
Heavy-Traffic Limits for Stationary Network Flows

Ward Whitt and Wei You

Department of Industrial Engineering and Operations Research,

Columbia University, New York, NY, 10027 {ww2040,wy2225@columbia.edu}

January 21, 2019

Abstract

We establish heavy-traffic limits for the stationary flows in generalized Jackson networks,
allowing an arbitrary subset of the queues to be critically loaded. The flows are the processes
counting customers flowing from one queue to another or out of the network. The heavy-traffic
limit with a single bottleneck queue is especially tractable because it yields limit processes in-
volving one-dimensional reflected Brownian motion. That limit leads to accurate approximation
of the index of dispersion for counts, which plays a crucial role in our robust queueing network
analyzer for approximating the steady-state performance of a non-Markovian open queueing
network.
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1 Introduction

The purpose of this paper is to develop a better understanding of the stationary flows in a non-

Markov open queueing network (OQN), i.e., the departure processes, flows from one queue to

another, superpositions of such processes and thus the internal arrival processes. In many queueing

systems, there may be as much interest in the departure process as in the familiar measures of

congestion such as queue lengths and waiting times, because the departure process may represent

the flow of completed work over time. Thus, it is natural to be interested in the stochastic variability

of the flows as well as the relatively tractable rate.

The flows are special stochastic point processes, for which there is a well-developed general

theory, as in [20, 21]. There also is a substantial literature on the general structure of stationary

point processes in queueing systems, as in Chapter 1 of [3] and [43], but concrete results, such as

explicit formulas describing the stochastic variability of the flows over time, are extremely rare.

The familiar exception is the Markovian Jackson OQN, for which there is a substantial theory, as

in Ch. 4 of [46], but even in Markovian Jackson networks, the flows can be quite complicated.

First, by reversibility, for Jackson networks, the departure processes out of the network from the

queues are independent Poisson processes, but the internal flows need not be Poisson, even though

the product-form property holds. In particular, the flows are Poisson if and only if they are not

part of a loop; see [36, 45]. For non-Markov open networks, the flows are even more complicated.

As discussed in [19, 22] and references there, the stationary departure process from a GI/GI/1

queue is a renewal process (ordinary or stationary) if and only if the queue is an M/M/1 queue, in

which case it is a Poisson process.

In this paper we contribute by establishing heavy-traffic limits for the stationary flows in an

OQN of single-server queues. This paper is a sequel to [51], which established a heavy-traffic

limit for the stationary departure process from the GI/GI/1 queue. That evidently was the first

heavy-traffic limit for a stationary flow in an OQN. In particular, here we consider an OQN with

K single-server stations, unlimited waiting space, and the first-come first-served service discipline.

We assume that we have mutually independent renewal external arrival processes, sequences of

independent and identically distributed (i.i.d.) service times and Markovian routing. Such a system

is called a generalized Jackson network (GJN), because it generalizes the Markovian OQN analyzed

by Jackson [32] in which all the interarrival times and service times have exponential distributions.

The Jackson OQN’s are remarkably tractable because the vector of steady-state queue lengths
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(number in system) has a product-form distribution, just as if the queues were independentM/M/1

queues with the correct arrival rates.

Our results in this paper extend the heavy-traffic limit of the stationary departure process in

the GI/GI/1 model in [51]. As before, we rely heavily on the justification for interchanging the

limits t→ ∞ and ρ→ 1 in a GJN provided by Gamarnik and Zeevi [24] and Budharija and Lee [7].

By allowing an arbitrary subset of the queues to be bottleneck queues (have nondegenerate limits),

while the rest have null limits, we follow Chen and Mandelbaum [9, 10]. Our main contributions

here are the heavy-traffic limits for the stationary flows.

As a preliminary step for our heavy-traffic limit, we establish conditions for the existence of

stationary flows in a GJN and for convergence to those stationary flows as time evolves. For that

we rely heavily on the Harris recurrence that was used to establish the stability of a GJN under

appropriate regularity, drawing on Sigman [41, 42] and Dai [15]; see Ch. VII of Asmussen [2].

1.1 Toward a New Decomposition Approximation

In addition to contributing to a better understanding of flows in GJNs, which is important in its own

right, we apply the heavy-traffic limits here in [53] to develop a new decomposition approximation

method for key performance measures in non-Markov OQNs, which is important because relatively

little is known about the exact steady-state performance of a GJN. Early analytical approximations

were based on the parametric-decomposition method as in [35] and [48], which acts as if the product

form still holds, with the performance of each queue approximated by an appropriate function of

the exact arrival rate (the same as for a Jackson network) and appropriate variability parameters.

A fast algorithm is produced if the variability parameters can be obtained as the unique solution

to a set of linear equations, just like the arrival rates from the traffic rate equations, as in §IV.2 of

[48].

An alternative way to develop approximations for GJNs is to apply heavy-traffic limits based

on Reiman [39]. That has led to the QNET and sequential bottleneck decomposition (SBD) ap-

proximations in [27], [40], and [17]. These methods require calculating the steady-state distribution

of multidimensional reflected Brownian motion, exploiting [18].

Recently, we began studying an alternative non-parametric decomposition approach based on

the flows, where the flows are partially characterized by their rates and indices of dispersion for

counts (IDC). A non-parametric robust queueing technique is then applied to convert the IDC

characterization of the GJN into approximations for the steady-state performances, see [52] and
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the references therein. As in §4.5 of [14], the IDC is a scaled version of the variance-time function;

i.e., given a stationary arrival counting process A(t) with rate λ, the IDC is the function

Ia(t) ≡
V ar(A(t))

E[A(t)]
=
V ar(A(t))

λt
, t ≥ 0. (1.1)

The IDC measures the variability over time, independent of the rate λ.

We emphasize that the IDC need not be part of the model description. Instead, it can be

regarded as part of the solution technique, so that a user of the algorithm need not know about the

IDC. In particular, the new IDC-based RQNA can be applied directly to a GJN as usually specified

in terms of the interarrival-time and service-time cdfs (without any IDC being provided as model

data). It applies to a GJN if each interarrival-time and service-time cumulative distribution function

(cdf) in the model is characterized either (i) completely or (ii) partially by the first two moments

of that cdf. With complete characterization of each cdf, the associated IDC is either available

explicitly or can be readily computed by numerical transform inversion, as in §2 of [54] and §13

of [1]. With partial characterization of each cdf by its first two moments, that same approach can

be used after fitting a reasonable cdf to the specified moments, as in §3 of [47]. The IDC can help

provide good solutions, because the internal flows are typically not renewal processes even if the

interarrival times and service times are assumed to come from mutually independent i.i.d sequences,

as in a GJN.

