluid or Poisson process, for which there are effective algorithms. Unfortunately, 
however, this representation is not totally satisfactory, because the Markovian state space becomes larger 

when the number of exponential components in a mixture increases. Hence, if there are many sources, the 
state space of the approximating aggregate input model may be so large that analysis remains difficult. 
Nevertheless, the approximation is a step towards tractable models. If there are only a few sources, then 
the model can now be solved, whereas it could not be solved before. 

Once a hyperexponential fit is contemplated, there are many ways to proceed, such as a least squares 
fit using a mathematical program. A natural alternative is the expectation-maximization (EM) algorithm, 
which is an iterative prodedure that minimizes the Kullback-Leibler “distance”; see [8,5 l] and references 
therein. A difficulty with the EM algorithm is that the iteration can be slow when there are many parameters. 
The EM algorithm can be enhanced significantly if a good starting point can be provided. In preliminary 
experiments we have found that our algorithm is also useful to quickly provide a good starting point for the 
EM algorithm, but we do not discuss those experiments here. 

We intend to compare various fitting schemes in a future paper. In this paper we present a simple recursive 
scheme, based on the notion of time scales. We recursively fit starting at the largest time scale that matters 
and successively reduce the time scale. We start by fitting a weighted exponential pt eeAlr to the tail of 
the given ccdf. Since we focus on the tail, hr ’ should be suitably large. Then we subtract this weighted 

exponential from the original ccdf and fit a second weighted exponential p2 e-‘zt to the new tail where 
AT1 < h;‘. Since the exponential ccdf’s are short tailed, it should be possible to choose the second 

exponential component so that it is negligible further out in the region where the first exponential pr e-‘1’ 
was fit. We describle the algorithm in more detail and discuss previous related work in Section 4. To illustrate 
right away, we consider an example. 

I. 1. Example 

Suppose that we consider a Weibull distribution as in (1.6) with exponent c = 0.3 and a chosen so that the 
distribution has mean 1. (That makes a = 9.26053 .) Since c is close to 0, this Weibull distribution is strongly 
long-tailed. This is partly reflected by its next two moments, which are m2 = 29.2 and mg = 4481, e.g., 
the squared coeffic:ient of variation (variance divided by the square of the mean) is 28.2, which is relatively 
large. However, the first three moments do not nearly capture the full long-tail effect. To illustrate, we 
first consider fitting an H2 distribution (a mixture of two exponentials, which has three parameters) to the 
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Fig. 1. A comparison between the Weilbull(0.3,9.261) density and ccdf with hyperexponential approximations. This example 
shows the difference in the quality of fit betwen matching three moments (a), (b) and applying our algorithm (c), (d). 

Weibull distribution by matching the first three moments. A three-moment matching algorithm for the H2 
fit is given in [54, p. 1361. The resulting H2 parameters are pt = 0.00501, hl = 0.019, and J.2 = 1.355. 
The approximating H2 density and ccdf are compared to their Weibull counterparts in Figs. l(a) and (b). It 
is obvious that the fit is quite poor, even though the H2 distribution has the same first three moments. 

In contrast, the density and ccdf of an Hk fit obtained by our algorithm in Section 4 is shown in Figs. l(c) 
and (d). The fit is so good that it is hard to see two curves in (c) and (d). This Hk fit has k = 20 exponentials. 
The three moments of the approximating Hz0 distribution are mt = 1.0060, m2 = 30.6, and m3 = 4640. 
The parameters of H2n are given in Table 1. 

By this example, we do not mean to imply that 20 exponentials are necessarily required to produce a 
satisfactory approximation of this Weibull distribution, but this number certainly seems to be sufficient for 
almost all network performance applications. 
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Table 1 
Parameters of the approximating Hz0 cdf of Example 1.1 

Parameters of the algorithm fit 
i Pi 

1 0.013457 
2 0.007274 
3 0.011161 
4 0.017063 
5 0.025935 
6 0.039055 
7 0.057927 
8 0.083791 
9 0.116197 

10 0.149927 
11 0.170885 
12 0.157748 
13 0.103040 
14 0.039333 
15 0.006820 
16 0.000384 
17 4.34E-06 
18 4.52E-09 
19 1.22E-13 
20 l.l3E-20 

ki l/hi 

23 678 496 4.2232E-08 
3 103 042 3.2226E-01 

728 019 1.3736E-06 
170717 5.8576E-06 

40004.9 2.4997E-05 
9366.24 0.000107 
2190.72 0.000456 

511.995 0.001953 
119.685 0.0083355 
28.064 0.035632 

6.643 0.15052 
1.607 0.62230 
0.405 2.47202 
0.108 9.23375 
0.03 1 31.8780 
0.0099 101.303 
0.0033 300.270 
0.0012 850.935 
0.00042 2361.97 
0.00015 6517.72 

An attractive feature of our algorithm is that it does not depend on the moments. Therefore, it can be used 
even if the moments do not exist or are not known. However, it is useful to calculate the first few moments 
of the original and ,the approximating distributions to help judge the quality of the fit. 

1.2. Organization of the paper 

Here is how the rest of this paper is organized. In Section 2 we discuss robustness of performance 
models. We refer to some of the evidence indicating that if a component probability distribution in a 
performance model is well approximated by another, then the performance measures of interest will be 
suitably close. We also give a precise meaning for “close”. In Section 3 we rigorously prove that it is 
possible to approximate many long-tail distributions by hyperexponential distributions. We identify a class 
of distributions containing many long-tail distributions, including Pareto and Weibull, for which arbitrarily 
close hyperexponential approximations can be made. 

We present our recursive algorithm for constructing approximating hyperexponential distributions in 
Section 4. Some readers might wish to slop the more theoretical sections (Sections 2 and 3) and go directly 
to the algorithm. In Section 5 we explain when the algorithm should be effective. Then we present several 
examples in Section 6. 

In Section 7 we investigate how our fitting algorithm is related to fitting probability distributions to data. 
We show through simulation experiments that, consistent with intuition, it is usually much better to fit 
a long-tail distribution with only a few paremeters to the data and then afterwards apply our algorithm 
to the long-tail distribution in order to obtain a high-order hyperexponential approximation than it is to 
apply our algorithm directly to the empirical distribution generated from the data. In Section 8 we show 
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how hyperexponential distributions can help analyze the aggregate input from the superposition of on-off 
sources. Finally, we state our conclusions in Section 9. 

2. The robustness of performance models 

Since we intend to approximate component distributions in performance models by other distributions, 
it is important that the performance models be robust to such changes. As a specific example, we will 
consider approximating long-tail service-time distributions by hyperexponential distributions in the GI/G/ 1 
queue. (The GI/G/ 1 queue is just one example; there are many possible applications of hyperexponential 
approximations besides the GI/G/ 1 queue.) The GI/G/l queue has a single server, unlimited waiting 
room and interarrival times and service times coming from independent sequences of independent and 
identically distributed random variables with general distributions. If we approximate the given general 
interarrival-time and service-time distributions by other distributions, then we want descriptive performance 
measures such as the steady-state waiting-time distribution also to be approximately what it would be 
with the original interarrival-time and service-time distributions. Fortunately, such robustness, stability 
or continuity properties have been established for performance models, e.g., see [5, Section VIII.5;13; 
Section 21;32;52;53]. 

