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ABSTRACT

This paper reviews the Fourier-series method for calculating cumulative distribution functions

(cdf’s) and probability mass functions (pmf’s) by numerically inverting characteristic functions,

Laplace transforms and generating functions. Some variants of the Fourier-series method are

remarkably easy to use, requiring programs of less than fifty lines. The Fourier-series method can

be interpreted as numerically integrating a standard inversion integral by means of the trapezoidal

rule. The same formula is obtained by using the Fourier series of an associated periodic function

constructed by aliasing; this explains the name of the method. This Fourier analysis applies to the

inversion problem because the Fourier coefficients are just values of the transform. The

mathematical centerpiece of the Fourier-series method is the Poisson summation formula, which

identifies the discretization error associated with the trapezoidal rule and thus helps bound it. The

greatest difficulty is approximately calculating the infinite series obtained from the inversion

integral. Within this framework, lattice cdf’s can be calculated from generating functions by

finite sums without truncation. For other cdf’s, an appropriate truncation of the infinite series can

be determined from the transform based on estimates or bounds. For Laplace transforms, the

numerical integration can be made to produce a nearly alternating series, so that the convergence

can be accelerated by techniques such as Euler summation. Alternatively, the cdf can be

perturbed slightly by convolution smoothing or windowing to produce a truncation error bound

independent of the original cdf. Although error bounds can be determined, an effective approach

is to use two different methods without elaborate error analysis. For this purpose, we also

describe two methods for inverting Laplace transforms based on the Post-Widder inversion

formula. The overall procedure is illustrated by several queueing examples.

Key Words: computational probability; numerical inversion of transforms; characteristic
functions; Laplace transforms; generating functions; Fourier transforms; cumulative distribution
functions; calculating tail probabilities; numerical integration; Fourier series; Poisson summation
formula; the Fourier-series method; the Gaver-Stehfest method.



1. Introduction

Probability distributions of interest in queueing models can often be determined in the form of

transforms. It is widely recognized that the transforms are useful to do asymptotic analysis, e.g.,

to calculate moments and to determine the asymptotic behavior of tail probabilities. However,

the transforms are also useful for calculating numerical values of the cumulative distribution

functions (cdf’s) and probability mass functions (pmf’s) by numerical inversion.

Numerical inversion is most important when a transform cannot be analytically inverted by

manipulating tabled formulas of special cases (as in Oberhettinger [94]), but numerical inversion

may even be convenient when a direct expression for the cdf is available. To illustrate, consider

the familiar example of the cdf, say W(t), of the steady-state waiting time before beginning

service in the M/G/1 queue. The celebrated Pollaczek-Khintchine formula expresses the

Laplace-Stieltjes transform (LST) of this cdf as

Ŵ(s) =
0
∫
∞

e − st dW(t) =
1 − ρ[ 1 − Ĝ(s) ]/τs

1 − ρ_ __________________ , (1.1)

where ρ is the traffic intensity and Ĝ(s) is the LST of the service-time cdf G(t) with mean τ; see

p. 200 of Kleinrock [75]. Since [ 1 − Ĝ(s) ]/τs is the LST of G e (t) = τ − 1

0
∫
t

[ 1 − G(y) ] dy,

the stationary-excess cdf associated with G(t), the transform Ŵ(s) is easily inverted analytically

(using ( 1 − y) − 1 =
n = 0
Σ
∞

y n), yielding

W(t) = ( 1 − ρ)
n = 0
Σ
∞

ρn Ge
n * (t) , t ≥ 0 , (1.2)

where Ge
n * (t) is the n-fold convolution of the cdf G e (t), with Ge

0* (t) = 1, t ≥ 0. However, in

general it is not easy to evaluate (1.2), so that numerical inversion of (1.1) remains a viable

alternative for obtaining numbers.
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Despite the many transform results for probability distributions describing queues and other

applied probability models, and despite the recent interest in computational probability, there is

surprisingly little discussion of numerical transform inversion in the queueing and applied

probability literature. The only applied-probability-textbook discussion we are aware of is

pp. 73-74 of Kobayashi [76], which is a brief account of the Fourier-series method to be reviewed

here.

Of course, transforms are being inverted numerically, but numerical inversion seems to be

considered difficult. Even in the last five years, strong statements have been made about the

difficulty of transform inversion. For example, P. G. Harrison [54] states:

‘‘Whilst being of value in itself, for example as a source of the moments of the required
distribution, the Laplace transform is inadequate for problems which require estimates for
related probabilities.’’

Kwok and Barthez [79] write that

‘‘The inversion of the Laplace transform is well known to be an ill-conditioned problem.
Numerical inversion is an unstable process and the difficulties often show up as being highly
sensitive to round-off errors.’’

Platzman, Ammons and Bartholdi [99] write that

‘‘The standard inversion formula is a contour integral, not a calculable expression.’’

They also state that

‘‘These methods provide convergent sequences rather than formal algorithms; they are
difficult to implement (many involve solving large, ill-conditioned systems of linear equations
or analytically obtaining high-order derivatives of the transform) and none includes explicit,
numerically computable bounds on error and computational effort;’’

see p. 137 of [99].

While there are grains of truth in some of these remarks, they seriously misrepresent the true

state of affairs. The remarks seem to be based on extensive experience showing that a poor

method of numerical inversion can lead to difficulties. For example, the method of Bellman,

Kalaba and Lockett [10], which is based on approximately converting the inversion problem to

that of solving a system of linear algebraic equations, is notorious for numerical difficulties (at
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least by conventional implementations); e.g., see Gautschi [48] and Varah [121].

We contend that numerical transform inversion can be remarkably easy to understand and

perform (e.g., on a small computer using a program of less than 50 lines.) To demonstrate how

easy the numerical inversion can be, we display a BASIC program that implements a variant of

the Fourier-series method called EULER to calculate the M/G/1 waiting-time cdf W(t) by

inverting (1.1). Actually, the program is written in the public-domain high-precision UBASIC by

Kida [74], which is convenient for doing numerical mathematics on a personal computer with an

Intel 86 chip; see Neumann [92].

Insert Algorithm EULER here (or slightly later)

UBASIC permits complex numbers to be specified conveniently and it represents numbers and

performs computations with up to 100-decimal-place accuracy. However, ordinary BASIC,

FORTRAN or C with double precision would suffice. Indeed, we also have versions of our

algorithms in C + +, which also permits complex numbers to be specified conveniently. For a

detailed explanation of the algorithm EULER and further discussion, see §7 and Example 9.2. To

quickly see several variants of the Fourier-series method, go directly to §7. Brief accounts of the

Fourier-series method for numerically inverting Laplace transforms and generating functions of

cdf’s are also contained in Abate and Whitt [6], [7].

In this paper we do five things: (1) explain the basic ideas behind the Fourier-series method,

(2) present a few specific variants of the Fourier-series method, one of which is the algorithm

EULER, (3) review the literature related to the Fourier-series method, (4) present some different

alternative numerical inversion methods to serve as checks and (5) illustrate numerical inversion

applied to several queueing examples.

One might expect that one or more of these activities would be unnecessary because of the

existing literature, but that does not seem to be the case. Unfortunately, the literature on
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numerical transform inversion is scattered and confusing. There tends to be a separate literature

associated with each kind of transform and there is a bewildering multitude of methods; e.g., see

the book by Krylov and Skoblya [78] and the bibliography by Piessens [96] and Piessens and

Dang [97]. In addition, many different kinds of functions are considered, so that complications

not associated with probability distributions arise. In this paper we primarily restrict attention to

the Fourier-series method applied to functions that are cdf’s of probability distributions on the

real line. (In probability applications it is typically known that the transform is a transform of a

probability distribution, so that there is nothing extra to verify.) The Fourier-series method is not

restricted to this class of functions, but this restriction helps in the error analysis. It is also is a

convenient simplification, implying that Laplace transforms and Fourier transforms can be

regarded as characteristic functions, as discussed in Ch. XV of Feller [43], Ch. 6 of Chung [21]

and Lukacs [80]. As much as possible, we try to exploit probabilistic structure, so that the

method will be easy for probabilists to understand.

The algorithm EULER above for inverting Laplace transforms was developed in 1968-1972

by Dubner and Abate [40] and Simon, Stroot and Weiss [110]. We use the name EULER

primarily because the algorithm exploits Euler summation, but also because Laplace himself

traced the beginnings of the Laplace transform back to Euler; see Deakin [33]. An essentially

equivalent algorithm was developed in Japan in 1989 by Hosono [58], [59], but the derivation

was quite different. In Japan Hosono popularized this method, which he calls the Fast Inversion

of Laplace Transforms (FILT), by his book [60] in 1984 and subsequent papers [61] and [62].

(We learned about the early references [58] and [59] from Dimitris Bertsimas, who successfully

applies the method to queueing problems in Bertsimas and Nakazato [12]. We learned about

[60]-[62] from T. Hosono after we sent him a draft of our paper.)

Variants of the Fourier-series method for numerically inverting characteristic functions were

developed in 1960–1975 by Bohman [13], [14], [15], Davies [30] and Schorr [108]. The
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Fourier-series method was previously applied to Fourier integrals, Laplace transforms and other

integrals by Koizumi [77], Fettis [44], De Balbine and Franklin [34]. However, new papers on

the Fourier-series method keep appearing, typically without referring to the relevant literature,

without indicating that the method is a Fourier-series method, and without identifying the basic

ideas behind the method (the trapezoidal rule and the Poisson summation formula); see the

literature review in §15. Of course, there also are other good inversion methods, but we primarily

restrict attention to the Fourier-series method. Our purpose is to expose the basic ideas of one

method, and thereby illustrate that numerical transform inversion, by any of several good

methods, is not difficult to understand and perform.

With the Fourier-series method, it is possible to do a careful error analysis, which is what

much of this paper is about. For nice problems, the required computation to find an

approximation with prescribed accuracy is not great, even for a small computer. For example, we

give a convenient algorithm with a simple error bound for numerically inverting generating

functions of lattice distributions in §5. However, for hard problems, the required computation to

find an approximation with prescribed accuracy can be prohibitive. This difficulty is primarily

(but not completely) due to the available error bounds not being tight; i.e., the actual error

associated with a given computation is often much less than the error bounds indicate. However,

there is a genuine difficulty if the cdf is not lattice but the cdf or its derivative has jumps, because

the approximating cdf is always a trigonometric polynomial, and thus is continuously

differentiable. One way to cope with this difficulty is to perturb the original function slightly in a

controlled manner (to assure that you are satisfied with values of the perturbed function), so that

the perturbed function is continuous (and continuously differentiable, if desired) and the required

computation to achieve prescribed accuracy becomes manageable; see §6. Convolution

smoothing also can improve the quality of the computation for smooth cdf’s, as we illustrate in

the examples.
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It is often convenient (and sometimes necessary) to perform the computation without being

absolutely certain that the desired accuracy will be (or has been) achieved. However, it is

usually possible to estimate the error, and thus the required computation, using asymptotic

analysis. It is also standard to perform successive refined computations until only negligible

improvement is seen. Of course, with these last two techniques there is no guarantee that desired

accuracy has been achieved. Doing both estimates based on asymptotic analysis and successive

computations with refinements is obviously much safer than either one alone. Finally, using two

very different methods is almost a guarantee.

Indeed, following Davies and Martin [29], we strongly recommend using two different

methods. While much of the paper is devoted to the error analysis that is possible with the

Fourier-series method, we propose systematically using two very different procedures, without

complete error analysis. (However, two different methods are not needed for generating

functions; see algorithm LATTICE-POISSON in §5.) Assuming that the two procedures agree to

the prescribed accuracy, we can safely stop. If the two procedures do not agree, then we can try

other procedures or apply convolution smoothing. This approach also has the advantage of

helping to catch other errors besides shortcomings in the algorithms for difficult functions. Using

two different procedures may seem obvious, but we are not aware of any paper where this

approach was followed.

To provide specific alternatives for inverting Laplace transforms that are very different from

the Fourier-series method, we describe two methods related to the Post [101]–Widder [125]

inversion formula ((8.1) below), which is based on differentiation instead of integration. Our first

alternative method for inverting Laplace transforms is the Gaver [49]–Stehfest [113] method.

Unlike the Fourier-series method, the Gaver-Stehfest method illustrates some of the numerical

difficulties referred to by Kwok and Barthez [79] and Platzman, Ammons and Bartholdi [99]

above, because it often requires high numerical precision (beyond the standard double precision).
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Our second alternative method is an enhancement of an algorithm of Jagerman [67]. In

particular, we apply the Stehfest [113] acceleration procedure to obtain greater accuracy.

Although it is not advertised as such, the Jagerman [67] algorithm is in fact also a Fourier-series

method, because it employs the Poisson summation formula and leads to a trigonometric

polynomial. However, since it starts with the Post-Widder formula, the overall procedure is quite

different from our other Fourier-series methods. Hence, it serves as a genuine alternative to our

other methods. Moreover, with the Stehfest acceleration, it produces good accuracy without

requiring high precision. We also mention other candidate procedures in our literature review in

§15.

Organization of the Paper

The rest of this paper is organized as follows. In § 2 we define several transforms and review

their basic properties. In § 3 we present the basic inversion integrals. In § 4 we specify the

proposed procedure for numerical integration, which is the trapezoidal rule. In § 5 we discuss the

Poisson summation formula, which identifies the discretization error associated with the

trapezoidal rule, justifies using the relatively primitive trapezoidal rule in this context, and

explains why the procedure is called a Fourier-series method. The Poisson summation formula

typically produces a complete solution to the inversion problem for generating functions of lattice

probability distributions or bounded sequences of real numbers, because the associated inversion

integral is over a finite interval, so that the Poisson summation formula produces a (manageable)

finite sum. However, for non-lattice distributions we are left with an infinite series after applying

the Poisson summation formula. We end §5 by briefly discussing the extension to higher

dimensions, i.e., numerically inverting transforms of multivariate functions.

In § 6 we discuss the problem of approximately calculating the infinite series obtained from

the trapezoidal rule (for nonlattice distributions). In addition to simple truncation, in §6 we
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discuss convolution smoothing (windowing) and alternative summation methods to accelerate

convergence. The algorithm EULER displayed above is based on Euler summation of a nearly

alternating series. In § 7 we briefly summarize a few variants of the Fourier-series method, one of

which is EULER. In §8 we describe the two methods for inverting Laplace transforms related to

the Post-Widder inversion formula.

In Sections 9-14 we discuss queueing examples. We begin in §9 by discussing the M/G/1

waiting-time cdf above. In §10 we discuss the time-dependent mean of reflecting Brownian

motion (RBM), which is studied by Abate and Whitt [2] to gain insight into the transient behavior

of queues. In §11 we illustrate the lattice function variants of the Fourier-series method by

considering the number of customers served in an M/M/1 busy period. In §12 we discuss

convolutions of many exponential distributions, which are of interest for calculating sojourn time

distributions in open Markovian queueing networks; see Harrison [54]. In §13 we discuss

renewal functions to illustrate that the numerical inversion procedures are not restricted to cdf’s or

probability density functions. In §14, to show the limitations of the numerical inversion methods,

we discuss transforms of distributions such as a single point mass that are especially difficult to

invert numerically. For most of the examples here, we have alternative exact expressions to use

to evaluate the accuracy of the transform inversion.

Finally, in §15 we review the literature, giving special emphasis to the Fourier-series method.

2. The Transforms: Definitions and Basic Properties

Let X be a real-valued random variable with a cdf F, i.e., F(t) = P(X ≤ t). The

characteristic function (cf) of X (or F) is the complex-valued function of a real variable

φ(u) ≡ φ X (u) ≡ E(e iuX ) ≡
− ∞
∫
∞

e iutdF(t) ≡
− ∞
∫
∞

cos ut dF(t) + i
− ∞
∫
∞

sin ut dF(t) , (2.1)

where i ≡ √ − 1 is one of the imaginary roots of x 2 + 1 = 0 and e ix = cos x + i sin x, e.g., see
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Chapter 6 of Chung [21], Chapter 15 of Feller [43], Lukacs [80] and Oberhettinger [94].