Even though the IDC is only a partial characterization of the arrival process involving means

and variances (as functions of time), the IDC characterizes the variability of an arrival process much

more completely than the usual variability parameters, such as the variance of a single interarrival

time. Indeed, as shown in [54], the rate together with the IDC of a stationary renewal process fully

characterizes the associated ordinary renewal process and, thus, also the stationary renewal process

itself. Thus, the GI/GI/1 model is fully characterized by the rate and IDC for both the arrival

and service stationary counting processes. Moreover, Theorem 5 of [52] shows that the new robust

queueing algorithm for the general G/G/1 queue based on indices of dispersion as asymptotically

exact in both light and heavy traffic limits.

In contrast, the first two moments of the interarrival-time and service-time cdf’s do not pin

down the mean steady-state waiting time well in the GI/GI/1 queue. Worst case analysis in [12]

shows that the maximum relative error given this partial information is remarkably large. For

example, Tables 1 and 2 of [12] show that, when the traffic intensity is ρ = 0.7, the maximum

relative error ((upper bound - lower bound)/lower bound) is 1.89 when c2a = c2s = 4.0 and 16.35
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when c2a = c2s = 0.5, where c2a is the squared coefficient of variation (scv, variance divided by the

square of the mean) of an interarrival time, and c2s is the analog for the service time.

The new approximations based on the IDC also provide a means for approximately analyzing

OQNs that are much more general than GJNs. In particular, we can allow general stationary arrival

processes that are partially characterized by their rate and IDC; these external arrival processes

need not be renewal processes. First, the IDCs of many candidate external arrival processes are

readily available, e.g., see §III.G. of [23], which draws on [13], §5.4 of [38] and §4.3 of [52]. Second,

the IDC can be estimated from simulation or system data otherwise; see §2.3.2 of [53]. Thus, the

IDC-based approximations open a way to new data-based performance analysis of OQNs.

Given that background, the major challenge is to develop an effective approximation for the

IDC of each internal arrival process within the OQN. We made a start in [51] when we established

a heavy-traffic limit for the stationary departure process from a GI/GI/1 queue. Based on that

heavy-traffic limit, in (74) of [51] we developed an approximation of the IDC of a departure process

by a convex combination of the IDCs of the arrival and service processes as

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), t ≥ 0, (1.2)

where the weight wρ(t) is based on a heavy-traffic limit for the stationary departure processes.

The present paper contributes to approximation of OQNs using the IDC by establishing heavy-

traffic limits for all the stationary flows in a GJN, allowing any subset of the stations to be bottleneck

stations (critically loaded in the limit). The heavy-traffic limits are especially tractable in the case

of a single bottleneck station, because they can be expressed in terms of one-dimensional reflected

Brownian motion (RBM). The IDC in the heavy-traffic limit can be calculated in closed-form

by applying Corollary 5.1 of [51]. The limits in this single-bottleneck special case are used in

RQNA. The numerical examples in §7 of [53] show that the IDC-based RQNA is quite effective,

comparable to the highly successful SBD for the examples considered in [17], but without analyzing

a multidimensional RBM.

1.2 Literature Review

1.2.1 Heavy Traffic

A major source of approximations for GJNs has been heavy-traffic (HT) limits, first for feed-forward

networks in [30, 31] and [25, 26]. As indicated in §IV.3 of [48], the approximation for superposition

processes there draws on the HT limit in [49].

5



New approximations for GJNs have been based on Reiman [39]. In [39] the HT limit of the

vector queue length process is shown to be a reflected Brownian motion (RBM) on the nonnegative

orthant. The concept of RBM is first introduced in the queueing settings in [26] and studied in

detail in [28]. In [9, 10] HT limits were extended to models with strict bottlenecks (ρi > 1) and

non-bottleneck stations (ρi < 1) as well as the usual critically loaded stations (ρi = 1). (We do not

consider strict bottlnecks here.)

These heavy-traffic limits served as a theoretical basis for the QNET and SBD approximations in

[27], [40], and [17]. Theoretical justification for the approximation of the steady-state performance

in the GJN by the steady-state performance of the limiting RBM was established by [24] and [7]

when they justified interchanging the limits t→ ∞ and ρ→ 1. Recently direct heavy-traffic limits

have been established for the stationary distributions by [5].

So far, the heavy-traffic literature has focused on the queue length, busy time, waiting time,

workload and the sojourn time processes. However, little is known beyond the initial results in

[30, 31] regarding the HT limits of the arrival flows and departure flows.

1.2.2 Stability of GJNs

There is a substantial literature on the existence of a proper steady state and the convergence to

it; This is referred to as the stability of an open queueing network.

The standard approach has been to focus on the Markov process consisting of the queue length

process and the residual interarrival times and service times in the GJN. Early study of such

Markov processes includes [4], which considered a slightly different open queueing network (a sta-

tion is picked to act as both the source and the sink) and proved the convergence of the distribution

of the queue length process to a stationary distribution. The stability of a network without feed-

back is considered in [34]. Sigman [41, 42] showed that the general open queueing network is Harris

recurrent and the distribution of the Markov process converges if and only if the interarrival dis-

tribution is spread-out; see also [8] for a different approach to stability via stochastic dominance.

However, [42] and [8] assumed that there is a single external arrival process that is split to create

arrivals to the individual queues. Harris recurrence for the general case was established by Dai [15],

but under the extra condition that each interarrival-time distribution is unbounded above. [15] was

primarily concerned with the harder (and interesting) multi-class model, which was also studied

in [16, 44]. (We do not consider the multi-class model here.) In [37] the stronger convergence

in mean for queue length process and total workload process was established under slightly more
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restrictive conditions. In [29], a Brownian model for the OQN is considered and the stability result

is established.

The existing literature is quite extensive, but it has focused on the stability of the queue length,

instead of the flows in the open queueing network. As far as we know, we are the first to consider

the stability of the flows.

1.3 Organization

The rest of the paper is organized as follows. We specify the model and establish the existence and

convergence results (as time increases) for the stationary flows of a GJN in §2. We establish the

main heavy-traffic limit for the stationary flows in §3.

We then establish more detailed results for three special cases in §??. First, we state the limit

for the special case of a GJN with only one bottleneck queue, which is useful for the IDC approxima-

tions, because it involves only one-dimensional RBM. Corollary ?? shows that the approximation

technique of feedback elimination is asymptotically correct in the HT limit. This extends the

technique of immediate feedback elimination discussed in §III of [48].

