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Abstract
This is a sequel to Whitt and Zhang (2017), in which we developed an ag-
gregate stochastic model of an emergency department (ED) based on the
publicly available data from the large 1000-bed Rambam Hospital in Haifa,
Israel, from 2004-7, associated with the patient flow analysis by Armony et
al. [1]. Here we focus on forecasting future daily arrival totals and predicting
hourly occupancy levels in real time, given recent history (previous arrival
and departure times of all patients) and useful exogenous variables. For the
arrival forecasting, we divide the data set into an initial training set for fitting
the models and a final test set to evaluate the performance. By using 200
weeks of data instead of the previous 25, we identify (i) long-term trends in
both the arrival process and the length-of-stay distributions and (ii) depen-
dence among successive daily arrival totals, which were undetectable before.
From several forecasting methods, including artificial neural network models,
we find that a seasonal autoregressive integrated moving average with exoge-
nous (holiday and temperature) regressors (SARIMAX) time-series model is
most effective. We then combine our previous ED model with the arrival
prediction to create a real-time predictor for the future ED occupancy levels.
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1. Introduction

There is great interest in patient flow in emergency departments (EDs)
because EDs are often plagued by congestion. Even though there have been
many studies, e.g., [2, 3, 4, 5], there remain opportunities to develop new
analysis methods. In this paper we contribute by studying methods to fore-
cast future daily arrival totals and predict hourly occupancy levels by using
recent history, i.e., given all previous arrival and departure times, and use-
ful exogenous variables such as holiday indicators and temperature records.
For example, the goal may be to forecast the daily total number of arrivals
tomorrow or predict the occupancy level two hours from now.

This is an extension of our recent study [6], in which we developed an
aggregate stochastic model to describe patient flow in an emergency depart-
ment (ED) based on 25 weeks of the publicly available patient flow data from
the large 1000-bed Rambam Hospital in Haifa, Israel, from 2004-7, associ-
ated with the patient flow analysis by Armony et al. [1]. Such a stochastic
model could be used to study operational issues, such as the optimal staffing
of doctors or nurses, by simulation or analytical approximations, as discussed
in [7, 8], §4 of [9] and references therein. We did not previously consider the
problem of real-time prediction for the ED that we consider here.

However we did learn from the data analysis we did before. First, as
should be expected, we concluded that the model should be time-varying. In
particular, the stochastic model in [6] is periodic, with one week serving as the
cycle length. There is a two-time-scale model of the arrival process, in which
the daily arrival totals are modeled as a Gaussian process, while the arrivals
during each day are modeled as a nonhomogeneous Poisson process, given
the estimated arrival rates. In other words, the arrival process is modeled as
a periodic doubly stochastic nonhomogeneous Poisson process (also known
as Cox process). The length of stay (LoS) variables of the successive arrivals
were assumed to come from a sequence of independent random variables,
where the periodic LoS distribution depends on the day of the week and the
hour of the day. In this paper, we show that our proposed stochastic model
can be very helpful for predicting the occupancy level.

To develop and test our prediction methods, we want to have a test set
that is independent of the set we use to select and fit the model. For this
purpose, we use a larger dataset of 200 weeks and split the data into a training
set and a test set. We assess several prediction models on the same test set.
By using 200 weeks of data instead of the 25 in [6], we identify (i) long-term
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trends in both the arrival process and the length-of-stay distributions and (ii)
dependence among successive daily arrival totals, which were undetectable
before. We conclude that the previous stochastic model may be good to
study various operational questions, but the more complex time-series model
here is better for prediction.

Here we forecast daily arrival totals and predict hourly occupancy lev-
els. There is a substantial literature on forecasting, both for ED’s, e.g.,
[10, 11, 12, 13, 14, 15], and for other service systems more generally, e.g, as
in call centers [16, 17]. In this paper we examine several alternative mod-
els to forecast the daily arrival totals, including a linear regression based
on calendar and weather variables, seasonal autoregressive integrated mov-
ing average with exogenous regressors (SARIMAX) model and the multi-
layer perceptron (MLP) model, which is an artificial neural network machine
learning method. All the models can be viewed as generalizations of the
two-time-scale Gaussian-NHPP model proposed in [6]. We find that, being
consistent with our analysis in [6], the day-of-week factor explains most of
the variance in the daily arrival totals. However, the holiday indicators and
daily high/low temperatures are also significant in the regression, and will
increase the accuracy of our daily arrival totals prediction. To be specific, the
daily arrival totals slightly drop before and on the holidays and are higher
than usual on the days right after them, and the local temperature has a
positive relationship with the daily arrival totals.

We also investigate how machine learning techniques can be applied to our
problems. There is great interest in advanced neural network models, because
they have been successful in solving many challenging tasks in different areas.
However, our exploration shows that the neural network models, with only
patient arrival and departure data, do not perform as well as the highly
structured time-series SARIMAX models. With a relatively small dataset
compared to the “big data” applications, as in social media applications, a
good structured model evidently outperforms the extremely flexible machine
learning model, which exploits the large dataset to learn the features of the
system.

Based on our daily arrival totals prediction, we propose a real-time occu-
pancy predictor which exploits the currently observed occupancy level and
the empirical hazard functions, given the elapsed LoS for each patient in
the system. That is a variant of the approach suggested in §6 of [18]; see
[19, 20] and references there for related work. We conclude that exploiting
the real-time information can be helpful in predicting the near future status
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of the system. This also illustrates how our forecasting model for the arrival
process can be useful for other operational purposes.

We stress that the data we use is available to the public at the SEELab of
the Technion, so that interested researchers can replicate and maybe improve
our results. In particular, we use this dataset without any extra information
provided by hospital administrators. There is a record of the arrival times
and LoS of each patient that visited the ED. As discussed in [6], the departure
time is the time that an admission decision is made in the ED, which does
not include the extra “boarding” time required to find a bed for admitted
patients. We refer to [1, 6] for more information about this dataset. We
preprocess the data as we did in [6], only considering the patients that visited
the emergency internal medicine unit (EIMU), which is the majority of all
the new visits to the ED.

There is a natural question about what in our study is applicable or gen-
eralizable to other hospitals in other countries. Generally, we think that
EDs in many countries share a similar structure, so that the the data should
be representative of what occurs elsewhere. However, we do not advocate
a direct application of the estimated quantities here. Instead, it is our con-
clusions about the forecasting and prediction methods that should be most
useful.

The paper is organized as follows: In §2 we review the model framework in
[6]. In §3 we look at the larger dataset and relate it to our original model. In
§4 we evaluate five potential improvement methods for predicting the daily
arrival totals. Then in §5 we introduce our real-time predictor for hourly
occupancy level. Finally, in §6 we draw conclusions.

2. The Integrated Model for the ED Patient Flow

The model we proposed for the ED patient flow in [6] is depicted ab-
stractly in Figure 1. The model has three parts: the process generating daily
arrival totals (M1), the arrival process within each day (M2) and the length
of stay (LoS) of each patient (M3).

In [6], after statistical analysis, we let M1 be a single-factor Gaussian
model, which only depends on the day-of-week; i.e., the daily arrival total on
day t is modeled by

At = c0 +
6∑

i=0

diDt,i + ϵt, (1)
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Figure 1: Illustration of the integrated ED patient flow model.

where i from 0 to 6 represents day-of-week from Sunday to Saturday, c0
and di are constants to be estimated, Dt,i is the indicator of day-of-week
(i.e. Dt,i = 1 if day t is day-of-week i, and 0 otherwise) and ϵt ∼ N(0, σ2)
is the i.i.d. random term where σ is a constant. (We tested for a trend
and for dependence, but based on the limited data, neither was statistically
significant.) By definition, At could be non-integer, but we always understand
At is an integer by rounding it to the nearest one. Also, theoretically, At could
be negative, in which case we round up to 0. Given the estimated mean and
variance, that is highly unlikely.