We will use only elementary properties of the complex numbers. Recall that a complex

number z can be expressed as z = a + ib where a and b are real numbers. The complex number

z = a + ib has real part Re (z) = a, imaginary part Im(z) = b, conjugate z
_

= a − ib and

modulus z = (a 2 + b 2 )1/2 , so that Re (z) = (z + z
_
)/2 and Im(z) = (z − z

_
)/2i. Since the

cf is defined in terms of the exponential e iut , we have the simple expressions

φ
_

(u) = φ( − u) , Re (φ) (u) =
2

φ(u) + φ( − u)_ _____________ and Im(φ) (u) =
2i

φ(u) − φ( − u)_ _____________ (2.2)

for all u. We frequently use the fact that Re (φ) (u) and cos tu are even functions of u, while

Im (φ) (u) and sin tu are odd functions of u; e.g., Re (φ) ( − u) = Re (φ) (u) and

Im (φ) ( − u) = − Im (φ) (u). By the Cauchy-Schwarz inequality, p. 498 of Feller [43],

φ(u) ≤ 1 = φ( 0 ) for all u . (2.3)

For applications, including the inversion formulas, a basic property is the expression for the cf

of the sum of independent random variables (the convolution of cdf’s); if X 1 , and X 2 are

independent, then

φ X 1 + X 2
(u) = φ X 1

(u) φ X 2
(u) for all u . (2.4)

Another key property is the argument switch between F and φ; the tail behavior of F (φ) is

closely related to the smoothness of φ (F); see pp. 511-514 of [43]. Thus, in § 5 we use the tail

of F to bound the error associated with a discretization of φ, and in § 6 we use the smoothness of

F to bound the tail of φ. When F is not sufficiently smooth initially, we can exploit (2.4) and

perform a convolution to obtain a smoother perturbed cdf that is sufficiently close to F.

If the cdf F has a density f (i.e., if F is absolutely continuous with respect to Lebesgue

measure, so that F(t) =
− ∞
∫
t

f (s) ds for all t), then of course
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φ(u) =
− ∞
∫
∞

e iutf (t) dt , (2.5)

which is a minor modification of the Fourier transform of f; i.e., φ( − u) is a standard form of the

Fourier transform of f and, in general, the Fourier-Stieltjes transform of F. If the cdf F

concentrates on the integers, then the cf φ(u) coincides with the generating function or z-

transform, after making the change of variables z = e iu . Similarly, if F is concentrated on the

positive real line, then φ(iu) is the Laplace transform of f and the Laplace-Stieltjes transform of

F (where in general u is regarded as a complex variable).

Of course, these transforms are not restricted to probability distributions. For a function f on

the positive real line (not necessarily a probability density), it is often convenient to work with the

Laplace transform

f̂ (s) = ∫
0

∞
e − stf (t) dt , (2.6)

where s is a complex variable. When we work with Laplace transforms of cdf’s, we typically

calculate the complementary cdf F c (t) ≡ 1 − F(t) by numerically integrating the Laplace

transform of F c (t), i.e.,

F̂
c
(s) = ∫

0

∞
e − stF c (t) dt . (2.7)

For a sequence of real numbers {p k : k ≥ 0 } (not necessarily a probability mass function), it

is often convenient to work with the generating function

G(z) =
k = 0
Σ
∞

p k z k . (2.8)

In this paper we focus on transforms of functions on the real line, but there are corresponding

multivariate transforms of functions on R k . The Fourier-series method can also be applied to

invert these multivariate transforms; see §5.
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3. Inversion Integrals

In this section we review the basic inversion integrals. We first consider bounded continuous

densities, then real-valued functions on the positive real line, cdf’s and probability mass functions

of lattice distributions. For additional discussion, see Chung [21], Feller [43] and Lukacs [80].

Bounded Continuous Densities

The most familiar inversion formula expresses a density f at t in terms of its cf φ via an

integral; see p. 509 of Feller [43] or p. 155 of Chung [21]. (This is a variant of the inversion

formula for Fourier transforms; or course f need not be a density function.) If φis integrable,

then the cdf F is absolutely continuous with a bounded continuous density f and

f (t) =
2π
1_ __

− ∞
∫
∞

e − itu φ(u) du for each t . (3.1)

Feller’s proof of (3.1) using the Parseval relation is particularly revealing. Since f (t) is real,

we can write (3.1) directly as the integral of a real-valued function of a real variable, i.e.,

f (t) =
2π
1_ __

− ∞
∫
∞

Re [e − itu φ(u) ] du =
π
1_ _

0
∫
∞

[ cos tu Re (φ) (u) + sin tu Im(φ) (u) ] du .(3.2)

Real-Valued Functions on the Positive Real Line

The standard inversion integral for the Laplace transform f̂ (s) in (2.6) is the Bromwich

contour integral, which also can be expressed as the integral of a real-valued function of a real

variable by choosing a specific contour. Letting the contour be any vertical line s = a such that

f̂ (s) has no singularities on or to the right of it, see pages 4 and 148 of Doetsch [36], we obtain
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f (t) =
2π i
1_ ___

a − i∞
∫

a + i∞

e st f̂ (s) ds =
2π
1_ __

− ∞
∫
∞

e (a + iu) t f̂ (a + iu) du

=
2π
e at
___

− ∞
∫
∞

( cos ut + i sin ut) f̂ (a + iu) du

=
2π
e at
___

− ∞
∫
∞

[Re( f̂ (a + iu) ) cos ut − Im( f̂ (a + iu) ) sin ut] du

=
π

2e at
_ ____

0
∫
∞

Re( f̂ (a + iu) ) cos ut du (3.3)

= −
π

2e at
_ ____

0
∫
∞

Im( f̂ ) (a + iu) sin ut du . (3.3a)

If f is a bounded continuous probability density, then it suffices to let a = 0, and (3.3) reduces

to (3.2), but having a > 0 is convenient for controlling the error in the numerical integration; see

(5.25)–(5.30) below. Interpreted differently, increasing a has the advantage of moving the

contour further away from the singularities in the left halfplane.

To derive (3.3) from (3.2) in the case f is nonnegative (which is not required in general), let

g(t) = e − atf (t)/2A for t ≥ 0 and g(t) = g( − t) for t < 0 ,

where

A =
0
∫
∞

e − atf (t) dt ,

so that g is an even function on the whole line. The parameter a is introduced via the damping by

e − at. Since g is even, φ g = Re(φ g ). Since the conjugate of f̂ (s) is f̂ (s
_
),

φ g (u) = Re(φ g ) (u) =
A

Re(φ f ) (u + ai)_ _____________ =
A

Re( f̂ ) (a − iu)_ ____________ =
A

Re( f̂ ) (a + iu)_ ____________ .

By (3.2), assuming that φ gis integrable,
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2A
e − atf (t)_ _______ = g(t) =

2πA
1_ ____ ∫

− ∞

∞
Re[e − tu φ g (u) ] du

=
2πA

1_ ____ ∫
− ∞

∞
Re(φ g ) (u) cos tu du =

πA
1_ ___

0
∫
∞

Re( f̂ ) (a + iu) cos tu du .

Similarly, we can derive (3.3a) from (3.2).

CDFs

As indicated on p. 511 of Feller [43], we can apply (2.4) and (3.1) to obtain corresponding

inversion formulas for cdf’s. Let f x be the density of the convolution of F with the cdf of a

uniform distribution on [ − x, x]. Since sin (ux)/ ux is the cf of a uniform distribution on [ − x, x],

f x (t) =
2x

F(t + x) − F(t − x)_ __________________ =
2π
1_ __

− ∞
∫
∞

e − iut φ(u)
ux

sin ux_ _____ du (3.4)

provided that φ(u)/ u is integrable.

An inversion formula directly for F(t), due to Gil-Palaez [51], which does not seem to be so

useful for numerical inversion, is

F(t) =
2
1_ _ −

π
1_ _

0
∫
∞

[ cos ut Im(φ) (u) − sin ut Re (φ) (u) ]
u
du_ __ . (3.5)

We obtain a further simplification if F concentrates on [ 0 , ∞) with F( 0 ) = 0. By making

the change of variables t = 0 and x = t in (3.4), we obtain

F(t) =
π
2_ _

0
∫
∞

Re (φ) (u)
u

sin tu_ _____ du . (3.6)

For (3.4)-(3.6) to be valid, we require that F be continuous. Indeed, just as with (3.1), given

that the modulus of the cf appearing in the integral on the right in (3.4) is integrable, the left side

of (3.4) is continuous.

More general inversion formulas are given in § 6.2 of Chung [21]; see Exercise 10, p. 159, for
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the generalization of (3.5). For general cdf’s, the integrand in (3.4) need not be absolutely

integrable, but the integral always exists in a conditional sense, i.e., the total integral can be

represented as the proper limit as T → ∞ of the integrals over [ − T , T]. In particular, for any cdf

F and any time points t 1 < t 2 ,

F(t 2 ) − F(t 1 ) −
2

[F(t 2 ) − F(t 2− ) ]_ _______________ +
2

[F(t 1 ) − F(t 1− ) ]_ _______________ =

(3.7)

T → ∞
lim

2π
1_ __

− T
∫
T

iu
e − iut 1 − e − iut 2

_ ____________ φ(u) du .

Given (3.1), (3.4) and (3.7) can be obtained by integrating over t.

Lattice Distributions and Sequences of Real Numbers

If the cdf F attaches mass p k to the point x + kλ, where p k ≥ 0 and Σ p k = 1, then

φ(u) =
k = − ∞
Σ
+ ∞

p k e i(x + kλ) u and p k =
2π
λ_ __

0
∫

2π/λ

φ(u) e − i(x + kλ) u du , (3.8)

so that the inversion integral concentrates on the bounded interval [ 0 , 3π /λ]; see p. 511 of

Feller [42]. We can also calculate terms p k of a sequence of real numbers {p k : k ≥ 0 } by

representing the derivative of the generating function G(z) in (2.8) as the Cauchy contour integral

p k =
2π i
1_ ___ ∫

z k + 1

G(z)_ ____ dz . (3.9)

Upon making the change of variables z = re iu , we obtain

p k =
2πr k

1_ ____ ∫
0

2π
G(re iu ) e − iku du

=
2πr k

1_ ____ ∫
0

2π
[Re(G(re iu ) ) cos ku + Im(G(re iu ) ) sin ku] du

=
πr k

2_ ___ ∫
0

π
Re(G(re iu ) ) cos ku du (3.10)

=
πr k

2_ ___ ∫
0

π
Im(G(re iu ) ) sin ku du . (3.10a)
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Just as we obtained (3.3) from (3.2), we can also obtain (3.10) from (3.8), without assuming that

{p k } is a probability mass function, by considering the sequence {p k r k : k ≥ 0 } and letting

x = 0, λ = 1 and G(z) =
k = 0
Σ
∞

p k z k . Just as with the a in (3.3), the r in (3.10) is convenient to

control the error in the numerical integration; see (5.35)–(5.42) below.

4. Numerical Integration

The functions given by (3.1)–(3.10) can be calculated by performing a numerical integration.

Any available numerical integration routine can be applied (which partly explains why there are

so many numerical inversion methods), but of course the numerical integration is complicated by

the integrals being defined over the infinite domain [ 0 , ∞), except for (3.8)–(3.10); see Ch. 3 of

Davis and Rabinowitz [32]. We propose to approximately calculate the integrals by truncating

and applying the trapezoidal rule. The trapezoidal rule is often thought to be a very primitive

procedure, but it turns out to be surprisingly effective in this context. In particular, it turns out to

be better than familiar alternatives such as Simpson’s rule for our inversion integrals.

The Trapezoidal Rule

The trapezoidal rule approximates the integral of a function g over the bounded interval [a , b]

by the integral of the piecewise linear function obtained by connecting the n + 1 evenly spaced

points g(kh), 0 ≤ k ≤ n, where h = (b − a)/ n; i.e.,

a
∫
b

g(u) du ∼∼ T h (g) ≡ T h (g; a , b) ≡ h


 2

g(a) + g(b)_ ___________ +
k = 1
Σ

n − 1
g(a + kh)





; (4.1)

see p. 51 of Davis and Rabinowitz [32]. Formula (4.1) applies also when a = − ∞ or b = + ∞

with obvious modifications.

When the integrand g has a bounded continuous second derivative, the standard exact

expression for the error from (4.1) using step size h is
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e d ≡ e d (g; a , b , h) ≡



 a

∫
b

g(t) dt − T h (g)





= h 2

12
(b − a)_ ______ g ′ ′ (t 0 ) , (4.2)

where t 0 is some point satisfying a < t 0 < b, which leads to the associated error bound

e d ≤ h 2

12
(b − a)_ ______ sup {g ′ ′ (t): a < t < b} ; (4.3)

see p. 32 of [27]. When the integrand g is a cf φ of a cdf with a finite second moment m 2 , we can

combine (4.3) with the bound φ′ ′ (u) ≤ φ′ ′ ( 0 ) = m 2; see (2.3).

Since the trapezoidal rule is one of the most primitive numerical integration procedures, its

use may seem surprising. However, it tends to work well for periodic and other oscillating

integrands, because the errors tend to cancel; indeed, the realized errors can be substantially less

than from Simpson’s and other less primitive rules; see pp. 134-142 of Davis and

Rabinowitz [32], Kendall [72], Fettis [44], De Balbine and Franklin [34] and Rice [106]. The

advantage of the trapezoidal rule for periodic functions is demonstrated by improved error

bounds. For periodic functions with continuous and bounded k th derivative, the error from using

the trapezoidal rule over the interval of one period is bounded by Ah k as opposed to Bh 2 in (4.3);

see p. 137 of [32]. Moreover, we can apply the Poisson summation formula to obtain a

convenient representation of the discretization error associated with the trapezoidal rule, enabling

us to bound and estimate the error much more easily and precisely than from (4.2); see § 5.

We now apply (4.1) to treat a cdf F concentrating on [ 0 , ∞). From (3.6), we obtain

F(t) =
π
2_ _

0
∫
∞

Re (φ) (u)
u

sin tu_ _____ du

∼∼ F h (t) ≡
π
ht_ __ +

π
2_ _

k = 1
Σ
∞

k
Re (φ) (kh) sin (kht)_ _________________

∼∼ F h,N (t) ≡
π
ht_ __ +

π
2_ _

k = 1
Σ
N

k
Re (φ) (kh) sin (kht)_ _________________ , (4.4)
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where e d ≡ e d (F , t , h) ≡ F(t) − F h (t)is the discretization error for the cdf F evaluated at t

with step size h and e t ≡ e t (F , t , h , N) ≡ F h (t) − F h,N (t)is the truncation error resulting

from considering only the first N terms of the infinite series. The appropriate choice of h and N

can be based on trial and error, but also on error estimates and bounds, as we show in Sections 5

and 6. We call the algorithm based on (4.4) POISSON, because the Poisson summation formula

characterizes the discretization error; see §5.

Remarks (4.1) By (3.7), the integral in (4.4) is valid, at least in the limiting sense of (3.7),

provided that t is a continuity point of F. Moreover, it is valid at points of discontinuity t if we

replace F(t) by [F(t) + F(t − ) ]/2. With this proviso, F h,N (t) → F(t) as h → 0 and N → ∞.

The problem is only to choose suitable h and N.

(4.2) Note that the final approximation F h,N (t) in (4.4) is a trigonometric polynomial

of order N and period 2π / h (p. 6 of Tolstov [119]); i.e., the argument t appears only inside the

sine function, so that Re (φ) (u) has to be evaluated only N times, no matter how many values of t

are considered. Of course, this is primarily important for conceptual clarity. It indicates that

numerical integration by the trapezoidal rule in this context reduces to a Fourier-series method.

For further explanation, see §5.

(4.3) To apply (4.4), we need to evaluate the real part of the complex-valued function

φ(u), for u = kh, 1 ≤ k ≤ N, but with a language such as UBASIC or FORTRAN this will be

done by the computer, provided that we have an explicit expression for the cf φ. For example, we

have such an explicit expression for the M/G/1 waiting-time cf given (1.1) and the cf of the

service-time distribution; this is illustrated in § 9. However, in many probability applications an

explicit expression for the transform is not available. For example, the Kendall functional

equation for the M/G/1 busy-period distribution (p. 212 of Kleinrock [75]) provides only an

implicit expression for the cf; i.e., for each complex number s we must solve an equation to find
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f̂ (s). The Gaver-Stehfest procedure in §8 is convenient for this purpose, because it uses the

transform values only at real arguments. However, for this example experience indicates that it is

possible to iteratively solve for f̂ (s) even with complex arguments. (More work needs to be done

on transforms defined via functional equations.)