In §?? we demonstrate how the HT limits can be used to derive approximations for the IDCs of

the stationary flows, focusing on dependent superposition and slitting operations. These examples

illustrate the complexity of the flows. The accuracy of the approximations in these simulation

comparisons also provide consistency checks for the HT limit theorems. Finally, we draw conclusions

in §4.

2 The Stationary Flows in an Open Queueing Network

In this section, we establish the existence of the stationary flows in a GJN and convergence to

those stationary flows as time increases. These issues can be complicated in general, but they are

very manageable under appropriate regularity conditions, in particular, if we construct a Markov

process representation and make assumptions implying Harris recurrence as in Chapter VII of [2]

and [41, 42]. That allows the pre-limit process to be coupled with a stationary version, so that

there is total variation convergence of the entire stochastic process. That implies convergence for

a large class of related processes without complicated issues about the underlying topology.

In §2.1 we specify the model. Then in §2.2 we make assumptions implying the Harris recurrence

and establish the existence and convergence result for the stationary flows.

7



2.1 The OQN Model

We start by formulating a general OQN model that goes beyond the assumptions we make to

establish Harris recurrence. Let there be K single-server stations with unlimited waiting space and

the FCFS discipline. We associate with each station i an external arrival point process A0,i with

finite rate

λ0,i ≡ lim
t→∞

t−1A0,i(t), (2.1)

where the limit holds w.p.1. Let A0 ≡ (A0,1, . . . , A0,K) denote the vector of all external arrival

processes.

Now, let {V l
i : l ≥ 1} denote the sequence of service time at station i and define the (uninter-

rupted) service point (counting) process as

Si(t) = max

{

n ≥ 0 :

n
∑

l=1

V l
i ≤ t

}

, t ≥ 0

We assume that the service process Si(t) has finite rate µi, defined as in (2.1).

In addition to external arrivals, departures from each station may be routed to other queues or

out of the network. To specify the general routing process, let θli ∈ {0, 1}K+1 indicate the routing

vector of the l-th departure from queue i. Hence, following standard conventions, exactly one

component of θli is 1 and all others are 0. The j-th component θli,j being 1 indicates that the l-th

departure from the i-th station exits the system if j = 0 and is routed to station j if 1 ≤ j ≤ K.

Let

Θi(n) ≡ (Θi,0(n),Θi,1(n), . . . ,Θi,K(n)) ≡
n
∑

l=1

θli

denote the routing (or splitting) decisions up to the n-th decision at station i. We assume that

Θi(n) satisfies a functional weak law of large numbers (FWLLN), i.e.,

Θ̄i,n(t) ≡
1

n
Θi(⌊nt⌋) ⇒ pit, (2.2)

with the convergence uniform over bounded intervals. The components pi,j of the vector pi ≡

(pi,0, . . . , pi,K) are then the long-run proportion of departures from station i that are routed to

station j for 1 ≤ j ≤ K or out of the network for j = 0. The FWLLN in (2.2) is satisfied when we

assume Markovian routing, because then the routing vectors are i.i.d. We call the K ×K matrix

P ≡ {pi,j : 1 ≤ i, j ≤ K} the routing matrix.

To define the traffic intensities, we solve for the total arrival rate at each node. Let λ0 =

(λ0,1, . . . , λ0,K) be the external arrival rate vector and let λ = (λ1, . . . , λK) denote the total arrival
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rate vector, which we obtain by solving the traffic-rate equations

λi = λ0,i +
K
∑

j=1

λj,i = λ0,i +
K
∑

i=1

λjpj,i, (2.3)

or, in matrix form,

(I − P ′)λ = λ0,

where I denotes the K ×K identity matrix. We assume that I − P ′ is invertible; i.e., we assume

that all customers eventually leave the system; see [11] or Theorem 3.2.1 of [33]. Hence, λi,j ≡ λipi,j

is the rate of the internal arrival stream from i to j.

For the internal arrival flows, let Ai,j be the customer stream from i to j. Each internal arrival

stream Ai,j splits from the departure process Di according to the splitting decision process Θi,j, so

that

Ai,j(t) =

Di(t)
∑

l=1

θli,j = Θi,j(Di(t)), t ≥ 0. (2.4)

Let Aint(t) ≡ (Ai,j(t) : 1 ≤ i, j ≤ K) denote the matrix of all internal arrival flows.

For total arrival process at station i, let

Ai(t) = A0,i(t) +

K
∑

j=1

Aj,i(t)

and let A(t) ≡ (A1(t), . . . , AK(t)) be the vector of total arrival processes.

As observed in (7.1) and (7.2) in §7.2 of [9], the queue-length process is uniquely characterized

by the flow balance equations

Qi(t) = Qi(0) +Ai(t)− Si(Bi(t)), t ≥ 0, 1 ≤ i ≤ K, (2.5)

where Bi(t) is the cumulative busy time of server i up to time t, which by work conservation satisfies

Bi(t) =

∫ t

0
1Qi(u)>0du, t ≥ 0. (2.6)

For the flow exiting the queueing system, let Dext,i denote the flow that exits the system from

station i. Hence

Dext,i(t) =

Di(t)
∑

l=1

θli,0 = Θi,0(Di(t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . ,Dext,K(t)) be the vector of external departure processes.
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2.2 Existence and Convergence Via Harris Recurrence

In this section we establish the existence of the stationary flows and convergence to them as time

increases for any initial state. Toward that end, we make three assumptions, the first one being

Assumption 2.1 We assume that the OQN is a GJN, in particular:

• the K external arrival processes are mutually independent (possibly null) renewal processes

with finite rates λi, where the interarrival times have finite squared coefficient of variation

(scv, variance divided by the square of the mean) c2a0,i for 1 ≤ i ≤ K;

• the service times come from K mutually independent sequences of i.i.d. random variables

with means 1/µi, 0 < µi <∞, and finite scv c2si for 1 ≤ i ≤ K;

• the interarrival-time and service-time distributions have no mass at 0;

• the routing is Markovian with substochastic routing matrix P , so that I−P ′ is invertible; and

• the arrival, service and routing processes are mutually independent.