Even though robustness results have established, care is needed because the robustness results do not hold 
unconditionally. The robustness depends upon what we mean by “close” and upon regularity conditions. 
For probability distributions on the real line (or, more generally, on a metric space) it is customary to use the 
notion of weak convergence, as in [ 111. In that framework, we say that a sequence of probability measures 
{ Pn: n > 1) converges to a probability measure P, and write P, + P, if 

/fdP,+/fdP asn+cc (2.1) 

for all bounded continuous real-valued functions f. On the real line the probability measures Pn and P 
are characterized by cumulative distribution functions (cdf’s) F,, and F, e.g., F(t) = P((-00, t]). Then 
convergence of probability measures Pn + P as it + 00 is equivalent to convergence of cdf’s in the form 

Fn(t) + F(t) asn -+ 00 (2.2) 

for all point t that are continuity points of the limiting cdf F, which we denote by Fn + F. For continuous 
cdf’s, a metric associated with this convergence is the uniform metric 

~(PI, F2) = s;p IPl(t) - P2(t)l. (2.3) 

(For further discussion, see the introduction to [ 111.) For random variables (or more general random 
elements) X, and X distributed as P,, and P, respectively, we say that X, converges in distribution to X 
andwriteX,+Xasn+ooifP,+Pasn+oo. 

With this background, we can state a robustness theorem for the GI/G/l queue due to Borovkov [ 13, 
p. 1181. A random variable is said to be proper if it is finite with probability 1. 

Theorem 2.1 (Borovkov [ 131). Consider a sequence ofGI/G/l queueing models indexed by n with inter- 
arrival times, service times and steady-state waiting-time distributed as U@), V(“) and W@), respectively. 
Consider a prospective limiting GI/G/l model with corresponding random variables U, V and W If 
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EV@) < EU(“) f or all n, EV < EU, Un 3 U, Vn j V and E V,, + EV < 00 as n -+ 00, then 
W@), n > 1, and U7areproper random variables and W, =$ W as n + 00. - 

The condition E I/@) -c E U@) in Theorem 2.1 is needed in order to ensure that the nth model is stable, 

i.e., that a proper steady-state waiting-time W@) exists. An important point in Theorem 2.1 is that we 

also need to assume that the limiting system is stable (E V < EU), that the mean service times converge 
(E V, + E V), and that the limiting mean is necessarily finite (E V -c 00). We need to assume that 
E V, -+ E V as n + 00, because convergence in distribution does not imply convergence of moments. 
As a secondary point, note that there is no requirement that the mean inter-arrival times EU@) and E U be 
finite or that EU@) + EU as n --+ cm. 

If we also want convergence of moments, i.e., E(Wcnjk) + E(Wk) -c 00 as n + 00, then we need to 
assume corresponding convergence and finiteness of one higher service-time moment; i.e., it is necessary 
and sufficient to have E V(n)(kf’) + E Vkf’ < 00 as well as the other conditions of Theorem 2.1. This 

can be deduced fro:m Theorem 2.2 on p. 185 of Asmussen [5] and its proof. 
To illustrate how we can apply Theorem 2.1, suppose that a GI/G/l queueing system of interest has a 

generic service timje V with a Pareto distribution as in (1.5). In the next section we will show that, without 
imposing any moment conditions, we can approximate the Pareto distribution of V arbitrarily closely by a 
hyperexponential distribution as in (1.7); i.e., for each n we cm let V (n) have a hyperexponential distribution 
(where the number of component exponentials depends on n) and have V@) =+ V as n -_, 00. 

We would like to deduce that W @) =k W for the waiting-times in the associate GI/G/ 1 models. (Assume 

that the interarrival-time distribution is fixed.) However, we cannot draw this conclusion without the extra 
condition in Theorem 2.1. The crucial extra condition is that E V < coo; for the GI/G/ 1 application we 
must require that th.e Pareto distribution have a finite mean. If E V = 00, then the approximation procedure 
will fail, but if E V -c 00, then it will work. It turns out that we can choose the approximating distributions 
so that E V@) + E V as n + cm, and we need to do so, but we also need to require that E V < 00 

and E V -c E U as well. However, with such extra conditions, approximating component distributions can 
achieve the desired result. The remaining questions are only the practical ones: How many exponentials are 
needed before the distribution of V@) IS suitably close to the distribution of V? And how do we actually 
find a good approximating distribution? 

2.1. Example 

To illustrate the robustness of the queueing model, we consider the Weibull distribution in Example 1.1 
as a service-time d:istribution in the M/G/l queue (having an exponential interarrival-time distribution), 
We let the arrival rate (and thus the traffic intensity) be 0.75. We focus on the steady-state waiting-time 
ccdf P ( W > t). In addition to the three-moment H:! fit and the Hz0 fit by our algorithm in Section 4, we 
consider a simple exponential fit obtained by matching only the mean. 

We compare numerical results (talc) for the M/Hz/l and M/M/l models to simulations (exp) of the 
M/Hz/ 1 and M/W / 1 models in Figs. 2(a) and (b) (W stands for Weibull). In contrast, we compare numerical 
results for the M/Hzu/ 1 and M/M/ 1 models to simulations of the M/Hzu/ 1 and M/W/ 1 models in Figs. 2(c) 
and (d). In all cases, the steady-state waiting-time ccdf is displayed, with the y-axis being in log scale in 
(b) and (d). 

The M/M/l model is appealing, because the steady-state waiting-time cdf for it is available in closed 
form (a simple exlponential plus an atom at the origin), but it yields a remarkably poor approximation. 
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Fig. 2. The steady-state M/G/I waiting-time ccdf P(W > t) with a Weibull(U.3, 9.261) service-time distribution having 
mean = 1. The numerical results (talc) are for the model with the approximating hyperexponential and exponential ser- 
vice-time distributions. The simulations (exp) are for the model with the Weibull and the approximating hyperexponential 
distribution. Parts (a) and(b) contain the HZ tit by matching the first three moments, while parts (c) and (d) contain the H~IJ fit 
by the algorithm in Section 4. Parts (b) and (d) are the same as parts (a) and (c), respectively, but with the y-axis in log scale. 

Clearly the service-time distribution beyond its mean matters greatly. The M/Hz/l numerical results could 
be obtained in several ways; we used numerical transform inversion [23. The simulations were based on a 
time interval of 5.3 x 106, which corresponds to about 4 x lo6 arrivals. 

From Figs. Z(a) and (b), we see that the M/Hz/l approximation for the waiting-time ccdf is much 
better than the Hi approximation for the W service-time distribution directly. This reflects the extensive 
experience showing that approximations based on two moments of the interarrival-time and service-time 
distributions can be quite effective [57]. However, even though the M/Hz/l approximation might be good 
enough for some engineering applications, the M/H20/1 approximation in (c) and (d) is far better. This 
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Table 2 

A comparison of numerical results for the steady-state waiting-time ccdf P( W > t) in the M/Hz/l and M/H20/1 models 
with simulation results for the M/W/ 1 model of Example 2.1 

Waiting-time Simulated Weibull Algorithm fit: talc. hyper. exp. Moment fit: talc. hyper. exp. 

1 0.6983 0.699 1 0.6087 
5 0.6046 0.6063 0.4429 

10 0.5323 0.5347 0.4079 

15 0.4777 0.4808 0.3866 

20 0.4332 0.4368 0.3669 

25 0.3957 0.3995 0.3483 

30 0.3634 0.3673 0.3306 

35 0.3350 0.3391 0.3138 

40 0.3096 0.3141 0.2979 

45 0.2869 0.2917 0.2828 

70 0.2017 0.2073 0.2179 

125 0.1031 0.1068 0.1229 

135 0.0924 0.0956 0.1107 

145 0.0828 0.0857 0.0998 

155 0.0745 0.0770 0.0899 
165 0.0670 0.0693 0.0810 
185 0.0545 0.0566 0.0658 

205 0.0444 0.0465 0.0534 
225 0.0364 0.0385 0.0434 

235 0.0333 0.035 1 0.039 1 

245 0.0303 0.0320 0.0352 

is perhaps more evident from Table 2, which displays the ccdf values for the W, HZ and Hz0 cases. The 
relative errors are substantial for small and very large values. 

