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We establish heavy-traffic limits for the stationary flows in gen-
eralized Jackson networks, allowing an arbitrary subset of the queues
to be critically loaded. The flows are the processes counting cus-
tomers flowing from one queue to another or out of the network.
The heavy-traffic limit with a single bottleneck queue is especially
tractable because it yields limit processes involving one-dimensional
reflected Brownian motion. That limit leads to accurate approxima-
tion of the index of dispersion for counts (IDC), which plays a crucial
role in our robust queueing network analyzer (RQNA) for approxi-
mating the steady-state performance of a non-Markovian open queue-
ing network.

1. Introduction. The purpose of this paper is to develop a better un-
derstanding of the stationary flows in a non-Markov open queueing network
(OQN), i.e., the departure processes, flows from one queue to another, su-
perpositions of such processes and thus the internal arrival processes. In
many queueing systems, there may be as much interest in the departure
process as in the familiar measures of congestion such as queue lengths and
waiting times, because the departure process may represent the flow of com-
pleted work over time. Thus, it is natural to be interested in the stochastic
variability of the flows as well as the relatively tractable rate.

The flows are special stochastic point processes, for which there is a well-
developed general theory, as in [19, 20]. There also is a substantial literature
on the general structure of stationary point processes in queueing systems,
as in Chapter 1 of [3] and [41], but concrete results, such as explicit formu-
las describing the stochastic variability of the flows over time, are extremely
rare. The familiar exception is the Markovian Jackson OQN, for which there
is a substantial theory, as in Ch. 4 of [44], but even in Markovian Jackson
networks, the flows can be quite complicated. First, by reversibility, for Jack-
son networks, the departure processes out of the network from the queues
are independent Poisson processes, but the internal flows need not be Pois-
son, even though the product-form property holds. In particular, the flows
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are Poisson if and only if they are not part of a loop; see [35, 43]. For non-
Markov open networks, the flows are even more complicated. As discussed
in [18, 21] and references there, the stationary departure process from a
GI/GI/1 queue is Poisson if and only if the queue is an M/M/1 queue.

In this paper we contribute by establishing heavy-traffic (HT) limits for
the stationary flows in an OQN of single-server queues. This paper is a
sequel to [51], which established a HT limit from the stationary departure
process from the GI/GI/1 queue. That evidently was the first HT limit for
a stationary flow in an OQN. In particular, here we consider an OQN with
K single-server stations, unlimited waiting space, and the first-come first-
served service discipline. We assume that we have mutually independent
renewal external arrival processes, sequences of independent and identically
distributed (i.i.d.) service times and Markovian routing. Such a system is
often called a generalized Jackson network (GJN), because it generalizes
the Markovian OQN analyzed by Jackson [31] in which all the interarrival
times and service times have exponential distributions. The Jackson OQN’s
are remarkably tractable because the vector of steady-state queue lengths
(number in system) has a product-form distribution, just as if the queues
were independent M/M/1 queues with the correct arrival rates.

In addition to contributing to a better understanding of flows in GJNs,
which is important in its own right, we apply the HT limits here in [49]
to develop a new approximation method for non-Markov OQNs, which is
important because relatively little is known about the exact steady-state
performance of a GJN. A GJN is relatively easy to simulate, but there
are few analytical formulas showing the performance impact of key pa-
rameters. Early analytical approximations were based on the parametric-
decomposition method as in [34] and [45], which acts as if the product form
still holds, with the performance of each queue approximated by an appro-
priate function of the exact arrival rate (the same as for a Jackson network)
and appropriate variability parameters. A fast algorithm is produced if the
variability parameters can be obtained as the unique solution to a set of
linear equations, just like the arrival rates from the traffic rate equations, as
in §IV.2 of [45].

An alternative way to develop approximations for GJNs is to apply heavy-
traffic limits based on Reiman [37]. That has led to the QNET and sequen-
tial bottleneck decomposition (SBD) approximations in [26], [38], and [16].
These methods require calculating the steady-state distribution of multidi-
mensional reflected Brownian motion, exploiting [17].

Recently, we began studying an alternative non-parametric stochastic
modeling approach, where the flows are partially characterized by their rates
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and indices of dispersion for counts (IDC). A robust queueing technique is
then applied to convert the IDC characterization of the GJN into approxima-
tions for the steady-state performances, see [50] and the references therein.
As in §4.5 of [13], the IDC is a scaled version of the variance-time function;
i.e., given a stationary arrival counting process A(t) with rate λ, the IDC is
the function

(1.1) Ia(t) ≡
V ar(A(t))

E[A(t)]
=
V ar(A(t))

λt
, t ≥ 0.

The IDC measures the variability over time, independent of the rate λ.
Even though the IDC is only a partial characterization of the arrival

process involving the variance, it characterizes the variability of an arrival
process much more completely than the usual variability parameters, such as
the variance of a single interarrival time. In [48], several advantages of IDC
in queueing approximation are exposed: (i) the IDC, together with the rate,
fully characterizes a renewal process; (ii) combining with the RQ algorithm
in [50], it produces accurate approximations for performance measures in
GJNs; and (iii) the approximation is much more adaptive to complex dis-
tributions than traditional parametric methods.

The IDCs of external arrival processes are readily available: (i) first, ex-
plicitly for many stochastic arrival processes, e.g., see §III.G. of [22], which
draws on [12]; (ii) second, can be calculated by numerical inversion for re-
newal processes, as indicated in Chapter 13 of [1]; and (iii) finally, can be
estimated from simulation or system data otherwise.

The challenge lies in the calculation or estimation of the IDC of the in-
ternal arrival processes. For approximation of the GJNs, we developed a full
robust queueing network analyzer (RQNA) for GJNs based on the IDC; see
§6 of [50], §6 of [51] and [49]. The effectiveness of this IDC-based RQNA
largely depends on our ability to approximate the IDC of each of the inter-
nal arrival processes at the queues, which combines flows from other queues
with its own external arrivals.

In (74) of [51] we developed an approximation of the IDC of a departure
process by a convex combination of the IDCs of the arrival and service
processes as

(1.2) Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), t ≥ 0,

where the weight wρ(t) is based on a HT limit for the stationary departure
processes, which shows that it is asymptotically correct for the GI/GI/1
model in the HT limit.
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The present paper contributes to IDC approximation by establishing HT
limits for all the stationary flows in a GJN, allowing any subset of the sta-
tions to be bottleneck stations (critically loaded in the limit). The HT limits
are especially tractable in the case of a single bottleneck station, because
they can be expressed in terms of one-dimensional reflected Brownian motion
(RBM). The IDC in HT limit can be calculated in closed-form by applying
Corollary 5.1 of [51] and pre-limit approximation can be dereived, see §4.3
of [49]. The limits in this single-bottleneck special case are used in RQNA.
The numerical examples in §7 of [49] show that the IDC-based RQNA is
quite effective, comparable to the highly successful SBD for the examples
considered in [16], but without analyzing multidimensional RBM.

Our results in this paper extend the heavy-traffic limit of the stationary
departure process in the GI/GI/1 model in [51]. As before, we rely heavily
on the justification for interchanging the limits t → ∞ and ρ → 1 in a
GJN provided by Gamarnik and Zeevi [23] and Budharija and Lee [7]. By
allowing an arbitrary subset of the queues to be bottleneck queues (have
nondegenerate limits), while the rest have null limits, we follow Chen and
Mandelbaum [9, 10]. Our main contributions here are the HT limits for the
stationary flows.

As a preliminary step for our heavy-traffic limit, we establish conditions
for the existence of stationary flows in a GJN and for convergence to those
stationary flows as time evolves. For that we rely heavily on the Harris re-
currence that was used to establish the stability of a GJN under appropriate
regularity, drawing on Sigman [39, 40] and Dai [14]; see Ch. VII of Asmussen
[2].

1.1. Literature Review.

1.1.1. Heavy Traffic. A major source of approximations for GJNs has
been heavy-traffic (HT) limits, first for feed-forward networks in [29, 30] and
[24, 25]. As indicated in §IV.3 of [45], the approximation for superposition
processes there draws on the HT limit in [46].

New approximations for GJNs have been based on Reiman [37]. In [37]
the HT limit of the vector queue length process is shown to be a reflected
Brownian motion (RBM) on the nonnegative orthant. The concept of RBM
is first introduced in the queueing settings in [25] and studied in detail in
[27]. In [9, 10] HT limits were extended to models with strict bottlenecks
(ρi > 1) and non-bottleneck stations (ρi < 1) as well as the usual critically
loaded stations (ρi = 1). (We do not consider strict bottlnecks here.)

These heavy-traffic limits served as a theoretical basis for the QNET and
SBD approximations in [26], [38], and [16]. Theoretical justification for the
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approximation of the steady-state performance in the GJN by the steady-
state performance of the limiting RBM was established by [23] and [7] when
they justified interchanging the limits t → ∞ and ρ → 1. Recently direct
heavy-traffic limits have been established for the stationary distributions by
[5].