Let U(t) denote the vector of residual external arrival times at time t; let V (t) be the vector of

residual service times at time t, set to 0 when the server is idle; and let the system state process be

S(t) ≡ (Q(t), U(t), V (t)), t ≥ 0. (2.7)

The system state process S in (2.7) is an element of the function space D3K , i.e., with vectors

of real-valued functions on the half-line [0,∞) that are right-continuous with left limits. Let the

general initial condition be denoted by S(0) = (Q(0), U(0), V (0)).

Given that we have a GJN, the vector of external arrival processes A0 will be a vector of delayed

renewal process with the vector of first interarrival times being U(0); the vector of service processes

S will be a vector of delayed renewal process with first service time being V (0); and the vector of

queue length processes Q(t) has a initial value of Q(0).

Now, define the auxiliary cumulative process C, as in §VI.3 of [2], by

C(t) ≡ (B(t), Y (t)), (2.8)

where Bi(t) is the cumulative busy times for server i over interval [0, t] and

Yi(t) ≡ µi(t−Bi(t)) (2.9)
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is the cumulative idle time of station i, scaled by the service rate µi.

To focus on the flows, we describe the GJN by the aggregate process

M(t) ≡ (S(t), C(t),F(t)), (2.10)

where

F(t) ≡ (A0(t), Aint(t), A(t), S(t),D(t),Dext(t)) (2.11)

is a vector of cumulative point processes, with the processes defined in §2.1. We refer to F in (2.11)

as the flows.

Following convention, we say that the OQN is stable if the system state process is stable, i.e.,

if there exists a distribution π on R
3 for S(0) such that S(t) has that same distribution π for all

t ≥ 0. We say that a flow is stationary if it has stationary increments. We refer to [43] and Chapter

6 of [6] for background on stationary stochastic processes and ergodicity.

At this point we make the key assumption to obtain the Harris recurrence in [41, 42], [15] and

Ch. VII of [2].

Assumption 2.2 Each external interarrival-time distribution is unbounded above and spread out.

That is, for external arrival process A0,i with interarrival distribution Fi, there exist a integer ji > 0

such that the ji-fold convolution F ∗ji
i has an absolutely continuous component with respect to the

Lebesgue measure, 1 ≤ i ≤ K.

For a probability distribution to be spread out, it suffices for each interarrival-time distribution

to have a positive probability density function (pdf) over some interval. That clearly avoids periodic

behavior associated with the lattice case, but otherwise it is not restrictive for practical modeling.

The unbounded condition could be replaced by the single external renewal arrival process with

splitting in [42].

Finally, we assume that the queueing network is stable in the sense of the traffic intensities

ρi ≡ λi/µi, where λi is obtained from the traffic rate equations.

Assumption 2.3 The traffic intensities satisfy maxi ρi < 1.

Under these three assumptions, Theorem 5.1 of [15] establishes stability of the GJN; also see

Theorem 5.1 of [42] and [7, 8, 24] for alternative approaches and additional discussion.

Theorem 2.1 (Harris recurrence from [15]) Under Assumptions 2.1-2.3, the system state stochas-

tic process S in (2.7) is a Harris recurrent Markov process.
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We now state the strong implications of Theorem 2.1. For that, we consider the system that

starts at time s. For the system state processes, let Qs(t) = Q(s + t), Us(t) = U(s + t) and

Vs(t) = V (s + t), so that Ss ≡ (Qs, Us, Vs) is the system state process with initial condition S(s).

Theorem 2.1 implies that

Corollary 2.1 Under Assumptions 2.1-2.3, we have

Ss ⇒ Se ≡ (Qe, Ue, Ve), in D3K as s→ ∞, (2.12)

where Se is a stationary process. Moreover, the convergence holds in the total variation metric, so

that for any measurable function h from D3K to a complete separable metric space,

h(Ss) ⇒ h(Se) as s→ ∞. (2.13)

For the flows, let A0,s(t) = A0(t + s) − A0(s) be the external arrival counting process that

starts at time s. Similarly, let Aint,s(t) = Aint(t + s) − Aint(s), As(t) = A(t + s) − A(s),Ds(t) =

D(t+s)−D(s),Dext,s(t) = Dext(t+s)−Dext(s), Bs(t) = B(t+s)−B(s) and Ys(t) = Y (t+s)−Y (s)

be the corresponding processes that starts at time s. The service processes Ss(t) are more subtly

defined as

Ss(t) ≡ S(B(s) + t)− S(B(s)), (2.14)

which is a vector of delayed renewal processes with first intervals distributed as V (s), the residual

service time at time s. This definition of the service process allow us to write the departure process

as a composition of the two processes Ss and Bs via

Ds(t) ≡ D(s+ t)−D(s) = S(B(s+ t))− S(B(s))

= Ss(Bs(t)) ≡ (Ss ◦Bs)(t), t ≥ 0. (2.15)

Finally, let Cs ≡ (Bs, Ys) and Fs ≡ (A0,s, Aint,s, As, Ss,Ds,Dext,s).

Theorem 2.2 (Existence and convergence of the stationary flows) Under Assumptions 2.1-

2.3, there exists a unique stationary and ergodic cumulative processes (with stationary increments

satisfying the LLN)

Ce ≡ (Be, Ye)

and

Fe ≡ (A0,e, Aint,e, Ae, Se,De,Dext,e)
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and a unique stationary process

Se ≡ (Qe, Ue, Ve),

such that, as s→ ∞,

Ms ≡ (Ss, Cs,Fs) ⇒ (Se, Ce,Fe) ≡ Me in D10K+K2

. (2.16)

Furthermore, A0,e is the vector of equilibrium external arrival renewal processes, Se is a vector of

delayed renewal process with first interval distributed as Ve(0) and the mode of convergence can be

strengthened to in total variation.

Proof By Corollary 2.1 and the definition of Ss in (2.14), the convergence of Vs(0) = V (s) implies

the convergence of Ss to Se, which is a delayed renewal process with first interval distributed as

Ve(0) and other intervals distributed as a generic service time. By Assumption 2.1, A0,s converges

to A0,e. Hence, we have as s→ ∞

(Qs, Us, Vs, A0,s, Ss) ⇒ (Qe, Ue, Ve, A0,e, Se) in D5K , (2.17)

where the subscript e denote the stationary versions.

For the cumulative busy time process defined in (2.6), note that

Bi,e(t) =

∫ t

0
1Qi,e(u)>0du, (2.18)

has stationary increments because it is a measurable integrable function of Qi,e, which is itself

stationary. (Recall that general measurable functions of stationary process are stationary; see

Proposition 6.6 of [6].) Moreover, without having to carefully consider continuity, we have

Bi,s(t) =

∫ s+t

s

1Qi(u)>0du =

∫ t

0
1Qi,s(u)>0du.