3. Complete monotonicity 

To have a good ,theoretical basis for approximating one distribution by another, it is appropriate to con- 
sider what is possible. From this perspective, it is important to note that every hyperexponential distribution 
has a decreasing probability density functions (pdf) and possibly an atom at 0. Thus, hyperexponential dis- 
tributions cannot c,apture departures from this structure, such as atoms away from 0 or a non-monotone pdf. 

On the other hand, there is a large class of distributions (necessarily with monotone pdf’s) which can be 
approximately arbitrarily close by hyperexponentials. The nice class of probability distributions are those 
with completely monotone pdf’s. A probability density function (pdf) f is said to be completely monotone 
if all derivatives of f exist and 

(-l)“f’“)(t) 2 0 forallt > 0 and n > 1, (3.1) 

see [24, p. 439; 33, p. 661. The link between completely monotone pdf’s and mixtures of exponential pdf’s 
is provided by Bernstein’s [lo] theorem (see [24]). 

Theorem 3.1 (Bernstein [lo]). Every completely monotone pdf f is a mixture of exponential pdf ‘s, i.e., 
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he-‘.” dG(h), t 2 0, 

0 

(3.2) 

for some proper cdf G. 

We call G in (3.2) the spectral cdf. (Then the support of G is called the spectrum. The support of G is 
the set of all t for which G(t + E) - G(t - E) > 0 for all E > 0.) Of course, the spectral cdf G appearing 
in (3.2) is a general cdf; it need not have finite support. (A cdf G has finite support if it has a probability 
mass function attaching probabilities pi to y1 points ti with p1 + . . . + pn = 1 for some n.) However, cdf’s 
with finite support are dense in the family of all cdf’s (using the standard mode of convergence in (2.1) and 
(2.2)). Hence, Theorem 3.1 implies the following result. 

Theorem 3.2. If F is a cdf with a completely monotonepd& then there are hyperexponential cdf’s F@) , n >_ 
1, i.e., cdf’s of the form 

F(“)(t) = Cpni(l - eehnif), t >_ 0, (3.3) 
i=l 

with h,i 5 00 and pnl + 1. . + pnk, = 1 such that Fen) + F as n -+ 00. 

Theorems 3.1 and 3.2 are important for approximating long-tail distributions because many long-tail 
pdf’s are completely monotone. For example, by differentiating (and using mathematical induction), it is 
easy to see that the pdf’s of the Pareto distribution in (1 S) and the Weibull distribution with a < 1 in (1.6) 
are completely monotone. For the Pareto distribution, Harris [26] directly showed that the spectral cdf is 
gamma. (This is an easy calculation; see [26] or [31].) 

The gamma pdf with shape parameter less than 1 is also completely monotone. The Pareto mixture of 
exponentials (PME) distribution considered in [I] is also completely monotone, because it directly satisfies 
(3.2). The PMEdistribution is convenient because its Laplace transform is available. (See Section 6.3 below.) 
Other methods for constructing long-tail distributions with convenient Laplace transforms are described 
in [3]. 

In order to approximate a completely monotone cdf F having spectral cdf G by a hyperexponential 
distribution (a finite mixture of exponentials), it suffices to approximate the spectral cdf G by a spectral cdf 
G(“) with finite support. One concrete way is to choose n + 1 points ti with 0 = to < tl < . . . -c tn = 00 

and let pni = G(q) - G(ti_1) and h,i = i (ti + ti-I), 1 5 i 5 n. This makes h,, = 00 SO that F(“) 

has an atom of size pnn at 0. By letting the successive sets Tn = {to, . . . , tn ) become dense in the finite 
interval [0, t] for every t, we achieve the desired result as n + 00. To have the successive approximations 
be refinements of the previous ones, we can let the subsets 7” be nested, i.e., we can also have T,, s Tn+l 
for all n. 

We might also want the means of F cn) to be non-decreasing. We can achieve that property by changing 
the definition of h,i to h,i = tni. However, this choice tends to produce worse approximations. Given the 
spectral cdf G, more elaborate fitting procedures are also possible. The essential idea is to choose a cdf 
G(“) with finite support approximating G. 

It is sometimes convenient to represent a completely monotone pdf in a different way, in particular, 
as 
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f(t) = p-1 e- dH(h), t 2 0, (3.4) 

0 

instead of as in (3.2). We call the H in (3.4) the mixing cdf. If the spectral cdf G and the mixing cdf H in 
(3.2) and (3.4) have pdf’s g and h, then they are related by 

h(t) = t-2g(t-‘), t > 0. (3.5) 

The mixing representation (3.4) is convenient for working with moments. If ??Q (H) and mk (F) are the kth 
moments of H and F, respectively, then from (3.4) it follows that 

mk(F) = mk(H)k!, k ) 1. (3.6) 

Hence, if we choose H@) to be a cdf with finite support approximating H, where H@) has the same 
first k moments as H, then the associated approximating hyperexponential distribution Fen) with mixing 
distribution H@) will have the same first k moments as the cdf F with mixing cdf H (defined by (3.4)). 
With this structure, it is possible to identify certain extremal (bounding) hyperexponential pdf’s among all 
completely monotone pdf’s with given first k moments; e.g., queueing applications are discussed in [55]. 

Paralleling Theorem 3.2, it is possible to show that any cdf on the non-negative real line can be approx- 
imated arbitrarily closely in the sense of Section 2 by a phase-type cdf (which includes the hyperexpo- 
nential distribution as a special case), as in [42, Chap. 21. The EM algorithm is a way to fit phase type 
distributions 181. 

4. The recursive jitting procedure 

In this section we specify the recursive procedure for fitting a hyperexponential (Hk) cdf H to a given cdf 
F on the non-negative real line. We think of the original cdf as being a long-tail distribution such as Pareto 
or Weibull with exponent less than 1. We think of the cdf F as having a monotone probability density 
funciton (pdf) f, but we do not require it. We discuss conditions under which the procedure should be 
effective in Section 5. 

The Hk distribution has ccdf (1.7) and associated pdf 

k 

h(t) = C pihi e-*it, t > 0, (4.1) 
i=l 

where cf=, pi = 1, ;li > 0 and pi > 0 for all i. Clearly the Hk pdf is monotone. 
Without loss of generality, let the exponential parameters hi in (4.1) be labeled so that Al < . . . -c 

hk. Then the higher indexed components have tails which decay more rapidly. Our idea is to fit the Hk 
components recutsively, starting with the pair (Al, pl) and then proceeding to (AZ, ~2) and so forth. If A2 
is sufficiently greater than h 1, then Cfz2 e- *it should be negligible compared to p1 e --IIt fort sufficiently 
large (in the tail). This should enable us to choose the pair (~1, Al) without being concerned about the 
other Hk parameter values. We then subtract the component p1 e -‘If from both HC(t) and FC(t) and fit the 
second component to the remaining tail. If again A3 is sufficiently greater than h2, then Cfc3 eeAi’ should 
be negligible compared to p2 e -hzr for t sufficiently large, and we can fit the pair (AZ, ~2) without being 
concerned about the other Hk parameters. 
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After deriving this recursive fitting procedure, we learned that the general recursive estimation prodedure 
actually has a long history, being know as Prony’s [48] method; see [50, p. 1141. In that context, we contribute 
by showing when the recursive fitting procedure should be effective (Sections 3 and 5 here) and by applying 
it to approximate long-tail distributions. 