We now apply the trapezoidal rule to the Laplace transform inversion formula in (3.3). We

obtain

f (t) =
π

2e at
_ ____

0
∫
∞

Re( f̂ ) (a + iu) cos ut du

∼∼ f h (t) ≡
π

he atRe( f̂ ) (a)_ ___________ +
π

2he at
_ _____

k = 1
Σ
∞

Re( f̂ ) (a + ikh) cos (kht) . (4.5)

We can now eliminate the cosine terms in (4.5) and produce nearly an alternating series by letting

h = π/2t. Letting a = A /2t at the same time, we obtain

f h (t) =
2t

e A /2
_ ____ Re( f̂ ) (

2t
A_ __ ) +

t
e A /2
_ ____

k = 1
Σ
∞

( − 1 ) k Re( f̂ )


 2t

A + 2kπ i_ ________




, (4.6)

which is (21) of Dubner and Abate [40]. Formula (4.6) is the basis for the program EULER in

§1; see §7 below. In (5.27) below we characterize the discretization error associated with (4.6).

If instead of (3.3) we work with the complementary form (3.3a), and instead of the trapezoidal

rule apply the midpoint rule, then we obtain

f (t) =
t

e A /2
_ ____

k = 1
Σ
∞

( − 1 ) k Im( f̂ )


 2t

A + ( 2k − 1 ) π i_ ______________




, (4.6a)

which serves as the basis for Hosono’s [58], [59], [60] FILT algorithm. (The use of the midpoint

rule was first suggested by Davies [30]; see (7) there.) In particular, (4.6a) is (1) on p. 20 of [60].

For an overview of the FILT, see p. 47 of [60]. In (5.30) below we characterize the discretization

error associated with (4.6a).
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Remark (4.4) Another mathematical explanation for the good performance of the trapezoidal rule

is via the Whittaker cardinal function; see Stenger [114] and p. 215 of [32]. Given a complex-

valued function f of a complex variable z and a positive step size h, the cardinal function is

C( f , h) (z) =
k = − ∞

Σ
∞

f (kh)
(π / h) (z − kh)

sin ( (π / h) (z − kh) )_ _________________ . (4.7)

For very nice functions (entire functions such that f ∈ L 2 (R) and f (z) ≤ C e πz/ h),

f (z) = C( f , h) (z) and

− ∞
∫
∞

f (t) dt = h
k = − ∞

Σ
∞

f (kh) , (4.8)

i.e., the trapezoidal rule is exact. Consequently, it is possible to get very good error bounds for

trapezoidal rule approximations of appropriately nice functions. (For a large class of functions

that are analytic in a strip about the real line, the overall error is O(e − √ N ) when there are N terms

and h = O( 1/√ N ).)

Sections 5 and 6 below are devoted to the discretization and truncation errors, respectively.

For both errors, the probabilistic structure is helpful. Now we consider ways to calculate the

finite sum in (4.4) efficiently. Obviously this issue only becomes relevant when we must perform

many calculations.

Computational Efficiency for the Finite Sums

If we want to calculate a cdf F(t) via (4.4) for many values of t, then we can improve the

computational efficiency by exploiting the periodic property of the sine function in (4.4). For

example, suppose that we wish to calculate F at the n + 1 evenly spaced values j t / n for

j = 0 , 1 , . . . , n. If we let the step size be h = π/ mt for some integer m, then

h j kt / n = j kπ / mn, so that sin (h j kt / n) has period at most 2mn as a function of k. Hence,
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F( j t / n) =
πn
h j t_ ___ +

π
2_ _

k = 1
Σ

2mn − 1
α k sin



 mn

π j k_ ____




− e d (4.9)

for j = 0 , 1 , . . . , n, where

α k =
l = 0
Σ
∞

2mnl + k
Re (φ) ( ( 2mnl + k) h)_ ___________________

∼∼
l = 0
Σ

N /2mn

2mnl + k
Re (φ) ( ( 2mnl + k) h)_ ___________________ , 0 ≤ k ≤ 2mn − 1 . (4.10)

Applying (4.4) directly involves order nN evaluations, multiplications and additions, whereas

(4.9) and (4.10) involves order 2mn 2 + N evaluations, multiplications and additions.

Moreover, the finite sum in (4.9) is the discrete sine transform (the imaginary part of the

discrete Fourier transform) of {α k : 0 ≤ k ≤ 2mn − 1 } in (4.10), so that F( j t / n) can be

efficiently calculated for all j, 0 ≤ j ≤ 2mn − 1, for large mn (when n ∼∼ 2mn and n is chosen to

be a power of 2) by using a Fast Fourier Transform (FFT); see pages 51 and 357-368 of Rabiner

and Gold [102], Cooley and Tukey [25], Cooley, Lewis and Welch [22], [23], [24] and Dubner

and Abate [40]. (This reduces the computational burden from n 2 to n log 2 n.) In addition to

being computationally efficient when n is large, an FFT may be convenient because an FFT

program is readily available. FFTs are even in the hardware (chips).

5. The Poisson Summation Formula

We now focus on the discretization error associated with the trapezoidal rule. As Fettis [44]

observed in 1955, the trapezoidal rule for approximating certain integrals can be analyzed and

justified by applying the Poisson summation formula. With the Poisson summation formula we

are able to systematically control the discretization error. The Poisson summation formula itself

is a classical result. It is interesting that it has a prominent place in Ramanujan’s notebooks; see

page 5 and Chapters 13 and 14 of Berndt [11]. The essential idea is to approximate the given

function by a periodic function that can be represented by its Fourier-series. This explains the
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name ‘‘Fourier-series method.’’ In the signal processing and time-series literature, this is called

‘‘aliasing;’’ e.g., pp. 26-28 of Rabiner and Gold [102].

Probability Densities

Starting with a function f (t), which we will regard as a probability density, the idea is to

construct the periodic function

f p (t) =
k = − ∞

Σ
+ ∞

f (t + 2πk / h) , (5.1)

of period 2π / h, which usually can be made suitably close to f (t) by choosing h small. We then

represent the periodic function f p by its complex Fourier series (which we assume converges to

f p (t))

f p (t) =
k = − ∞

Σ
∞

c k e ikht , (5.2)

where c k is the k th Fourier coefficient of f p , which can be expressed in terms of the cf φ of f, i.e.,

c k =
2π
h_ __

− π/ h
∫

π/ h

f p (t) e − ikht dt =
2π
h_ __

− π/ h
∫

π/ h

k = − ∞
Σ
∞

f



t +

h
2kπ_ ___





e − ikht dt

=
2π
h_ __

− ∞
∫
∞

f (t) e − ikht dt =
2π
h_ __ φ( − kh) , (5.3)

with the interchange of summation and integration in (5.3) being justified by Fubini or Tonelli.

(For background on Fourier-series, see Champeney [20], Tolstov [119] and Natanson [91].)

Combining (5.1)-(5.3), we obtain the Poisson summation formula

k = − ∞
Σ
∞

f



t +

h
2πk_ ___





=
2π
h_ __

k = − ∞
Σ
∞

φ(kh) e − ikht . (5.4)

Then we can write
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f (t) =
2π
h_ __

k = − ∞
Σ
∞

φ(kh) e − ikht − e d

=
2π
h_ __ +

π
h_ _

k = 1
Σ
∞

[Re (φ) (kh) cos kht + Im (φ) (kh) sin kht] − e d , (5.5)

where

e d ≡ e d (t) =

k ≠ 0
k = − ∞

Σ
∞

f



t +

h
2πk_ ___





(5.6)

Note that the sum in (5.5) is just the trapezoidal rule approximation (4.1) applied to the inversion

integral (3.1), so that e d in (5.6) is an explicit expression for the discretization error associated

with the trapezoidal rule approximation. Below we will see that we can obtain much better error

bounds from (5.6) than from (4.2) and (4.3). Moreover, as noted in Remark 4.2, the

approximating finite sums are trigonometric polynomials.

The rest of this subsection through Proposition 5.2 below is primarily devoted to the rigorous

justification of (5.2) and (5.4) and so might well be omitted upon first reading. (However, (5.9)

below is a useful generalization of (5.4).) A nice account for probabilistic applications involving

continuous probability densities is given on pp. 626-631 of Feller [43]; we begin with it. In order

to exploit the nonnegativity and integrability properties of densities (see his Theorem 1 on

p. 628), Feller starts with the cf φ and forms an associated periodic function φ p . Assuming that

φis integrable, so that φ is a cf of a bounded continuous density f, we form the periodic function

(of period h)

φ p (u) =
k = − ∞

Σ
∞

φ(u + kh) . (5.7)

Assuming that the series in (5.7) converges to a continuous function, we obtain the Poisson

summation formula by representing φ p by its complex Fourier-series using (3.1), as in (5.2)-(5.4)

above, i.e.,
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φ p (u) ≡
k = − ∞

Σ
∞

φ(u + kh) =
h

2π_ __
k = − ∞

Σ
∞

f ( 2kπ / h) e i2kπu / h ; (5.8)

see (5.6) on p. 630 of [43] (there h = 2λ); i.e., ( 2π / h) f ( 2kπ / h) is the k th Fourier coefficient of

φ p and the Fourier-series converges uniformly to φ p . By applying (5.8) to the density f (t + y),

we obtain the alternate form

k = − ∞
Σ
∞

φ(u + kh) e − it(u + kh) =
h

2π_ __
k = − ∞

Σ
∞

f


 h

2kπ_ ___ + t



e i 2kπu / h ; (5.9)

see (5.9) on p. 633 of [43]. The extra variables in (5.9) make it convenient for further derivations.

Setting u = 0 in (5.9), we obtain (5.4), which is the form we mainly apply.

For continuous densities it is usually possible to directly verify the sufficient conditions on φ

from [43], but not all distributions have continuous densities. For example, even an exponential

density is not continuous at 0, and indeed, for an exponential density with mean m, the cf is

φ(u) = ( 1 − m iu) − 1 , so that φ(u) = ( 1 + m 2 u 2 ) − 1/2 is not integrable. Hence, the

validity of (5.5) has not been established in general.

Obviously, in general the series in (5.1) need not even converge; e.g., it is possible to have a

bounded continuous density with f (t + 2πk / h) = 1 for infinitely many k (let f be the indicator

function of the union of intervals [t + ( 2πk / h) − a k , t + ( 2πk / h) + a k ], k ≥ 1, where

a k ≤ π/ h and
k = 1
Σ
∞

2a k = 1). Even when the series in (5.1) converges uniformly to a continuous

limit, as will be the case in our applications to cdf’s below when the cdf is continuous, the

Fourier-series in (5.2) need not converge in the usual sense. However, this is a classical difficulty

for Fourier-series which has been studied extensively. There are three ways to resolve this

difficulty: (1) require that f satisfy stronger conditions which imply that the Fourier-series

converges and (5.2) is valid, (2) perturb the density f by convolution smoothing so that the new

density satisfies the conditions or (3) change the form of the summation of the Fourier-series in
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(5.2). (These last two approaches turn out to be closely related; see § 6.)

For directly establishing convergence and equality in (5.2), we can apply classical criteria;

e.g., see Chapter 3 of Tolstov [119]. (Note that f p in (5.1) is integrable over the interval of one

period as well as periodic.)

Proposition 5.1. Let g be a periodic function such that gis integrable over an interval of one

period. If g has only finitely many discontinuities and has left and right derivatives everywhere,

then the Fourier series of g converges pointwise to [g(t + ) + g(t − ) ]/2 at all t.

Remark (5.1) It is significant that the convergence in Proposition 5.1 is not uniform in the

neighborhood of a point of discontinuity. Moreover, at a point of discontinuity there is the

important Gibbs phenomenon; see Ch. 9 of Carslaw [18], p. 88 of Rabiner and Gold [102] and

Foster and Richards [46]. In particular, there are systematic undershoots and overshoots in the

neighborhood of such a point that approach a constant c times the value of the jump. The

constant c is

c = π − 1 ∫
π

∞
x − 1 sin x dx = 0. 2811/π ∼∼ 0. 09 .

This means that the sequence of graphs of the approximants approach the graph of the given

function in the Hausdorff metric if and only if the graph of the given function is completed by

adding a vertical line at each point of discontinuity, where this vertical line extends above the

upper limit and below the lower limit by about 0.09 times the value of the jump there.

Convergence and equality in (5.2) can be established with weaker conditions if we change the

form of summation of the Fourier-series; see Chapter 6 of [119]. For example, Proposition 5.1

remains valid without any condition on the derivatives if we use Cesa `ro convergence (arithmetic

means). It is also important to note that convergence is a local property; i.e., the conclusions

above are valid at t if the conditions on g hold in some open interval containing t.
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Finally, we can also apply criteria involving the Fourier coefficients; pp. 91, 100 of [119].

These conditions differ only slightly from Feller’s [43].

Proposition 5.2. (a) If
k = 1
Σ
∞

(Re(φ) (kh) + Im(φ) (kh)) < ∞, then ( 5. 2 ) is valid and the

Fourier-series converges uniformly.

(b) If Re(φ) (kh) and Im(φ) (kh) are eventually nonnegative and decrease to 0

as k → ∞, then ( 5. 2 ) is valid and the Fourier-series converges for any t, except t = 2πk / h.

CDFs on the Positive Real Line

In most probability applications we are more interested in cdf’s than densities, because

probabilities of intervals are usually of primary interest. When there is negligible difference

between two cdf’s, we are usually content to consider the two distributions equivalent. This is

useful because we can make large changes in a density in the neighborhood of a point while

producing only a minor change in the corresponding cdf. Focusing on cdf’s is also attractive

because cdf’s have nice properties (monotonicity, boundedness and more smoothness) that make

them easier to calculate by numerical inversion.

As Bohman [14] observed, the Poisson summation formula applies very nicely to a cdf F

concentrating on the positive half line. When we apply the Poisson summation formula, we

obtain both the trapezoidal rule formula (4.4) and the discretization error associated with

inversion integral (3.6), which provides the basis for algorithm POISSON. In general (without

assuming F( 0 − ) = 0), we can apply (5.5) with (3.4) and then set t = 0 and x = t to obtain

F(t) − F( − t) =
π
h_ _

k = − ∞
Σ
∞

Re(φ) (kh)
kh

sin kht_ ______ − e d

=
π
ht_ __ +

π
2h_ __

k = 1
Σ
∞

Re(φ) (kh)
kh

sin kht_ ______ − e d , (5.10)

where
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e d ≡ e d (t) =

k ≠ 0
k = − ∞

Σ
∞ 




F



 h

2kπ_ ___ + t




− F


 h

2kπ_ ___ − t









. (5.11)

Alternatively, we can apply the Poisson summation formula directly with the function

F(t) − F( − t) to obtain the aliased periodic function F(t) − F( − t) + e d (t) with period 2π / h

and (5.10). (Of course, to obtain (5.10) this way we need to calculate the Fourier coefficients as

in (5.3).)

If, in addition, F( 0 − ) = 0 and 0 < t ≤ π/ h, then F(t) = F(t) − F( − t) and (5.10)

becomes (4.4) plus its discretization error. Moreover, the discretization can be conveniently

bounded above and below by

0 ≤ e d =
k = 1
Σ
∞ 




F



 h

2kπ_ ___ + t




− F


 h

2kπ_ ___ − t









≤ F c


 h

2π_ __ − t




, (5.12)

where F c (t) = 1 − F(t).

Note that the aliased function F(t) + e d (t) on [ 0 , π / h] is related to F(t) in a different way

than f p (t) is related to f (t) in (5.1). To visualize the aliased function (which is actually

represented by the series), it is perhaps helpful to look at the complementary cdf F c (t), which

converges to 0 as t → ∞; then the aliased function is

Fp
c (t) = F c (t) −

k = 1
Σ
∞

F c


 h

2kπ_ ___ − t




+
k = 1
Σ
∞

F c


 h

2kπ_ ___ + t




.

The function Fp
c (t) for t ∈ [ 0 , π / h] can thus be thought of as the sum over k, with alternating

sign, of the function Fp
c over the subintervals [kπ / h , (k + 1 ) π / h), with the function flipped over

(Fp
c (kπ / h + t) replaced by Fp

c ( (k + 1 ) π / h − t) ) for odd k.