For M2, we assumed that the arrival process within each day is a nonho-
mogeneous Poisson process (NHPP) given the daily arrival total of that day.
That means, for a given total number of arrivals, the arrival epochs are i.i.d.
with a probability density function (pdf) that is proportional to the arrival
rate function. We also assume that the arrival rate function is piecewise
constant, changing hourly. To describe it explicitly, let λi,j, i = 0, 1, · · · , 6,
j = 0, 1, 2, · · · , 23 be the (constant) mean arrival rate for hour j on day-of-
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week i. For i = 0, 1, · · · , 6, the pdf is

fa
i (s) =


λi,j∑23
j=0 λi,j

, s ∈ [j, j + 1),

0, otherwise,
(2)

while F a
i (s) =

∫ s

−∞ fa
i (x)dx is the corresponding cumulative distribution

function (cdf). Given At, for a specified day of the week i, let at,k, k =
1, 2, · · · , At be the arrival times of the patients in day t, then we assume that
ai,k are i.i.d. with pdf fa

i .
For M3, we assume that the patient LoS’s are mutually independent,

having a distribution that only depends on the arrival time; i.e., if we let
wt,k be the corresponding LoS of those patients that arrived at at,k, then wt,k

are independent of each other and the arrival process, and wt,k
d
= f s

i,j if day
t is day-of-week i and at,k ∈ [j, j + 1), where f s

i,j is a given pdf of LoS for
day-of-week i and hour j. As in [6]. we assume that the LoS distributions.,
just like the arrival processes, are time-varying and periodic, with a period
of one week.

It is significant that our arrival process model captures over-dispersion, a
key property observed in the arrival data of the ED; see [21] and references
there. By combining M1 and M2, we see that the arrival process is a doubly
stochastic nonhomogeneous Poisson process or Cox process. We can equiva-
lently regard it as an NHPP where the houly arrival rates within a day are
correlated Gaussian random variables. If we denote Ni(s), s ∈ [0, 24] to be
the counting process of arrivals on day-of-week i, then Ni(24) ∼ N(µi, σ

2),
where µi = c0 + di. If we introduce the index of dispersion for counts (IDC),
defined by

Ii(s) =
Var(Ni(s))

E(Ni(s))
, (3)

as we did in [6], then according to M2, we can easily deduce (as a special
case of general Cox process) that

Ii(s) = 1 + F a
i (s)(

σ2

µi

− 1). (4)

Formula (4) quantifies the over-dispersion. We have over-dispersion when-
ever, Ii(24) = σ2/µi > 1. Figure 5 of [6] shows an estimate of the IDC
function, demonstrating the over-dispersion, but it is not exceptionally high.
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Our Gaussian time series models also approximate the generalized linear
models that allow over-dispersion, such as negative binomial regression, be-
cause a negative binomial distribution can be approximated by the normal
distribution when the parameter is large. Such generalized linear regression
methods have been used when studying the ED patient flow [22, 23].

As observed in [6], our model can be viewed as an infinite-server queueing
model with the arrival process being a Cox process and independent service
times. For infinite-server queues, the arrival process can be independently
thinned into two or more processes, allowing more factors to be taken into
account. For example, in [6], we divided the patients into two groups accord-
ing to the admission decisions, and treated them separately with different
arrival rate functions and LoS distributions.

In retrospect, after looking at the larger data set, we conclude that the
model componentsM2 and M3 remain quite satisfactory, but for model com-
ponent M1 (the daily arrival totals), we find ways to improve the model,
especially when we consider the prediction problem.

3. Analysis of the Larger Dataset

In this section, we will do some exploratory data analysis and basic re-
gressions for the larger dataset, i.e., the data from January 2004 to October
2007, which is in total 1400 days. We will show that there is a clear long-term
trend in the daily arrival totals as well as stochastic dependence.

3.1. An Overview of the Arrival Data
Figure 2 shows the daily arrival totals for the entire data set, where we

can see that the daily arrival totals are stable over time, but have a slight
increasing trend. The blue line in the figure is the estimated regression line.
From this figure, we notice that there is a period around the 950th day that
the arrivals are significantly lower compared to the adjacent period. This time
coincides with the 2006 Lebanon war, the war between Israel and Lebanon
from July 12 to August 14, 2006. We regard those points as outliers. If we
ignore that Lebanon war period, almost all points fall between 75 to 200.
Figure 3 shows the daily arrivals without that period. Again, the blue line
is the fitted regression line. The war period has a significant impact on the
estimated slope for the regression line. (Since we are using ordinary least
square estimation, the estimators are not robust to abnormal data points.)
Throughout this paper, we exclude this war period unless specified otherwise.
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The overall mean daily arrival total is 134.7, while the variance is 571.0.
The slope of the daily arrival totals is very small. The mean daily volume
increases about 1 every 100 days, but there is a 13.5 difference between the
estimated mean of the last (1400th) day and the first day, which is about a
10% increment.
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Figure 2: The daily arrival totals for the whole data set. The blue line is the regression
line, d = 128.0 + 0.00781 ∗ t, and the dashed red line is the average level.

In [6] we found that the system has a significant periodic structure with
the period being 1 week, so we look at the daily arrival totals for each day-
of-week separately and the weekly totals as well. Table 3.1 shows the sample
mean, sample variance and variance-to-mean ratio of the daily arrival totals
for each day-of-week. As in [6], we conclude that the variance-to-mean ratio
is significantly greater than 1 on every day. Sunday, as the first day of week
in Israel, has the highest number of patient visits while Friday and Saturday
(the weekend days) have relatively fewer patient visits. Figure 4 shows the
weekly arrival totals, where we also fitted a regression line. It is evident that
the weekly totals exhibit some time dependence structure. Figure 5 presents
a box plot view showing that the distributions of daily arrival totals vary
over months. we expect more patients in the summer than in the winter.
This suggests the daily arrival totals may be related to the temperature, as
observed in [10, 13, 14, 15]. We explore this direction for improving our
previous model later.
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Figure 3: The daily arrival totals without the war period. The blue line is is the regression
line, d = 128.0 + 0.00964 ∗ t. The overall mean (shown by the red dashed line) is 134.7,
while the variance is 571.0

Sun Mon Tues Wed Thurs Fri Sat week
Mean 163.7 144.7 140.6 134.5 139.3 113.4 106.6 134.7
Var 276.1 292.5 294.7 253.0 302.6 181.1 163.6 571.0
V/M 1.69 2.02 2.10 1.88 2.17 1.60 1.69 4.24

Table 1: Sample mean, variance and variance-to-mean ratio of daily arrival totals for each
day-of-week.
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Figure 4: Number of weekly arrival totals. The blue line is what we got if we regress the
weekly arrival totals on the index of day, which is weekly totals = 896.72 + 0.378 ∗ w,
where w = 1, 2, · · · , 199 is the index of weeks.
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Figure 5: Number of daily arrival totals in a month view. The box together with the black
bar show the quantiles of the daily arrival totals for each month, and the blue dots are
the corresponding sample means. The dashed red line is the average level of daily arrival
totals.
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Next we look at the LoS distributions. In [6], we found that the LoS
distributions are also time-varying, depending on the patient arrival time.
Here we want to check if the LoS distributions changes in the long term.
Figure 6 shows the LoS distributions in a monthly view. At a glance, the LoS
distributions looks quite stable, except in 2006-08, right after the Lebanon
war, where the LoS is significantly low. Figure 7 shows the regression lines
for the monthly mean LoS and median LoS. It shows that both have a small
but significant positive slope. This suggests that in the long term, we should
not ignore the change of LoS distribution, but perhaps in a short term, we
can safely assume it is stable.