So far, the heavy-traffic literature has focused on the queue length, busy
time, waiting time, workload and the sojourn time processes. However, little
is known beyond the initial results in [29, 30] regarding the HT limits of the
arrival flows and departure flows.

1.1.2. Stability of GJNs. There is a substantial literature on the exis-
tence of a proper steady state and the convergence to it; This is referred to
as the stability of an open queueing network.

The standard approach has been to focus on the Markov process con-
sisting of the queue length process and the residual interarrival times and
service times in the GJN. Early study of such Markov processes includes
[4], which considered a slightly different open queueing network (a station is
picked to act as both the source and the sink) and proved the convergence
of the distribution of the queue length process to a stationary distribution.
The stability of a network without feedback is considered in [33]. Sigman
[39, 40] showed that the general open queueing network is Harris recurrent
and the distribution of the Markov process converges if and only if the in-
terarrival distribution is spread-out; see also [8] for a different approach to
stability via stochastic dominance. However, [40] and [8] assumed that there
is a single external arrival process that is split to create arrivals to the indi-
vidual queues. Harris recurrence for the general case was established by Dai
[14], but under the extra condition that each interarrival-time distribution is
unbounded above. [14] was primarily concerned with the harder multi-class
model, which was also studied in [42, 15]. (We do not consider the multi-
class model here.) In [36] the stronger convergence in mean for queue length
process and total workload process was established under slightly more re-
strictive conditions. In [28], a Brownian model for the OQN is considered
and the stability result is established.

The existing literature is quite extensive, but it has focused on the stabil-
ity of the queue length, instead of the flows in the open queueing network.
As far as we know, we are the first to consider the stability of the flows.

1.2. Organization. The rest of the paper is organized as follows. We spec-
ify the model and establish the existence and convergence results for the
stationary flows of a GJN in §2. We establish the main heavy-traffic limit
for the stationary flows in §3.
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We then establish more detailed results for three special cases in §4. First,
we state the limit for the special case of a GJN with only one bottleneck
queue, which is useful for the IDC approximations, because it involves only
one-dimensional RBM. Corollary 4.3 shows that the approximation tech-
nique of feedback elimination is asymptotically correct in the HT limit. This
extends the technique of immediate feedback elimination discussed in §III
of [45].

In §5 we demonstrate how the HT limits can be used to derive approxi-
mations for the IDCs of the stationary flows, focusing on dependent super-
position and slitting operations. These examples illustrate the complexity
of the flows. The accuracy of the approximations in simulation comparisons
also provide consistency checks for the HT limit theorems.

2. The Stationary Flows in an Open Queueing Network. In this
section, we establish the existence of the stationary flows in a GJN and
convergence to those stationary flows. These issues can be complicated in
general, but they are very manageable under appropriate regularity condi-
tions, in particular, if we construct a Markov process representation and
make assumptions implying Harris recurrence as in Chapter VII of [2] and
[39, 40]. That allows the pre-limit process to be coupled with a stationary
version, so that there is total variation convergence of the entire stochas-
tic process. That implies convergence for a large class of related processes
without complicated issues about the underlying topology.

In §2.1 we specify the model. Then in §2.2 we make assumptions implying
the Harris recurrence and establish the existence and convergence result for
the stationary flows.

2.1. The OQN Model. We start by formulating a general OQN model
that goes beyond the assumptions we make to establish Harris recurrence.
Let there be K single-server stations with unlimited waiting space and the
FCFS discipline. We associate with each station i an external arrival point
process A0,i with finite rate

(2.1) λ0,i ≡ lim
t→∞

t−1A0,i(t)

where the limit holds w.p.1. Let A0 ≡ (A0,1, . . . , A0,K) denote the vector of
all external arrival processes.

Now, let {V l
i : l ≥ 1} denote the sequence of service time at station i and

define the (uninterrupted) service point (counting) process as

Si(t) = max

{
n ≥ 0 :

n∑
l=1

V l
i ≤ t

}
, t ≥ 0
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We assume that the service process Si(t) has finite rate µi, defined as in
(2.1).

In addition to external arrivals, departures from each station may be
routed to other queues or out of the network. To specify the general rout-
ing process, we let θli ∈ {0, 1}K+1 indicate the routing vector of the l-th
departure from queue i. So exactly one component of θli is 1 and the j-th
component θli,j = 1 indicates that the the l-th departure from the i-th sta-
tion exits the system if j = 0 and is routed to station j if 1 ≤ j ≤ K.
Let

Θi(n) ≡ (Θi,0(n),Θi,1(n), . . . ,Θi,K(n)) =

n∑
l=1

θli

denote the splitting decisions up to the n-th decision at station i. In the case
of Markovian routing, the routing vectors are i.i.d., so that Θi(n) satisfies a
functional weak law of large numbers (FWLLN), i.e.

(2.2) Θ̄i,n(t) ≡ 1

n
Θi(bntc)⇒ pit,

with the convergence uniform over bounded intervals.
Let pi,j denote the long run proportion of departures from station i that

are routed to station j (assumed to exist). Let P ≡ {pi,j : 1 ≤ i, j ≤ K} be
the routing matrix. Furthermore, let pi,0 ≡ 1 −

∑
j pi,j denote the fraction

of customers that depart the system from station i.
To define the traffic intensities, we solve for the effective arrival rate at

each node. Let λ0 = (λ0,1, . . . , λ0,K) be the external arrival rate vector and
let λ = (λ1, . . . , λK) denote the total arrival rate vector, which we obtain by
solving the traffic-rate equations

(2.3) λi = λ0,i +
K∑
j=1

λj,i = λ0,i +
K∑
i=1

λjpj,i,

or in matrix form
(I − P ′)λ = λ0,

where I denote the identity matrix. We assume that I − P ′ is invertible;
i.e., we assume that all customers eventually leave the system; see [11] or
Theorem 3.2.1 of [32]. Hence, λi,j ≡ λipi,j is the rate of the internal arrival
stream from i to j.

For the internal arrival flows, let Ai,j be the customer stream from i to
j. Each internal arrival stream Ai,j splits from the departure process Di
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according to the splitting decision process Θi,j , so that

(2.4) Ai,j(t) =

Di(t)∑
l=1

θli,j = Θi,j(Di(t)), t ≥ 0.

Let Aint(t) ≡ (Ai,j(t) : 1 ≤ i, j ≤ K) denote the matrix of all internal arrival
flows.

For total arrival process at station i, let

Ai(t) = A0,i(t) +
K∑
j=1

Aj,i(t)

and let A(t) ≡ (A1(t), . . . , AK(t)) collect all total arrival processes.
As observed in (7.1) and (7.2) in §7.2 of [9], the queue-length process is

uniquely characterized by the flow balance equations for 1 ≤ i ≤ K

(2.5) Qi(t) = Qi(0) +Ai(t)− Si(Bi(t)), t ≥ 0,

where Bi(t) is the cumulative busy time of server i up to time t, which by
work conservation satisfies

(2.6) Bi(t) =

∫ t

0
1Qi(u)>0du, t ≥ 0.

For the flow exiting the queueing system, let Dext,i denote the flow that
exits the system from station i. Hence

Dext,i(t) =

Di(t)∑
l=1

θli,0 = Θi,0(Di(t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . , Dext,K(t)) collect all external departure
processes.

2.2. Existence and Convergence Via Harris Recurrence. In this section
we establish the existence of the stationary flows and convergence to them
for any initial state. Toward that end, we make three assumptions, the first
one being

assumption 2.1. We assume that the OQN is a GJN, in particular:

• the external arrival processes are (possibly null) renewal processes with
finite rates λi, interarrival times have finite squared coefficient of vari-
ation (scv) c2

a0i for 1 ≤ i ≤ K;
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• the service times are i.i.d. with finite rates µi and finite scv c2
si for

1 ≤ i ≤ K;
• the interarrival time or service time distributions have no mass at 0;
• the routing is Markovian with substochastic routing matrix P , so that
I − P ′ is invertible; and
• all processes are mutually independent.

Let U(t) denote the vector of residual external arrival times at time t; let
V (t) be the vector of residual service times at time t, set to 0 when the server
is idle; and let S(t) = (Q(t), U(t), V (t)). Let S be an element of the function
space D3K , i.e., with vectors of real-valued functions on the half-line [0,∞)
that are right-continuous with left limits. Let the general initial condition
be denoted by S(0) = (Q(0), U(0), V (0)).

Given that we have a GJN, that means that the vector of external arrival
processes A0 will be a vector of delayed renewal process with the vector of
first interarrival times being U(0); the vector of service processes S will be a
vector of delayed renewal process with first service time being V (0); and the
vector of queue length processes Q(t) has a initial value of Q(0). We refer
to S as the system state process.