Here is the procedure: we first choose the number k of exponential components and k arguments where 
we will match quantiles: 0 < Ck < Q-1 -c . h. < cl. We assume that the ratios ci /ci+l are sufficiently 
large; e.g., we could have ci = cl 10 -(‘-l) for 2 < i < k Let b be such that 1 -C b < ci/ci+l for all i; e.g., - - * 
with ci = cl lo-(‘-‘) we could have b = 2. 

We choose ht and pr to match the ccdf F(t) at the arguments ct and bcl ; i.e., we solve the two equations 

PI e --*ICI = FC(cl) (4.2) 

and 

p1 e-‘lbcl = Fc(bq) (4.3) 

for p1 and hl, assuming that cl, b, F(q) and P(bcl) are known, obtaining 

1 
Al 

@ - 11~1 
~WChM’C(bcd) 

and 

p1 = P(q) ehlcl. (4.5) 

With this procedure, we are assuming that hi will be sufficiently larger than A1 for all i 2 2 that the final 
approximation will satisfy 

k 

c Pi e+' X pi ewA1’ fort z Cr. 
i=l 

We have no guarantee that this property will hold, but the accuracy can be checked when the fit is complete. 
(See Section 5 for further discussion and Section 6 for examples.) 

Next, for 2 5 i 5 k, let 

i-l 

F/(Ci) = F/_l(Ci) - xpj e+.jci 

j=l 

and 

i-l 

Ff(bci) = F/_1 (bci) - C pi e-‘jbci, 
j=l 

where F;(t) = F(t). Then proceed as above, letting 

Pi e 
-bCi = Ff(ci) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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to obtain 

1 
Ai = (b _ l)c; ln(FiC(ci)lFiC(bci)) 

and 

pi = F/(ci) e;LiCi 

for 2 5 i 5 k - 1. Finally, for the last parameter pair ()Lk, ok), we require that 

k-l 

Pk = 1 - C Pj 
j=l 

259 

(4.10) 

(4.11) 

(4.12) 

Pke -@k = F;(ck), (4.13) 

where F:(Q) is delined in (4.6), so that 

hk = $ln(Pk/F;(Ck)h (4.14) 

Assuming that we obtain probability weights (pi > 0 for all i), and that the parameters & are well 
separated, we shoul’d obtain a good fit. Assuming that we obtain probability weights, the prodedure produces 
an Hk ccdf HC that is larger than the original ccdf FC at the matching points, i.e., 

HC(cj) > FC(ci), liilk, (4.15) 

and 

HC(bci) > F“(bci), lsiik-1. (4.16) 

However, if FC is a long-tail distribution, then there will be a 10 such that 

FC(t) 2 HC(t) for all t 3 to. (4.17) 

Hence, it is important to choose cl sufficiently large that to is beyond the region of interest. 
Our implementation of the algorithm in software allows the user to proceed interactively, choosing new 

parameter settings as desired, after looking at tables and graphs of the results. The standard approach is to 
specify k, cl, Ck, and b. Then the algorithm chooses the remaining ci such that the ratio of ci /ci+r is constant 
and proceeds with the fitting procedure. An available alternative is to specify one point at a time, start with 
the pair (ci, bi), inspect the preliminary result, and continue by choosing the next pair (ci+t , bi+l). 

When we are done, we calculate several moments of the Hk distribution via 

k 

mj (Hk) = j ! :c pi/A! (4.18) 

and compare them to the moments of F if they are available. As numerical measures of achieved fitting 
accuracy, we compute the absolute and relative errors of the ccdf and cdf. For both, the cdf and the ccdf, 
the absolute error is 

AE(F, t) = I/Y”(t) - FC(t)I = IH(t) - F(t)l. (4.19) 
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A relative error for both the cdf and ccdf is 

RE(F, t) = 
IWf) - FC(f)I 

min{F(t), FC(t)}’ 
(4.20) 

We graphically display these errors as functions of t over any requested interval (I, u). We calculate the 
curves by considering points whose logarithms are evenly spaced over (I, u). 

To illustrate, we display the absolute and relative errors of the Hz and the Hz0 fits to the Weibull distribution 
in Example 1.1 in Fig. 3. It turns out that the Hz0 fit was done with Ck = 10m7 and cl = 9 x 104. Since ct is 
not large, there are somewhat large relative errors for the Hz0 cdf in the region 102-105. However, the ccdf 
values in this region are very small, e.g., FC( 102) = 4.254E-4, FC(103) = 1_878E-7, FC( 104) = 3.794E- 
14, and FC(105) = 1.667E-27. 

We also calculate the maximum absolute and relative errors over any desired subinterval (I, u), e.g., for 
the ccdf 

AE(FC, I, U) = sup AE(FC, t) 
1gqI 

(4.21) 

and 

RE(FC, I, U) = sup RE(F”, t), (4.22) 
l<t<u -- 

where the ktpremum is estimated by calculating the maximum over many points whose logarithms are 
evenly spaced in (I, u). 

5. When should the procedure work? 

In this section we discuss conditions under which the fitting procedure in Section 4 should be effective. 
In particular, we point out that the procedure is natural for distributions with decreasing failure rate (DFR). 
To see this, note that the fitting formula for hi in (4.10) can be rewritten as 

h, = _ln(F~@ci) - ln(FF(ci) 
I 

’ bci - ci 

As b + 1, formula (5.1) approaches 

(5.1) 

f (Ci> 
hi = -$ ln(FC(t)lrzci = - 

FC(ci) 
= r(G), 

which is the hazard ratefunction (or failure rate function) associated with the ccdf FC evaluated at ci; e.g., 
see [9]. Indeed, we could consider (4.10) replaced with (5.2), but (4.10) seem more robust. 

The idea in the procedure of Section 4 is to have hi be significantly less than )Li+t for all i . In order to have 
hi be less than hi+1 for all i, it is natural to require that the ccdf FC (t) be DFR. This is equivalent to having 
FC (t) be log-convex. A sufficient condition for the ccdf FC (t) to be log-convex is for the pdf f(t) to be log- 
convex; see [33, p. 731. Since mixtures of log-convex pdf’s are log-convex (Theorem 5.4~ on p. 66 of Keilson 
[33]), all completely monotone pdf’s are log-convex. Hence all completely monotone pdf’s are DFR. 

In summary, our algorithm is natural for completely monotone pdf’s such as the Pareto and Weibull 
distributions (see Section 3) and, more generally, for DFR pdf’s. However, by the same reasoning, our 
algorithm is inappropriate for increasing failure rate (IFR) distributions. For example, our algorithm does 
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Fig. 3. The relative and absolute errors of the H2 and the Hz0 fits to the Weibull(0.3,9.261) distribution from Example 1.1. 

not work for the uniform distribution, i.e., when F(t) = t/b, 0 5 t 5 b, and F(t) = 1, t > b, which clearly 
has a very short tail. Since many long-tail distributions are DFR, our algorithm has substantial applicability. 

Even though many long-tail distributions are DFR, many others are not. Indeed, the long-tail property 
(1.1) is unaltered by changing the probability distribution on any initial interval [O,t]. Thus, the long-tail 
property does not nearly guarantee the DFR property. 

6. Examples 

In this section we give several examples showing how a hyperexponential distribution can be fit to a 
long-tail distribution with the algorithm described in Section 4. Besides presenting further examples for 
the Weibull distribution, we give approximations for two Pareto distributions, and a PME distribution [ 11. 