Since F is a cdf, it is easy to see that the conditions of Proposition 5.1 are satisfied for the

periodic function in (5.1) associated with the density f x (y) in (3.4), which justifies (5.10), when F
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is absolutely continuous (has a density), when F is a discrete cdf concentrating on finitely many

points, or when F is a mixture of these two kinds of cdf’s. Moreover, the discrete component can

have countably many jumps provided that all but finitely many occur at the points ky for k

integers, and h is chosen so that 2π / h is an integral multiple of y. Then the periodic function will

have only finitely many discontinuities on the interval [ − π/ h , π / h]. (We rule out the relatively

pathological discrete cdf’s with infinitely many jumps irregularly spaced and the singular

continuous cdf’s; see § 1.3 of Chung [21].)

In this case, F(t) is approximated by applying the trapezoidal rule (4.1) to the inversion

integral (3.6) with step size h, which yields (4.4). Since e d ≥ 0, the infinite series in (4.4) is

always an upper bound for F(t). Moreover, the discretization error e d is bounded above by the

simple tail probability F c ( ( 2π / h) − t). Hence, the discretization error is relatively easy to

bound and estimate. In particular, the required step size to achieve a prescribed discretization

error ε is

h = 2π /(t + u ε ) ≥ π/ u ε , where F c (u ε ) = ε and 0 ≤ t ≤ u ε . (5.13)

If we want to evaluate F for t throughout the interval [ 0 , π / h], then we should set t = π/ h in

(5.13), so that u ε = π/ h and h = π/ u ε .

Note that the error bound in (5.12) is typically much better than the standard error bound

associated with the trapezoidal rule in (4.3). For example, if F c (t) ≤ e − µt , t ≥ 0, for some

µ > 0, then e d (F , t , h) ≤ e µte − 2µ π/ h from (5.12), so that e d is of order e − 2µ π/ h , whereas from

(4.3) we obtain only that e d is at most of order h 2 . Moreover, unlike ( 4. 3 ), the discretization

error bound in ( 5. 12 ) is independent of the length of the interval of integration.

It can happen that the step size h prescribed by (5.13) is very small, so that the resulting

computation is daunting. This difficulty occurs when the tail probabilities decay slowly; this

difficulty can typically be overcome by considering a damped function, as in the subsection after
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the next. From the perspective of the contour integral considered there, this corresponds to

moving the contour to the right further away from singularities in the left halfplane.

CDFs on the Whole Real Line

Most probability applications seem to involve cdf’s on the positive real line, for which §5.2

applies. However, with a simple modification, (5.10) also applies to cdf’s on the whole line. It

suffices to shift the cdf to the right (adding a constant y to the random variable or replacing F(t)

by F(t − y)) until F( 0 − ) becomes suitably small, and then shift the cdf back after the inversion

has been done. Then F( − t) in (5.10) becomes part of the error and, from (5.11),

e d ≤ F(t − ( 2π / h) ) + F c ( ( 2π / h) − t). It typically will be easier to work with the original

cf on the whole line multiplied by e iuy, but it is also possible to work with the cf of the shifted

distribution restricted to the positive real line (the conditional distribution given that it is

nonnegative), provided that this new cf can be determined.

Alternatively, we can apply (5.5) with an analog of (3.4) to obtain

F(t) − F(t − y) =
2π
1_ __

− ∞
∫
∞

φ(u)
iu

e iuy − 1_ _______ e − iut du

=
2π
h_ __

k = − ∞
Σ
∞

φ(kh)
ikh

e ikh(y − t) − e − ikht
_ ______________ − e d

=
2π

hg( 0 )_ _____ +
π
h_ _

k = 1
Σ
∞

g(kh) − e d , (5.14)

where g( 0 ) = y,

g(u) =
u

Re(φ) (u)_ ________ [ sin u (y − t) + sin ut] +
u

Im(φ) (u)_ ________ [ cos u (y − t) − cos ut] (5.15)

and
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e d ≡ e d (t) =
k = 1
Σ
∞ 




F



 h

2kπ_ ___ + t




− F


 h

2kπ_ ___ + t − y









+
k = 1
Σ
∞ 




F



 h

− 2kπ_ _____ + t




− F


 h

− 2kπ_ _____ + t − y









. (5.16)

If y ≤ 2π / h, then the discretization error e d is bounded above by the sum of two simple tail

probabilities, i.e.,

e d ≤ F c


 h

2π_ __ + t − y




+ F


 h

− 2π_ ____ + t




. (5.17)

Formula (5.14) is valid subject to essentially the same qualifications as (5.10). Note that (5.14)-

(5.17) reduce to our direct application of (5.10) above when we let y = 2t.

To illustrate how we can apply (5.17), suppose that we wish to calculate F(t) within ε for a

given t. Let l ε and u ε be numbers such that F(l ε ) ≤ ε/4 and F c (u ε ) ≤ ε/4. If t ≤ l ε , let

F(t) ∼∼ 0; if t ≥ u ε , let F(t) ∼∼ 1. Henceforth, assume that l ε < t < u ε . For t given, let

y = t − l ε and h =
u ε − l ε

2π_ _______ , (5.18)

so that

y < u ε − l ε = 2π / h , t − y = l ε ,
h

2π_ __ + t − y = u ε ,
h

− 2π_ ____ + t < l ε ,

(5.19)
F(t − y) ≤ ε/4 and e d ≤ ε/2 .

Hence,






F(t) −


 2

hg( 0 )_ _____ + h
k = 1
Σ
∞

g(kh)









≤ max {F(t − y) , e d } ≤ ε/2 (5.20)

for g in (5.15). Hence, we obtain F(t) to within ε when we truncate the sum in (5.20) and
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produce an error of at most ε/2, i.e., when we find N such that





h
k = N + 1

Σ
∞

g(kh)




≤ ε/2 . (5.21)

We consider the truncation problem in § 6.

Remarks (5.2) If we want to calculate F(t) for several t with l ε ≤ b ≤ t ≤ c ≤ u ε , then instead

of (5.18) we let

y = c − l ε and h =
(u ε − l ε ) + (c − b)

2π_ __________________ , (5.22)

so that

y ≤ u ε − l ε ≤
h

2π_ __ , t − y ≤ c − y = l ε ,

h
2π_ __ + t − y = u ε + t − b ≥ u ε and

h
− 2π_ ____ + t ≤ l ε . (5.23)

(5.3) To calculate the cdf F(t), it may seem natural to begin with the direct expression

provided by Gil-Palaez [51] in (3.5) instead of (3.4) and (5.14), but this approach seems less

satisfactory. We can of course proceed directly as in (5.1)–(5.6), but the resulting expression for

the discretization error (the analog of (5.6)) is not as easy to work with as (5.12) or (5.17).

Functions on the Positive Real Line

It is obviously not necessary for f in (5.1) to be a probability density. It suffices for fto be

integrable, in addition to other conditions given above. Moreover, if f is defined on the positive

real line but fis not integrable, then we can replace f by the damped function f d (t) = e − at f (t)

with ‘‘cf’’

φ d (u) =
− ∞
∫
∞

e iut f d (t) dt =
0
∫
∞

e iut e − at f (t) dt = φ (u + ia) .

If f dis integrable and satisfies other conditions above, then we can numerically invert φ d (u) to
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get an approximation to f d (t), say f da (t), and let f (t) ∼∼ e at f da (t). This damping procedure was

used by Dubner and Abate [40] to invert general Laplace transforms. For example, we can use

this approach to calculate the renewal function from its transform; see §13.

In particular, we can apply the Poisson summation formula (5.4) with the damped function

e − atf (t) defined on the positive real line to identify the discretization error associated with the

trapezoidal rule applied to inversion integral for Laplace transforms in (3.3), as given in (4.6).

From (5.4) with function e − atf (t) and h = π/ t, we obtain

k = 0
Σ
∞

e − a( 2k + 1 ) t f ( ( 2k + 1 ) t) =
2t
1_ __

k = − ∞
Σ
∞

( − 1 ) k φ(ia +
t

kπ_ __ )

=
2t
1_ __

k = − ∞
Σ
∞

( − 1 ) k f̂



a −

t
kπ i_ ___





. (5.25)

Letting a = A /2t in (5.25), we obtain

k = 0
Σ
∞

e − kAf ( ( 2k + 1 ) t) =
2t

e A /2
_ ____

k = − ∞
Σ
∞

( − 1 ) k f̂


 2t

A − 2kπ i_ ________




. (5.26)

Since f̂ (s) + f̂ (s
_
) = 2Re( f̂ ) (s), we obtain

f (t) =
2t

e A /2
_ ____ Re( f̂ ) (

2t
A_ __ ) +

t
e A /2
_ ____

k = 1
Σ
∞

( − 1 ) kRe( f̂ )


 2t

A + 2kπ i_ ________




− e d (5.27)

as in (4.6), where e d is the discretization error, i.e.,

e d ≡ e d ( f , t , A) =
k = 1
Σ
∞

e − kAf ( ( 2k + 1 ) t) . (5.28)

Using (5.28), we can easily bound the discretization error in (4.6). First, if f (t) ≤ c, then

e d ≤ ce− A /( 1 − e − A ) ∼∼ ce− A . Hence, for cdf’s we obtain a convenient bound on the

discretization error independent of the distribution. If f (t) ≤ ct, then
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e d ≤
k = 1
Σ
∞

e − kA ( 2k + 1 ) ct ≤ ct
( 1 − e − A )2

( 3e − A − e − 2A )_ _____________ ∼∼ 3cte− A . (5.29)

From (5.28) it is clear that we are motivated to choose A large in order to make the

discretization error e d small. However, increasing A can make the computation (5.27) more

difficult, e.g., by making the series harder to sum or by requiring higher precision to avoid

roundoff error. Thus we typically do not try to make A too large. From experience, at least

3γ/2-digit machine accuracy is required to achieve an error of order 10 − γ; see Remark 5.8 below.

We typically aim for 10 − 7 or 10 − 8 accuracy on a machine with 14-digit precision.

As we indicated before, instead of (3.3) and (4.6), we can also use the complementary

expressions (3.3a) and (4.6a) with Im( f̂ ) instead of Re( f̂ ). Applying (5.9) to the damped

function e − atf (t) and letting u = − h /2, h = π/ t and a = A /2t, we obtain

f (t) +
k = 1
Σ
∞

( − 1 ) ke − kAf ( ( 2k + 1 ) t) =
t

e A /2
_ ____

k = 1
Σ
∞

( − 1 ) kIm( f̂ )


 2t

A + ( 2k − 1 ) π i_ ______________




, (5.30)

which is the variant of (5.27) obtained by Hosono [58], [59], [60].

Remark (5.4). Hosono obtains (5.30) in [58], [59], [60] by a different argument, without

mentioning the trapezoidal rule or the Poisson summation formula. In particular, he obtains

(5.30) by approximating the integrand in the Bromwich integral (3.3a) using

exp (s) ∼∼
2 cosh (a − s)

exp (a)_ ___________ =
2

exp (a)_ ______
n = − ∞

Σ
∞

i( − 1 ) n /[s − a − i(n − 0. 5 ) π] , (5.31)

see (3)–(7) of [59]. In fact, (5.31) also can be derived from the Poisson summation formula; see

pages 469-470 of Magnus, Oberhettinger and Soni [85].

Lattice Distributions and Sequences of Real Numbers

To treat pmf’s and other sequences of real numbers, we apply the Poisson summation formula

to the inversion integral (3.10). Since the inversion integral (3.10) is over a bounded interval, we
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avoid the truncation problem. Hence, the following analysis of the discretization error leads to a

convenient algorithm with a simple error bound; i.e., there is no need to use two methods for

generating functions.

Suppose that we have

g(u) =
k = − ∞

Σ
∞

a k e iku and a n =
2π
1_ __

0
∫
2π

g(u) e − inu du . (5.32)

Paralleling (5.1), form the periodic sequence

an
p =

k = − ∞
Σ
∞

a n + km (5.33)

for some integer m and construct its discrete Fourier transform; see p. 51 of Rabiner and

Gold [102]. In particular,

bn
p =

m
1_ __

j = 0
Σ

m − 1
aj

p e i2πn j / m

=
m
1_ __

j = 0
Σ

m − 1

l = − ∞
Σ
∞

a j + lm e i2πn j / m

=
m
1_ __

j = − ∞
Σ
∞

a j e i2πn j / m =
m
1_ __ g( 2π / m) .

From the inversion formula for discrete Fourier transforms,

an
p =

k = 0
Σ

m − 1
bk

p e − i2πnk / m

=
m
1_ __

k = 0
Σ

m − 1
g( 2πk / m) e − i2πnk / m ,

which with (5.33) yields the discrete Poisson summation formula

k = 1
Σ
m

g( 2πk / m) e
−

m
ik2πn______

= m
k = − ∞

Σ
∞

a n + km . (5.34)

Given the generating function G(z) =
k = 0
Σ
∞

p k z k in (2.8), we can combine the first line of
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(3.10) and (5.34) to obtain, for the case a n = p n r n and n < m,

p n =
mr n

1_ ___
k = 1
Σ
m

G(re 2πi k / m ) e m
− 2πink_ _______

− e d , (5.35)

where the discretization error is

e d =
j = 1
Σ
∞

p n + j m r j m . (5.36)

We can bound the discretization error in (5.36) just as we did with (5.28). In particular if

{p n : n ≥ 0 } is a probability mass function or a cdf, then

e d ≤
1 − r m

r m
_ ______ ∼∼ r m . (5.37)

Of course, we can always obtain p 0 directly by p 0 = G( 0 ). For n ≥ 1, it is convenient to let

m = 2n in (5.35), so that

e − 2πink / m = e − ikπ = ( − 1 ) k

and

p n =
2nr n

1_ ____
k = 1
Σ
2n

( − 1 ) kRe(G(re πki / n ) ) − e d , n ≥ 1 ,

=
2nr n

1_ ____



G(r) + ( − 1 ) nG( − r) + 2

k = 1
Σ

n − 1
( − 1 ) kRe(G(re πki / n ) )





− e d , n ≥ 1 , (5.38)

for

e d =
j = 1
Σ
∞

p ( 2 j + 1 ) n r 2 j n . (5.39)

with the second line in (5.38) holding because Re(G(z) ) = Re(G(z
_
) ). Since the resulting

discretization error e d in the probability case is estimated by r 2n , we achieve accuracy to 10 − γ by

setting r = 10 − γ/2n .
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As with (5.28), we are motivated to make γ large when we let r = 10 − γ/2n to produce a small

discretization error in (5.38). However, a larger γ means a smaller r and a smaller r can require

higher precision in order to avoid roundoff error. As with (5.28), a rough rule of thumb is to have

at least 3γ/2-digit precision to achieve 10 − γ accuracy; see Remark 5.8 below.

We call the algorithm based on (5.38) LATTICE-POISSON. We display below a UBASIC

program to calculate the complementary cdf of the number of customers served in an M/M/1 busy

period. The accuracy has been set at 10 − 8 by having γ ≡ E = 8 in line 21. The generating

function is specified in lines 80-84.

Insert Algorithm LATTICE-POISSON here (or slightly later)

This particular inversion problem is discussed further in §11.

Remarks (5.5) There are many formulas essentially equivalent to (5.38) that can be derived from

variants of the Poisson summation formula; e.g., see pages 233 and 235 of Berndt [11].

(Elementary algebra shows that p. 233 of Berndt [11] is equivalent to (5.38) and (5.39). To

obtain a discrete analog of (5.30) from (3.10a), we can use the following discrete analog of (5.9)

k = 1
Σ
m

φ(u +
m
kπ_ __ ) e

il(u +
m
kπ_ ___ )

= 2m
k = − ∞
Σ
∞

a 2km + l e i2kmu . (5.40)

Paralleling the derivation of (5.30) from (5.9), let u = − π/2m, m = n, l = n and a n = p n r n in

(5.40) to obtain

p n =
2nr n

1_ ____
k = 1
Σ
n

φ( ( 2k − 1 )
2n
π_ __ ) e

− i( ( 2k − 1 )
2
π_ __ )

− e d

=
2nr n

1_ ____
k = 1
Σ
n

( − 1 ) kIm(φ( ( 2k − 1 )
2n
π_ __ ) − e d

=
2nr n

1_ ____
k = 1
Σ
n

( − 1 ) kIm(G(re i( 2k − 1 ) π/2n ) ) − e d (5.41)

where
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e d =
k = 1
Σ
∞

( − 1 ) kp ( 2k + 1 ) n r 2kn <
k = 1
Σ
∞

r 2kn ∼∼ r 2n . (5.42)

Formula (5.41) is the algorithm developed by Hosono [61].