Hence, we can extend the convergence as s→ ∞ in (2.17) to

(Qs, Us, Vs, A0,s, Ss, Bs, Ys) ⇒ (Qe, Ue, Ve, A0,e, Se, Be, Ye) (2.19)

in D7K . For the departure process, recall from (2.15) that Ds(t) = Ss(Bs(t)), so that we can apply

the the composition map and (2.19) to obtain as s→ ∞

(Qs, Us, Vs, A0,s, Ss, Bs, Ys,Ds) ⇒ (Qe, Ue, Ve, A0,e, Se, Bs, Ye,De) (2.20)
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in D8K . Similarly, jointly with the limits above, we can add limit for other processes. For the total

arrival process, we have

Ai,s(t) = Ai(s + t)−Ai(s) = Di,s(t) +Qi(s+ t)−Qi(s)

⇒ Di,e(t) +Qi,e(t)−Qi,e(0) as s→ ∞.

So we have convergence if we define Ae ≡ Di,e(t) +Qi,e(t)−Qi,e(0).

For internal arrival process, by definition (2.4),

Ai,j,s(t) = Ai,j(t+ s)−Ai,j(s) = Θi,j(Di(t+ s))−Θi,j(Di(s)).

Under Markovian routing, the right-hand-side above is in distribution equivalent to Θi,j(Di(t+s)−

Di(s)) = Θi,j(Di,s(t)). Hence, as s→ ∞,

As,int ⇒ Ae,int ≡ (Θi,j(Di,e(t)) : 1 ≤ i, j ≤ K).

Similarly, we can add external departure processes to the limit, with

Dext,e ≡ (Θi,0(Di,e(t)) : 1 ≤ i ≤ K).

3 Heavy-Traffic Limit Theorems for the Stationary Processes

To set the stage for our heavy-traffic limits, in §3.1 we present a centered representation of the

flows. This representation parallels those used in [9, 10, 15, 39], but here we focus on the flows.

Then in §3.2 we establish our main heavy-traffic limit.

3.1 Representation of the Centered Stationary Flows

Recall that the external arrival rate vector is λ0, so the total arrival rates are given by λ = (I−P ′)λ0

as in (2.3). For service, we start with rate-1 base service process S0
i for station i and scale it by µi

so that the service process at station i is denoted by Si ≡ S0
i ◦ µie with e(t) = t being the identity

function. Let the center processes be defined by

Ã0,i = A0,i − λ0,ie, Ãi = Ai − λie, D̃i = Di − λie,

Θ̃j,i = Θj,i ◦ (Sj ◦Bj)− pj,iSj ◦Bj , and S̃i = Si ◦Bi − µiBi. (3.1)

Furthermore, let X(t) be the net-input process, allowing the service to run continuously, defined as

X ≡ Q(t)− (I − P ′)Y, (3.2)
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where Y is defined in (2.9).

The next theorem expresses the queue length processes, the centered total arrival and the

centered departure flows in terms of the centered external arrival, service and routing processes.

Let ψ be the K-dimensional reflection map; e.g., see Chapter 14 of [50].

Theorem 3.1 (Centered representation) The net-input process can be written as

X ≡ Q(0) + Ã0 + Θ̃′1− (I − P ′)S̃ + (λ0 − (I − P ′)µ)e, (3.3)

while the queue length process can be written as

Q = X + (I − P ′)Y = ψI−P ′(X), (3.4)

where ψI−P ′ is the K-dimensional reflection mapping with reflection matrix I − P ′. In addition,

the centered total arrival and departure processes can be written as

Ã = P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(

Ã0 + Θ̃′1
)

, (3.5)

D̃ = (I − P ′)−1
(

Q(0)−Q+ Ã0 + Θ̃′1
)

, (3.6)

where the centered processes are defined in (3.1).

Remark 3.1 (Stationary flows) Note that the representation in Theorem 3.1 does not impose

any assumption on the initial condition of the open queueing network. As ensured by Theorem 2.2,

there exists a stationary distribution π such that the flows are stationary if S(0) ∼ π. With this

specific initial condition, Theorem 3.1 applies to the stationary flows.

Proof With the standard flow conservation law, we can write the queue length process in terms

of the centered processes

Qi = Qi(0) +Ai − Si ◦Bi

= Qi(0) +A0i +

K
∑

j=1

Θji(Sj ◦Bj)− Si ◦Bi

= Qi(0) + (A0i − λ0ie) +
K
∑

j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj)

−

K
∑

j=1

(δji − pji) (Sj ◦Bj − µjBj) +

K
∑

j=1

(δji − pji)µj (e−Bj)
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+ λ0ie−

K
∑

j=1

(δji − pji)µje.

Because Yi ≡ µi (t−Bi) is the cumulative idle time, we can express Q in matrix form as

Q = Q(0) +A0 + Θ̃′1− (I − P ′)S̃ + (I − P ′)Y + (λ0 − (I − P ′)µ)e.

Furthermore, we have Q = X + (I −P ′)Y. Because Y is non-decreasing, Y (0) = 0 and Yi increases

only when Qi = 0, (3.4) follows from the usual reflection argument.

Similarly, we can re-write the overall arrival process in terms of the centered processes

Ai = A0i +

K
∑

j=1

Θji(Sj ◦Bj)

= (A0i − λ0ie) +

K
∑

j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj) +

K
∑

j=1

pji (Sj ◦Bj − µjBj)

−

K
∑

j=1

pjiµj (e−Bj) + λ0ie+

K
∑

j=1

pjiµje

or, in matrix notation, by

A = Ã0 + Θ̃′1+ P ′S̃ − P ′Y + (λ0 + P ′µ)e.

By (3.4), we have

−P ′Y = P ′(I − P ′)−1(X −Q)

= P ′(I − P ′)−1
(

Q(0) −Q+ Ã0 + Θ̃′1+ λ0e
)

− P ′S̃ − P ′µe.

Substituting into the matrix form of the arrival process, we have

A = Ã0 + Θ̃′1+ P ′S̃ − P ′Y + (λ0 + P ′µ)e

= Ã0 + Θ̃′1+ P ′S̃ + (λ0 + P ′µ)e

+P ′(I − P ′)−1
(

Q(0)−Q+ Ã0 + Θ̃′1+ λ0e
)

− P ′S̃ − P ′µe

= P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(

Ã0 + Θ̃′1
)

+ λe. (3.7)

Finally, note that D = Q(0) +A−Q.