The definitions of the first two distributions are given in Section 1. 
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6.1. Weibull distribution 

We start with a Weibull cdf that is only moderately long-tailed, having parameters c = 0.6, a = 0.66464, 
and mean = 1. Figs. 4(a)-(d) show the results of fitting a hyperexponential distribution with six exponentials 
to this Weibull distribution. The parameters of the fitted H6 distribution are given in Table 3. In Fig. 4 the 
curves almost coincide for the cdf and the ccdf. In the density one can detect a small deviation around 
10-100 and above 250, but overall the fit looks very good. Only the plot of the hazard (density divided by 
ccdf) reveals that the fit is not precise. But still the fit is reasonably close at least from 10F3 to lo’, 4 orders 
of magnitude. 

From Table 4 we see how the algorithm matches the moments of the Weibull distribution. There is 2% 
error in the mean, but almost a 30% error in the second moment. If these approximate moments are not 
deemed close enough, then a new fit can be considered with more exponentials. 

Table 5 shows how much each exponential term contributes to each of the first three moments. This 
information is quite revealing. Although the probability of the fifth exponential term is quite small, namely 
0.068, this term contributes substantially to the higher two moments. For any specific distribution, this 
information allows us to judge if the range of the c values is appropriate or should be expanded or reduced. 
The probability parameters help to decide if the range of c values cover all desired time scales. 

In Figs. 4(e) and (f ) we display results for the steady-state waiting time in the M/G/ 1 queue for various 
sevice-time distributions. As in Example 2.1, we let the interarrival-time distribution be exponential and the 
arrival rate (and traffic intensity) be 0.75. We display simulation results for the Weibull and the approximating 
hyperexponential service-time distributions, and we display numerical results for the same hyperexponential 
distribution and the exponential service-time distributions (with the same mean). All simulations are based 
on a time period of 5.3 x 106, which corresponds to about 4 x lo6 arrivals. The numerical results for the 
M/H6/1 model are obtained by numerical transform inversion [2]. 

Figs. 4(a)-(d) indicate that the hyperexponential distribution with six exponentials is a good approxi- 
mation to the Weibull distribution with c = 0.6. Accordingly, it is no surprise that Figs. 4(e) and (f) show 
that the ccdf’s of the steady state waiting-time in the M/G/ 1 queue with the Weibull and hyperexponential 
service-time distributions are very close. Indeed simulations of both the original Weibull distribution and 
the fitted hyperexponential distribution basically coincide with the analytical curve for the fitted hyperex- 
ponential distribution until the simulation error dominates the waiting-time probability. As in Example 2.1, 
the exponential approximation is not good. 

Next we consider fitting a hyperexponential distribution to the Weibull(0.3, 9.261) distribution we con- 
sidered in Example 1.1. This Weibull distribution has a much longer tail and spans more orders of magnitude 
than the previous example. Therefore one might want to consider a larger number of exponentials to obtain 
a good fit over more time scales (as we did in Example 1.1). Yet we might only be interested in a few time 
scales. The next two examples show how a fit with a smaller number of exponentials, let us say 4, might 
satisfy such a need. 

Fig. 5 gives two examples of such fits. Parts (a), (c), and (e) show the density, the hazard, and the ccdf of 
the first fit based on Ck = 0.001 and cl = 90, while parts (b), (d) and (f) show the same for the second fit 
based on Ck = 1 and cl = 2000. Both fits look better than the simple three-moment fit shown in Example 
1.1, but neither is nearly as good as the Hz0 fit there. A comparison between the two fits shows that the first 
one matches the original distribution better in the range from lop8 to lo-‘, while the second one matches 
the original better in the range from 10’ to 104. This corresponds loosely to the values chosen for Ck and cr. 
The result of the different emphasis is that the second hyperexponential distribution matches the moments 
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Fig. 4. Parts (a)-(d) show H6 fit to a Weibull(0.6, 0.665) distribution. The algorithm used ck = 0.001 and cl = 120. Parts 
(e) and (f) give a comlparison of numerical results and simulations of the steady-state M/G/ 1 waiting-time ccdf for the same 
Weibull distribution and the He fit by the algorithm is Section 4. Part (f) is the same as part (e), but with the y-axis in log scale. 
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Table 3 
Parameters of the He cdf fit to a Weibull(0.6,0.665) distribution 

Parameters of the hYDereXDOnentia1 distribution 

i Pi k-i l/J-i 

1 0.02993 1 676.178 0.001479 
2 0.093283 38.709 0.025834 
3 0.332195 4.274 0.233977 
4 0.476233 0.761 1.313542 
5 0.068340 0.248 4.03 1035 
6 0.000018 0.097 10.29943 

Table 4 
Moments of the original Weibull(O.6,0.665) distribution and the Hh fit 

Moment Weibull Hyperexponential 

1 1 0.98 1 
2 3.091 3.905 
3 24.96 33.48 

Table 5 
Contributions of the individual exponential terms in the He fit to its first three moments 

Term First moment Second moment Third moment 

1 0.00004 1.3E-07 5.8E- 10 
2 0.00241 0.00012 9.6E-06 
3 0.07773 0.03637 0.02553 
4 0.62555 1.64338 6.47593 
5 0.27548 2.22096 26.8583 
6 0.00018 0.00376 0.11614 

Sum 0.98 140 3.90459 33.4759 

of the original distribution better than the first one (shown in Table 6), while the first hyperexponential 
distribution approximates the density, the hazard, and the ccdf more accurately over the plotted range in 
Figs. 5(a), (c) and (e). Therefore, depending on the application, either fit may be preferable. For the analysis 
of the waiting-times of the M/G/l queue with Weibull distributed service time, the fit from Figs. 5(b), 
(d) and (f) is better suited since the calculations and simulations are sensitive to deviations in the tail. The 
approximation of the waiting-time ccdf, shown in Fig. 6, is reasonable. 

Increasing the number of exponentials to 20 leads to a fit that is good for more than 13 orders of magnitude 
(Figs. 1 and 7). Even in the hazard plot of Fig. 7(b), the differences between the fitted hyperexponential 
distribution and the Weibull distribution are minimal. Indeed, 20 exponentials should be an overkill for 
almost all applications. For example, for the M/G/l queue, Figs. 2(c) and (d) show that the curves for the 
waiting-times of the simulation results and the analytical results are very close. 

6.2. Pareto distribution 

The Pareto distribution (defined in (1.5)) is very challenging because it can have infinite moments. Indeed, 
as its parameter a approaches 0, more and more moments become infinite. In this section we discuss the 



A. Feldmann, W Whitt/Perfomance Evaluation 31 (1998) 245-279 265 

- Weibul10.3 
- fined hyperexponential 

(a) Dknsit y 

I 
3 
z 
I 

Q 
g 
4 g 

6 - WeiMlO.3 

N - fined hypekqmmtial 

6 
3 
L 
Y 

t 

(c) Hazard 

I- 

(e) Complementary cumulative distribution 

- Weitul10.3 
- fitted hyperexpmntial 

( f Complementary cumulative distribution 

t 

(b) Density 

- Weibul10.3 
- fined hyperexponential 

t 

(d) Hazard 

Fig. 5. (a), (c), (e): H4 fit to a Weibull(0.3, 9.261) distribution using ck = 0.001 and cl = 90. (b), (d), (f): HJ fit to a 
Weibull(O.3,9.261) distribution using ck = 1 and cl = 2000. 
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Table 6 
Moments of the original Weibull(O.3,9.261) distribution and the two fitted fi cdf’s 

Moment Weibull Hyperexponential 1 

1 1.00 0.67 
2 29.24 8.80 
3 4480.63 1161.40 

Hyperexponential2 

1.01 
25.10 

3547.00 

----* hyperexp 
-- Weibull exp 
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51 
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g, 

8 
6 

- expcaic - hypeccalc 
----_ hyper exp 
--- Weibull exp 

50 900 150 .?oo 2M 300 

nehlg*t 

(b) (log y-axis) 

Fig. 6. The steady-state M/G/l waiting-time ccdf with a Weibull(0.3, 9.261) service-time distribution and the & fit by the 
algorithm in Section 4 with ck = 1 and ct = 2000. Part (b) is the same as part (a), but with the y-axis in log scale. 
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Fig. 7. Hz0 fit to a Weibull(O.3,9.261) distribution using ck = lo-’ and ct = 90000. 

fitting of two different Pareto distributions: one without the third moment, having a = 2.2, and one with 
neither second nor third moment, having a = 1.2. Figs. 8 and 9 show the results of hyperexponential fits 
using 13 and 14 exponential terms, respectively. Visually, both fits look very good for the 12 orders of 
magnitude covered by the plots. Table 7 gives the first three moments of the distributions, while Table 8 
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Fig. 8. Et13 fit to a Pareto(2.2,0.83) distribution having mean 1 using ck = 0.1438 and cl = lo7 

gives the hyperexponential parameters. From Table 7, it is apparent that the first three moments of the 
hyperexponential distribution fit the finite moments of the Pareto distributions reasonably well. The infinite 
moments are approximated by values in the order of 106-10’4. 