(5.6) Algorithm LATTICE-POISSON should perhaps be considered classical, but it does not

appear to be well known. The essential ideas in the algorithm LATTICE-POISSON are

expressed in the introduction to Lyness [82], but the focus there is on further analysis using the

Mo
..

bius function to treat the case in which we need not have p k ≤ 1 for all k. A variant of

algorithm LATTICE-POISSON is used by Jagerman [67] in his approach to Laplace transforms

(see §8) and is part of his MATHCALC package [68]. Algorithm LATTICE-POISSON is

essentially equivalent to Hosono’s algorithm in (5.41). For more on the history, see §15.

(5.7) Abate and Dubner [1] developed a Fourier-series method for lattice functions, which

started by constructing the smoothed function obtained by linearly interpolating between

successive values of the function. For cdf’s, this is equivalent to convolving the original lattice

cdf with a random variable uniformly distributed on the interval [ − 1 , 0 ]. Then the Poisson

summation formula was applied as for Laplace transforms [40]. The resulting algorithm is

effective, as is illustrated by Dubner [39]. However, we have recently discovered that this

algorithm is essentially equivalent to a direct application of (3.10); e.g., with a damped function

we obtain an algorithm equivalent to LATTICE-POISSON. We intend to discuss this

equivalence elsewhere.

(5.8) To understand the roundoff error problem, it is helpful to consider (5.38) in the case

n = 1. When n = 1, (5.38) reduces to the difference of two terms divided by 2r. In a typical

example p 1 will be of order 1. Hence, when r is small, the difference must be of order r. Thus,

when r is very small, the subtraction can cause a significant roundoff error. For a concrete

example, consider the Bernoulli probability mass function with p 1 = 1 − p 0 = p,

0. 1 < p < 0. 9. Then G(z) = 1 − p + pz and (5.38) becomes
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p 1 = [ − ( 1 − p − pr) + ( 1 − p + pr) ]/2r = p .

Since 0. 1 < p < 0. 9, the precision of p 1 is approximately m − k digits when the machine has

m-digit precision and r = 10 − k . If the discretization error has been set at 10 − γ , then by (5.37)

r = 10 − γ/2 . Thus we obtain the desired 10 − γ accuracy when m − γ/2 ≥ γ or m ≥ 3γ/2. From

(5.37) and (5.38), we see that a similar analysis can be done for other values of n. Since

r = 10 − γ/2n to achieve accuracy 10 − γ , r n = 10 − γ/2 for all n in (5.38). Moreover, in the case of

a probability mass function Re(G(re − πki / n ) ) ≤ 1, so that essentially the same reasoning applies

to any n. If, as in UBASIC, there is a fixed number of decimal places for each number, then we

also get the 3/2 rule for the ratio of decimal places to final accuracy.

(5.9) It is not necessary to have a lattice function in order to apply the Poisson summation

formula to an integral over a finite interval. For example, the Bessel function satisfies

J 0 (xt) =
π
1_ _ ∫

− x

x

(x 2 − u 2 ) − 1⁄2 e − itu du , (5.43)

from which the Schloemilch series in 3.13.3 on p. 131 of Magnus et al. [85] follows from the

Poisson summation formula.

Higher Dimensions

The Poisson summation formula is easily extended to higher dimensions (e.g., see

Good [52]), so that we can obtain the discretization error associated with the trapezoidal rule

applied to numerically invert transforms of multivariate functions. (However, the computational

complexity increases as the dimension increases.) For example, the two-dimensional analogs of

(2.5) and (3.1) are

φ(u 1 , u 2 ) = ∫
− ∞

∞ ∫
− ∞

∞
e i(u 1 t 1 + u 2 t 2 ) f (t 1 , t 2 ) dt 1 dt 2 (5.44)

and
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f (t 1 , t 2 ) =
4π2

1_ ___ ∫
− ∞

∞ ∫
− ∞

∞
e − i(t 1 u 1 + t 2 u 2 ) φ(u 1 , u 2 ) du 1 du 2 . (5.45)

Paralleling (5.1), the periodic function f p (t 1 , t 2 ) constructed by aliasing is

f p (t 1 , t 2 ) =
j = − ∞

Σ
∞

k = − ∞
Σ
∞

f



t 1 +

h 1

2π j_ ___ , t 2 +
h 2

2πk_ ___




. (5.46)

Reasoning just as in (5.2)–(5.6), we obtain the bivariate Poisson summation formula

f (t 1 , t 2 ) =
4π2

h 1 h 2_ _____
j = − ∞

Σ
∞

k = − ∞
Σ
∞

φ( − j h 1 , − kh 2 ) e − i( j h 1 t 1 + kh2 t 2 ) − e d (5.47)

where

e d =
j = − ∞

Σ
∞

k = − ∞
Σ
∞

f



t 1 +

h 1

2π j_ ___ , t 2 +
h 2

2πk_ ___




. (5.48)

not j = 0 , k = 0

6. Truncation, Convolution Smoothing and Alternative Methods of Summation

In this section we discuss ways to approximately calculate the infinite series obtained by

applying the trapezoidal rule (or, equivalently, the Poisson summation formula) to the inversion

integral, i.e., the infinite series in (4.4), (4.6), (5.5), (5.10), (5.14) or (5.27). Of course, no

truncation is necessary for lattice distributions using algorithm LATTICE-POISSON in §5.

Direct Truncation Bounds

The problem of truncating the infinite series is nearly equivalent to the problem of truncating

the original inversion integral, because if β is a nonnegative nonincreasing real-valued function,

then

h
k = N + 1

Σ
∞

β(kh) ≤
Nh
∫
∞

β(u) du ≤ h
k = N
Σ
∞

β(kh) . (6.1)
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We can apply (6.1) to an integrand of interest γ(u) by bounding γ(u)above by β(u), i.e.,

e t ≡ e t (γ , h , N) ≡




h
k = N + 1

Σ
∞

γ(kh)




≤ h
k = N + 1

Σ
∞

γ(kh) ≤ h
k = N + 1

Σ
∞

β(kh) . (6.2)

Hence, if
T
∫
∞

β(u) du < ε for some prescribed truncation error ε, then, the required number of

terms in the truncated finite series is N = T / h.

It is significant that the step size h in the discretization depends only on the prescribed

discretization error and the associated error bounds (i.e., is independent of the truncation and T),

while the truncation point T for the integral obtained from (6.1) and (6.2) depends only on the

prescribed truncation error and the associated truncation error bound for the original integral (i.e.,

is independent of the discretization and h). Finally, the overall number of terms N in the finite

sum is product of T and h − 1 .

For most of this section, we will focus on the variant POISSON in (3.6), (4.4) and (5.10)

applied to a cdf on the positive half line. Hence, consider the case of a cdf F concentrating on the

positive real line with the infinite series in (5.10). We want to apply (6.1) and (6.2) with the

integrand γ(u) = 2 Re φ(u) sin (ux)/πu, u ≥ 0, in (4.4). Since sin ut ≤ 1, it suffices to find

a nonnegative monotone function β(u) such that for prescribed truncation error ε

γ(u) ≤
πu

2Re φ(u)_ _________ ≤ β(u) for u ≥ T and
T
∫
∞

β(u) du ≤ ε . (6.3)

From §2 we know that Re φ(u) ≤ φ(u) ≤ 1 , but that leaves β(u) = 2/πu, which is not

integrable. Hence, to obtain useful bounds from (6.3), we must exploit additional properties of

the cdf F and its cf φ. (This is consistent with the discussion in §5 and will be illustrated by the

examples.) The general principle is that φ(u)will decay faster when the cdf F is smoother. If

the cdf F has a point mass, then φ(u)is of order 1 as u → ∞, and convergence of the integral
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depends on the oscillations of the sine function to obtain convergence. (If F has only a few

atoms, then we can often identify them and remove them before performing the inversion. For

example, the M/G/1 waiting time cdf in (1.2) has a single atom at 0, which we remove before

inversion in § 9.) When φ(u)does not decay quickly enough and we cannot eliminate the

difficulty by removing a few atoms, we suggest using convolution smoothing or an alternative

method of summation; see below.

As a consequence of the Riemann-Lebesgue lemma (p. 514 of Feller [43]), if the cdf F has n

integrable derivatives, then φ(u) = o(u− n + 1 ) as u → ∞, so that for n ≥ 2 it is certainly

possible to apply (6.1)-(6.3). For cdf’s on the positive real line, we have to consider the behavior

at the origin. For example, the exponential cdf with mean m has only one integrable derivative,

because the density is discontinuous at zero; then φ(u) = ( 1 − imu) − 1 so that

Re(φ(u) = ( 1 + m 2 u 2 ) − 1 = O(u− 2 ) as u → ∞. More generally, if F is E k (Erlang of

order k), then φ(u) = ( 1 − imu) − k and Re(φ) (u) = O(u− (k + 1 ) ) for k odd and O(u− k ) for k

even. This analysis indicates that convolutions of many exponential distributions should be easy

to calculate by numerical inversion; see §12.

Truncation Estimates

Since the sign of the integrand γ(u) in (4.4) is oscillating, the bound in (6.3) is certainly a

conservative estimate. Often a better estimate of the truncation error is simply hβ(Nh), the

bound for the last term in the sum. Moreover, for an estimate we need not insist that β be a

bound; we can let β represent the asymptotic behavior, i.e., 2 Re(φ) (u)/πu ∼ β(u) as u → ∞

(i.e., the ratio converges to 1 as u → ∞). A natural refinement is to multiply this estimate by

( 2/π) (π /2ht) = 1/ ht, provided that 1/ ht ≥ 1. We choose this refinement, because we

anticipate that the partial sums will oscillate around the infinite series because of the sine

function. We want to account for consecutive summands with the same sign, so we multiply the
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first estimate by π /2ht, because that is approximately the number of terms in a quarter sine

cycle for sin tu with step size h. At the beginning of the cycle, when the sine function first

becomes positive, the value of the sum should be approximately at a minimum; in the middle of

the cycle it should be approximately at a maximum; and at a quarter cycle it should be

approximately at the correct value. We also multiply by 2/π because that is the average value of

the sine function over the quarter cycle. Finally, we make this adjustment only when 1/ ht ≥ 1

because of course one term is the minimum number of terms to consider. Thus, we obtain the

truncation error estimate

e t ≡ e t (N , h , t) ∼∼ hβ(Nh) max { 1 , 1/ ht} = max {hβ(Nh) , β(Nh)/t} , (6.4)

where 2 Re(φ) (u)/πu ∼ β(u) as u → ∞.

Sometimes it is convenient to have a single estimate independent of t, e.g., for computing

F(t) for several values of t. Assuming that interest is focused on tail probabilities, we suggest

letting t be the mean of F or the mean plus a few standard deviations, both of which are scale

invariant. (This usually leads to the error estimate hβ(Nh) in (6.4).) However, note that the

estimated error in (6.4) grows as t becomes very small. For very small t, the bound in (6.3) may

be a better estimate.

Remark ( 6. 1 )

The truncation error estimate in (6.4) is supported by related analysis with the inversion

integral. If Re (φ) (u) is nonincreasing, then it is not difficult to show, using the periodic

property of the sine function, that




 T

∫
∞

2Re (φ) (u)
πu

sin (tu)_ ______ du





≤
π tT

2Re (φ) (T)_ __________ ∼∼
t

β(Nh)_ _____ as T → ∞ . (6.5)

The inequality holds because the worst (largest) case occurs when the sine function is beginning a
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positive half cycle at T and Re (φ) is constant over this positive half cycle, and 0 thereafter.

Moreover, (6.4) is supported by the asymptotic behavior of the sine integral (5.2 of Abramowitz

and Stegun [8]) if we can assume that




 T
∫
∞

2 Re(φ) (u)
πu

sin (tu)_ ______ du





∼∼


 π

2 Reφ(T)_ ________







 T
∫
∞

u
sin tu_ _____ du






, (6.6)

because




 T
∫
∞

u
sin tu_ _____ du






∼
tT
1_ __ as T → ∞ . (6.7)

Convolution Smoothing

Another approach to the truncation problem, which becomes important if the validity of the

Poisson summation formula cannot be established, if bounding functions β are hard to find, or if

the associated bounds and estimates yield too many terms in the sum, is convolution smoothing;

i.e., to perturb the original cdf by convolving it with another cdf that has a suitably small variance

and is very smooth; see p. 511 of Feller [43], Bohman [14], Silverberg [109] and Platzman et al.

[99]. The small variance guarantees that the perturbed cdf differs only negligibly from the

original cdf. Since the convolution cdf tends to inherit the smoothness of its smoothest

component (p. 146 of Feller [43]), the convolution cdf tends to be much smoother than the

original cdf, which is reflected by the final transform having a more rapidly decaying tail than the

original transform. As a byproduct, it implies that all the Poisson summation formulas are

rigorously justified.

Let F be the original cdf with cf φ; let F σ2 be the smoothing cdf with mean 0, variance σ2 and

cf φ σ2 ; and let F s be the smoothed cdf, i.e., the convolution cdf
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F s (t) =
− ∞
∫
∞

F(t − y) dF σ2 (y) . (6.6)

By (2.3) and (2.4),

φ s (u) = φ(u) φ σ2 (u) ≤ φ σ2 (u) , (6.7)

so that the tail behavior of φ s (u) is dominated by the tail behavior of φ σ2 (u) alone,

independent of the original cf φ.

From a probabilistic point of view, it is natural to let the smoothing cdf F σ2 be the normal cdf

with mean 0 and variance σ2 , because we have a good intuitive understanding of the effect of the

perturbation and because the normal cf is easy to analyze, i.e., φ σ2 (u) = e − u 2 σ2 /2 . In particular,

the perturbation tends to be the order of a few standard deviations, i.e., of order nσ where

1 < n < 8, because then

Fσ2
c (nσ) = F1

c (n) =


≤ 10 − 15

0. 169

,

,

n = 8 .

n = 1
(6.8)

In the case of a cdf F on the positive real line, we have F s ( − t) ∼∼ 0 provided t is not in the

nσ-neighborhood of 0. Then, from (5.10),

F s (t) ∼∼ F s (t) − F s ( − x) =
π
ht_ __ +

π
2h_ __

k = 1
Σ
∞

Re(φ s ) (kh)
kh

sin (kht)_ _______ − e d .

=
π
ht_ __ +

π
2h_ __

k = 1
Σ
∞

w(k) Re(φ) (kh)
kh

sin (kht)_ _______ − e d , (6.9)

where w(k) = φ σ2 (kh) = e 2
− σ2 k2 h 2
_ ________

is a decreasing weighting function. We can construct a

bounding integrand β as in (6.1)-(6.3) by focusing entirely on the smoothing cf (the weighting

function), i.e.,
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γ s (u) ≡




2 Re(φ s ) (u)
πu

sin ut_ _____




≤
πu

2 φ σ2 (u)_ _________ =
πu

2 e
−

2
u 2 σ2
_ _____

_ ________ ≡ β s (u) . (6.10)

We obtain an associated truncation bound T (assuming σT ≥ 1 and using standard inequalities

for normal tail probabilities) via

T
∫
∞

β s (u) du ≤
T
∫
∞

πT
2___ e

−
2

u 2 σ2
_ _____

du ≤ 2 ( 2/π)1/2 Fσ− 2
c (T) = 2 ( 2/π)1/2 F1

c (σT)

≤
π σT

2e
−

2
σ2 T 2
_ _____

_ ________ ≤ e
−

2
σ2 T 2
_ _____

. (6.11)

Hence, to achieve a truncation error bound of ε for the smoothed cdf F s , independent of the

original cdf F, it suffices to have

ε = e
−

2
σ2 T 2
_ _____

or T =
σ

√ − 2 log ε_ _________ , (6.12)

provided that ε ≤ e − 1/2 ≤ 0. 61, so that σT ≥ 1, as assumed.

Hence, T is of order σ − 1 . Indeed, T ranges from 3. 0 σ − 1 to 6. 1 σ − 1 as ε decreases from

10 − 2 to 10 − 8 . Unfortunately, we cannot choose the standard deviation σ of the perturbation

arbitrarily small without suffering a severe penalty in required computation. Convolution

smoothing can only be useful if nonnegligible perturbation can be permitted.