2004−01 2004−06 2004−11 2005−04 2005−09 2006−02 2006−07 2006−12 2007−05 2007−10

1
2

3
4

5
6

time (month)

Lo
S

 (
ho

ur
)

Figure 6: The quantiles of LoS distributions for each month. The box together with the
black bar show the 0.25, 0.5 (median) and 0.75 quantile of the LoS distribution, and the
blue dots are the sample mean of the LoS distribution.

3.2. Summary
After the analysis of the entire data set, we conclude that the model

framework in [6] can still work, but with the larger dataset, we detect a trend
and autocorrelation structure in the daily arrival totals. To be specific, we
still consider that model components M2 and M3 are satisfactory, but we
can be improve M1 to better predict the daily arrival totals. An extended
Gaussian model should still be appropriate. Moreover, it appears that we
should be able to estimate the parameters dynamically, only using the recent
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Figure 7: Linear regression of monthly mean and median LoS on time. The slopes are
very small, but statistically significant. The mean LoS increases from about 4.1 hour to
4.5 hour. while the median also grows at a lower rate. The dashed red lines are the mean
and median of LoS of the entire data respectively.

data to fit the model and predict the near future. We should be careful not
to apply the model for long-term forecasts, without focusing on the trend,
because the daily arrival totals are increasing slowly. The same is true for
the LoS distributions.

But even for short term forecasting, there are alternative methods to
consider. In the next section we will consider five alternative forecasting
methods.

4. Forecasting the Daily Arrival Totals

In this section, we consider alternative ways to foreacst the daily arrival
totals. We first focus on one-day ahead prediction, then we consider predict-
ing more days into the future in §4.7.

We divide the dataset into a training set and a test set. For simplicity,
we use the data before the Lebanon war as the training set (923 days from
Jan. 1, 2004 to July 11, 2006) and the rest as the test set (443 days from
Aug. 15, 2006 to Oct. 31, 2007). We use the training set to find the optimal
number of weeks we should include when we make predictions for the next
week and estimate the parameters. Then we use the test set to check our
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choice and compare with other methods. We use mean square error (MSE,
by which we mean the estimate) to measure the precision of our prediction,
defined by

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (5)

where N is the sample size, yi are the true values and ŷi are the predicted
values.

4.1. A Dynamic Model
An easy way to revise our old model for the daily arrival totals is to use

it in a dynamic way; i.e., if we want to predict the daily arrival totals for
the next week, then we fit the model only using a few weeks of history data
right before it. We keep updating our model parameter according to what
we observe. In particular, if we let At represent the daily arrival totals for
day t and Ât be our estimate for it, then the estimator is

Ât =
1

n
(At−7 + At−14 + · · ·+ At−n∗7). (6)

We need to determine n in the above equation. We try different value
of n from 1 to 30 weeks and pick the one with the smallest training MSE.
Figure 8 and Table 2 show the training MSEs using different n. We see that
it shows a typical U -shape as a function of n, reaching the minimal training
MSE 248.3 at n = 13, so we choose this value of n and apply it on the test
set. The test MSE is 269.94. (The difference provides an estimate of the
overestimation of statistical precision caused by testing on the same data
used to fit the model.)

For comparison, we observe that the overall mean and variance are 134.7
and 571.0. If we use the single-factor model on this new test set from [6],
then the estimated residual variance is 264.6, which yields V/M = 1.9.

4.2. A SARIMA Time Series Model
We observe that the predictor in (6) is actually a special case of the classic

autoregressive model

At = c+ α1At−1 + α2At−2 + · · ·+ αpAt−p + ϵt, (7)

where we take c = 0, p = 7n, αi = 1/n for i = 7, 14, · · · , 7n and 0 otherwise.
So we next try a more general and more flexible autoregressive integrated
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Figure 8: Training MSE as a function of the number n of weeks history to predict the
daily arrival totals of the next day for the dynamic model in §4.1. The minimum training
MSE is achieved when n = 13.

n 1 2 3 4 5 6 7
MSE 430.4 304.6 273.6 264.4 257.8 259.6 255.4
n 8 9 10 11 12 13 14

MSE 253.6 250.4 249.2 249.2 249.6 248.3 248.9
n 15 16 17 18 19 20 21

MSE 249.1 251.0 251.5 252.4 255.2 256.8 257.6
n 22 23 24 25 26 27 28

MSE 257.3 257.2 255.6 256.8 257.9 259.8 260.2

Table 2: Training MSE as a function of the number n of weeks history to predict the daily
arrival totals of the next day for the dynamic model in §4.1.
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moving average (ARIMA) model. Because we have determined that there
is periodicity, we use a seasonal ARIMA (SARIMA) model. The model
has 7 hyperparameters that need to be determined and can be denoted as
SARIMA(p, d, q)(P,D,Q)m, where p, d and q are the order of AR terms, the
order of difference and the order of MA terms, respectively, while P , D and
Q are the corresponding seasonal orders, and m is the period length of each
season. This model is quite standard in time series analysis; see Chapter 6
of [24].

Obviously we should take m = 7, because we think the period is 1 week.
From our analysis in §3.1, we know that the arrival rate is increasing slowly.
So it is reasonable to conduct a difference for the original series, which is
equivalent to assume that the time series has a stationary increasing trend.
But whether to take the difference directly (i.e., setting d = 1, D = 0, to
model {At − At−1} by an ARMA model) or do it seasonally (i.e., setting
D = 1, d = 0, to model {At −At−7}) needs to be determined. We will check
them one by one.

Suppose that we make a difference directly and let {Xt ≡ At − At−1}.
Figure 9 examines {Xt}. We firstly conduct the Dickey-Fuller test to check
whether this time series can be regarded as stationary. Because the p-value is
1.69∗10−23, we reject the hypothesis that this time series has a unit root, and
so tentatively conclude that the process is stationary. Figure 10 shows the
autocorrelation function (ACF) and partial autocorrelation function (PACF)
of {Xt}, which could help us determine the orders we choose in ARMA. We
see that the partial correlation function vanishes after some point for both the
seasonal factor and non-seasonal factor, while the autocorrelation function
does not go away, so that we try to model it as an AR sequence. We try p
from 1 to 6 and P from 1 to 16. According to Akaike information criterion
(AIC), SARIMA(6, 1, 0)(15, 0, 0)7 is the best model, whose AIC is 7663.47
and training MSE is 227.31.

Similarly, for the other alterantive, suppose we make a seasonal difference
and model {Yt ≡ At −At−7}. Figure 11 shows its rolling mean and standard
deviation, while Figure 12 shows its ACF and PACF. Again we conduct the
Dickey-Fuller test and reject the null hypothesis that the series has a unit
root with a p-value 1.66 ∗ 10−15. We see that in contrary to {Xt}, the ACF
of {Yt} cuts off after the first period, while the PACF does not vanish. This
suggests adding seasonal MA terms to the model. We try p from 1 to 6.
We find that a large value of Q causes the maximum likelihood estimation
to converge poorly, so that the AIC does not improve significantly when we
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Figure 9: Daily arrival totals after taking a difference ({Xt ≡ At−At−1}) for the SARIMA
model in §4.2. We also show the rolling sample mean and sample standard deviation using
a window with width 7.

increase Q. Hence, we choose the model SARIMA(6, 0, 0)(0, 1, 1)7. Its AIC
is 7564.73 and training MSE is 221.51.