Even though we are approximating very long-tail distributions with short-tail distributions, we are not 
eliminating all problems associated with such long-tail distributions. Instead, the approximation gives us 
the opportunity to transfer some difficulties from the domain of long-tail distributions to the more familiar 
domain of hyperexponential distributions. 

To illustrate this point, consider the data in Table 9. Table 9 shows how much each exponential term 
of the hyperexponential approximation contributes to the first three moments. A difficulty in dealing with 
long-tail distributions is that large values (e.g., long service times) occur with non-negligible probability and 
therefore contribute substantially to the moments. The same is true for the hyperexponential distributions 
that approximate the Pareto distributions. For example, the total probability associated with terms 7-13 for 
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Fig. 9. H14 fit to a Pareto(l.2,5) distribution having mean 1 using ck = 0.0264 and cl = 107. 

Table 7 
Moments of the two original Pareto distributions and the two fitted hyperexponenial distributions 

Moment Pareto a = 2.2 Hyperexponential Pareto a = 1.2 Hyperexponential 

1 1 1.006 1 0.986 
2 11 11.49 co 2.8E+06 
3 co 3.7E+07 00 8.9E+14 

the Pareto(2.2,0.83) distribution is only 1.135 x 10m7, yet the total contribution of these exponentials to the 
second moment is 3.07 or 26.7% overall. For the Pareto(l.2,5) distribution, the total probability associated 
with exponentials lo-14 is only 3.76 x 10V7, but these exponentials are crucial for the approximation, 
contributing a total of 0.082 or 8.32% to the mean of the distribution and 2.8 x lob7 to the second moment. 
Indeed, these terms largely determine the values of the second and third moments. 
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Table 8 
Parameters of the fitted hyperexponential distributions for two Pareto distributions 

i 

1 
2 

3 

4 

5 

6 

7 

8 

9 
10 
11 
12 

13 
14 

Parameters of the fit to Pareto a = 2.2 

Pi ki l/J-i 

0.193963 4.491 0.222677 
0.65 1199 1.422 0.703442 

0.147814 0.371 2.698616 
0.006832 0.076 13.21435 
0.000188 0.014 70.49069 
4.61E-06 0.003 382.9488 
1. I lE-07 0.0005 2087.592 
2.65E-09 8.8E-5 11387.48 
6.35E- 11 1.6E-5 62126.17 
1.52E-12 2.9E-6 339032.8 
3.63E- 14 5.4E-7 1.85E+06 
8.51E-16 9.7E-8 l.O3E+07 
1.72E- 17 1.5E-8 6.56E+O7 

Parameters of fit to Pareto a = 1.2 

Pi Ai l/h 

0.089437 23.304 0.042910 

0.533823 6.516 0.153472 

0.307218 1.546 0.646659 

0.059768 0.306 3.263373 
0.008462 0.057 17.5 1902 
0.001122 0.01 95.28793 
0.000147 0.002 5 19.563 1 
1.92E-05 3.5E-4 2834.259 
2.50E-06 6.5E-5 15463.11 
3.27E-07 1.2E-5 844E+04 
4.27E-08 2.2E-6 4.61E+05 
5.56E-09 3.9E-7 2.54E+06 
7.18E-10 6.8E-8 1.47E+07 
8.37E- 11 8.3E-9 1.20E+08 

Table 9 
Contributions of the individual exponential terms in the approximating hyperexponential distribution to the first three moments, 
for two Pareto distributions 

Terms 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 

Pareto a = 2.2 moments 
First Second 

0.04319 0.01924 
0.45808 0.64447 
0.39889 2.15292 
0.09028 2.38586 
0.01322 1.8638 1 
0.00176 1.35080 
0.00023 0.96519 
3.OE-05 0.68786 

3.9E-086 0.49000 
5.1E-07 0.349 11 
6.7E-08 0.24923 
8.8E-09 0.18078 
l.lE-09 0.14825 

Third 

0.01285 
1.36003 

17.4297 
94.5830 

394.144 
1551.86 
6044.79 

2.35E+O4 

9.13E+04 
3.55E+05 
1_39E+06 
559E+06 
2.91E+07 

Pareto a = 1.2 moments 

First Second 

0.00384 0.00033 
0.08193 0.025 15 
0.19867 0.25694 
0.19505 1.27301 
0.14825 5.1954 
0.10689 20.3700 
0.0763 1 79.2857 
0.05437 308.184 

0.03873 1197.71 
0.02759 4656.70 
0.01968 18154.4 
0.01414 7.19E+O4 
0.01058 3.12E+05 
0.01006 2.42E+06 

Third 

4E-05 
0.01158 
0.49845 

12.4629 
273.010 

5823.03 
1.24E+05 
2.62E+06 

5.56E+07 
l.l8E+09 
2.51E+lO 
5.48E+ll 
1.38E+13 
8.72E+ 14 

So far, the application we have used to demonstrate the goodness of fit in the approximation has been 
the probability distribution of the waiting-time in the M/G/l queue. Given that we are now considering 
distributions with large variance, extra care is needed on the experimental (simulation) part of this evaluation. 
Let 2, be the sample mean from a random sample of size IZ from either the Pareto distribution or the fitted 
hyperexponential distribution. The sample mean converges to the mean of the distribution as n += 00 by the 
law of large numbers, but the variance of the sample mean is proportional to the variance of the distribution 
(and inversely proportional to the size of the sample). While this is no major issue for the Pareto(2.ZO.83) 
distribution and its fitted hyperexponential distribution, this is a concern for the Pareto( 1.2,5) distribution. 
In this case the Pareto distribution has an infinite variance and the fitted hyperexponential distribution has 
a very large variance. Hence it is very difficult to obtain a sample mean that is close to the mean of the 
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- expcak 
- hypercak 
-----. hyper exp 
---- Pareto exp 

- expcak 
- hypercalc 
-----. hypar exp 
---- Pareto exp 

Fig. 10. A comparison of numerical results and simulations of the steady-state M/G/ 1 waiting-time ccdf with a Pareto(2.2, 
0.83) service-time distribution and the Ht3 fit using ck = 0.1438 and cl = 107. Part (b) is the same as part (a), but with the 
y-axis in log scale. 