In the case of a cdf F on the whole line, we apply (5.14) to obtain

F s (t) ∼∼ F s (t) − F s (t − y) =
2π
hy_ __ +

π
h_ _

k = 1
Σ
∞

g s (kh) − e d , (6.13)

where
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g s (u) =


 πu

Re (φ s ) (u)_ _________ [ sin u(y − t) + sin ut] +
πu

Im (φ s ) (u)_ _________ [ cos u(y − t) − cus ut]




≤
πu
2_ __ (Re φ s (u) + Im φ s (u)) ≤

πu
4_ __ φ s (u)

≤
πu
4_ __ φ σ2 (u) =

πu
4e

−
2

u 2 σ2
_ _____

_ ________ ≡ β s (u) . (6.14)

The bounding function β s in (6.14) is exactly two times the bounding function in (6.10). Hence,

instead of (6.12), here T = √ − 2 log (ε/2 ) /σ.

Remarks (6.2) If convolution smoothing is to be performed, then it is natural to determine the

truncation point T first, based on the permissible perturbation σ and truncation error, and then

afterwards determine the appropriate step size h to achieve the desired discretization error for the

smoothed cdf F s . The tail probabilities of F s are not much harder to analyze than the tail

probabilities of F because F s is the cdf of the sum of two independent random variables, one of

which is very small. However, there should be no problem if the discretization step size h is

determined before convolution smoothing, because the deviation in the discretization error

analysis due to convolution smoothing is typically negligible.

(6.3) To get a rough idea about the way convolution smoothing alters the original cdf,

we can approximate using Taylor’s series. The convolution smoothing yields an approximate cdf

something like

F a (t) ∼∼ F(t ± σ) ∼∼ F(t) ± f (t) σ , (6.15)

where f (t) is the density, so that the error introduced at t by smoothing is of order f (t) σ. Since

the failure rate of a cdf F on the positive real line is r(t) = f (t)/ F c (t), the approximate error at t

due to σ in that case can also be expressed as F c (t) r(t) σ. If r(t) ∼∼ m1
− 1 where m 1 is the mean

of F (equality holds for an exponential cdf), then the error at t is of order F c (t) σ/ m 1 .
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(6.4) The algorithm here for a cdf on the whole line, using convolution smoothing with

a normal smoothing cdf together with (5.14), is essentially the same as the algorithm proposed by

Platzman et al. [99], except they developed a precise bound on the error. The algorithm in [99]

specifies a discretization step size h, a standard deviation σ and a number of terms N in order that

the approximating cdf F a be related to the original cdf F by

F(t − ε 1 ) − ε 2 ≤ F a (t) ≤ F(t + ε 1 ) + ε 2 (6.16)

for given t , ε 1 , ε 2 , u ε and l ε , where F(l ε ) ≤ ε 2 /4 and F c (u ε ) ≤ ε 2 /4. The key idea in (6.16)

is to work with the two different errors, ε 1 and ε 2 . Note that (6.16) is a modification of the Le ́ vy

metric (p. 285 of Feller [43]), i.e., (6.16) is a well known way to measure the distance between

cdf’s. To achieve (6.16) we let

h =
u ε − l ε + 2ε 1

2π_ ____________ , σ =
√ 2 log ( 2/ε 2 )

ε 1_ ____________ , (6.17)

T = Nh =
σ

√ 2 log ( 2/ε 2 )_ ____________ =
ε 1

2 log ( 2/ε 2 )___________ . (6.18)

In this case, the weighting function in (6.9) is

w(k, N) ≡ w(k) = φ σ2 (kh) = e 2
− σ2 k2 h 2
_ ________

=


 2

ε 2_ __






 N

k_ __




2

, 1 ≤ k ≤ N , (6.19)

with w(k, N) = 0 for k > N. Note that h, ε 1 and σ appear in the final formula of (6.19) only

through ε 2 and N. Note that the expression for h in (6.17) is essentially the same as in (5.18) and

the expression for T as a function of ε 2 and σ in (6.18) is identical to what we derived above.

Hence, the error bound (6.16) is achieved in the context of our algorithm with convolution

smoothing using a normal smoothing cdf essentially by just defining the normal standard

deviation σ as in (6.17). Of course, it remains to interpret (6.16), for which Remark 6.3 can be

applied with ε 1 replacing σ. Since this variant of the Fourier-series method based on
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(6.16)–(6.19) comes from Platzman et al. [99], we call it POISSON-PAB.

(6.5) From the discussion above, it is apparent that convolution smoothing can help

establish a better computation from the perspective of the bounds and estimates for the truncation

error, but it may not be apparent that convolution smoothing can help improve the computation

itself. Indeed, as indicated by Remark 6.3, convolution smoothing for given h and N can

seriously reduce the accuracy of the computed F(t) for some t, but it also can improve the

accuracy too, as we will show in the examples.

(6.6) There are many variants of the convolution smoothing method. The result is to

insert weights in the series as in (6.9), which is closely related to the alternate methods of

summing Fourier-series, to be discussed below. In signal processing the use of weights is called

windowing and the weighting functions are called windows; see Harris [53] and pp. 88-105 of

Rabiner and Gold [102]. Extensive experience indicates that windowing, judiciously applied, can

significantly improve the accuracy of the computation. The advantage of convolution smoothing

with the normal cdf is that we can have a good intuitive understanding of the effect of the

smoothing on the original cdf as well as precise bounds such as (6.16), but other windows are

typically preferred.

Alternative Methods of Summation

As remarked in §5, the sequence of partial sums, say {s n (t) : n ≥ 1 }, of the Fourier-series of

a continuous periodic function f p (t) need not converge pointwise to f p (t); (see p. 153 of

Natanson [91]), but it can always be forced to converge uniformly to f p if we change the method

of summation. The classic result in this direction is Fejer’s theorem, which concludes that the

arithmetic mean (average) of the first n partial sums, say σ n (t), converges uniformly to f p (t) as

n → ∞ see p. 157 of [91]). Thus, it is natural to consider σ n (t) instead of s n (t) as an

approximation to f p (t). It is easy to see that the approximation σ n (t) is realized in the context of
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(6.9) simply by using the weighting function

w(k, n) =


0

(n − k)/ n

,

,

k > n ,

1 ≤ k ≤ n
(6.20)

which is known as the triangular, Fejer or Bartlett window; see p. 59 of Harris [53]. We can also

obtain (6.20) if we use convolution smoothing with the smoothing density

f σ2 (t) = ( 1 − cos Nht)/πNht 2 , − ∞ < t < ∞ ; (6.21)

see cf No. 5 in Table 1 on p. 503 of Feller [43]. We obtain (6.21) from (6.20) by noting that

(6.20) and (6.21) essentially form a Fourier transform pair (pp. 1, 52, 63, 88 of Champeney [20])

after we consider the symmetric version of (6.20), with w(k, n) = w( − k, n) for k ≤ − 1, which

is justified because the integral in (3.6) was originally symmetric about 0 over the entire real line.

From the discussion above, it should be clear that convolution smoothing, windowing and

alternative methods of summation are essentially equivalent. For example, the standard

approximation s n (t) can be obtained from the full series by applying the rectangular or Dirichlet

window, see p. 58 of Harris [53],

w(k, n) =


0

1

,

,

k > n ,

1 ≤ k ≤ n
(6.22)

which corresponds to convolution smoothing with the Dirichlet ‘‘density’’ sin (nht)/π t, which

unlike (6.21) is not a probability density. (It integrates to 1, but it is not nonnegative.)

Remark (6.7) The convolution smoothing representations for s n (t) and σ n (t) above should be

distinguished from the classical integral formulas, which apply to the aliased periodic function f p ,

i.e.,
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s n (t) =
π
h_ _

− π/ h
∫

π/ h

f p (t + u)
2 sin (uh /2 )

sin



n +

2
1_ _





uh

_ ______________ du

(6.23)

σ n (t) =
π n
h_ ___

− π/ h
∫

π/ h

f p (t + u)
2 sin2 (uh /2 )

sin2 (nuh /2 )_ ___________ du

see pp. 35, 73, 158 of Tolstov [119] or pp. 151, 158 of Natanson [91]. .

From the point of view of summability, σ n (t) or the Fejer window in (6.20) is always

superior to s n (t) or the rectangular window in (6.22). However, from the point of view of

approximation, σ n (t) has the drawback of converging slowly. The rate of convergence of σ n (t)

tends to be about the same for all functions as for the worst case, namely, of order 1/ n. For

example, for the function f p (t) = 1 − cos t, s n (t) is exact for n ≥ 1, whereas σ n ( 0 ) = n − 1;

see pp. 161-167 of Natanson [91]. In contrast, the rate of convergence of s n to f p tends to

improve dramatically as the structure of f p improves. Indeed, the uniform distance between s n

and f p is bounded above by ( 3 + log n) times the uniform distance between f p and the best

approximating n-term trigonometric polynomial; see pp. 84, 88, 152 of [91].

An attractive alternative to the two methods of summation discussed above is the

de la Valle ́ e-Poussin method; with it the n th term, say τ n (t), is the arithmetic mean of the last n /2

of the first n partial sums. For n even, it is related to σ n (t) by

τ n (t) = 2 σ n (t) − σ n /2 (t) . (6.24)

The associated de la Valle ́ e-Poussin window is

w(k, n) =





0

2 (n − k)/ n

1

,

,

,

k > n .

n /2 + 1 ≤ k ≤ n

1 ≤ k ≤ n /2
(6.25)

The uniform distance between f p and τ n is bounded above by 4 times the uniform distance

between f p and the best approximating n /2-term trigonometric polynomial.
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The simple partial sums s n (t) have the advantage that error bounds and estimates are

relatively easy to obtain for them, as described at the beginning of this section. Convolution

smoothing with the normal distribution as in (6.9) is appealing because it is relatively easy to

interpret and because it leads to the error bounds in (6.16). However, it is clear that many other

variants can be considered.

Exploiting Properties of Alternating Series

In the algorithm EULER displayed in §1 we use an inversion formula for Laplace transforms

in (4.6) and (5.27) that might have the form of an alternating series, because the trigonometric

terms were forced to assume the form ( − 1 ) k . Thus, for this series it is natural to apply an

alternative method of summation that is especially well suited to alternating series. This

approach was originally proposed by Simon, Stroot and Weiss [110]. They obtained the nearly

alternating series in (4.6) from (21) of Dubner and Abate [40]. The specific alternative form of

summation proposed was Euler summation. This same approach was also later proposed by

Hosono [58], [59], [60] in the context of (3.3a), (4.6a) and (5.30).

Euler summation is usually defined in terms of finite differences, see pp. 158, 230 of Davis

and Rabinowitz [32] and Johnsonbaugh [70], but for an alternating series it is very simply

described as the weighted average of the last m partial sums by a binomial probability distribution

with parameters m and p = 1/2. (Surprisingly, this does not seem well known.) In particular, if

we apply the Euler sum to m terms after an initial n terms, then we understand the Euler sum, as a

function of n and m, to be

E(t , m , n) =
k = 0
Σ
m 

 k
m

2 − ms n + k (t) , (6.26)

where s n (t) ≡
k = 0
Σ
n

( − 1 ) k a k (t) is the n th partial sum as before. Paralleling (6.9), (6.19), (6.20),

(6.22) and (6.25), Euler summation can be represented via a weighting function, in particular,
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( − 1 ) ka k (t) should be weighted by

w(k, m , n) =





j = 0
Σ
l 

 j
m

2 − m ,

1

k = n + m − l ,

1 ≤ k ≤ n ,

0 ≤ l ≤ m − 1 ,
(6.27)

This form is used by Hosono [58], [59], [60].

The Euler sum (6.26) can also be described as repeated pairwise averaging. That is, we start

with the m successive partial sums s n (t) , s n + 1 (t) , . . . , s n + m − 1 (t) and construct the (m − 1 )

averages of adjacent pairs. Then we repeat the process, constructing the (m − 2 ) averages of

adjacent pairs of these averages. We continue this way until we have a single average. The result

is (6.26).

More conventionally, the Euler sum is defined in terms of the difference operator ∆. With

{a n : n ≥ 1 } being a sequence, let ∆a n = a n + 1 − a n and let ∆k be the k-fold iterate; see

Johnsonbaugh [70] (who uses the negative of the standard definition above). If we have an

alternating series (the k th term is ( − 1 ) ka k for a k ≥ 0), then (6.26) is equivalent to the

conventional definition

E(t , m , n) = s n (t) + ( − 1 ) n + 1

k = 0
Σ

m − 1
( − 1 ) k 2 − (k + 1 ) ∆ka n + 1 (t) . (6.28)

The idealized situation involves partial sums s n =
k = 0
Σ
n

( − 1 ) ka k , where a k ≥ a k + 1 ≥ 0 for all

k (which is what we mean by an alternating series); see Johnsonbaugh [70]. Then s n → s ∞ as

n → ∞ ,

s 2n + 1 ≤ s ∞ ≤ s 2n for all n . (6.29)

Moreover, if ∆a n = a n + 1 − a n is also increasing in n, then
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s n − s ∞ ≤
2

a n_ __ ; (6.30)

see Theorem 1, p. 638, of [70].

Let E(m , n) be the Euler sum associated with {a n }. Note that

( − 1 ) m ∆ma n + k =
j = 0
Σ
m

( − 1 ) j 
 j
m

a n + k + j (6.31)

= 2mE(m , n + k − 1 ) − E(m − 1 , n + k − 1 ) .

It turns out that if ( − 1 ) m ∆ma n + k is decreasing in k for k ≥ 1, then

E(m , n) − s ∞ ≤
2m

∆ma n + 1_ _______ = E(m , n) − E(m − 1 , n) ; (6.32)

see p. 643 of [70]. However, the condition for (6.32) typically is not verifiable, so that we do not

regard (6.32) as a useful bound. Table 2 of [70] shows that Euler summation often works

remarkably well for alternating series. Indeed, the accuracy is typically orders of magnitude

greater than the bounds in (6.29) and (6.30).

In order for Euler summation to be effective, we would like to have

a k ≡ Re( f̂ ) ( (A + 2kπ i)/2t) in (4.6) have three properties for sufficiently large k: (1) to be of

constant sign, (2) to be monotone, and (3) to have the higher-order differences ( − 1 ) m ∆ma n + k be

monotone, as required for (6.32). In applications we will usually not check these properties, and

even if they hold, we will not know when k is large enough, so that our use of Euler summation in

EULER is a heuristic without guarantees.

However, we can cite some supporting theory to show that the desired properties can be

expected, at least approximately, when the underlying function has appropriate smoothness. Note

that
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Re( f̂ ) (u + iv) = ∫
0

∞
cos vt e − utf (t) dt . (6.33)

Assuming that f (t) is twice continuous differentiable, so is the damped function g(t) ≡ e − utf (t).

Assuming in addition that g(∞) = g ′ (∞) = 0 (which occurs when f (∞) = f ′ (∞) = 0), we

can apply integration by parts twice to obtain

Re( f̂ ) (u + iv) =
v 2

u − f ′ ( 0 )_ _________ −
v 2

1_ __∫
0

∞
cos vt g ′ ′ (t) dt . (6.34)

Assuming further that g ′ ′ (t) is integrable, we can apply the Riemann-Lebesgue lemma (p. 514 of

Feller [43]) to deduce that

Re( f̂ ) (u + iv) =
v 2

u − f ′ ( 0 )_ _________ + o


 v 2

1_ __




as v → ∞ . (6.35)

Moreover, with additional smoothness and integrability, we can apply the argument above one

more time to replace the o(v − 2 ) term in (6.35) by an o(v − 3 ) term, or we can apply it twice more

to obtain an O(v − 4 ) term.

As a consequence of (6.35), Re( f̂ ) (u + iv) is indeed eventually positive provided that

u > f ′ ( 0 ) and the other conditions hold. Moreover, then the asymptotic approximating function

[u − f ′ ( 0 ) ]/ v 2 has all three properties desired for Euler summation. (In our application to cdf’s

u > 0 and f (t) = F c (t), so that indeed u > f ′ ( 0 ).)