We conclude that the SARIMA(6, 0, 0)(0, 1, 1)7 outperforms the previous
SARIMA(6, 1, 0)(15, 0, 0)7. Thus our fitted model is

(At − At−7)−
6∑

i=1

pi(At−i − At−i−7) = ϵt +Q1ϵt−7, (8)

where pi, i = 1, 2, 3, 4, 5, 6, and Q1 are coefficients, {ϵt ∼ N(0, σ2)} are
independent normal distributed noise. The maximum likelihood estimation
for those parameters are shown in Table 3.

Parameter p1 p2 p3 p4 p5 p6 Q1 σ2

MLE 0.181 0.012 0.062 0.036 0.070 0.144 -0.948 218.30

Table 3: MLE for the parameters of the SARIMA(6, 0, 0)(0, 1, 1)7 model in (8).

For this model, we also checked whether the residuals are approximately
independent and normally distributed. A positive conclusion is supported
by the ACF and PACF in Figure 13 and the quantile-to-quantile (Q-Q) plot
compared to normal distribution in Figure 14.
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Figure 10: The autocorrelation function and partial correlation function of {Xt} = {At −
At−1}) for the SARIMA model in §4.2.
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Figure 11: Daily arrival totals after taking a seasonal difference ({Yt ≡ At − At−7}) for
the SARIMA model in §4.2. We also show the rolling sample mean and sample standard
deviation using a window with width 7.

Finally, we test SARIMA(6, 0, 0)(0, 1, 1)7 on our test set and find that the
MSE is 263.40. We show the predicted daily arrival totals versus the true
values in Figure 15, and in Figure 16 we show the 95% confidence interval
for part of test set.

4.3. A Regression Method with More Calendar and Weather Information
Many researchers have found that calendar and weather variables can be

very helpful for predicting the daily arrival totals in the ED [10, 13, 14], so
we want to explore this direction. Of course, our original model in [6] is
already a simple version, but it considers only the day-of-week factor. We
find that the day-of-week factor is the most important one, but there is also
potential for taking advantage of other factors, including month, temperature
and holiday.

We consider a regression model that includes the following independent
variables: day-of-week, month, max daily temperature, min daily tempera-
ture, daily precipitation, and holiday±k. The day-of-week and month factors
are straightforward. For the daily max/min temperature and the daily pre-
cipitation, since we are considering a prediction model, ideally we should use
the temperatures in the weather forecast one day before, but we could not
find that information, so we used the real historical data which is published
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Figure 12: The autocorrelation function and partial correlation function of {Yt ≡ At −
At−7} for the SARIMA model in §4.2.
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Figure 13: The autocorrelation function and partial correlation function of the residuals
for model SARIMA(6, 0, 0)(0, 1, 1)7 in (8).
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Figure 14: The Q-Q plot of the residuals for model SARIMA(6, 0, 0)(0, 1, 1)7 in (8).
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Figure 15: Test SARIMA(6, 0, 0)(0, 1, 1)7 as in (8) on the test set.
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Figure 16: Confidence interval (95%) for the predicted daily arrival totals by
SARIMA(6, 0, 0)(0, 1, 1)7 as in (8) on the test set.

by the Israel Meteorological Service (available at https://ims.data.gov.il).
We can understand this as the true relationship between weather and the
daily arrival totals, and when applying, we can use the information from a
weather forecast as estimators. We think this approach is reasonable because,
with modern technology, we can predict the weather on the next day quite
accurately. Another issue is the location where the weather data is collected.
The hospital itself does not have a meteorological station, so we choose the
nearest one to the Rambam Hospital which is located at Haifa port. It turns
out that there is missing data for one week in September 2007 and one day in
January 2007. Hence, for those days we use the temperature data from the
nearest meteorological station, which is located at the Technion, as proxies
for the missing data.

Holidays can be another potential factor affecting the daily arrival totals.
In [10], they considered the holiday and near-holiday factor when predicting
the daily patient volume of three EDs in the United States. They defined a
day as near-holiday if it is one day before or after a public holiday. Here we
think we should distinguish days before and after a holiday, so we actually use
7 indicators to tell if a day is holiday±k day, where k = −3,−2,−1, 0, 1, 2, 3.
We mark a day as holiday only if it is a national holiday. In summary, the
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full model we propose is

At = β0 + βSunISun(t) + βMonIMon(t) + · · ·+ βSatISat(t)

+βJanIJan(t) + βFebIFeb(t) + · · ·+ βDecIDec(t)

+βT−maxTmax(t) + βT−minTmin(t) + βrainR(t) + βH−3IH−3(t)

+βH−2IH−2(t) + βH−1IH−1(t) + βHIH(t) + βH+1IH+1(t)

+βH+2IH+2(t) + βH+3IH+3(t) + ϵt, (9)

where At again represents the total arrivals of day t, IMonth/Day−of−week(t)
is the indicator of that month or day-of-week, Tmax(t) and Tmin(t) are the
highest and lowest temperature of day t, R(t) is the precipitation (in cm) of
day t, IH±k(t) is the indicator of near holiday effect as we explained above,
β’s are the corresponding coefficients and constant and finally ϵt ∼ N(0, σ2)
is a normal distributed error term.

Of course, we do not regard the model above as the best one, because
so far we have included all possible factors. The regression result shown in
Table 4 indeed indicates that some factors such as precipitation may not
be important. To select our final model, we use a two-way stepwise model
selection procedure based on AIC; i.e., we start from the full model as above
and in each step, we exclude or include one factor at a time, based on the AIC;
see section 9.4 of [25]. After this procedure, the remaining factors are day-
of-week, month, holiday+0, holiday+1, holiday+2, holiday−1, holiday−3,
max daily temperature and min daily temperature. In the final model, we
further exclude the holiday+2 and holiday−3, because they are the least
two important factors among those above and the AIC will increase only 0.5
from 4962.8 to 4963.3 if we exclude them. Also we think including holiday−1,
holiday−3 but not holiday−2 is not very reasonable. So in the end we select
the model in (10).

At = β0 + βSunISun(t) + βMonIMon(t) + · · ·+ βSatISat(t)

+βJanIJan(t) + βFebIFeb(t) + · · ·+ βDecIDec(t)

+βT−maxTmax(t) + βT−minTmin(t)

+βH−1IH−1(t) + βHIH(t) + βH+1IH+1(t) + ϵt. (10)

Table 5 shows the estimation of coefficients for the final model using the
training set. We can see that the day-of-week factor and the holiday+0 are
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Estimate Standard Error p-value
Intercept(β0) 92.56 4.95 <0.001
Sunday(βSun) 51.46 1.80 <0.001
Monday(βMon) 32.59 1.80 <0.001
Tuesday(βTue) 28.09 1.80 <0.001

Wednesday(βWed) 20.91 1.80 <0.001
Thursday(βThu) 24.75 1.79 <0.001
Friday(βFri) 0

Saturday(βSat) -7.31 1.79 <0.001
January(βJan) 0.20 2.68 0.942
February(βFeb) -0.93 2.67 0.729
March(βMar) 2.70 2.44 0.268
April(βApr) 0
May(βMay) -5.29 2.32 0.023
June(βJun) -5.17 2.77 0.062
July(βJul) -5.83 3.25 0.073

August(βAug) -7.75 3.43 0.024
September(βSep) -5.75 3.14 0.067
October(βOct) -5.43 2.65 0.041

November(βNov) -7.61 2.62 0.004
December(βDec) -3.83 2.67 0.151
Holiday+0(βH) -21.17 2.86 <0.001
Holiday+1(βH+1) 9.33 3.09 0.003
Holiday+2(βH+2) 4.83 3.08 0.117
Holiday+3(βH+3) 1.50 3.07 0.626
Holiday−1(βH−1) -17.25 3.10 <0.001
Holiday−2(βH−2) -1.56 3.11 0.616
Holiday−3(βH−3) -4.69 3.10 0.130

Max Temp.(βT−max) 0.45 0.22 0.042
Min Temp.(βT−min) 0.70 0.30 0.018

Precip.(βrain) 0.02 0.11 0.876
σ2 211.12

Table 4: Estimated coefficients for the full linear regression model with calendar and
weather variables in (9) in §4.3. (Friday and April are chosen as the base line for the
categorical variables day-of-week and month based on alphabetical order.)
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the most important ones. There are fewer patients the day before a holiday
and more patients the day after a holiday. We also see that both the max
and min daily temperatures have positive coefficients, while the precipitation
does not play an important role in the regression. From the regression, if both
the max temperature and the min temperature rise 10◦C, the daily arrival
totals will increase about 10. We conjecture that higher temperatures in the
mideast will increase the risk of being sick. How weather affects the ED
arrivals in different places in the world is an interesting question in general.