Now, define the auxiliary cumulative process C, as in §VI.3 of [2], by

(2.7) C(t) ≡ (B(t), Y (t)),

where Bi(t) is the cumulative busy times for server i over interval [0, t] and

(2.8) Yi(t) ≡ µi(t−Bi(t))

is the cumulative idle time of station i, scaled by the service rate µi.
To focus on the flows, we describe the GJN by the process

(2.9) M(t) ≡ (S(t), C(t),F(t)),

where

(2.10) F(t) ≡ (A0(t), Aint(t), A(t), S(t), D(t), Dext(t))

is a vector of cumulative point processes, with the processes defined in §2.1.
We refer to F as the flows.

We say that the open queueing network is stable if there exist a stationary
distribution π such that S(0) ∼ π implies that S(t) ∼ π for all t ≥ 0. We
say that a flow is stationary if it has stationary increments. We refer to [41]
and Chapter 6 of [6] for background on stationary stochastic processes and
ergodicity.

At this point we make the key assumption to obtain the Harris recurrence
in [39, 40], [14] and Ch. VII of [2].
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assumption 2.2. Each external interarrival-time distribution is unbounded
above and spread out. That is, for external arrival process A0,k with inter-
arrival distribution Fk, there exist a integer jk > 0 such that the jk-fold
convolution F ∗jkk has an absolutely continuous component with respect to the
Lebesgue measure.

For a probability distribution to be spread out, it suffices for each interarrival-
time distribution to have a positive probability density function (pdf) over
some interval. That clearly avoids periodic behavior associated with the
lattice case, but otherwise it is not restrictive for practical modeling. The
unbounded condition could be replaced by the single external renewal arrival
process with splitting in [40].

Finally, we assume that the queueing network is stable in the sense of
the traffic intensities ρi ≡ λi/µi, where λi is obtained from the traffic rate
equations.

assumption 2.3. The traffic intensities satisfy maxi ρi < 1.

Under these three assumptions, Theorem 5.1 of [14] establishes stability of
the GJN; also see Theorem 5.1 of [40] and [8, 23, 7] for alternative approaches
and additional discussion.

Theorem 2.1 (Harris recurrence from [14]). Under Assumptions 2.1-
2.3, the stochastic process S is a Harris recurrent Markov process.

We now state the strong implications of Theorem 2.1. For that, we con-
sider the system that starts at time s. For the system state processes,
let Qs(t) = Q(s + t), Us(t) = U(s + t) and Vs(t) = V (s + t), so that
Ss ≡ (Qs, Us, Vs) is the system state process with initial condition S(s).
Theorem 2.1 implies that

Corollary 2.1. Under Assumptions 2.1-2.3, we have

(2.11) Ss ⇒ Se ≡ (Qe, Ue, Ve), in D3K as s→∞,

where Se is a stationary process. Moreover, the convergence holds in the
total variation metric, so that for any measurable function h from D3K to a
complete separable metric space,

(2.12) h(Ss)⇒ h(Se) as s→∞.
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For the flows, let A0,s(t) = A0(t + s) − A0(s) be the external arrival
counting process that starts at time s. Similarly, we define Aint,s(t) = Aint(t+
s) − Aint(s), As(t) = A(t + s) − A(s), Ds(t) = D(t + s) − D(s), Dext,s(t) =
Dext(t+ s)−Dext(s), Bs(t) = B(t+ s)−B(s) and Ys(t) = Y (t+ s)− Y (s)
be the corresponding processes that starts at time s. The service processes
Ss(t) are more subtly defined as

(2.13) Ss(t) ≡ S(B(s) + t)− S(B(s)),

which is a vector of delayed renewal processes with first intervals distributed
as V (s), the residual service time at time s. This definition of the service
process allow us to write the departure process as a composition of the two
processes Ss and Bs via

Ds(t) ≡ D(s+ t)−D(s) = S(B(s+ t))− S(B(s))

= Ss(Bs(t)) ≡ (Ss ◦Bs)(t), t ≥ 0.(2.14)

Finally, let Cs ≡ (Bs, Ys) and Fs ≡ (A0,s, Aint,s, As, Ss, Ds, Dext,s).

Theorem 2.2 (Existence and convergence of the stationary flows). Un-
der Assumptions 2.1-2.3, there exists a unique stationary and ergodic cu-
mulative processes (with stationary increments satisfying the LLN)

Ce ≡ (Be, Ye)

and
Fe ≡ (A0,e, Aint,e, Ae, Se, De, Dext,e)

and a unique stationary process

Se ≡ (Qe, Ue, Ve),

such that, as s→∞,

Ms ≡ (Ss, Cs,Fs)⇒ (Se, Ce,Fe) ≡Me in D10K+K2
.(2.15)

Furthermore, A0,e is the vector of equilibrium external arrival renewal pro-
cesses, Se is a vector of delayed renewal process with first interval distributed
as Ve(0) and the mode of convergence can be strengthened to in total varia-
tion.
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Proof. By Corollary 2.1 and the definition of Ss in (2.13), the convergence
of Vs(0) = V (s) implies the convergence of Ss to Se, which is a delayed
renewal process with first interval distributed as Ve(0) and other intervals
distributed as a generic service time. By Assumption 2.1, A0,s converges to
A0,e. Hence, we have as s→∞

(2.16) (Qs, Us, Vs, A0,s, Ss)⇒ (Qe, Ue, Ve, A0,e, Se) in D5K ,

where the subscript e denote the stationary versions.
For the cumulative busy time process defined in (2.6), note that

(2.17) Bi,e(t) =

∫ t

0
1Qi,e(u)>0du,

has stationary increments because it is a measurable integrable function of
Qi,e, which is itself stationary. (Recall that general measurable functions
of stationary process are stationary; see Proposition 6.6 of [6].) Moreover,
without having to carefully consider continuity, we have

Bi,s(t) =

∫ s+t

s
1Qi(u)>0du =

∫ t

0
1Qi,s(u)>0du.

Hence, we can extend the convergence as s→∞ in (2.16) to

(2.18) (Qs, Us, Vs, A0,s, Ss, Bs, Ys)⇒ (Qe, Ue, Ve, A0,e, Se, Be, Ye)

in D7K . For the departure process, recall from (2.14) that Ds(t) = Ss(Bs(t)),
so that we can apply the the composition map and (2.18) to obtain as s→∞

(2.19) (Qs, Us, Vs, A0,s, Ss, Bs, Ys, Ds)⇒ (Qe, Ue, Ve, A0,e, Se, Bs, Ye, De)

in D8K . Similarly, jointly with the limits above, we can add limit for other
processes. For the total arrival process, we have

Ai,s(t) = Ai(s+ t)−Ai(s) = Di,s(t) +Qi(s+ t)−Qi(s)
⇒ Di,e(t) +Qi,e(t)−Qi,e(0) as s→∞.

So we have convergence if we define Ae ≡ Di,e(t) +Qi,e(t)−Qi,e(0).
For internal arrival process, by definition (2.4),

Ai,j,s(t) = Ai,j(t+ s)−Ai,j(s) = Θi,j(Di(t+ s))−Θi,j(Di(s)).

Under Markovian routing, the right-hand-side above is in distribution equiv-
alent to Θi,j(Di(t+ s)−Di(s)) = Θi,j(Di,s(t)). Hence, as s→∞,

As,int ⇒ Ae,int ≡ (Θi,j(Di,e(t)) : 1 ≤ i, j ≤ K).

Similarly, we can add external departure processes to the limit, with

Dext,e ≡ (Θi,0(Di,e(t)) : 1 ≤ i ≤ K).
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3. Heavy-Traffic Limit Theorems for the Stationary Processes.
To set the stage for our heavy-traffic limits, in §3.1 we present a centered
representation of the flows. This representation parallels those used in [37,
9, 10, 14], but here we focus on the flows. Then in §3.2 we establish our main
heavy-traffic limit.

3.1. Representation of the Centered Stationary Flows. Recall that the
external arrival rate vector is λ0, so the total arrival rates are given by
λ = (I − P ′)λ0 as in (2.3). For service, we start with rate-1 base service
process S0

i for station i and scale it by µi so that the service process at
station i is denoted by Si ≡ S0

i ◦ µie with e(t) = t being the identity
function. Let the center processes be defined by

Ã0,i = A0,i − λ0,ie, Ãi = Ai − λie, D̃i = Di − λie,
Θ̃j,i = Θj,i ◦ (Sj ◦Bj)− pj,iSj ◦Bj , and S̃i = Si ◦Bi − µiBi.(3.1)

Furthermore, let X(t) be the net-input process, allowing the service to run
continuously, defined as

(3.2) X ≡ Q(t)− (I − P ′)Y,

where Y is defined in (2.8).
The next theorem expresses the queue length processes, the centered total

arrival and the centered departure flows in terms of the centered external
arrival, service and routing processes. Let ψ be the K-dimensional reflection
map; e.g., see Chapter 14 of [47].