3.2 Heavy-Traffic Limit with Any Subset of Bottlenecks

Throughout this section, we assume that the system is stationary in the sense of Theorem 2.2

and we suppress the subscript e to simplify the notation. We let an arbitrary pre-selected subset
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H of the K stations be pushed into the HT limit while other stations stay unsaturated. Two

important special cases are: (i) |H| = K so that all stations approaches HT at the same time,

which corresponds to the original case in [39]; and (ii) |H| = 1 so that only one station is in HT.

This second case is appealing for applications because the RBM is only one-dimensional. We focus

on it in detail later.

To start, consider a family of systems indexed by ρ. Let the ρ-dependent service rates be

µi,ρ ≡ λi/(ciρ), 1 ≤ i ≤ K, (3.8)

and set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Equivalently, we have ρi = ciρ. For the

pre-limit systems we have the same representation of the flows as described in Theorem 3.1, with

the only exception that µi in (3.3) is now replaced by the ρ-dependent version in (3.8).

We now define the HT-scaled processes. As in the usual HT scaling, we scale time by (1− ρ)−2

and scale space by (1− ρ). Thus we make the definitions

A∗
0,i,ρ(t) ≡ (1− ρ)[A0,i((1− ρ)−2t)− (1− ρ)−2λ0,it],

A∗
i,ρ(t) ≡ (1− ρ)[Ai,ρ((1− ρ)−2t)− (1− ρ)−2λit],

S∗
i,ρ(t) ≡ (1− ρ)[Si,ρ((1 − ρ)−2t)− (1− ρ)−2µi,ρt],

D∗
i,ρ(t) ≡ (1− ρ)[Di,ρ((1− ρ)−2t)− (1− ρ)−2λit],

D∗
ext,i,ρ(t) ≡ (1− ρ)[Dext,i,ρ((1 − ρ)−2t)− (1− ρ)−2λipi,0t],

A∗
i,j,ρ(t) ≡ (1− ρ)[Ai,j,ρ((1− ρ)−2t)− (1− ρ)−2λipi,jt],

Θ∗
i,j,ρ(t) ≡ (1− ρ)





⌊(1−ρ)−2t⌋
∑

l=1

θli,j − pi,j(1− ρ)−2t



 ,

Q∗
i,ρ(t) ≡ (1− ρ)Qi,ρ((1− ρ)−2t), for 1 ≤ i, j ≤ K. (3.9)

Furthermore, let Θ∗
i,ρ ≡ (Θ∗

i,j,ρ : 1 ≤ j ≤ K); let Θ∗
ext,ρ ≡ (Θ∗

i,0,ρ : 1 ≤ i ≤ K); and let F∗
ρ collects

all the flows, defined as

F∗
ρ (t) = (A∗

0,ρ(t), A
∗
int,ρ(t), A

∗
ρ(t), S

∗
ρ(t),D

∗
ρ(t),D

∗
ext,ρ(t)).

Finally, let W ∗
i,ρ(t) ≡ (1 − ρ)Wi,ρ,⌊(1−ρ)2t⌋ denote the HT scaled waiting time process, where

Wi,ρ,n denotes the waiting time of the n-th customer at station i in the ρ-th system; and let

Z∗
i,ρ(t) ≡ (1 − ρ)Zi,ρ((1 − ρ)2t) denote the HT scaled workload process at station i in the ρ-th

system.
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Before presenting the HT limit of the systems, we introduce useful notation by discussing a

modified and yet asymptotically equivalent system, where all service times at the nonbottleneck

queues are set to zero.

Remark 3.2 (Equivalent network) This system with bottleneck stations designated by H is

asymptotically equivalent to a reduced H-station network, where all non-bottleneck queues have

zero service times, so that they can be viewed as instantaneous switches. To obtain the rates and

routing matrix in the equivalent network, we let IA denote the |A| × |A| identity matrix for any

index set A; let PH be the |H| × |H| submatrix of the original routing matrix P corresponding to

the rows and columns in H; similarly, let PHc be the |Hc| × |Hc| submatrix of P corresponding to

Hc; and let PHc,H collect the routing probablities from stations in Hc to the ones in H, similarly,

define PH,Hc . Now the new |H| × |H| routing matrix, denoted by P̂H, is

P̂H = PH +

∞
∑

l=0

PH,Hc (PHc)l PHc,H

= PH + PH,Hc

∞
∑

l=0

(PHc)l PHc,H

= PH + PH,Hc (IHc − PHc)−1 PHc,H. (3.10)

Note that the inverse (IHc − PHc)−1 appearing in (3.10) is the fundamental matrix associated

with the transient finite Markov chain with transition matrix PHc . If we let P̂Hc,H denote the

matrix of the probabilities that the first visit to a bottleneck queue of an external arrival at a

non-bottleneck queue i ∈ Hc is at j ∈ H, then we have

P̂Hc,H =
∞
∑

l=0

(PHc)lPHc,H = (IHc − PHc)−1 PHc,H. (3.11)

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′
Hc,Hλ0,Hc = λ0,H + P ′

Hc,H

(

IHc − P ′
Hc

)−1
λ0,Hc , (3.12)

where λ0,A denotes the column vector of the entries in λ0 that corresponds to the index set A.

Since the total arrival rate in the modified system remains the same as the original system, we have

λ̂H = (I − P̂ ′
H)

−1λ̂0,H = λH. (3.13)

To simplify notation, we suppress the subscript used in the identity matrix I in the rest of the

paper whenever there is no confusion on its dimension.
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The following theorem states the joint heavy-traffic limit of the queue length process, the

workload and waiting time processes, the splitting-decision process and all the flows. As in [9, 10],

we allow an arbitrary subset of nodes to be bottleneck queues (critically loaded) while the rest

are sub-critically loaded. To treat the stationary processes, we apply [24] and [7], extended to

include non-bottleneck queues. Because our basic model data involves only single arrival and

service processes, with only the parameters being scaled, we do not need Assumption (A4) in [7].