We make prediction using the test set, and the MSE is 234.33.

4.4. The SARIMAX Model
Though the model exploiting holiday and weather data in §4.3 has pretty

good results, it does not capture any internal dependence. When we look
at the residuals of final regression model in §4.3, as is shown in Figure 17
and 18, we can see that the residuals have an increasing trend and positive
autocorrelation structure. We conducted the Mann-Kendall trend test (see
[26, 27]) on the residuals and it strongly rejects the null hypothesis that the
series does not have a trend.

On the other hand, the SARIMA model we use in §4.2 does capture
internal dependence, but does not include any useful external information
such as the holiday and temperature factors that could improve the pre-
diction results. We now consider a SARIMAX model, which combines the
two approaches. In particular, it is an extended version of the SARIMA
model, includes both (seasonal and non-seasonal) AR and MA terms like the
SARIMA model and other independent variables.

To express the SARIMAX model clearly in a concise way, we introduce
the backshift (or lag) operator B, with Byt = yt−1, which is commonly used
in time series analysis. We also define the associated operators

ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · ·ϕpB

p,

Φ(B) = 1− Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps,

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q,

Θ(B) = 1 + Θ1B
s +Θ2B

2s + · · ·ΘQB
Qs,

∆ = 1−B,

∆s = 1−Bs, (11)

where ϕ(·)/Φ(·) is the non-seasonal/seasonal AR polynomial, θ(·)/Θ(·) is the
non-seasonal/seasonal MA polynomial and∆/∆s is the non-seasonal/seasonal
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Estimate Standard Error p-value
Intercept(β0) 92.83 4.76 <0.001
Sunday(βSun) 51.23 1.79 <0.001
Monday(βMon) 32.34 1.80 <0.001
Tuesday(βTue) 27.96 1.80 <0.001

Wednesday(βWed) 20.89 1.80 <0.001
Thursday(βThu) 24.83 1.80 <0.001
Friday(βFri) 0

Saturday(βSat) -7.43 1.79 <0.001
January(βJan) 0.29 2.53 0.908
February(βFeb) -0.86 2.53 0.734
March(βMar) 2.77 2.29 0.226
April(βApr) 0
May(βMay) -5.07 2.28 0.026
June(βJun) -4.94 2.69 0.067
July(βJul) -5.64 3.16 0.074

August(βAug) -7.54 3.34 0.024
September(βSep) -5.66 3.11 0.069
October(βOct) -5.13 2.64 0.053

November(βNov) -7.48 2.49 0.003
December(βDec) -3.72 2.59 0.152
Holiday+0(βH) -21.20 2.81 <0.001
Holiday+1(βH+1) 9.08 3.05 0.003
Holiday−1(βH−1) -17.15 3.05 <0.001

Max Temp.(βT−max) 0.44 0.22 0.044
Min Temp.(βT−min) 0.70 0.30 0.019

σ2 211.12

Table 5: Estimated coefficients for the selected linear regression model with calendar and
weather variables from (10) in §4.3. (Friday and April are chosen as the base line for the
categorical variables day-of-week and month based on alphabetical order.)
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Figure 17: The residuals of the regression model (10) in §4.3.

difference operator respectively. A SARIMA(p, d, q)(P,D,Q)s model can be
formally represented by

ϕ(B)Φ(B)∆d∆D
s yt = θ(B)Θ(B)ϵt,

where ϵt ∼ N(0, σ2) is a Gaussian white noise. If we allow external variables
to explain the mean of the transferred time series, then we get the SARIMAX
model

ϕ(B)Φ(B)∆d∆D
s yt = xTt β + θ(B)Θ(B)ϵt, (12)

where xt is the external variables and β is the corresponding coefficients. We
see that this can be viewed as a generalization of both the SARIMA model
and the ordinary linear regression model. See §6.6 of [24] for more about this
model.

Based on our analysis in §4.3, we directly use the variables we chose
there in (10) as external regressors. Then we conduct the same model selec-
tion procedure as we did in §4.2 based on AIC, and it turns out the model
SARIMAX(6, 1, 0)(0, 0, 2)7 is the best one. If we write it explicitly, it is

At = xTt β + At−1 +
6∑

i=1

ϕi(At−i − At−1−i) + ϵt +Θ1ϵt−7 +Θ2ϵt−14, (13)

where xt includes all the variables (except the constant term) in (10). We
see that the optimal model here is different from the final model in §4.2. In
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Figure 18: ACF and PACF of the residuals of the regression model (10) in §4.3.
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§4.2 we take a seasonal difference on the original time series while here we
take a nonseasonal difference. But both imply that the original time series
(daily arrival totals) has a long-term trend. The estimated coefficients by
maximum likelihood estimation are shown in Table 6. We also checked the
ACF and PACF of the residuals in Figure 19 and find that they no longer
have any significant autocorrelation structure.

Estimate Standard Error Estimate Standard Error
Sunday(βSun) 51.04 2.08 ϕ1 -0.90 0.03
Monday(βMon) 32.04 2.01 ϕ2 -0.90 0.04
Tuesday(βTue) 27.66 2.01 ϕ3 -0.84 0.05

Wednesday(βWed) 20.68 2.08 ϕ4 -0.81 0.06
Thursday(βThu) 24.77 1.72 ϕ5 -0.78 0.07
Friday(βFri) 0 ϕ6 -0.70 0.08

Saturday(βSat) -7.48 1.72 Θ1 -0.70 0.09
January(βJan) 1.01 4.00 Θ2 0.08 0.03
February(βFeb) -1.03 3.58 σ2 187.9
March(βMar) 2.12 2.81
April(βApr) 0
May(βMay) -5.71 2.67
June(βJun) -6.03 3.57
July(βJul) -5.92 4.23

August(βAug) -7.43 4.81
September(βSep) -6.54 4.97
October(βOct) -8.46 4.91

November(βNov) -11.44 4.79
December(βDec) -8.62 4.60
Holiday+0(βH) -20.23 2.64
Holiday+1(βH+1) 9.12 2.81
Holiday−1(βH−1) -16.31 2.81

Max Temp.(βT−max) 0.55 0.20
Min Temp.(βT−min) 0.62 0.28

Table 6: Estimated coefficients for the SARIMAX(6, 1, 0)(0, 0, 2)7 model in (13) from §4.4.
(Again Friday and April are chosen as the base line for the categorical variables day-of-
week and month based on alphabetical order.)

We apply our fitted SARIMAX model on the test set and find that test
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Figure 19: ACF and PACF of the residuals of the SARIMAX(6, 1, 0)(0, 0, 2)7 model as in
(13).
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MSE is 191.76, which is significantly better than both the SARIMA model
in §4.2 and the regression model with only external variables in §4.3.