Remark (6.8) To see that the desired properties supporting Euler summation need not hold in

general, consider the cdf of a point mass at x,

F̂
c
(s) =

s
1 − e − sx
_ _______ , (6.36)

so that

Re(F̂
c
) (u + iv) =

u 2 + v 2

u( 1 − e − ux cos vx) + v sin vx_ _________________________ (6.37)
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and

Im(F̂
c
) (u + iv) =

u 2 + v 2

u sin vx − v( 1 − e − ux cos vx)_ _________________________ . (6.38)

From (6.37), we see that, for every u, there is no v 0 such that Re(F̂
c
) (u + iv) is of constant sign

for all v > v 0 . From (6.38), we see that the imaginary part is better behaved, because for any

nonnegative n, Im(F̂
c
) (u + iv) is eventually negative for all sufficiently large v. However,

Im(F̂
c
) (u + iv) is not nearly monotone in v for large v because of the cos vx term. In §14 we

show that the inversion formula (5.30) using the imaginary part (6.38) fares no better on (6.36)

than (5.27) using the real part (6.37).

(6.9) To see that Euler summation does not perform well on all alternating series, it is

instructive to consider the series

k = 1
Σ
∞

( − 1 ) k ( sin kx)2 / k =
2

log ( 1/cos x)_ ___________

for x < π/2. The performance of Euler summation degrades seriously as x increases. For

example, the error in E(x, 11 , 30 ) is of order 10 − 9 , 10 − 3 and 10 − 1 for x = 0. 1, 1.0 and 1.5,

respectively. For x = 1. 5, s 41 had an error of order 10 − 2 , which is better.

We suggest E(t , m , n) − E(t , m − 1 , n) and

E(t , m , n + 1 ) − E(t , m , n) =


k = 0

Σ
m

2 − m 
 k
m

a n + k + 1 (t)




(6.39)

as estimates of the truncation error associated with Euler summation. Formula (6.39) is also used

by Hosono [58], [59], [60]. Experience indicates that these error estimates are often good, but not

always so; e.g., see §11.

Remark (6.10). From the t in the denominator of Re( f̂ ) in (4.6) or (5.27), we may anticipate that

the appropriate value of n in the algorithm EULER might increase with t and this is sometimes
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the case. According to Hosono [60], the value of n(t) producing prescribed accuracy is often

approximately a linear function of t. Thus, on p. 58 of [60] Hosono suggests estimating this

linear function by considering two time points, using the error estimate (6.39), whose explicit

form is due to Hosono, before performing many runs at other time points.

7. Summaries of Variants of the Fourier-Series Method

We now indicate how the previous sections can be combined to obtain full algorithms. These

algorithms are all variants of the Fourier-series method. We first describe EULER, the

alternating-series approach for inverting Laplace transforms exploiting Euler summation, which is

displayed in §1. It is an automatic algorithm but without guaranteed accuracy. Then we describe

the algorithm POISSON with associated error bounds and estimates. We do not further discuss

the algorithm LATTICE-POISSON for the special case of lattice distributions, which was already

adequately treated in §5.

The Algorithm EULER for Laplace Transforms

If we have a function on the positive half line, then we can use Laplace transforms and apply

the Bromwich inversion integral in (3.3). In this variant we use numerical integration with the

trapezoidal rule so that the cosine terms become ( − 1 ) k and obtain the (approximately) alternating

series in (4.6) or (5.27). Next we use (5.28) to bound the discretization error. When the function

is a cdf, the bound is approximately e − A , so we choose the parameter A to make this suitably

small. For example, A = 19. 1 ensures a discretization error less than 10 − 7 . As discussed in

Remark 5.8, accuracy to 10 − γ typically requires at least 3γ/2-digit precision. To meet the needs

of queueing applications without requiring more than 14-digit precision, we usually aim for an

accuracy of 10 − 7 or 10 − 8 . (Note that this typically means double precision.) A high-precision

language like UBASIC is useful to treat difficult cases, but it is typically not necessary.
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Finally, we use Euler summation as in (6.26) or (6.27) to approximately calculate the

resulting infinite series. We have used m = 11 for the binomial parameter. For a cdf F, we

actually work with the Laplace transform F̂
c
(s) ≡ ∫

0

∞
e − stF c (t) dt of the complementary cdf

F c (t) = 1 − F(t). (We also remove all known atoms in the cdf.) We make this choice, because

intuitively the terms in the series then should be closer to n − 1 for which Euler summation is

known to be good. (Little difference was seen in the examples, however.) We then estimate the

error from using n + m terms by the difference of successive terms in n, i.e., by

E(t , m , n) − E(t , m , n + 1 ), and stop when the estimated error is suitably small.

Unfortunately, however, this error estimate is not a bound, so that accuracy is not guaranteed.

We thus use a second method such as one of the methods in §8 as a check. The performance of

EULER as n is changed to 2n and 4n is also a good practical check.

The algorithm EULER is displayed in §1 for the M/G/1 waiting-time complementary cdf in

Example 9.2 (with the known atom at zero removed). The program EULER starts in lines 10-13

by defining two vectors SU and C. Since the parameter m has been set at 11, there are 12

binomial coefficients. The terms SU(k) are the last 13 partial sums s n (t) of the infinite series in

(5.27). The terms C(k) are the 12 binomial coefficients needed to compute the Euler sum (6.26).

In lines 20-22 the desired time value t is input and the parameters A in (5.27) and n in (6.26)

are set at 19.1 and 15, respectively. The parameter A is adjusted to control the discretization error

using (5.28). As indicated above, the value A = 19. 1 ensures a discretization error of at most

10 − 7 for a cdf. The number n of terms in (6.26) is increased until the estimated error

E(t , m , n) − E(t , m , n + 1 )is suitably small. Our experience indicates that n = 15 − 20 is

typically sufficient to obtain accuracy to 10 − 7 , so that n = 100 often produces a convenient

conservative initial setting.

Lines 23-25 contain other convenient parameters for calculating the partial sums s n (t) from
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(5.27). The transform to be inverted and the summands in (5.27) are defined in lines 90-97, using

(1.1) and the Laplace transform of the service time distribution: Gs ≡ f̂ (s) = ( 1 + 2s)1/2; see

Example 9.2 below. We first eliminate the known atom of 1 − ρ at the origin; i.e., since

W(t) = 1 − ρ + ρF(t), we focus on F(t). We numerically invert the Laplace transform of

F c (t) ≡ 1 − F(t), i.e.,

Fs ≡ F̂
c
(s) ≡ ∫

0

∞
e − stF c (t) dt =

s( 1 − ρĜ e (s) )

1 − Ĝ e (s)_ _____________ , (7.1)

where Ĝ e (s) = [ 1 − Ĝ(s) ]/τs; see lines 94 and 95 in the displayed program.

The partial sums s n (t) are computed in lines 30-33; the vector of the last 13 partial sums are

formed in lines 40-45; and the Euler sums E(t , m , n) and E(t , m , n + 1 ) in (6.26) for m = 11

and n = 15 are calculated in lines 50-54. The error estimate E(t , m , n) − E(t , m , n + 1 )is

computed in line 60. Finally, the output is printed in lines 70-75. The output contains the value

of t, the estimated function value F c (t) and the estimated error.

The Algorithm POISSON with Asymptotic Estimates

We now suppose that we are trying to evaluate a cdf F on the positive half line at a point t

with an allowable error ε. (If F is defined on the whole line, then we shift F to the right and apply

the same method, as described in §5. We consider successive shifts to check that an appropriate

shift has been made.)

For a cdf on the positive half line, the inversion integral is (3.6) and the trapezoidal rule

approximation is (4.4). We think of (4.4) as the algorithm POISSON. It remains to specify the

discretization step size h and the number of terms N in (4.4). Appropriate values of h and N can

easily be found by trial and error, but these can also be determined by bounds or estimates, for

which we apply §5 and §6.
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What we regard as the standard approach is to choose h and N based on estimates of the errors

using asymptotic analysis. From the point of view of a pure numerical procedure, this asymptotic

analysis is a severe requirement, but we regard the asymptotic analysis as desirable in its own

right in order to understand the behavior of the model. Given that we would do the asymptotic

analysis anyway, it is natural to exploit it to control and understand the computation.

The first step is to use the transform to determine the asymptotic behavior of F c (t) as t → ∞;

i.e., we identify a convenient decreasing function α(t) such that F c (t) ∼ α(t) as t → ∞

(F c (t)/α(t) → 1 ). The asymptotic behavior of F c (t) as t → ∞ can be determined from the

behavior of the Laplace transform of F c (t) near its singularity with largest real part. The

asymptotic behavior depends on the nature of the singularity, whether the singularity is a simple

pole or a branch point; see Sections 35 and 37 of Doetsch [36]. These two cases are each

illustrated by two examples in § 9-11. Alternatively, bounds and estimates for the tail

probabilities may be obtained by probabilistic arguments.

Given the function α, we let v ε/2 be such that α(v ε/2 ) = ε/2 and apply the discretization

error bound in (5.12) to obtain the estimate

e d ≤ F c


 h

2π_ __ − t




∼∼ α


 h

2π_ __ − t




. (7.2)

For an estimated discretization error of ε/2, we let ( 2π / h) − t = v ε/2 , so that the estimated step

size is h ∼∼ 2π /(v ε/2 + t). To calculate F(t) for t throughout the interval [ 0 , π / h], we let

t = π/ h in (7.2) and obtain h ∼∼ π / v ε/2 .

To estimate N given h, we determine the asymptotic behavior of the integrand γ(u) in (4.4);

i.e., we identify convenient functions β and ξ such that γ(u) ≤ β(u) and β(u) ∼ ξ(u) as

u → ∞. Then we apply (6.4) and let T ε/2 be such that max {hξ(T ε/2 ) , ξ(T ε/2 )/t} = ε/2

and obtain the estimate N ∼∼ T ε/2 h − 1 .
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Having determined h and N, we calculate the finite sum in (4.4), performing successive

refinements to provide an accuracy check. In particular, we calculate the sum with N /4, N /2, N,

2N and 4N terms; then we repeat these calculations with h replaced by h /2 and h /4. If the

changes going first through the pairs (h , N), (h , 2N) and (h , 4N) and then through the pairs

(h , N), (h /2 , 2N), (h /4 , 4N) are negligible (of order ε or less), then we have a satisfactory

accuracy check. If the changes are not suitably small, then we can consider further refinements or

convolution smoothing.

As a further refinement, we can calculate the average of the last half of the partial sums in

order to obtain the de la Valle ́ e-Poussin approximation described in (6.24) and (6.25). We call

this variant of the Fourier-series method POISSON-POUSSIN.

In calculating the finite sum, we use double precision to ensure that the roundoff error is

negligible. Assuming that the accuracy of each number is of order 10 − 14 and N ≤ 106 , the

roundoff error will be less than 10 − 8 . (Unlike EULER and LATTICE-POISSON, with algorithm

POISSON there is no damping and no multiplication of the finite sum in (4.4) by a large number.

Hence, the roundoff error analysis is different from Remark 5.8. Since Re(φ) (kh) sin (kht) ≤ 1

in (4.4), all terms in the finite sum are less than 1 in absolute value, so that m-decimal-place (or

m-digit) accuracy on the machine will lead to approximately (m − log 10 N)-decimal-place final

accuracy.)

The Algorithm POISSON With Bounds

Of course, the procedures in the algorithm POISSON with estimates that we have just

described do not yield bounds. When we set h by (7.1), the discretization error is bounded by ε/2

if, instead of the asymptotic relation between F c and α, we establish that F c (t) ≤ α(t) for t ≥ t 0

for some suitable t 0 . Bounds on tail probabilities can often be obtained, but finding good bounds

is much less routine than doing the asymptotic analysis. Relatively crude bounds, such as can
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readily be obtained from the moments and Chebychev’s inequality, tend to be much too

conservative, e.g., see (9.8)-(9.10) below.

Similarly, the truncation point can yield a bound if we let T ε/2 be such that

T ε/2

∫
∞

β(u) du = ε/2, as in (6.3). However, our experience indicates that this bound is also very

conservative.

Finally, if the truncation point bound T ε/2 is too large, then we consider convolution

smoothing as in §6. The variant POISSON-PAB due to Platzman et al. [99] discussed in

Remark 6.4 yields a bound, but it often requires a big computation, unless ε 1 need not be small.

Since convolution smoothing actually tends to improve the accuracy of the computation (see

Sections 10 and 12 below), it is reasonable to use it. Moreover, in many practical applications, ε 1

in (6.16) need not be too small.

8. Methods Based on the Post-Widder Formula

We now present alternative inversion procedures for Laplace transforms to use in addition to

one of the previous methods in order to provide a check; other candidates are mentioned in §15.

For diversity, we choose procedures based on the Post [101]–Widder [125] inversion formula,

which involves differentiation instead of integration. In particular, if f̂ (s) = ∫
0

∞
e − stf (t) dt with f

satisfying appropriate regularity conditions, then f n (t) → f (t) as n → ∞, where

f n (t) =
n!

( − 1 ) n
______



 t

n + 1_ ____




n + 1

f̂
(n)

( (n + 1 )/ t) , (8.1)

and f̂
(n)

is the n th derivative of f̂.

The convergence of f n (t) in (8.1) to f (t) is easy to understand from the probabilistic proof

given on p. 333 of Feller [43]. By differentiating the transform, it is easy to see that

f n (t) = E[ f (X n,t ) ], where X n,t is a random variable with a gamma distribution on ( 0 , ∞) with
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mean t and variance t /(n + 1 ). Hence, X n,t converges in probability as n → ∞ to a point mass at

t, so that E[ f (X n,t ) ] → f (t) as n → ∞ for all bounded real-valued f that are continuous at t (and

other f as well).

The Gaver-Stehfest Method

Since the Gaver [49] – Stehfest [113] method has a probabilistic derivation, it should be

relatively easy to understand. Just like EULER in §1, the Gaver-Stehfest method is also easy to

program in less than 50 lines, as demonstrated by the display below. However, the Gaver-

Stehfest method is much less robust than the Fourier-series method. For many problems, it works

very well, but for others it does not. Also there is not yet any error analysis. Thus, the Gaver-

Stehfest method illustrates the difficulties that are encountered by some numerical inversion

methods.

As a basis for performing numerical inversion, Gaver [49] established a discrete analog of

(8.1) involving finite differences. Let ∆ f̂ (nα) = f̂ ( (n + 1 ) α) − f̂ (nα) and let ∆k = ∆(∆k − 1 ),

so that

( − 1 ) n ∆n f̂ (nα) =
k = 0
Σ
n

( − 1 ) k 
k
n
f̂ ( (n + k) α) . (8.2)

Here is Gaver’s result in [49].

Proposition 8.1. If f is a bounded real-valued function that is continuous at t, then

f (t) =
n → ∞
lim f̃ n (t) ,

where

f̃ n (t) = ( − 1 ) n

t
ln2_ ___

n! (n − 1 ) !
( 2n) !_ _________ ∆n f̂ (n ln 2/ t) . (8.3)

Proof. As in the proof of the Post-Widder formula on p. 233 of Feller [43], we can apply the

weak law of large numbers. Let X n have a beta density with parameters n and n + 1, i.e., let X n
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have probability density

g X n
(y) =

(n − 1 ) !n!
( 2n) !_ _________ y n − 1 ( 1 − y) n , 0 ≤ y ≤ 1 ;

see p. 50 of [43]. Since the mean of X n is n /( 2n + 1 ) and the variance of X n is

n(n + 1 )/( 2n + 1 )2 ( 2n + 2 ), X n →
p

1/2 as n → ∞, where →
p

denotes convergence in probability,

by the weak law of large numbers. By the continuous mapping theorem, − α − 1 ln X n →
p

ln 2/α

as n → ∞, where − α − 1 ln X n has probability mass function

g n (y) = α
(n − 1 ) !n!

( 2n) !_ _________ (e − αy ) n ( 1 − e − αy ) n , y ≥ 0 .

Then E[h( − α ln X n ) ] → h( ln 2/α) for any bounded real-valued h that is continuous at t.

Since

E[ f ( − α ln X n ) ] =
(n − 1 ) !n!

α( 2n) !_ _________ ( − 1 ) n ∆n f̂ (nα) ,

we have the desired result if we let α = ln 2/ t.

Since the arguments of f̂ are k ln 2/ t, they are real, so that f̃ n (t) is a real-valued function of a

real variable. In view of the factorials in (8.2) and (8.3), we can not let n be very large before we

get significant roundoff problems. Hence, even more than in §6, it is desirable to consider

alternative methods of summation to accelerate convergence.