Theorem 3.2 (Heavy-traffic FCLT) Under Assumption 2.1-2.3, consider a family of open queue-

ing networks in stationarity, indexed by ρ. Let H ⊂ {1, 2, . . . ,K} denote the index of the bottleneck

stations: Assume that µi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and set ci = 1 for all i ∈ H and ci < 1 for all

i /∈ H. Then, as ρ ↑ 1,

(Q∗
ρ,W

∗
ρ , Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F

∗
ρ )

⇒ (Q∗,W ∗, Z∗,Θ∗,Θ∗
ext,F

∗) in D9K+2K2

, (3.14)

where:

(i) For 0 ≤ i ≤ K, A∗
0,i = ca0,iBa0,i ◦ λ0,ie and S∗

i = csiBsi ◦ λie, where Ba0,i and Bsi are

standard Brownian motions. (Θ∗
i,j : 0 ≤ j ≤ K) is a zero-drift (K+1)-dimensional Brownian

motion with covariance matrix Σi = (σ2jk : 0 ≤ j, k ≤ K), where σ2j,j = pi,j(1 − pi,j)λi and

σ2j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i , Bsi and (Θ∗
i,j : 0 ≤ j ≤ K) are

mutually independent, 1 ≤ i ≤ K.

(ii) The queue length process Q∗ consists of two parts. Q∗
Hc ≡ 0 and Q∗

H is a stationary |H|-

dimensional RBM

Q∗
H ≡ ψH

(

X̂∗
H

)

,

where ψH is the |H|-dimensional refelction map with reflection matrix RH ≡ I − P̂H and X̂∗
H

is the net-input process associated with the bottleneck queues, defined below. Furthermore,

Q∗
H(0) has unique stationary distribution of the stationary RBM. X̂∗

H is a |H|-dimensional

Brownian motion

X̂∗
H = Q∗

H(0) +A∗
0,H + P̂ ′

Hc,HA
∗
0,Hc + e′H (Θ∗)′ 1+ P̂ ′

Hc,He
′
Hc (Θ∗)′ 1

− (I − P̂H)S
∗
H − λ̂0,He

where eA collects columns in the K-dimensional identity matrix I that corresponds to index

set A; P̂H, P̂Hc,H and λ̂0,H are defined in (3.10), (3.11) and (3.12), respectively.
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(iii) The total arrival process A∗ can be regarded as a stationary process, having stationary incre-

ments, specified by

A∗ = (I − P ′)−1
(

A∗
0 + (Θ∗)′ 1

)

+ P ′(I − P ′)−1 (Q∗(0) −Q∗)

= (I − P ′)−1
(

A∗
0 + (Θ∗)′ 1

)

+ P ′(I − P ′)−1eH (Q∗
H(0)−Q∗

H) .

(iv) The stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(

Q∗(0)−Q∗ +A∗
0 + (Θ∗)′ 1

)

.

In particular,

D∗
Hc = Q∗

Hc +A∗
Hc −Q∗

Hc(0) = A∗
Hc .

(v) The internal arrival flow A∗
i,j can be expressed as

A∗
i,j = pi,jD

∗
i +Θ∗

i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D∗
ext,i = pi,0D

∗
i +Θ∗

i,0 ◦ λie, for 1 ≤ i ≤ K.

(vi) Z∗
i = λ−1

i Q∗
i and W ∗

i = Z∗
i ◦ λie.

Proof of Theorem 3.2 Much of the statement follows from [9, 10] and [7]. First, the HT limit

for the state process with an arbitrary subset H of critically loaded stations follows from [9, 10].

Second, the HT limit for the steady-state queue length follows from [7]. The papers [24] and [7]

do not consider non-bottleneck stations, but their arguments extend to that more general setting.

(See Remark 3.3 below for discussion.) We subsequently establish the heavy-traffic limits for the

flows. We do so by exploiting the continuous mapping theorem with the direct representations of

the stationary flows that we have established.

To carry out our proof, we work with the centered representation in Theorem 3.1, using the

HT-scaling in (3.9). Thus, the HT-scaled net-input process is

X∗
ρ = Q∗

ρ(0) +A∗
0,ρ +

(

Θ̃∗
ρ

)′
1− (I − P ′)S̃∗

ρ + (λ0 − (I − P ′)µρ)(1 − ρ)−1e, (3.15)

where S̃∗
i,ρ ≡ S∗

i,ρ ◦
¯̄Bi,ρ,

¯̄Bi,ρ = (1 − ρ)2Bi,ρ ◦ (1 − ρ)−2e, Θ̃∗
ρ is a matrix with its ij-th entry being

Θ∗
ij,ρ ◦ S ◦Bi,ρ and S ◦Bρ is a vector of length K with S ◦Bi,ρ ≡ (1 − ρ)2Si,ρ ◦ Bi,ρ ◦ (1 − ρ)−2e.

The HT-scaled queue length can be written as

Q∗
ρ = X∗

ρ + (I − P ′)Y ∗
ρ .
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We now re-write Q∗
H,ρ and Q∗

Hc,ρ in block-wise matrix representation as follows

Q∗
H,ρ = X∗

H,ρ + (I − P ′
H,H)Y

∗
H,ρ − P ′

Hc,HY
∗
Hc,ρ (3.16)

Q∗
Hc,ρ = X∗

Hc,ρ + (I − P ′
Hc,Hc)Y ∗

Hc,ρ − P ′
H,HcY ∗

H,ρ (3.17)

Solving for Y ∗
Hc,ρ in (3.17) and substituting into (3.16), we have

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y

∗
H,ρ, (3.18)

where

X̂∗
H,ρ = X∗

H,ρ − P ′
Hc,H(I − P ′

Hc,Hc)−1(Q∗
Hc,ρ −X∗

Hc,ρ).

Now, we substitute into X̂∗
H,ρ the expression for X∗

ρ from (3.15), in block matrix notation,

leaving a constant η̂ρ in the final deterministic drift term initially unspecified, to obtain

X̂∗
H,ρ = Q∗

H,ρ(0) +A∗
0,H,ρ + e′H(Θ̃

∗
ρ)

′1− (I − P ′
H,H)S̃

∗
H,ρ + P ′

Hc,HS̃
∗
Hc,ρ

− P ′
Hc,H(I − P ′

Hc,Hc)−1Q∗
Hc,ρ

+ P ′
Hc,H(I − P ′

Hc,Hc)−1
(

Q∗
Hc,ρ(0) +A∗

0,Hc,ρ

+e′Hc(Θ̃∗
ρ)

′1− (I − P ′
Hc,Hc)S̃∗

Hc,ρ + P ′
H,Hc S̃∗

H,ρ

)

+ η̂ρ(1− ρ)−1e

= Q∗
H,ρ(0) +A∗

0,H,ρ + P ′
Hc,H(I − P ′

Hc,Hc)−1A∗
0,Hc,ρ + (I − P̂ ′

H)S̃
∗
H,ρ

+ e′H(Θ̃
∗
ρ)

′1+ P ′
Hc,H(I − P ′

Hc,Hc)−1e′Hc(Θ̃∗
ρ)

′1

+ P ′
Hc,H(I − P ′

Hc,Hc)−1(Q∗
Hc,ρ(0)−Q∗

Hc,ρ) + η̂ρ(1− ρ)−1e.