4.5. A Neural Network Method
Finally, we consider predicting the daily arrival totals with an even more

flexible machine learning method, in particular, the multilayer perceptron
(MLP). We refer to Chapter 11 of [28] for the basic concepts of MLP and
to [29] for more on implementation issues. Here we only give a very briefly
introduction to assist readers who are not familiar with machine learning get
a rough idea about what we are doing.

Suppose that we have samples (xt, yt) ∈ (Rd,R), t = 1, 2, · · · , T , where
we want to use xt to predict yt, i.e. we think

yt = f(xt) + ϵ, (14)

for some unknown but determined function f and random error ϵ. If we take
f to be a linear function, then (14) is a classical linear regression model.
Usually, f could be a relatively complicated nonlinear function, more like
a black box. (Neural network models originally were inspired by trying to
abstract how the human brain works.)

For the basic MLP version of the neural network model that we use here,
we take f to be an iterated function, i.e., f = gl ◦ gl−1 ◦ · · · ◦ g1, where each
gi takes the form of

gi(x) = (ψ(bi1+x
Twi1), ψ(bi2+x

Twi2), · · · , ψ(bihi
+xTwihi

)), i = 1, 2, · · · , l,

with bij ∈ R and wij, j = 1, 2, · · · , hi are coefficients of the proper dimen-
sion to be determined and ψ(·) is usually an S-shape function called “the
activation function”. Common choices of ψ are the logistic function, the
hyperbolic tangent and the rectified linear unit. The key point is that the
non-linearity of ψ allows that f could approximate a very broad family of
functions. Within this MLP model, l is the number of layers and hi is the
number of neurons in the ith hidden layer. Each function ψ mimics a neuron
which can be ”activated” or not depending on the input and the feature that
the neuron can detect.

The training of a neural network (finding the best values for the large
number of coefficients) used to be an extremely challenging problem, but
significant progress has been made recently when general processing units
(GPU’s) or even more specialized hardware were developed to make the heavy
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computation feasible. Also some new optimization algorithms were invented
to speed up the training process, such as stochastic gradient decent. Usually
the hardest part of the traditional gradient-based optimization algorithm is
to compute the gradient. The main idea of stochastic gradient decent is
that since the form of objective function (usually a loss function we defined,
e.g., the training set MSE) is a summation of similar components, instead of
computing the full gradient, we can ”sample” a small portion of the terms in
the objective function and compute the gradient and use that to approximate
the full gradient. At the expense of some lost accuracy, the computation load
is greatly reduced.

Now we will specify the inputs, the activation function and other settings.
Given that At is the number of arrivals on day t, we aim to predict At given
(At−1, At−2, · · · , At−s) as well as other variables, just as in previous sections,
where s is a parameter to be determined. Given s, we will have 923 − s
samples (each sample is a pair of input variable and output variable) in the
training set. We use all the candidate external variables introduced in §4.3
together with 28 days history (i.e. s = 28) as input. We assume that the
number of hidden layers (d) can be 1 or 2. Since the final dimension of
the input data is 57 = 28(days of history arrivals) + 3(weather variables) +
7(holiday indicators) + 7(week indicators) + 12(month indicators), and the
training sample size is about 900, we avoid more hidden layers or hidden
neurons, because that could cause over-fitting.

In summary, we tried models with a single hidden layer and let the num-
ber of hidden neurons (h) range from 2 to 10. We then selected the best
according to cross-validation error. In each round of training we randomly
set 10% of the training samples to be the validation set. We also add an
l2 regularization to each hidden layer in order to prevent over-fitting. We
used the “Adam Optimizer” stochastic gradient decent algorithm. We let
the batch-size be 1 and stop the iteration if the validation loss is not im-
proved in 5 iterations. Then we record the validation loss (which is mean
square error for the validation set).

The training results are reported in Table 7. Since the optimization
algorithm and the cross-validation set are both random, we repeated the
training of each model 20 times and computed the average cross-validation
MSE and its standard deviation. We see that a simple MLP with 2 hidden
neurons actually works best. So we use it by repeating the optimization 10
times and picking the one with the minimum cross validation MSE.

Then we test it using the test set, and the test MSE is 265.84. Figure 20
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compares the predicted number of arrivals to the actual data. We see that the
MLP approach for prediction performs approximately as well as the dynamic
model in §4.1 and the SARIMA model in §4.2, but not as well as the other
two models, even though we included temperature and holiday data with
MLP, as in SARIMAX. (The MLP performs even worse if we omit the extra
holiday and temperature regressors.) This may be due to the low dimension
of our problem and/or the relatively small sample size. Usually such flexible
machine learning methods require a large dataset for training. Compared to
the number of parameters that need to be estimated, our sample size is still
relatively small.

h mean cross validation MSE (standard deviation)
2 247.1 (12.68)
3 278.5 (21.68)
4 279.0 (27.27)
5 284.1 (23.30)
6 277.5 (29.12)
7 275.0 (22.44)
8 272.4 (24.91)
9 272.4 (14.44)
10 269.2 (17.19)

Table 7: Validation loss for the single hidden layer MLP with different numbers of hidden
neurons.

4.6. Summary for All 5 Methods
In this section we summarize the results for the five methods we consid-

ered in this section. Table 8 reports the training MSE and the test MSE
for these five methods as well as for our original Gaussian model. It shows
that the SARIMAX model outperforms the others, while the regression with
calendar and weather variables is second best. Interestingly we see that the
dynamic prediction model, SARIMA model and the MLP evidently do not
perform better than our original Gaussian model with a single day-of-week
factor. This indicates that the model we proposed in [6] actually does capture
the main feature of the arrival process.

However, upon further study, we also discovered that the good result for
our original model is not robust. When we looked at the larger dataset before
we noticed and disregarded the abnormal Lebanon war period, we split our
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Figure 20: A comparison of the daily arrival totals in the test set to the predicted numbers
using the MLP model in §4.5.

dataset from the beginning of 2007 (i.e. we used 01/01/2004 to 12/31/2006
as training set and 01/01/2007 to 10/31/2007 as test set). Then our original
model performs badly with a test MSE larger than 300, while the dynamic
prediction model and the SARIMAX model keep their test error level at
262.94 and 186.50 respectively. These are shown in the final column of Table
8.

In conclusion, for forecasting the daily arrival totals one day ahead, we
find that the SARIMAX model is best, with about 25% improvement in test
MSE. Since the mean absolute percentage error (MAPE) is often reported,
e.g., as in [10]), we also computed the test MAPE for the SARIMAX, which
is 8.4%.

4.7. Forecasting More Than One Day Ahead
A natural question is whether we can accurately forecast the daily arrival

totals for 2 days, 3 days or even weeks ahead using our method. First, we
remark that according to our models, the prediction results will stay the same
for the original model and, as long as we are predicting less than one week
ahead, the dynamic model, because we simply use the average daily arrival
totals on the same day of week in history as our prediction. However, we
expect the MSE to increase if we use the SARIMAX model to predict more
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Method Training MSE Test MSE Test MSE*
Original 248.9 264.6 300.3
Dynamic 248.3 269.9 262.9
SARIMA 221.5 263.4 -
Regression

with calendar
and weather var.

206.0 234.3 -

SARIMAX 181.6 191.8 186.5
MLP 205.7 265.8 -

Table 8: Summary of the training and test results for the five methods to predict the
daily arrival totals. Test MSE* is the test error when we train and test the method with
a different splitting point.

days ahead and, indeed, Table 9 shows that it is the case. Table 9 shows
the test MSE if we use our SARIMAX model to predict 1 to 7 days ahead.
The MSE for 1 day ahead is a little different from Table 8 because we throw
the last week away in order to predict 7 days ahead. We see that the MSE
indeed increases as expected, but is not dramatically bad.