Theorem 3.1 (Centered representation). The net-input process can be
written as

(3.3) X ≡ Q(0) + Ã0 + Θ̃′1− (I − P ′)S̃ + (λ0 − (I − P ′)µ)e,

while the queue length process can be written as

(3.4) Q = X + (I − P ′)Y = ψI−P ′(X),

where ψI−P ′ is the K-dimensional reflection mapping with reflection matrix
I−P ′. In addition, the centered total arrival and departure processes can be
written as

(3.5) Ã = P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
,

(3.6) D̃ = (I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1

)
,

where the centered processes are defined in (3.1).
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Remark 3.1 (Stationary flows). Note that the representation in Theo-
rem 3.1 does not impose any assumption on the initial condition of the open
queueing network. As ensured by Theorem 2.2, there exists a stationary dis-
tribution π such that the flows are stationary if S(0) ∼ π. With this specific
initial condition, Theorem 3.1 applies to the stationary flows.

Proof. With the standard flow conservation law, we can write the queue
length process in terms of the centered processes

Qi = Qi(0) +Ai − Si ◦Bi

= Qi(0) +A0i +
K∑
j=1

Θji(Sj ◦Bj)− Si ◦Bi

= Qi(0) + (A0i − λ0ie) +
K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj)

−
K∑
j=1

(δji − pji) (Sj ◦Bj − µjBj) +
K∑
j=1

(δji − pji)µj (e−Bj)

+ λ0ie−
K∑
j=1

(δji − pji)µje.

Because Yi ≡ µi (t−Bi) is the cumulative idle time, we can express Q in
matrix form as

Q = Q(0) +A0 + Θ̃′1− (I − P ′)S̃ + (I − P ′)Y + (λ0 − (I − P ′)µ)e.

Furthermore, we have Q = X + (I − P ′)Y. Because Y is non-decreasing,
Y (0) = 0 and Yi increases only when Qi = 0, (3.4) follows from the usual
reflection argument.

Similarly, we can re-write the overall arrival process in terms of the cen-
tered processes

Ai = A0i +
K∑
j=1

Θji(Sj ◦Bj)

= (A0i − λ0ie) +

K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj) +

K∑
j=1

pji (Sj ◦Bj − µjBj)

−
K∑
j=1

pjiµj (e−Bj) + λ0ie+
K∑
j=1

pjiµje
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or, in matrix notation, by

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e.

By (3.4), we have

−P ′Y = P ′(I − P ′)−1(X −Q)

= P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe.

Substituting into the matrix form of the arrival process, we have

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e

= Ã0 + Θ̃′1 + P ′S̃ + (λ0 + P ′µ)e

+P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe

= P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
+ λe.(3.7)

Finally, note that D = Q(0) +A−Q.

3.2. Heavy-Traffic Limit with Any Subset of Bottlenecks. Throughout
this section, we assume that the system is stationary in the sense of Theorem
2.2 and we suppress the subscript e to simplify the notation. We let an
arbitrary pre-selected subset H of the K stations be pushed into the heavy-
traffic limit while other stations stay unsaturated. Two important special
cases are: (i) |H| = K so that all stations approaches heavy traffic at the
same time, which corresponds to the original case in [37]; and (ii) |H| = 1
so that only one station is in heavy traffic. This second case is appealing for
applications because the RBM is only one-dimensional. We focus on it in
detail later.

To start, consider a family of systems indexed by ρ. Let µi,ρ = λi/(ciρ) for
1 ≤ i ≤ K and set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Equivalently,
we have ρi = ciρ. For the pre-limit systems we have the same representation
of the flows as described in Theorem 3.1, with the only exception that µi’s
in (3.3) are now specified as above.

We define the HT-scaled processes. As in the usual heavy-traffic scaling,
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we scale time by (1− ρ)−2 and scale space by (1− ρ), and define

A∗0,i,ρ(t) ≡ (1− ρ)[A0,i((1− ρ)−2t)− (1− ρ)−2λ0,it],

A∗i,ρ(t) ≡ (1− ρ)[Ai,ρ((1− ρ)−2t)− (1− ρ)−2λit],

S∗i,ρ(t) ≡ (1− ρ)[Si,ρ((1− ρ)−2t)− (1− ρ)−2µi,ρt],

D∗i,ρ(t) ≡ (1− ρ)[Di,ρ((1− ρ)−2t)− (1− ρ)−2λit],

D∗ext,i,ρ(t) ≡ (1− ρ)[Dext,i,ρ((1− ρ)−2t)− (1− ρ)−2λipi,0t],

A∗i,j,ρ(t) ≡ (1− ρ)[Ai,j,ρ((1− ρ)−2t)− (1− ρ)−2λipi,jt],

Θ∗i,j,ρ(t) ≡ (1− ρ)

b(1−ρ)−2tc∑
l=1

θli,j − pi,j(1− ρ)−2t

 ,
Q∗i,ρ(t) ≡ (1− ρ)Qi,ρ((1− ρ)−2t), for 1 ≤ i, j ≤ K.(3.8)

Furthermore, let Θ∗i,ρ ≡ (Θ∗i,j,ρ : 1 ≤ j ≤ K); let Θ∗ext,ρ ≡ (Θ∗i,0,ρ : 1 ≤ i ≤
K); and let F∗ρ collects all the flows, defined as

F∗ρ (t) = (A∗0,ρ(t), A
∗
int,ρ(t), A

∗
ρ(t), S

∗
ρ(t), D∗ρ(t), D

∗
ext,ρ(t)).

Finally, let W ∗i,ρ(t) ≡ (1 − ρ)Wi,ρ,b(1−ρ)2tc denote the HT scaled waiting
time process, where Wi,ρ,n denotes the waiting time of the n-th customer at
station i in the ρ-th system; and let Z∗i,ρ(t) ≡ (1 − ρ)Zi,ρ((1 − ρ)2t) denote
the HT scaled workload process at station i in the ρ-th system.

Before presenting the HT limit of the systems, we introduce useful no-
tations by discussing a modified and yet asymptotically equivalent system,
where all service times at the nonbottleneck queues are set to zero.

Remark 3.2 (Equivalent network). This system with bottleneck sta-
tions designated by H is asymptotically equivalent to a reduced H-station
network, where all non-bottleneck queues have zero service times, so that
they can be viewed as instantaneous switches. To obtain the rates and rout-
ing matrix in the equivalent network, we let IA denote the |A|× |A| identity
matrix for any index set A; let PH be the |H|×|H| submatrix of the original
routing matrix P corresponding to the rows and columns in H; similarly,
let PHc be the |Hc| × |Hc| submatrix of P corresponding to Hc; and let
PHc,H collect the routing probablities from stations in Hc to the ones in H,
similarly, define PH,Hc . Now the new |H| × |H| routing matrix, denoted by
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P̂H, is

P̂H = PH +
∞∑
l=0

PH,Hc (PHc)l PHc,H

= PH + PH,Hc

∞∑
l=0

(PHc)l PHc,H

= PH + PH,Hc (IHc − PHc)−1 PHc,H.(3.9)

Note that the inverse (IHc − PHc)−1 appearing in (3.9) is the fundamental
matrix associated with the transient finite Markov chain with transition
matrix PHc . If we let P̂Hc,H denote the matrix of the probabilities that the
first visit to a bottleneck queue of an external arrival at a non-bottleneck
queue i ∈ Hc is at j ∈ H, then we have

(3.10) P̂Hc,H =
∞∑
l=0

(PHc)lPHc,H = (IHc − PHc)−1 PHc,H.

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′Hc,Hλ0,Hc = λ0,H + P ′Hc,H
(
IHc − P ′Hc

)−1
λ0,Hc ,(3.11)

where λ0,A denotes the column vector of the entries in λ0 that corresponds to
the index set A. Since the total arrival rate in the modified system remains
the same as the original system, we have

(3.12) λ̂H = (I − P̂ ′H)−1λ̂0,H = λH.

To simplify notation, we suppress the subscript used in the identity matrix
I in the rest of the paper whenever there is no confusion on its dimension.

The following theorem states the joint heavy-traffic limit of the queue
length process, the workload and waiting time processes, the splitting-decision
process and all the flows. As in [9, 10], we allow an arbitrary subset of nodes
to be bottleneck queues (critically loaded) while the rest are sub-critically
loaded. To treat the stationary processes, we apply [23] and [7], extended to
include non-bottleneck queues. Because our basic model data involves only
single arrival and service processes, with only the parameters being scaled,
we do not need Assumption (A4) in [7].