Now we derive the drift term η̂ρ. To start, let

ηρ = λ0 − (I − P ′)µρ.

Just like how we treat the HT-scaled queue length process, we can re-write ηρ into blocks

ηH,ρ = λ0,H − (I − P ′
H,H)µH,ρ + P ′

Hc,HµHc,ρ, (3.19)

ηHc,ρ = λ0,Hc − (I − P ′
Hc,Hc)µHc,ρ + P ′

H,HcµH,ρ. (3.20)

Hence

η̂ρ ≡ ηH,ρ + P ′
Hc,H(I − P ′

Hc,Hc)−1ηHc,ρ

= λ0,H + P ′
Hc,H(I − P ′

Hc,Hc)−1λ0,Hc − (I − P̂ ′
H)µH,ρ. (3.21)
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Note that the traffic-rate equation can be written as

λ0,H = (I − P ′
H,H)λH − P ′

Hc,HλHc ,

λ0,Hc = (I − P ′
Hc,Hc)λHc − P ′

H,HcλH.

Substitute both λ0,H and λ0,Hc into (3.21), we have

η̂ρ = (I − P̂ ′
H)(λH − µH,ρ). (3.22)

To summarize, the HT-scaled net-input process associated with the bottleneck queues can be

expressed as

X̂∗
H,ρ = Q∗

H,ρ(0) +A∗
0,H,ρ + P ′

Hc,H(I − P ′
Hc,Hc)−1A∗

0,Hc,ρ − (I − P̂ ′
H)S̃

∗
H,ρ

+e′H(Θ̃
∗
ρ)

′1+ P ′
Hc,H(I − P ′

Hc,Hc)−1e′Hc(Θ̃∗
ρ)

′1

+(I − P̂H)(λH − µH,ρ)(1 − ρ)−1e

+P ′
Hc,H(I − P ′

Hc,Hc)−1(Q∗
Hc,ρ(0)−Q∗

Hc,ρ). (3.23)

Now we are ready to deduce the claimed conclusions. First for conclusion 1, most follows

directly from Donsker’s theorem, Theorem 4.3.2 of [50], and the GJN assumptions. The exception

is the limit

(S̃∗
ρ , Θ̃

∗
ρ) ⇒ (S∗,Θ∗)

which follows from the continuous mapping theorem by a random-time-change argument, as shown

in [10].

For conclusion 2, we apply [7] to get

(Q∗
H,ρ(0), Q

∗
Hc,ρ(0)) ⇒ (Q∗

H(0), Q
∗
Hc(0)) as ρ→ 1.

Then we can apply the representation (3.23) we have just derived above plus the continuous mapping

theorem to obtain the conclusion, as in [10].

Then the conclusion 2 follows from Theorem 6.1 of [10]. In particular, there we see that Q∗
Hc

is null, so that we can treat the two components of (Q∗
H,ρ, Q

∗
Hc,ρ) separately. First, to treat Q∗

H,ρ,

we apply the continuous mapping theorem with the reflection map using the representation above.

To do so, we observe that, as ρ→ 1,

(I − P̂H)(λH − µH,ρ)(1 − ρ)−1e→ −(I − P̂H)λHe
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and

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y

∗
H,ρ = ψ

I−P̂ ′

H

(X̂∗
H,ρ). (3.24)

Conclusions 3 and 4 follows from the representations derived in Theorem 3.1, the continuous

mapping theorem and the established convergence of the queue length process, the external arrival

processes and the splitting-decision processes. To this end, we only need to apply diffusion scaling

(accelerate time by (1− ρ)−2 and scale space by (1− ρ)) to the representations in Theorem 3.1 so

that

A∗
ρ = P ′(I − P ′)−1

(

Q∗
ρ(0) −Q∗

ρ

)

+ (I − P ′)−1
(

A∗
0,ρ + (Θ̃∗

ρ)
′1
)

,

D∗
ρ = (I − P ′)−1

(

Q∗
ρ(0) −Q∗

ρ +A∗
0,ρ + (Θ̃∗

ρ)
′1
)

. (3.25)

The second expression follows from the fact that Q∗
Hc = 0.

Next, conclusions 5 follows from the limit of the departure process and the FCLT of the splitting

operation in §9.5 of [50]. Finally, the associated limits for the waiting time and workload can be

related to the limit for the queue length as indicated in [10].

Remark 3.3 (Elaboration on the application of [7]) We apply [7], but it must be extended

to the model with non-bottleneck queues. We do not go through all details because we regard that

step as minor, but we now briefly explain. First, for the moment estimation in their Theorem 3.3,

we treat QH and Q∗
Hc separately. For QH, our representation (3.18) and (3.23) can be mapped to

the representations (16) on p.51 of [7], but with slightly more complicated constant terms associated

with the matrix multiplication we have in (3.23). Noting the expression of the drift term we have

in (3.22), the rest of the proof is essentially the same. For Q∗
Hc , by [9, 10], it is negligible in the

sense of Theorem 3.3 of [7]. Theorem 3.4 of [7] relies only on the moment estimation as in their

Theorem 3.3 and the Markov property of S(t) (which they denoted as X(t)). Finally, Theorem 3.5

and Theorem 3.2 of [7] remain unchanged.

4 Conclusions

After establishing existence and convergence (as time increases) for the stationary flows under

Assumptions 2.1, 2.2 and 2.3 in Theorem 2.2, we established a general heavy-traffic limit for the

system state process together with the flow process in Theorem 3.2, allowing an arbitrary subset

of the stations to be critically loaded, while the rest are sub-critically loaded. We then obtained
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explicit results for the special case in which only one station is critically loaded in §??. Finally,

we experimentally confirmed the theorems and illustrated how they can be applied to RQNA by

considering two examples involving (i) dependent superposition and (ii) dependent splitting in §??.

There are many important topics for future research. First, it remains to establish an extension

of Theorem 3.2 to the model generalized by allowing non-renewal arrival processes, which requires

generalizing the key supporting theorems in [7, 24]. Of course, it would also be good to obtain

corresponding results for multi-class models. It also remains to develop useful explicit formulas

based on Theorem 3.2 when more than one station is critically loaded.
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