However, we need to point out again that there is a tricky flaw in the
result. Because we only have historical actual weather record (not weather
forecast, which we should use when make predictions), the input of weather
data is better than would have in practice. This should not be a big issue
if we consider 1 or 2 days ahead, but over longer time intervals the weather
prediction is likely to degrade significantly. Hence, the actual prediction
capability of SARIMAX for many days ahead should not be as good as
reported here.

# of days ahead 1 2 3 4 5 6 7
Test MSE 193.2 197.1 198.1 202.7 204.2 208.0 211.0

Table 9: Test MSE for predicting several days ahead using the SARIMAX model (13) in
§4.4.

5. Real-Time Predictor for the Occupancy Level

In this section we propose a real-time procedure for predicting the hourly
occupancy level, exploiting the predictions for daily arrival totals in §4. We
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start by predicting the occupancy level for 1 hour ahead. Afterward, we show
that the method can be extended to more hours ahead, but losing predictive
power as the time interval increases. For this occupancy prediction, we ex-
ploit the elapsed service times of the patients initially in the system. Thus,
an important referrence point is the average LoS, which is about 4 − 4.5
hours. Clearly the value of information about current patients will dissipate
as the time interval increases to 4 hours and beyond.

5.1. Predicting Occupancy Level One Hour Ahead
We use the same discrete-time framework as we used in [6, 30, 31] since

we assume both the arrival rate and the LoS distribution are fixed within an
hour. Let Yk,j denote the number of patients that arrived in the kth discrete
time period (DTP, in our case one time period represents an hour) and had
length-of-stay (LoS) larger or equal to j hours, i.e. they left at or after time
period k + j. We assume all the arrivals occurred at the beginning of each
time period and departures occurred at the end of the time period and we
count the number of patients (occupancy level) in the middle of each time
period. (See [30] and [31] for discussion about such counting assumption.)
Under this rule, the occupancy level in DTP k is

Qk =
∞∑
j=0

Yk−j,j. (15)

Our goal is to approximate Qk, assuming that we are given all the arrival
and departure epochs for each patient that occurred before DTP k.

We built a stochastic model for the patients flow in [6]. As reviewed in §2,
that model describes the arrival process and the time-varying LoS distribu-
tions quite well. Given the daily arrival totals, hourly arrival rate curve and
the LoS distributions for each hour, we can easily calculate the occupancy
level of the system. But how can we predict the occupancy level for next
hour given all the history up to now? We propose a real-time predictor as
follow.

To predict Qk, first we observed that we can use finite summation to
approximate the infinite sum, because in reality we can always view the
LoS distributions as bounded. Actually only 3.60% of all the patients had
LoS greater or equal to 13 hours. Hence we divided Qk into two parts and
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estimated them separately, letting

Qk =
12∑
j=0

Yk−j,j +
∞∑

j=13

Yk−j,j ≡
12∑
j=0

Yk−j,j +Rk,13. (16)

Note that Yk,0 is the total number of arrivals in DTP k. Since we assume
the arrival process can be modeled as a NHPP within a day given the daily
arrival totals (model M2), given that we have already got the predicted daily
arrival totals in Section 4, we only need to estimate the arrival rate function
within a day. We use the empirical hourly arrival rate curve by combining
the arrivals on the same day-of-week of the latest 10 weeks as our estimated
arrival rate for a day because as we shown in §3. We estimated the LoS
distribution similarly by using the empirial distribution of the same hour
from the latest 10 weeks, because the LoS distributions also change slowly.

To conveniently express our estimator, we re-index our time period from k
to a three-element tuple (w, d, h), where w ∈ {0, 1, 2, · · · } represents the week
index, d ∈ {0, 1, 2, 3, 4, 5, 6} is the day-of-week index and h ∈ {0, 1, 2, · · · , 23}
is the hour index. There is a one-to-one relation between these indices k and
the tuples (w, d, h), so that we will use them exchangeably in the following
part of the paper. We also let (w, d, h)±x denote add/minus x time periods
(hours) to time period (w, d, h). Let Â(w,d) be the predicted daily arrival
totals of week w, day-of-week d, and let A(w,d) ≡

∑23
h=0 Y(w,d,h),0 to be the

true daily arrival totals. Then we let the estimator for Y(w,d,h),0 be

Ŷ(w,d,h),0 ≡ Â(w,d) ∗
λ̂(w,d,h)∑23
h=0 λ̂(w,d,h)

= Â(w,d) ∗
∑10

i=1 Y(w−i,d,h),0∑10
i=1A(w−i,d)

, (17)

where λ̂(w,d,h) ≡ (1/10)
∑10

i=1 Y(w−i,d,h),0 is the estimated hourly arrival rate
for DTP (w, d, h).

To estimate Yk−j,j for j = 1, 2, · · · , 12, note that we can observe Yk−j,j−1

for j = 1, 2, · · · , 12 at time period k − 1, i.e. the number of patients that
arrived at time period k − j and still stayed in the system at time period
k−1. Let Fk be the information filtration; i.e., Fk denotes all the observable
arrival and LoS information up to time k. Since in M3 we model the LoSs
as i.i.d. random variables given the arrival time, the conditional expectation
of Yk−j,j can be expressed as the product of Yk−j,j−1 and the corresponding
survival probability of each patient, which is

E(Yk−j,j|Fk−1) = Yk−j,j−1∗Pk−j(W ≥ j|W ≥ j−1) ≡ Yk−j,j−1∗pk−j,j−1, (18)
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where W is a random variable following the LoS distribution of customers
that arrived at time period k− j, and pk−j,j−1 is the probability of a patient
that arrived at time period k − j and did not leave the system up to time
period (k − j) + (j − 1) = k − 1 will still be there at time period k. Again,
we use the latest 10 weeks history data to estimate that probability. We
estimated p(w,d,h),j by

p̂(w,d,h),j ≡
∑10

i=1 Y(w−i,d,h),j+1∑10
i=1 Y(w−i,d,h),j

, j = 0, 1, · · · , 11. (19)

After combining these components, the estimator for Y(w,d,h)−j,j is

Ŷ(w,d,h)−j,j = Y(w,d,h)−j,j−1 ∗ p̂(w,d,h)−j,j−1, j = 1, 2, · · · , 12. (20)

Finally, we need to estimate Rk,13, the number of patients in DTP k that
had already been in the system for greater or equal to 13 hours. Instead
of estimating Rk,13 directly, we actually estimate rk,13 ≡ Rk,13/Qk = 1 −
(
∑12

j=0 Yk−j,j)/Qk by the history data of the latest 10 weeks. Under the other
indexing scheme, this can be written as

r̂(w,d,h),13 ≡ 1−
∑10

i=1

∑12
j=0 Y(w−i,d,h)−j,j∑10

i=1Q(w−i,d,h)

. (21)

The reason we did like this is that we only used Yi,j and Qi for i ≤ k and
j = 0, 1, · · · ,min{12, k − i}, which means we only need to keep a finite
dimensional record of the Y matrix. Of course the number we chose here
(12) is somewhat arbitrary, we could also keep record of Yk,j for j up to 11
or 13, say. However, in making this choice, we note that smaller values will
cause us to waste some information we have, while larger values will likely
produce inaccurate estimates of pk,j for large j’s.

Combining the estimation for each part in (17), (19), (20) and (21), we
get the estimator for Q(w,d,h) as

Q̂(w,d,h) ≡
∑12

j=0 Ŷ(w,d,h)−j,j

1− r̂(w,d,h),13

. (22)

We use the prediction results of daily arrival totals by
SARIMAX(6, 1, 0)(0, 0, 2)7 as we introduced in §4.4 for Â(w,d) in (17). Since
we need 10 weeks data to estimate the arrival rates and the LoS distributions
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before we start predicting the occupancy level, we make the hourly occupancy
prediction from 12 p.m. Oct.25, 2006, which is 10 weeks after the start of
test set, to 11 p.m. Oct.31, 2007, i.e. 8928 hours or equivalently 372 days.