Theorem 3.2 (Heavy-traffic FCLT). Under Assumption 2.1-2.3, con-
sider a family of open queueing networks in stationarity, indexed by ρ. Let
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H ⊂ {1, 2, . . . ,K} denote the index of the bottleneck stations: Assume that
µi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and set ci = 1 for all i ∈ H and ci < 1 for all
i /∈ H. Then, as ρ ↑ 1,

(Q∗ρ,W
∗
ρ , Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F∗ρ )

⇒ (Q∗,W ∗, Z∗,Θ∗,Θ∗ext,F∗) in D9K+2K2
,(3.13)

where:

1. For 0 ≤ i ≤ K, A∗0,i = ca0,iBa0,i ◦ λ0,ie and S∗i = csiBsi ◦ λie, where
Ba0,i and Bsi are standard Brownian motions. (Θ∗i,j : 0 ≤ j ≤ K)
is a zero-drift (K + 1)-dimensional Brownian motion with covariance
matrix Σi = (σ2

jk : 0 ≤ j, k ≤ K), where σ2
j,j = pi,j(1 − pi,j)λi and

σ2
j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i, Bsi and

(Θ∗i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.
2. The queue length process Q∗ consists of two parts. Q∗Hc ≡ 0 and Q∗H

is a stationary |H|-dimensional RBM

Q∗H ≡ ψH
(
X̂∗H

)
,

where ψH is the |H|-dimensional refelction map with reflection matrix
RH ≡ I − P̂H and X̂∗H is the net-input process associated with the
bottleneck queues, defined below. Furthermore, Q∗H(0) has unique sta-

tionary distribution of the stationary RBM. X̂∗H is a |H|-dimensional
Brownian motion

X̂∗H = Q∗H(0) +A∗0,H + P̂ ′Hc,HA
∗
0,Hc + e′H (Θ∗)′ 1 + P̂ ′Hc,He

′
Hc (Θ∗)′ 1

− (I − P̂H)S∗H − λ̂0,He

where eA collects columns in the K-dimensional identity matrix I that
corresponds to index set A; P̂H, P̂Hc,H and λ̂0,H are defined in (3.9),
(3.10) and (3.11), respectively.

3. The total arrival process A∗ can be regarded as a stationary process,
having stationary increments, specified by

A∗ = (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P ′(I − P ′)−1 (Q∗(0)−Q∗)

= (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P ′(I − P ′)−1eH (Q∗H(0)−Q∗H) .

4. The stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(
Q∗(0)−Q∗ +A∗0 + (Θ∗)′ 1

)
.

In particular,

D∗Hc = Q∗Hc +A∗Hc −Q∗Hc(0) = A∗Hc .
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5. The internal arrival flow A∗i,j can be expressed as

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D∗ext,i = pi,0D
∗
i + Θ∗i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Z∗i = λ−1
i Q∗i and W ∗i = Z∗i ◦ λie.

Proof of Theorem 3.2. Much of the statement follows from [9, 10] and
[7]. First, the HT limit for the state process with an arbitrary subset H of
critically loaded stations follows from [9, 10]. Second, the HT limit for the
steady-state queue length follows from [7]. The papers [23] and [7] do not
consider non-bottleneck stations, but their arguments extend to that more
general setting. (See Remark 3.3 below for discussion.) We subsequently
establish the heavy-traffic limits for the flows. We do so by exploiting the
continuous mapping theorem with the direct representations of the station-
ary flows that we have established.

To carry out our proof, we work with the centered representation in Theo-
rem 3.1, using the HT-scaling in (3.8). Thus, the HT-scaled net-input process
is

(3.14) X∗ρ = Q∗ρ(0)+A∗0,ρ+
(

Θ̃∗ρ

)′
1−(I−P ′)S̃∗ρ+(λ0−(I−P ′)µρ)(1−ρ)−1e,

where S̃∗i,ρ ≡ S∗i,ρ ◦ ¯̄Bi,ρ,
¯̄Bi,ρ = (1− ρ)2Bi,ρ ◦ (1− ρ)−2e, Θ̃∗ρ is a matrix with

its ij-th entry being Θ∗ij,ρ ◦ S ◦Bi,ρ and S ◦Bρ is a vector of length K with

S ◦Bi,ρ ≡ (1 − ρ)2Si,ρ ◦ Bi,ρ ◦ (1 − ρ)−2e. The HT-scaled queue length can
be written as

Q∗ρ = X∗ρ + (I − P ′)Y ∗ρ .

We now re-write Q∗H,ρ and Q∗Hc,ρ in block-wise matrix representation as
follows

Q∗H,ρ = X∗H,ρ + (I − P ′H,H)Y ∗H,ρ − P ′Hc,HY
∗
Hc,ρ(3.15)

Q∗Hc,ρ = X∗Hc,ρ + (I − P ′Hc,Hc)Y ∗Hc,ρ − P ′H,HcY ∗H,ρ(3.16)

Solving for Y ∗Hc,ρ in (3.16) and substituting into (3.15), we have

(3.17) Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ,

where
X̂∗H,ρ = X∗H,ρ − P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ −X∗Hc,ρ).
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Now, we substitute into X̂∗H,ρ the expression for X∗ρ from (3.14), in block
matrix notation, leaving a constant η̂ρ in the final deterministic drift term
initially unspecified, to obtain

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + e′H(Θ̃∗ρ)
′1− (I − P ′H,H)S̃∗H,ρ + P ′Hc,HS̃

∗
Hc,ρ

− P ′Hc,H(I − P ′Hc,Hc)−1Q∗Hc,ρ

+ P ′Hc,H(I − P ′Hc,Hc)−1
(
Q∗Hc,ρ(0) +A∗0,Hc,ρ

+e′Hc(Θ̃∗ρ)
′1− (I − P ′Hc,Hc)S̃∗Hc,ρ + P ′H,HcS̃∗H,ρ

)
+ η̂ρ(1− ρ)−1e

= Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ + (I − P̂ ′H)S̃∗H,ρ

+ e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃∗ρ)

′1

+ P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ) + η̂ρ(1− ρ)−1e.

Now we derive the drift term η̂ρ. To start, let

ηρ = λ0 − (I − P ′)µρ.

Just like how we treat the HT-scaled queue length process, we can re-write
ηρ into blocks

(3.18) ηH,ρ = λ0,H − (I − P ′H,H)µH,ρ + P ′Hc,HµHc,ρ,

(3.19) ηHc,ρ = λ0,Hc − (I − P ′Hc,Hc)µHc,ρ + P ′H,HcµH,ρ.

Hence

η̂ρ ≡ ηH,ρ + P ′Hc,H(I − P ′Hc,Hc)−1ηHc,ρ

= λ0,H + P ′Hc,H(I − P ′Hc,Hc)−1λ0,Hc − (I − P̂ ′H)µH,ρ.(3.20)

Note that the traffic-rate equation can be written as

λ0,H = (I − P ′H,H)λH − P ′Hc,HλHc ,

λ0,Hc = (I − P ′Hc,Hc)λHc − P ′H,HcλH.

Substitute both λ0,H and λ0,Hc into (3.20), we have

(3.21) η̂ρ = (I − P̂ ′H)(λH − µH,ρ).
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To summarize, the HT-scaled net-input process associated with the bot-
tleneck queues can be expressed as

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ − (I − P̂ ′H)S̃∗H,ρ

+e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃∗ρ)

′1

+(I − P̂H)(λH − µH,ρ)(1− ρ)−1e

+P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ).(3.22)

Now we are ready to deduce the claimed conclusions. First for conclusion
1, most follows directly from Donsker’s theorem, Theorem 4.3.2 of [47], and
the GJN assumptions. The exception is the limit

(S̃∗ρ , Θ̃
∗
ρ)⇒ (S∗,Θ∗)

which follows from the continuous mapping theorem by a random-time-
change argument, as shown in [10].

For conclusion 2, we apply [7] to get

(Q∗H,ρ(0), Q∗Hc,ρ(0))⇒ (Q∗H(0), Q∗Hc(0)) as ρ→ 1.

Then we can apply the representation (3.22) we have just derived above plus
the continuous mapping theorem to obtain the conclusion, as in [10].

Then the conclusion 2 follows from Theorem 6.1 of [10]. In particular,
there we see that Q∗Hc is null, so that we can treat the two components
of (Q∗H,ρ, Q

∗
Hc,ρ) separately. First, to treat Q∗H,ρ, we apply the continuous

mapping theorem with the reflection map using the representation above.
To do so, we observe that, as ρ→ 1,

(I − P̂H)(λH − µH,ρ)(1− ρ)−1e→ −(I − P̂H)λHe

and

Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ = ψI−P̂ ′H
(X̂∗H,ρ).(3.23)

Conclusions 3 and 4 follows from the representations derived in Theorem
3.1, the continuous mapping theorem and the established convergence of the
queue length process, the external arrival processes and the splitting-decision
processes. To this end, we only need to apply diffusion scaling (accelerate
time by (1 − ρ)−2 and scale space by (1 − ρ)) to the representations in
Theorem 3.1 so that

A∗ρ = P ′(I − P ′)−1
(
Q∗ρ(0)−Q∗ρ

)
+ (I − P ′)−1

(
A∗0,ρ + (Θ̃∗ρ)

′1
)
,
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(3.24) D∗ρ = (I − P ′)−1
(
Q∗ρ(0)−Q∗ρ +A∗0,ρ + (Θ̃∗ρ)

′1
)
.