- expcak 
- hypercak 
-----. hyper exp 
---- Paretoexp 

- expcalc 
- hypercalc 
-----. hyper exp 
---- Pareto exp 

(b) (log y-axis) 

Fig. 11. A comparison of numerical results and simulations of the steady-state M/G/ 1 waiting-time ccdf with a pareto( 1.2, 
5) service-time distribution having mean =1 and the Hi4 fit using ck = 0.0264 and ct = 107. Part (b) is the same as part (a), 
but the the y-axis in log scale. 

sampled distribution. At the very least, this implies that the sample size has to be very large. Indeed it may 
be meaningless to compare the simulation results to the calculated results if the problem is sensitive to the 
mean, which is the case for service-time distributions in queueing models. As shown in [56], obtaining good 
simulation estimates of queueing characteristics becomes increasingly difficult as service-time variability 
increases. Moreover, the approach to steady state gets very slow, so that it may be more appropriate to 
consider the transient behavior of the queueing system. 

Nevertheless, Figs. 10 and 11 show both the simulation and the analytical results for the waiting-time 
probabilities of an M/G/l queue with these two Pareto distributions. For the Pareto(2.2,0.83) distribution, 
Fig. 10 shows that the simulation results for the Pareto and the fitted hyperexponential distributions are 
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reasonably close to each other. Fig. 10(b) shows the results of five independent replications each based on 
4 x lo6 arrivals for both distributions. The differences of the curves are within the simulation error. Also 
note that the curve for the analytical evaluation of the hyperexponential distribution is well covered by the 
simulation results. 

Paralleling Fig. 10, Fig. 11 shows the results of simulations for the Pareto(l.2, 5) distribution. Fig. 11 
demonstrates the pitfall of simulations with distributions that have large second moments. Even in the 
normal scale, the five different simulation runs span a wide range. The location of each individual curve is 
highly dependent on the sample mean. Since all sample means were less than 1, it is not surprising that the 
curve corresponding to the calculated waiting-time probabilities dominates all simulation results. 

Since the Pareto( 1.2,5) service-time distribution has infinite variance, the M/G/ 1 busy period has infinite 
variance, from which it is possible to deduce that the variance of the empirical distribution of the first n 
waiting times, at any time, multiplied by R, has variance growing faster than rz. Hence, in this problem 
there is long-range dependence. Consistent with this observation, Fig. 11 shows that the high variability is 
reflected in the hyperexponential approximation. 

6.3. Pareto mixtures of exponentials 

Abate et al. [l] introduced the Pareto mixture of exponential (PME) distributions to study queues with 
long-tail service-time distributions. A PME pdf can be expressed as 

fr(t) = 7 gr (y)y-’ e-“ly dy, (6.1) 

@-1)/r 

where g,(t) is a Pareto pdf on the interval [(r - 1)/r, 00) of the form 

( > (’ - ‘) r t-(r+l) gr(t) = r -- t > cy _ l)ir. , - 
r 

(6.2) 

We refer to a PME’ distribution with parameter r as PME(r). Since a PME pdf is constructed as a mixture 
of exponentials, it is completely monotone and thus DFR. 

PME distributions are convenient to use in queueing examples because they have relatively convenient 
Laplace transforms. In general, 

f&) = y (‘$) “T-“& dx. 

0 

Moreover, for r = k or k + 0.5 for integer k, fr (s) can be expressed in closed form, e.g., 

&(s) = 1 - s + is2 - is3 In (1 + -$-) 

(6.3) 

(6.4) 

and 

f&(s) = 1 -- s + 9s’ - 5(0.60)2.5 arctan (m); (6.5) 

see [ 1, Section 21. 
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- PMEB 
- fifted hypere 

(c) Cumulative distribution 

- PMEI 

- PMEB 
- fitted hypere 

(d) Complimentary cumulative distribution 

Fig. 12. H12 fit to a PME(3) distribution using ck = 0.464 to cl = 106. 

This implies that it is possible to analyze the waiting time distribution of the M/G/l queue if the 
service times are chosen from a PME distribution. Therefore the PME distribution is a good distribution 
to calibrate the performance of the fitting algorithm described in Section 4. Fig. 12 shows the result of 
fitting a hyperexponential distribution with 10 exponentials to a PME(3) distribution. The parameters of the 
fitted hyperexponential distribution are shown in Table 10. Given all the other examples, it is not surprising 
that the fit is excellent. Only from the density and the hazard plots can we see that the hyperexponential 
distribution is only an approximation of the PME distribution. 

Fig. 13 shows the analytical results of the waiting times of the M/G/ 1 queue for both the PME distribution 
and the fitted hyperexponential distribution. Particularly impressive is Fig. 13(b), where the ccdf waiting- 
time values are plotted in log scale. As in previous examples, the exponential service-time cdf chosen to 
match the mean yields a very poor approximation for the waiting-time ccdf. However, the numerical results 
for the waiting-time ccdf with the PME and the fitted H13 service-time cdf’s are nearly identical, confirming 
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Table 10 
Parameters of the H12 cdf fit to a PME(3) distribution 

Parameters of the hyperexponential distribution 
i Pi ki l/J-i 

1 0.055338 
2 0.869780 
3 0.073470 
4 0.001386 
5 2.60E-05 
6 4.87E-07 
7 9.12E-09 
8 1.71E-10 
9 3.2OE- 12 

10 5.93E- 14 
11 l.O5E- 15 
12 1.42E-17 

- exrlcalc 
- h&rcalc 
-----. hyper exp 
---- pme talc 

2.45024 0.408 12 
1.11421 0.89749 
0.39385 2.53906 
0.10475 9.54655 
0.02782 35.9422 
0.00739 135.321 
0.00196 509.495 
0.00052 1918.61 
1.38E-4 7231.38 
3.65E-5 27385.9 
9.40E-6 106 430 
2.08E-6 480 898 

- expcalc 
- hyper talc 
-----. hyper exp 
---- pme talc 

54 100 150 zcu 2.54 3w 

VmHhlg ml. 

(b) (log y-axis) 

Fig. 13. The steady-state M/G/l waiting-time ccdf with a PME(3) sercvice-time distribution and the H12 fit by the algorithm 
in Section 4 using ck := 0.464 and cl = 106. Part (b) is the same as part (a), but with the y-axis in log scale. 

that deviations seen previously in Figs. 10 and 11 are due to simulation errors. This figure also illustrates 
the limitations of simulation. The waiting time probabilities, calculated from a simulation with the fitted 
hyperexponential distribution as service time distribution, deviate substantially from the analytical results 
for values larger than 200. The reason is obviously that the number of simulated arrivals is too small for 
this high level of variability. 

7. Fitting a hyperexponential distribution to data 

Besides using the fitting algorithm to fit a hyperexponential distribution to another distribution, we can 
also use the fitting algorithm to fit a hyperexponential distribution to data. In this case the empirical ccdf 
obtained from the data replaces the ccdf of the initial probability distribution in the algorithm. 
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Fig. 14. & fit to the empirical cdf from a sample of size 1000 from a Weibull(0.3,9.261) distribution using ck = 0.0001 and 
Cl = 5. 

However, we would suggest caution when applying our algorithm directly to data. Our experience is that 
it is usually much better to first fit a suitable long-tail probability distribution with only a few parameters to 
the data, and then afterwards apply our algorithm to fit a multi-parameter hyperexponential distribution to 
the long-tail distribution. By this two-step procedure, we usually are able to obtain a good multi-parameter 
hyperexponential fit to data. 