The MSE of 1-hour-ahead real-time occupancy prediction is 14.65 (MAPE
10.59). For comparison, we also apply two other simple prediction methods
applied to the same test period. The first alternative method is to directly
use the current hour occupancy level as the prediction for the next hour’s
occupancy level (i.e. Q̂(w,d,h) = Q(w,d,h−1)), and the MSE of this method
is 23.04. The second method is to use the average of 10 weeks’ observed
occupancy levels at the same hour in a week before the one we want to
forecast as predictor (i.e. Q̂(w,d,h) = 1/10

∑10
i=1Q(w−i,d,h)), which parallels

what we do for the daily arrival totals in §4.1. In this second method, the
MSE is 51.91. So we make a 30% improvement of the first naive prediction
method and even better to the second. Figure 21 plots part of the prediction
compared to the actual values, showing that the prediction curve is quite
close to the true curve.
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Figure 21: Predicted occupancy level one hour ahead compared to the true occupancy
level.

5.2. Predicting Occupancy Level More Than One Hour Ahead
The real-time occupancy predictor for one hour ahead in the last section

can easily be generalized to estimate the occupancy level two or more hours
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in the future. But as we predict farther into the future, we encounter two
problems: (i) the relevance of the elapsed times of current patients will de-
crease and (ii) the number of estimators we must use will increase. For both
reasons, we expect that the error will increase. We take predicting 2 hours
ahead as an example to show how to construct the predictor; others can be
done in the same way.

Recall that

Q(w,d,h) =
12∑
j=0

Y(w,d,h)−j,j +
∞∑

j=13

Y(w,d,h)−j,j ≡
12∑
j=0

Y(w,d,h)−j,j +R(w,d,h),13

as in (16). Since we are predicting 2 hours ahead, we assume that we are
now at time (w, d, h) − 2. The estimator for Y(w,d,h)−0,0 is the same as in
(17). However, we can no longer apply (20) to estimate Y(w,d,h)−j,j because
Y(w,d,h)−j,j−1 is not available to us as we assume we are now at (w, d, h)− 2.
Analogous to (18), for j ≥ 2, we have

E(Y(w,d,h)−j,j|F(w,d,h)−2) = Y(w,d,h)−j,j−2 ∗ P(w,d,h)−j(W ≥ j|W ≥ j − 2)

≡ Y(w,d,h)−j,j−2 ∗ p(w,d,h)−j,j−2,2, (23)

where we use p(w,d,h),j,l to denote the probability that a patient arrived at
time period (w, d, h) will stay for at least another l hours given that the
patient has been in the system for j hours. Similar to (19), we estimate
p(w,d,h),j,l by

p̂(w,d,h),j,l ≡
∑10

i=1 Y(w−i,d,h),j+l∑10
i=1 Y(w−i,d,h),j

. (24)

Hence, for Y(w,d,h)−j,j, j = 2, 3, · · · , 12, we use

Ŷ(w,d,h)−j,j = Y(w,d,h)−j,j−2 ∗ p̂k−j,j−2,2, (25)

as the estimator. For Y(w,d,h)−1,1, since it is in the future, we use the product
of the predicted total arrivals and the corresponding survival probability,;
i.e., we use (19) for j = 1 and replace Y(w,d,h)−1,0 on the right hand side by
Ŷ(w,d,h)−1,0. Finally, we use the same equation (22) to get the estimator for
Q(w,h,d).

When making predictions for more than 1 hour ahead, we need to use
predictions for daily arrival totals for two or more days ahead. This can be
seen from equation (17). When we predict the hourly total arrivals, we need
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the forecast of daily arrival totals for that day. However, we can make 1 day
ahead daily volume prediction only after 00:00 on that day. For example,
assume that we are now at 23:00 on day k and we want to predict the
occupancy level for 00:00-01:00 on day k + 1. According to our real-time
prediction procedure, we need to know both Âk and Âk+1. Note that here
Âk is the 1-day-ahead daily arrival total prediction while Âk+1 must be 2-
days-ahead daily arrival total prediction because we have not observed the
arrivals in 23:00-24:00 on day k so that we don’t know Ak yet and the last
observed daily arrival total is Ak−2.

Table 10 shows the MSE for predicting the occupancy level more than
1 hour ahead for up to 6 hours. For comparison, Table 11 shows the cor-
responding MSE by using rolling history occupancy average using n weeks
history.

# of hours ahead 1 2 3 4 5 6
MSE 14.65 25.21 35.05 66.33 113.59 160.16

Table 10: MSE for predicting the occupancy several hours ahead.

n 1 2 3 4 5
MSE 82.24 64.29 57.43 55.74 54.92
n 6 7 8 9 10

MSE 53.92 53.10 52.78 52.52 51.91

Table 11: MSE for predicting the occupancy by the rolling averages of n weeks.

Table 10 shows that beyond 4 hours ahead, the error is larger than the
MSE 51.91 obtained by using rolling history occupancy average using n =
10 weeks history. For another comparison, the MSE is only 58.83 if we
predict the occupancy level by the observed occupancy level two hour ago.
Hence, we conclude that our real-time occupancy predictor outperforms the
rolling average predictor for forecasting from 1 to 3 hours in the future, but
not longer. That is roughly what we expect, given that the mean LoS for
all patients is about 4 hours. Beyond that time interval, the current state
information will not provide much information. At the same time, we are
required to make too many estimations in the real-time estimation procedure,
which will make it perform worse than the rolling average estimator, which
only removes noise but does not use the recent system state.
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6. Conclusions
In this paper we investigated forecasting methods for the daily arrival

totals and their application to predict the hourly occupancy level based on the
framework we proposed [6] and its refinement. For that purpose, we exploited
much more data, which enabled us to detect both (i) a long-term trend in
both the arrival process and the LoS distributions and (ii) dependence in the
daily arrival totals. For daily arrival totals, in §4 we studied five prediction
methods, including rolling averages, highly structured time series models and
a neural network model. We found that the SARIMAX time series model
exploiting both exogenous variables (temperature and holiday effects) and
internal dependence has the best predicting power. It suggests that some
local related data might be useful for predicting the ED arrivals. It should
be able to further improve the estimator if more useful data are available.

In §5 we also proposed real-time predictors for hourly occupancy lev-
els, which take account of the current system state. We found that our
new method is superior to the rolling-average prediction for forecasting oc-
cupancy level in the near future (≤ 3 hours). We think that these occupancy
predictors have great potential to help improve operational decisions.

There are many opportunities for future research. One direction is to
study the advantage of systematically including additional information. For
our current study, we only used the arrival and departure epochs of the
patients. The dataset of the ED itself does not contain much more beyond
that. Only gender, admission decision, age, the hospitalization duration (if
any) and total number of departments visited by the patient are available.
For predicting future arrivals, it is possible that some of the arrivals to the
ED are actually known in advance, because they are actually scheduled.

For predicting future occupancy levels, dividing the patients into different
groups base on age might be helpful to have better estimation of their length
of stay. There will also likely be much more relevant information available in
the future. It may be possible to know the patient’s medical problem, and the
patient status (severity). Information about the the internal hospital wards
also could be relevant. Even without extra information, further progress may
be possible in the context of our study. Because the data we use are readily
available and our methods are generalizable, others may be able to make
improvements or validate our findings on the same or other datasets.
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