The second expression follows from the fact that Q∗Hc = 0.
Next, conclusions 5 follows from the limit of the departure process and

the FCLT of the splitting operation in §9.5 of [47]. Finally, the associated
limits for the waiting time and workload can be related to the limit for the
queue length as indicated in [10].

Remark 3.3 (Elaboration on the application of [7]). We apply [7], but
it must be extended to the model with non-bottleneck queues. We do not go
through all details because we regard that step as minor, but we now briefly
explain. First, for the moment estimation in their Theorem 3.3, we treat
QH and Q∗Hc separately. For QH, our representation (3.17) and (3.22) can
be mapped to the representations (16) on p.51 of [7], but with slightly more
complicated constant terms associated with the matrix multiplication we
have in (3.22). Noting the expression of the drift term we have in (3.21), the
rest of the proof is essentially the same. For Q∗Hc , by [9, 10], it is negligible in
the sense of Theorem 3.3 of [7]. Theorem 3.4 of [7] relies only on the moment
estimation as in their Theorem 3.3 and the Markov property of S(t) (which
they denoted as X(t)). Finally, Theorem 3.5 and Theorem 3.2 of [7] remain
unchanged.

4. Heavy-Traffic Limits with One Bottleneck Queue. In this sec-
tion we consider the special case in which there is only one bottleneck queue,
which is useful for the IDC approximation and the RQNA applications be-
cause it is especially tractable, involving one-dimensional RBM instead of
multi-dimensional RBM, see 5 for more details.

We start with the easiest special case: when |H| = K = 1, which corre-
sponds to the GI/GI/1 queue with i.i.d. customer feedback. But then we
observe that the case of a single-bottleneck is asymptotically equivalent to
that except that the arrival process is generalized to include the immediate
feedback associated with flows to all the other non-bottleneck queues.

As a consequence, we show that it is asymptotically correct in HT for
a GJN with a single bottleneck queue to eliminate all feedback prior to
analysis. Moreover, we show how to quantify feedback elmination.

4.1. Single-Server Queue with i.i.d. Feedback. Consider a single-server
queue with customer feedback as depicted in Figure 1. Let A0 denote the
renewal external arrival process with rate λ0 and scv c2

a0 . Let the feedback
probability be p, so that the effective arrival rate is λ = λ0/(1 − p). Let
service times be i.i.d. with rate µρ = λ/ρ and scv c2

s, hence a traffic intensity
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of ρ. Let A denote the total arrival process; let Aint be the feedback flow;
let S denote the service process; let D be the total departure process; and
let Dext denote the flow that exits the system.

Aext(t)
Queue 1

D(t)

Feedback prob. p

Fig 1. A single-server queue with feedback example.

Corollary 4.1 (One GI/GI/1 queue with feedback). Under Assump-
tions in Theorem 3.2, consider a family of single-server queues in station-
arity, indexed by ρ. Assume that µρ = λ/ρ. Then, as ρ ↑ 1,

(Q∗ρ,W
∗
ρ , Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F∗ρ )⇒ (Q∗,W ∗, Z∗,Θ∗,Θ∗ext,F∗) in D11,

where F∗ρ = (A∗0,ρ, A
∗
ρ, A

∗
int,ρ, S

∗
ρ , D

∗
ρ, D

∗
ext,ρ), F∗ = (A∗0, A

∗, A∗int, S
∗, D∗, D∗ext)

and:

1. A∗0 = ca0Ba0 ◦λ0e and S∗ = csBs ◦λe, where Ba0 and Bs are standard
Brownian motions. (Θ∗,Θ∗ext) is a zero-drift two-dimensional Brown-
ian motion with covariance matrix Σ = (σ2

i,j : 1 ≤ i, j ≤ 2), where

σ2
1,1 = σ2

2,2 = p(1− p)λ and σ2
1,2 = σ2

2,1 = −p(1− p)λ, so that

Θ∗ + Θ∗ext = 0.

Furthermore, Ba0, Bs and (Θ∗,Θ∗ext) are mutually independent.
2. The queue length process Q∗ is a stationary one-dimensional RBM

Q∗ ≡ ψ (X∗) ,

where ψ is the one-dimensional reflection map and X∗ is a one-dimensional
Brownian motion

X∗ = Q∗(0) +A∗0 + (Θ∗ − (1− p)S∗)− λ0e.

Furthermore, Q∗(0) has unique stationary distribution of the station-
ary one-dimensional RBM with drift −λ0 and variance

λ0c
2
x ≡ λ0

(
c2
a + p+ (1− p)c2

s

)
,

so an exponential distribution with mean c2
x/2.



24 W. WHITT AND W. YOU

3. The total arrival process A∗ can be regarded as a stationary process,
having stationary increments, specified by

A∗ =
1

1− p
(A∗0 + Θ∗) +

p

1− p
(Q∗(0)−Q∗) .

4. The stationary total departure process D∗ is specified as

D∗ =
1

1− p
(A∗0 + Θ∗ +Q∗(0)−Q∗) .

5. The internal arrival flow A∗int can be expressed as

A∗int = pD∗ + Θ∗

and the external departure flow can be expressed as

D∗ext = (1− p)D∗ + Θ∗ext = A∗0 +Q∗(0)−Q∗.

6. Z∗ = λ−1Q∗ and W ∗ = Z∗ ◦ λe.

Remark 4.1 (Eliminating immediate feedback). As observed in Section
III of [45], to develop effective parametric-decomposition approximations for
OQNs it is often helpful to preprocess the model data by eliminating imme-
diate feedback for queues with feedback. The immediate feedback returns
the customer to the end of the line. The approximation step is to put the
customer instead back at the head of the line, so as to receive all its (geo-
metrically random number of) service times at once. Clearly this does not
alter the queue length process.

The modified system does not have a feedback flow and the new service
time will be the geometric random sum of the i.i.d. copies of the original
service times, let S̃ denote the new service counting process. For waiting
time, we need to adjust for per-visit waiting time by multiplying the waiting
time in the modified system by (1−p). This modification results in a change
in service scv, by conditional variance formula, the scv of the total service
time is c̃2

s = p+ (1− p)c2
s. From the aspect of the FCLT, let S̃∗ ≡ Θ∗− (1−

p)S∗, we argue that S̃∗ has the same distribution as the diffusion limit of the
new service counting process. To this end, note that Θ∗ =

√
p(1− p)BΘ ◦λe

and S∗ = csBs ◦ λe, where BΘ and Bs are independent standard Brownian
motions (zero drift and unit variance). Hence, from part (ii) of Corollary
4.1, the stationary net-input process of the original system is

(4.1) X∗ = Q∗(0) +A∗0 + S̃∗ − λ0e,
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where S̃∗
dist.
= c̃sB̃s ◦ λ0e, B̃s is a standard Brownian motion and λ0 =

(1 − p)λ. On the other hand, (4.1) is exactly the diffusion limit of the net-
input process of a single-server queue with arrival process A0 and service
process S̃. Starting from the equivalence of the net-input process, we obtain
the equivalence of the queue length process by part (ii) of Corollary 4.1,
which in turn gives the equivalence of the external departure process as well
as the waiting time and workload process.

4.2. Networks with One Bottleneck Queue. We now consider the more
general special case in which K ≥ 1 but |H| = 1. Without loss of generality,
let H = {h}, so that station h is the only bottleneck station. Then Theorem
3.2 can be restated as

Corollary 4.2 (Network with one bottleneck queue). Under Assump-
tion 2.1-2.3, consider a series of GJNs in stationarity, indexed by ρ. Assume
that µi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and set ch = 1 and ci < 1 for all i 6= h.
Then, we have

(Q∗ρ,W
∗
ρ , Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F∗ρ )⇒ (Q∗,W ∗, Z∗,Θ∗,Θ∗ext,F∗)

as ρ ↑ 1 in D9K+2K2
, where:

1. For 0 ≤ i ≤ K, A∗0,i = ca0,iBa0,i ◦ λ0,ie and S∗i = csiBsi ◦ λie, where
Ba0,i and Bsi are standard Brownian motions. (Θ∗i,j : 0 ≤ j ≤ K)
is a zero-drift (K + 1)-dimensional Brownian motion with covariance
matrix Σi = (σ2

j,k : 0 ≤ j, k ≤ K), where σ2
j,j = pi,j(1 − pi,j)λi and

σ2
j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i, Bsi and

(Θ∗i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.
2. The queue length process Q∗ consists of two parts. Q∗i ≡ 0 for i 6= h

and Q∗h is a stationary one-dimensional RBM

Q∗h ≡ ψ
(
X̂∗h

)
,

where ψ is the one-dimensional refelction map and X̂∗h is the net-input
process defined as

X̂∗h = Q∗h(0) +A∗0,h + P̂ ′Hc,hA
∗
0,Hc + e′h (Θ∗)′ 1 + P̂ ′Hc,he

′
Hc (Θ∗)′ 1.