To illustrate, we consider a simulation experiment in which we try to fit a probability distribution to 
sample of 1000 points drawn from the Weibull(0.3, 9.261) distribution considered in Example 1.1 having 
unit mean. Even though the sample size is not very large, it is large enough to obtain a good fit to the two- 
parameter Weibull distribution using the maximum likelihood estimator (see [31, p. 2551). The Weibull 
parameters achieved from one sample were c = 0.3016 and a = 9.369 (yielding a mean of 0.96532)). 
Since the estimated values of c and a are close to the original parameters, our algorithm applied to the fitted 
Weibull distribution can produce an excellent H2u approximation to the original Weibull distribution. For 
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Table 11 
Moments of the original Weibull distribution, the data sample, the fitted H4 distribution and fitted Weibull distribution 

Moment Weibull Data Hyperexponential Fitted Weibull 

1 1 .oo 0.93 0.44 0.97 
2 29.24 24.72 5.26 26.64 
3 4480.60 1591.75 145.24 3820.47 

this experiment, the original Weibull distribution, the fitted Weibull distribution and the Hz0 fit to the fitted 
Weibull distribution are all very close, just as in Fig. 1. 

In contrast, we consider what happens when we apply our hyperexponential fitting algorithm directly to 
the data. Since the sample is not large, the range of the empirical ccdf is limited. Thus, it is not possible 
to directly apply our algorithm with many exponential terms. We show what happens with 4 exponentials. 
Figs. 14(a) and (b) show how the fitted hyperexponential distribution matches the experimental cdf and 
ccdf. Figs. 14(c) and (d) compare the fitted hyperexponential distribution to two Weibull distributions: the 
original Weibull distribution and the fitted Weibull distribution. Although the fits in Fig. 14 look quite 
good, the pictures are deceptive, because the small and large values are not matched well. To illustrate, the 
moments are not matched well, as can be seen from Table 11. This can be explained in part by the fact that 
the sample moments of the data are not very close to the moments of the sampled distribution. 

The experiment ‘we have considered in somewhat biased, because we considered a hyperexponential fit 
to Weibull data. If we know in advance that the data are generated from the Weibull distribution, then using 
a statistical estimation procedure tailored to the Weibull distribution evidently should be good. It is less 
clear with an unknown data source. However, regardless of the data source, our fitting procedure is not 
designed to treat data. It does not address the statistical problems of the estimation. However, our procedure 
might well be applied effectively after some initial smoothing of the data, but that approach remains to be 

explored. 

8. Making Markawmodulated on-off sources 

A commonly considered model for sources in communication networks is the on-off model (e.g., 
[4,15,16,28,37,49,59]). In the basic on-off source model, the on and off periods come from indepen- 
dent sequences of i.i.d. random variables, with the on periods having cdf Fl and the off periods having 
another common cdf F2. During the on period there is input according to a Poisson process, a deterministic 
fluid process or some other stochastic process, and in the off period there is no input. 

The special case in which F1 and F2 are exponentially distributed is especially convenient to analyze, 
because then the process indicating whether the source is active (on) or not (off) is Markov. Moreover, 
then the superposition of multiple independent sources of this kind is a Markov-modulated input process, 
with the state of the underlying Markov chain specifying whether each source is on or off. If the input 
during the on period of each source is a Poisson process, then the aggregate (superposition) process is a 
Markov-modulated1 Poisson process (MMPP). If the input in the on period of each source is a fluid process, 
then the aggregate input process is a Markov modulated rate process (MMRP). The input rate in any Markov 
chain state is then ihe sum of the rates for all the sources that are on in that state. 

However, data from actual communication networks indicate that the on-period and off-period cdf’s 
Fl and F2 often actually have long tails [59]. Unfortunately, this property makes the aggregate input 
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process difficult to analyze directly. However, if we can fit the on-time and off-time cdf’s Fr and F2 to 
hyperexponential distributions, then the aggregate input process can again be represented as a Markov 
modulated input process. To see this, let the on and off times for one source have ccdf’s 

F:(t) = &IQ emhit, t > 0 
m 

and F;(t) = c qj epwjLi”, t > 0, 
i=l .j=l 

respectively. We let the underlying continuous-time Markov chain have k + m states, with state i, 1 I i 5 
k, corresponding to the source being on with the component exponential having parameter hi, and state 
i, k + 1 5 i 5 m, corresponding to the process being off with the component exponential parameter having 
parameter pk-i. From state i, 1 5 i ( k, the process transitions to state k + j, 1 _( j 5 m, with intensity 
hkqj; from state k + j, 1 5 j 5 m, the process transitions to state i, 1 5 i 5 k, with intensity pjpi ; and 
all other possible transitions have 0 intensity. 

In order to treat the superposition process, the underlying Markov chain is the product of all the component 
Markov chains. If the Markov chain for source i has ki + mi states, then the number of states in the Markov 
chain for the aggregate input process containing it component sources is 

n 

l-b ki + mi). 
i=l 

Clearly the number of states in the Markov chain underlying the aggregate process can be very large. 
This will occur when n, ki or mi are large. Since the long-tail property may lead to relatively large ki and 
mi, it clearly causes the Markov modulated model to become more difficult to analyze. Nevertheless, the 
Hk fit beings the model into the domain of existing algorithms. For example, algorithms for calculating 
the transient and steady-state performance characteristics in the MMPP/G/l queue have been developed 
by Choudhury, Lucantoni and Whitt [ 15,371. (The MMPP/G/l queue is a special case of the BMAP/G/ 1 
queue.) 

9. Conclusions 

In this paper we have developed an effective simple algorithm for approximating a large class of 
probability distributions with monotone densities by hyperexponential distributions (Section 4). We have 
given examples showing that the algorithm is effective for approximating Pareto and Weibull distributions 
(Sections 1, 2, and 6)). We have shown that the algorithm should be effective for distributions with de- 
creasing failure rate, and should not be used for distributions with increasing failure rate (Section 5). We 
have proved that, in principle, completely monotone pdf’s (all of which have decreasing failure rate) can 
be approximated arbitrarily closely by hyperexponential pdf’s, and that as a result (under extra regular- 
ity conditions) the associated waiting-time distribution in a GI/G/l queue with a completely monotone 
service-time distribution can be approximated arbitrarily closely by the waiting-time distribution in the 
associated GI/G/ 1 queue with the approximating hyperexponential service-time distribution (Sections 2 
and 3). Since many long-tail distributions are completely monotone, these results serve as a theoretical 
foundation for approximating long-tail distributions by hyperexponential distributions. Since phase-type 
probability distributions are dense in the family of all probability distributions, by the same reasoning, they 
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are rich enough to approximate any distribution, if enough phases are allowed. We have pointed out that 
the EM algorithm is a candidate fitting algorithm for general phase-type distribution. 

We believe that lnyperexponential approximations of long-tail distributions can be useful, but they do 
not remove all difhculties. If a good fit is done, then the high variability of the long-tail distribution 
will be inherited by the approximating hyperexponential distribution. This high variability can make pre- 
cise estimation by computer simulation difficult, as we saw in some of the examples in Section 6. In 
Section 8 we showed that hyperexponential approximations can make models of the superpositions of on- 
off sources more tractable, but since the state space of the Markovian environment process may be large, 
the approximating aggregate input process can still be difficult to analyze. However, we did see that the 
hyperexponential approximation makes it possible to calculate steady-state performance distributions in 
the M/G/l queue with a long-tail service-time distribution by numerical transform inversion. The same 
technique applies to the more general BMAP/G/ 1 queue and other performance models. 

We have emphasized that our fitting algorithm is intended to approximate one probability distribution 
by another, and not to fit a probability distribution directly to data (Section 7). In some circumstances 
our algorithm could be used to fit a hyperexponential distribution to an empirical distribution (histogram) 
obtained from data, but our algorithm is not designed for that purpose. Indeed, in simulation experiments 
with long-tail data, we found that much better fits are obtained by first fitting a long-tail distribution with 
very few parameters (e.g., 2) to the data and then applying our algorithm to obtain a hyperexponential 
distribution. 

Finally, the algorithm presented here is only one of the many possible fitting algorithms. We intend to 
compare alternative fitting algorithms in a future paper. 
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