(4.2)

− (1− P̂h)S∗h − λ̂0,he(4.3)

where eA collects columns in the K-dimensional identity matrix I that
corresponds to index set A; P̂H, P̂Hc,H and λ̂0,H are defined in (3.9),
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(3.10) and (3.11), respectively. Furthermore, Q∗h(0) has unique sta-
tionary distribution of the stationary RBM.

3. The total arrival process A∗ can be regarded as a stationary process,
having stationary increments, specified by

A∗ = (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P ′(I − P ′)−1eh (Q∗h(0)−Q∗h) .

4. The stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(
Q∗(0)−Q∗ +A∗0 + (Θ∗)′ 1

)
.

In particular,

D∗Hc = Q∗Hc +A∗Hc −Q∗Hc(0) = A∗Hc .

5. The internal arrival flow A∗i,j can be expressed as

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D∗ext,i = pi,0D
∗
i + Θ∗i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Z∗i = λ−1
i Q∗i and W ∗i = Z∗i ◦ λie.

We conclude this section by observing that in a GJN with one bottleneck
queue that the bottleneck queue is asymptotically equivalent to a G/GI/1
single-server queue with feedback in the HT limit, where the arrival pro-
cess is a complex superposition of renewal arrival processes. We derive the
explicit expression for the external arrival process and feedback probabil-
ity in the equivalent network. We also show that feedback elimination is
asymptotically correct for networks with one bottleneck.

We start with a convenient representation of the HT limit of the bottle-
neck queue. Let p̂i,h be the (i, h)-th component of P̂Hc,H in (3.10) and recall

that p̂ ≡ P̂h is the feedback probability defined in Remark 3.2.

Theorem 4.1. The HT limit X̂∗h in (4.3) can be expressed as the follow-
ing one-dimensional Brownian motion

X̂∗h = Q∗h(0) + Â∗ +
(

Θ̂∗S − (1− p̂)S∗h
)

+ λ̂0,he,

where

(4.4) Â∗ = A∗0,h +
∑
i∈Hc

(
p̂i,hA

∗
0,i + Θ̂∗i,h

)
,
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and

Θ̂∗i,h =
√
p̂i,h(1− p̂i,h)BΘ̂i,h

◦ λ0,ie,

Θ̂∗S =
√
p̂(1− p̂)BΘ̂S

◦ λie,

while BΘ̂i,h
and BΘ̂S

are independent standard Brownian motions.

Proof. Since the drift term, the terms associated with A∗0 and S∗h remain
unchanged, it suffices to show that the terms related with the splitting deci-
sion processes share the same variance. In fact, by algebraic manipulation,
one can check that

V ar

(∑
i∈Hc

Θ̂∗i,h + Θ̂∗S

)
=
∑
i∈Hc

p̂i,h(1− p̂i,h)λ0,ie+ p̂(1− p̂)λie

=
K∑
i=1

(
e′h + P̂ ′Hc,he

′
Hc

)
Σi

(
eh + eHcP̂Hc,h

)
e

= V ar
(
e′h (Θ∗)′ 1 + P̂ ′Hc,he

′
Hc (Θ∗)′ 1

)
where Σi are the variance matrix defined in Theorem 3.2.

Now, consider a reduced one-station network consist of the only bottleneck
queue, while all non-bottleneck queues have service times set to 0 so that
they serve as instantaneous switches. In the reduced network, we define an
external arrival Â0 to the bottleneck queue to be any external arrival that
arrive at the bottleneck queue for the first time. Hence, an external arrival
may have visited one or multiple non-bottleneck queues before its first visit
to the bottleneck queue. In particular, the external arrival process can be
expressed as the superposition of (i) the original external arrival process A0,h

at station h; and (ii) the Markov splitting of the external arrival process A0,i

at station i with probability p̂i,h, for i ∈ Hc.
Theorem 4.1 implies that the reduced network is asymptotically equiv-

alent to the original bottleneck queue in the sense of the stationary queue
length process in the HT limit. Furthermore, comparing Theorem 4.1 with
Corollary 4.1, we conclude that both the reduced network and the original
bottleneck queue is asymptotically equivalent to a single-server queue with
feedback, where the external arrival process is Â, the service times remain
unchanged and the feedback probability is p̂.

We then eliminate immediate feedback customers just as in Remark 4.1,
but with the extended interpretation of immediate feedback. Recalling that
the non-bottleneck queues act as instantaneous switches, we recognize all
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customers that feed back to the bottleneck queue as immediate feedback,
even after visiting non-bottleneck queues. The probability of feedback is
then exactly p̂ ≡ P̂h as in Remark 3.2. After feedback elimination, the new
service time is exactly the geometric sum of the original service times at the
bottleneck queue. Theorem 4.1 also implies that the service process

(4.5) Ŝ∗ ≡ Θ̂∗S − (1− p̂)S∗h,

shares the same diffusion limit with a modified service process after feedback
elimination.

Hence, we have the following corollary.

Corollary 4.3 (Feedback elimination with one bottleneck queue). Elim-
inating all feedback at the bottleneck queue as described above prior to anal-
ysis is asymptotically correct in HT for GJNs with a single bottleneck queue.

4.3. Functional Central Limit Theorem for the Stationary Flows. In this
section, we focus on yet another important specail case of Theorem 3.2 where
we set |H| = 0. In this special case, all stations are strictly non-bottleneck,
i.e., µi,ρ = λ/(ciρ) where ci < 1 for all i. As ρ ↑ 1, the family of systems
converges to a limiting system where the traffic intensity at station i is
ρi = ci. Hence, the scaling used in (3.8) corresponds to the diffusion scaling
used in the usual FCLT. The following corollary describes the joint FCLT
of the stationary flows.

Corollary 4.4 (FCLT for the stationary flows). Under Assumption
2.1-2.3, consider a family of open queueing networks in stationarity, indexed
by ρ. Assume that µi,ρ = λi/(ciρ) with ci < 1 for 1 ≤ i ≤ K. Then, as ρ ↑ 1,

(Q∗ρ,W
∗
ρ , Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F∗ρ )

⇒ (Q∗,W ∗, Z∗,Θ∗,Θ∗ext,F∗) in D9K+2K2
,(4.6)

where:

1. For 0 ≤ i ≤ K, A∗0,i = ca0,iBa0,i ◦ λ0,ie and S∗i = csiBsi ◦ λie, where
Ba0,i and Bsi are standard Brownian motions. (Θ∗i,j : 0 ≤ j ≤ K)
is a zero-drift (K + 1)-dimensional Brownian motion with covariance
matrix Σi = (σ2

jk : 0 ≤ j, k ≤ K), where σ2
j,j = pi,j(1 − pi,j)λi and

σ2
j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i, Bsi and

(Θ∗i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.
2. The queue length process Q∗ ≡ 0.
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3. The total arrival process A∗ can be regarded as a stationary process,
having stationary increments, specified by

A∗ = (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
.

4. The stationary departure process is the same as the stationary total
arrival process, so that D∗ = A∗.

5. The internal arrival flow A∗i,j can be expressed as

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D∗ext,i = pi,0D
∗
i + Θ∗i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Finally, Z∗i = W ∗i = 0.

5. Approximation of the IDC. In this section, we demonstrate how
the HT limits in the present paper can be applied to approximate the IDCs
of the stationary flows in a GJN, where the IDC is defined in (1.1). In partic-
ular, we focus on two simple examples, one for the superposition operation
and one for the splitting operation.

5.1. Dependent Superposition: Splitting and Re-Combining. Dependence
among flows are ubiquitous in GJNs. Even in a feed-forward network, there
can be dependence among the arrival processes being superposed at one
of the queues in the network. That is illustrated by an example in Figure 2
where an arrival process is first split into two streams according to Markovian
routing and sent to separate queues, and then the two departure processes
are recombined to enter a third queue. We aim to approximate the IDC of
the superposition of the two stationary departure processes A3(t) ≡ D1(t)+
D2(t). To do so, we establish the HT limit for the superposition arrival
process at the third queue.

A(t) p1
Queue 1

D2(t)

Queue 3

Queue 2

p2 D2(t)

Fig 2. A re-combining after splitting example.
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Without loss of generality, assume that the traffic intensity ρ1 at the first
queue is larger than ρ2 at the second queue. We then consider a family
of systems indexed by ρ, where the traffic intensity at queue 1 is ρ1 = ρ,
which we will bring to heavy traffic, and the traffic intensity at queue 2 is
fixed at ρ2 ∈ [0, 1). Let Ai,ρ, Si,ρ and Qi,ρ denote the arrival process, the
(uninterrupted) service renewal processes and the queue length process at
Queue i in the ρ-th system, respectively.

Corollary 5.1 (Heavy-traffic limit for Splitting and Recombining). Con-
sider the system depicted in Figure 2. Assume that the external arrival pro-
cess is renewal with rate λ and scv c2

a, the service times at queue 1 are i.i.d.
with rate p1λ/ρ and scv c2

s1; the service times at queue 2 are i.i.d. with rate
p2λ/ρ2 for 0 ≤ ρ2 < 1 and scv c2

s2. Then

(A∗ρ, A
∗
1,ρ, A

∗
2,ρ, S

∗
1,ρ, S

∗
2,ρ, Q

∗
1,ρ, Q

∗
2,ρ, D

∗
1,ρ, D

∗
2,ρ,Θ

∗
1,ρ,Θ

∗
2,ρ)

⇒ (A∗, A∗1, A
∗
2, S
∗
1 , S

∗
2 , Q

∗
1, Q

∗
2, D

∗
1, D

∗
2,Θ

∗
1,Θ

∗
2) in D11 as ρ→ 1,

where

A∗ ≡ caBa ◦ λe,
A∗i ≡ picaBa ◦ λe+ Θ∗i , for i = 1, 2,

S∗1 ≡ cs1Bs1 ◦ p1λe,

S∗2 ≡ cs2Bs2 ◦ p2λe/ρ2,

Q∗1 ≡ ψ(Q∗1(0) + p1caBa ◦ λe+ Θ∗1 − cs1Bs1 ◦ p1λe− p1λe)

Q∗2 ≡ 0,

D∗1 ≡ p1caBa ◦ λe+ Θ∗1 +Q∗1(0)−Q∗1,
D∗2 ≡ p2caBa ◦ λe+ Θ∗2,(5.1)

with ψ being the one-dimensional reflection mapping and (Θ∗1,Θ
∗
2) being a

zero-drift two-dimensional Brownian motion with covariance matrix Σ =
(σij) ∈ RJ×J , where σ2

ii = pi(1− pi)λ and σ2
ij = −pipjλ for i 6= j.

To approximate the IDC of the total arrival process at queue 3, we write

Ia,3,ρ(t) ≡
Var(A3,ρ(t))

E[A3,ρ(t)]
=

Var (D1,ρ(t) +D2,ρ(t))

E[A3,ρ(t)]

=
Var (D1,ρ(t))

E[A3,ρ(t)]
+

Var (D2,ρ(t))

E[A3,ρ(t)]
+ cov (D1,ρ(t), D2,ρ(t)) /E[A3,ρ(t)]

= p1Id,1,ρ(t) + p2Id,2,ρ(t) + βρ(t),
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where

(5.2) βρ(t) ≡ cov (D1,ρ(t), D2,ρ(t)) /E[A3,ρ(t)].

In general, exact characterization of βρ is not readily available. We propose
the following approximation

βρ(t) ≈ 2cov
(
D∗1((1− ρ)2t), D∗2((1− ρ)2t)

)
/(λ(1− ρ)2t)

= 2p1(1− p1)(c2
a0 − 1)w∗((1− ρ)2p1λt/c

2
x1))(5.3)

with D∗1 and D∗2 being the diffusion limit in (5.1).
To justify the approximation (5.3), let β∗ρ(t) = βρ

(
(1− ρ)−2t

)
be the

HT-scaled correction term. Corollary 5.1 implies the following limit.

Corollary 5.2. Under the assumption in Theorem 5.1 and the ex-
change of limit assumptions, we have

(5.4) β∗ρ ⇒ 2p1(1− p1)(c2
a0 − 1)w∗

(
p1λt/c

2
x1

)
.

Proof. Note that Corollary 5.1 implies that

cov(D1,ρ(t), D1,ρ(t)) = cov
(
(1− ρ1)−1D∗1,ρ((1− ρ1)2t), (1− ρ1)−1D∗2,ρ((1− ρ1)2t)

)
⇒ (1− ρ1)−2cov(D∗1((1− ρ1)2t), D∗2((1− ρ1)2t)),

as ρ ↑ 1.
On the other hand, by applying Corollary 5.1 of [51], we have

cov (D∗1(t), D∗2(t)) = cov(A∗1(t), A∗2(t))− cov(Q∗1(t), A∗2(t))

= p1(1− p1)(c2
a0 − 1)λt− cov(Q∗1(t)), A∗2(t))

= p1(1− p1)(c2
a0 − 1)λtw∗

(
p1λt/c

2
x1

)
,

where c2
x1 = c2

a1 + c2
s, c

2
a1 = p1c

2
a + (1 − p1) and w∗ is the weight function

defined in (28) of [51]. The limit then follows.
We demonstrate the performance of the approximation by making simu-

lation comparisons in Example 5.1.

Example 5.1 (splitting and recombining). Consider the queueing sys-
tem in Figure 2 with rate-1 hyperexponential (H2(4)) external arrival process
and c2

a = 4, p1 = 0.25, p2 = 0.75 and i.i.d. Erlang (E2) service times with
c2
si = 0.5. Figure 3 shows the results for two cases involving different traffic

intensities: (i) ρ1 = ρ2 = 0.7 (left); and (ii) ρ1 = 0.8 and ρ2 = 0.9 (right). In
each plot, we display, in solid lines, the IDC Ia,3 of the total arrival process
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at queue 3, the modified IDC’s piId,i of the departure processes from queue
i, the simulated correction term βρ defined in (5.2). For approximations, we
display, in broken lines, the approximated correction terms as in (5.3) and
the approximated IDC using (5.3). Figure 3 shows remarkable agreement of
the approximation and the simulation estimate.
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Fig 3. Two examples in Example 5.1.

5.2. Dependent Splitting: One Queue with Immediate Feedback. Con-
sider the single-server queue with immediate customer feedback as in §4.1.
This introduce dependence between the splitting decision process and the
arrival process.

For the splitting operation, suppose that the splitting decision is indepen-
dent of the departure process, then by the conditional variance formula, we
have

Var(Aint(t)) = p2Var(D(t)) + p(1− p)λt,

or equivalently, since E[D(t)] = λt and E[Aint(t)] = pλt = pE[D(t)],

Ia,int(t) = pId(t) + (1− p).

To address the impact of dependence on the IDC after the splitting op-
eration, we propose to consider the correction term α(t) is defined as

α(t) ≡ Ia,int(t)− pId(t)− (1− p),

so that

(5.5) Ia,int(t) = pId(t) + (1− p) + α(t),
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We propose to approximate the correction term α(t) by

(5.6) α(t) ≈ α∗((1− ρ)2t)

with
α∗(t) ≡ 2cov(pD∗(t),Θ∗(λt))/pλt = 2pw∗(t/c2

x),

where c2
x1 = c2

a + c2
s, c

2
a = 1

1−pc
2
a0 + p

1−p , w∗ is the weight function defined in
(28) of [51] and the explicit expression is derived using Corollary 5.1 of [51].

The approximation (5.6) is supported by the following corollary. Define
the HT-scaled correction term α∗ρ(t) ≡ α((1− ρ)−2t).

Corollary 5.3. Under the assumptions in Theorem 4.1 plus the uni-
form integrability conditions, we have α∗ρ(t)⇒ α∗(t) as ρ ↑ 1.

Proof. By the definitions of the correction term and HT-scaled processes,
we write

α∗ρ(t) = α((1− ρ)−2t)

= Ia,int((1− ρ)−2t)− pId((1− ρ)−2t)− (1− p)

=
Var((1− ρ)Aint((1− ρ)−2t))

pλit
− pVar((1− ρ)D((1− ρ)−2t))

λt
− (1− p)

=
Var(A∗int,ρ(t))

pλt
− p

Var(D∗ρ(t))

λt
− (1− p)

⇒ Var(A∗int(t))

pλit
− pVar(D∗(t))

λt
− (1− p) = α∗(t).

Finally, we also have dependent superposition in this example. Similar to
§5.1, we have

(5.7) Ia,ρ(t) ≈
1

1− p
Ia,0,ρ(t) +

p

1− p
Ia,int,ρ(t) + βρ(t)

with

βρ(t) ≡ 2cov(A∗0((1− ρ)2t), A∗int((1− ρ)2t))/(λ(1− ρ)2t)

= 2pc2
a0w

∗((1− ρ)2/c2
x),(5.8)

where again c2
x = c2

a + c2
s and c2

a = 1
1−pc

2
a0 + p

1−p .
We demonstrate the performance of the approximation by making simu-

lation comparisons in Example 5.2.
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Example 5.2 (immediate feedback). Figure 4 compares the performance
of the IDC approximation to simulations for the E2/H2(4)/1 single-server
queue with feedback model, having service scv c2

s = 4. The plot on the left
focuses on the feedback flow Aint(t), while the plot on the right focuses on
the superposition arrival process A(t). Again, the approximation matches
simulation remarkably well.
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Fig 4. Left plot shows the dependent splitting in a single-server queue with feedback exam-
ple. Model parameters are described in the title. The simulation estimation of the IDC of
the feedback flow is contrasted to the IDC approximation (5.5) with correction term (5.6)
in dotted-and-dashed lines. Right plot displays the dependent superposition. The simulation
estimation of the IDC of the total arrival process is contrasted to the IDC approximation
(5.7) with correction term (5.8) in dotted-and-dashed lines.
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