As in §6, we accelerate convergence by using a linear combination of the terms, i.e.,

k = 1
Σ
n

w(k, n) f̃ k (t), instead of f̃ n (t) as the approximant of f (t). As a basis for this refinement,

Gaver developed the asymptotic expansion

f̃ k (t) − f (t) ∼
j = 1
Σ
∞

c j (t) k − j . (8.4)

For example, from (8.4) it follows that the first error term is eliminated by considering
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2 f̃ 2n (t) − f̃ n(t) instead of f̃ 2n (t); i.e.,

2 f̃ 2n (t) − f̃ n (t) ∼
k = 2
Σ
∞

c k (t) n − k . (8.5)

Gaver went further to develop an improved extrapolation formula, but later Stehfest [113] found

what is in some sense the optimal linear combination. Here is Stehfest’s result in [113].

Proposition 8.2. Let f̃ n (t) be given as in (8.3) and let

fn
∗ (t) =

k = 1
Σ
n

w(k, n) f̃ k (t) (8.6)

for

w(k, n) = ( − 1 ) n − k

k! (n − k) !
k n

_ _________ . (8.7)

Then

fn
∗ (t) − f (t) = o(n − k ) as n → ∞ for all k .

Proof. By (8.4), it suffices to apply the combinatorial identity

k = 1
Σ
n

( − 1 ) n − k 
k
n
 n!

k m
_ __ =





1

0

, m = 0 and n ;

, m = 1 , 2 , . . . , n − 1 ,

see (12.7) and (12.17) on pp. 64-65 of Feller [42]. If (8.4) were an equality, then we would have

fn
∗ (t) − f (t) = ( − 1 ) n + 1

n!

c n (t)_____ +
j = 1
Σ
∞

n!

c n + j (t)_ ______
k = 1
Σ
n

( − 1 ) n − k 
k
n
k − j . (8.8)

Thus, the Gaver-Stehfest algorithm is (8.6) using the weights w(k, n) in (8.7) and f̃ n (t) in

(8.3) and (8.2). However, to facilitate computation, we also use a recursive procedure from (27)

and (29) of Gaver [49] to calculate f̃ n (t). In particular, we let
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f̃ m (t , j) = ( 1 +
j
m_ __ ) f̃ m (t , j − 1 ) −



 j

m_ __



f̃ m + 1 (t , j − 1 ) (8.9)

with f̃ m (t , 0 ) = mα f̂ (mα), 1 ≤ m ≤ 2n. Then f̃ n (t) = f̃ n (t , n).

Even with (8.9), the computation is not easy because of the factorials in (8.2), (8.3) and (8.7).

Thus, having high precision is very important. We typically use n = 16 in (8.6). To do so, we

need nearly thirty digit precision. For a PC, this is easily achieved using Kida’s [74] UBASIC.

The number of digits precision increases with n. As a function of n, the number decreases from

about 2n to about 1. 5n as n increases from 8 to 60.

The Gaver-Stehfest algorithm, here called GAVER, is displayed below for the M/G/1 waiting

time transform (1.1). In this M/G/1 example the service-time distribution is gamma with mean 1

and shape parameter 1/2, just as in the displayed version of EULER in §1 and Example 9.2

below. As before, we calculate the complentary cdf after removing the known atom at zero.

Insert Algorithm GAVER here (or slightly later)

The algorithm GAVER starts in lines 10 and 11 by specifying the number n of terms in (8.6)

and defining three vectors whose length depends on n. In this case we have set n = 16. Running

this program required 28 decimal places in UBASIC. The Laplace transform is defined in

Lines 90-95. Lines 30-42 calculate f̃ m (t) in (8.3) for 1 ≤ m ≤ n = 16 using the recursion in

(8.9), while lines 50–55 calculate the weighted sum in (8.6).

The Jagerman-Stehfest Method

In [66] Jagerman studied the Post-Widder approximants f n (t) in (8.1) and pointed out that the

first few can often serve as useful rough approximations for the function f (t) because they inherit

structural properties of f (t) such as monotonicity and convexity and they often can be calculated

analytically. (Others have also suggested using these approximants, e.g., see ter Haar [117] and

p. 149 of van der Pol and Bremmer [120], but Jagerman conducted an extensive study. These
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approximants in a particular M/M/1 example have also been studied in Abate and Whitt [4].)

In order to obtain greater numerical accuracy, Jagerman [67] proposed an algorithm for

calculating the approximants f n (t) in (8.1); further discussion appears in Jagerman [68], [69] and

Obi [95]. The essential idea behind the algorithm is to determine the generating function with

coefficients f n (t), which is

G(z) ≡
n = 0
Σ
∞

f n (t) z n =
t

(n + 1 )_ ______ f̂


 t

n + 1_ ____ ( 1 − z)




, (8.10)

and then apply the Fourier-series method for generating functions, exactly as described in §3 and

§5 above.

The key to Jagerman’s method is expressing the generating function in terms of the transform

f̂, as in (8.10), which is based on Theorem 12 of [66]. This is easily discovered by observing that

f̂


 t

n + 1_ ____ − z




=
n = 0
Σ
∞

n!
( − 1 ) n f̂

(n)
( (n + 1 )/ t) z n

_ ____________________ . (8.11)

From (8.11) it just remains to insert (n + 1 )/ t before z inside f̂.

Given (8.10), Jagerman [67] uses the Cauchy contour integral, as in (3.9) and (3.10), to obtain

f n (t) =
t

n + 1_ ____
2πr n

1_ ____∫
0

2π
f̂


 t

n + 1_ ____ ( 1 − re iu )




e − inu du . (8.12)

Finally, he applies (without discussion) the Poisson summation formula, as in (5.35), to obtain

f n (t) =
tmr n

n + 1_ ____
k = 1
Σ
m

f̂


 t

n + 1_ ____ 
1 − re ikh





e − inkh − e d , (8.13)

where h = 2π / m and

e d =
j = 1
Σ
∞

f n + j m




t +

n + 1
t j m_ ____




r j m ; (8.14)
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see (21) and (22) of [67]. We call this algorithm JAGERMAN. The last step makes it a Fourier-

series method.

As with the treatment of generating functions in §5, a complete error analysis is available for

computing f n (t) using (8.13) and (8.14), but it is important to note that the error between f (t) and

f n (t) is not controlled. Indeed, as Jagerman shows in [66] and (4)–(7) of [67], f n (t) approaches

f (t) quite slowly (of order n − 1).

In order to obtain improved numerical accuracy, we propose an enhancement to the algorithm

JAGERMAN. In particular, since Jagerman shows in (4)–(7) of [67] that the errors here also

satisfy (8.4), it is natural to consider applying the Stehfest [113] summation to this algorithm too,

and it turns out to be effective. (This enhancement is more effective than Jagerman’s σ-

enhancement, which is equivalent to (8.5).)

First, for simplicity, we let m = 2n, so that, paralleling (5.38), (8.13) becomes

f n (t) =
2tnr n

n + 1_ _____
k = 1
Σ
2n

( − 1 ) kRe( f̂ )


 t

n + 1_ ____ 
1 − re πik / n






− e d

=
2tnr n

n + 1_ _____ { f̂ ( (n + 1 ) ( 1 − r)/ t) + ( − 1 ) n f̂ ( (n + 1 ) ( 1 + r)/ t)

+ 2
k = 1
Σ

n − 1
( − 1 ) kRe( f̂ )



 t

n + 1_ ____ ( 1 − re πik / n )



} − e d . (8.15)

Assuming that f n (t) ≤ 1, we have e d ∼∼ r 2n , so that we let r = 10 − γ/2n when we want to

achieve accuracy to 10 − γ . We then approximate f (t) as in (8.6) by

f (t) ∼∼
k = 1
Σ
m

w(k, m) f j k (t) , (8.16)

where w(k, m) are the Stehfest coefficients in (8.7). We use n = j k in f n (t) in (8.16) to achieve

relatively large n and still benefit from (8.4). (Experience indicates that substantially higher n is

needed for f n (t) in (8.1) to be close to f (t) than for f̃ n (t) in (8.3). This is intuitively reasonable
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because f̃ n (t) is based on the beta distribution, which has finite support, whereas f n (t) is based on

the gamma distribution.)

We call this modification of algorithm JAGERMAN algorithm POST-WIDDER. A UBASIC

program implementing POST-WIDDER on the same M/G/1/ waiting-time example is displayed

below. In this program we let m = 6 and j = 10 in (8.16) via lines 10 and 31. We have

specified 10 − 8 accuracy via line 32.

Insert Algorithm POST-WIDER here (or slightly later)

Remark (8.1) in [6] we establish a direct connection between algorithms POST-WIDDER and

EULER. In particular, we show that (8.15) converges to (5.27) term by term as n → ∞ if we let

r = 1 − (A /2n). However, since the algorithms are based on fixed n, they serve as useful checks

on each other.

9. Examples: The M/G/1 Waiting Time CDF

We now consider examples to illustrate the numerical inversion procedures described

above. We start with the M/G/1 waiting-time cdf (1.2) with LST (1.1). We first eliminate the

known atom of mass ( 1 − ρ) at the origin by writing W(t) = ( 1 − ρ) + ρF(t). The cf φ of the

cdf F is then φ(u) = ( 1 − ρ) ψ e (u)/( 1 − ρ ψ e (u) ), where ψ e (u) = (ψ(u) − 1 )/τiu with

ψ(u) the cf of the service-time cdf, say S(t), with mean τ; i.e., ψ e is the cf of the service-time

stationary-excess distribution. With Laplace transforms, we consider the Laplace transform

F̂
c
(s) ≡ ∫

0

∞
e − stF c (t) dt of F c (t) ≡ 1 − F(t), which is [ 1 − φ(is) ]/ s ≡ [ 1 − f̂ (s) ]/ s where f̂

is the LST of F(t) and Laplace transform of the density f (t) when F(t) is absolutely continuous.

The difficulty in performing the numerical inversion depends on the service-time distribution and

its cf ψ.
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A Rational Transform: AN H 2 Service-Time Distribution

To begin with an easy case, suppose that the service-time cdf is H 2 (hyperexponential, a

mixture of two exponentials), i.e., S c (t) = pe − µ 1 t + ( 1 − p) e − µ 2 t , t ≥ 0, with parameters

p = 2/3, µ 1 = 2 and µ 2 = 1/2, so that the first three moments of S are s 1 = 1, s 2 = 3,

s 3 = 33/2, and the cf is

ψ(u) =
3
2_ _ ( 1 − 0. 5 iu) − 1 +

3
1_ _ ( 1 − 2iu) − 1 =

( 2 − iu) ( 1 − 2iu)
2 − 3iu_ _____________ . (9.1)

The associated cf’s for the stationary-excess cdf and F are

ψ e (u) =
( 2 − iu) ( 1 − 2iu)

2 ( 1 − iu)_ _______________ and φ(u) =
2u 2 + ( 3 + 4θ) iu − 4θ

4θ (iu − 1 )_ _____________________ , (9.2)

where θ = ( 1 − ρ)/2.

In this case we can invert the associated Laplace transform of the complementary cdf

analytically, using partial fractions. Indeed, whenever the Laplace transform of F c is rational (a

ratio of polynomials), we would usually prefer a partial-fraction algorithm, because it provides

an analytical inversion as well as numbers. Here we obtain

F c (t) = qe − η 1 x + ( 1 − q) e − η 2 x , x ≥ 0 , (9.3)

where

q =
2
1_ _




1 −

√ 1 − 8θ ρ/9

1 − 4θ/3_ ____________




(9.4)

η2
− 1 =

2
1_ _ +

8θ
3_ __ 

1 + √ 1 − 8θ ρ/9

 and η1

− 1 = 1 +
4θ
3_ __ − η2

− 1 .

Remark (9.1) It is well known that F is H 2 when S is H 2; more generally, F is a mixture of

exponentials whenever S is a mixture of exponentials; see Smith [111] and Keilson [71].

Now we numerically invert the cf φ in (9.2). For a specific computation, let ρ = 0. 75, so that
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q = 0. 0648, η1
− 1 = 0. 6277, η2

− 1 = 6. 372, m 1 = 6 and m 2 = 76. Suppose that we want to

calculate F c (t) for 0 ≤ t ≤ 30. We first apply EULER, the alternating series variant of the

Fourier-series method, which is summarized at the beginning of §7, and then GAVER and

POST-WIDDER, the two alternative methods in §8. For EULER with Euler summation

parameter m = 11, we found that A = 19. 1 and n = 15 (as displayed in §1) produced accuracy

to 10 − 7 , while A = 20. 7 and n = 20 produced accuracy to 10 − 8 . (This requires double

precision; see Remark 5.8.) Similar results were also obtained for the variant of EULER in

(5.30), which uses the imaginary part. The numbers obtained from GAVER with n = 16 terms

agreed with EULER to 10 − 8 , thus providing an independent check. In order for GAVER to work

with n = 16, we needed about 28-digit precision. The accuracy increases with n, but so does the

required precision. The algorithm POST-WIDDER with r = 10 − 7/2n , m = 6 and j = 10 also

produced accuracy to 10 − 8 . Similar results were obtained for m = 4 and j = 20, but m = 4 and

j = 10 was not enough.

Next we apply the variant of the Fourier-series method POISSON. Since F concentrates on

the positive real line, we apply inversion formula (3.6) and the trapezoidal rule (4.4). It thus

remains to determine an appropriate step size h and truncation point T, for which we apply

Sections 5 and 6.

Using algorithm POISSON, we estimate the step size h required to yield a discretization error

of 10 − k by doing an asymptotic analysis of F c (y) as y → ∞. From the partial fraction expansion

used to obtain (9.3) from (9.2), or from p. 238 of Doetsch [36], we obtain

F c (y) ∼ ( 1 − q) e − η 2 y = 0. 935e − 0. 157y as y → ∞ , (9.5)

so that, from (5.13),

h − 1 ∼∼
2π
1_ __




30 +

− 0. 157
log ( 10 − k /0. 935 )_ _______________





= 16. 4 for k = 5 . (9.6)
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Alternatively, we can determine the required step size h to achieve a discretization error

bound of 10 − k . One approach is to bound the tail probabilities using the moments. From the cf

in (9.2), as well as from (9.3), we can calculate the moments of F (see Kleinrock [75] for general

formulas), the first two being

m 1 ≡
0
∫
∞

xdF(t) =
2 ( 1 − ρ)

3_ _______ and m 2 ≡
0
∫
∞

x 2 dF(t) =
2 ( 1 − ρ)

11_ _______ +
2 ( 1 − ρ)2

9ρ_ ________ . (9.7)

We can apply Chebychev’s inequality to bound the tail probabilities by

F c (t) ≤
t

m 1_ ___ and F c (m 1 + t) ≤
t 2

m 2 − m1
2

_ ________ , (9.8)

but these bounds are not very useful. Applying (5.13), with a discretization error bound of 10 − k ,

we obtain F c ( ( 2π / h) − t) = 10 − k for t ≤ 30, so that

h
1_ _ ≤



 2π

1_ __







30 +

10 − k

m 1_ ____




= 95 , 498 for k = 5 (9.9)

and

h
1_ _ ≤



 2π

1_ __








m 1 + 30 +



 10 − k

m 2 − m1
2

_ ________




1/2




=
2π

2036_ ____ = 324 for k = 5 , (9.10)

respectively.

In this case, since F is H 2 , we actually have the much better exponential bound

F c (t) ≤ e − 0. 157t , t ≥ 0 . (9.11)

The bound in (9.11) holds because an H 2 cdf has decreasing failure rate, which implies that it is

stochastically dominated in the failure rate ordering (which is stronger than the usual stochastic

ordering) by an exponential distribution with the limiting rate; see Chapter 8 of Ross [107].

Alternatively, we can obtain the same bound by applying Prop. 5.3.2 of Stoyan [115]. From
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(9.11), we obtain

h
1_ _ ≤

2π
1_ __




30 +

− 0. 157
log ( 10 − k )_ _________





= 16. 5 for k = 5 (9.12)

which is essentially equivalent to the estimate (9.6).

An estimate for h could be obtained by assuming that F has an exponential tail (which turns

out to be correct by (9.5)), and using the known mean to approximate the rate. If we do this, then

we obtain

h
1_ _ ∼∼

2π
1_ __




30 +

− 0. 167
log ( 10 − k )_ _________





= 15. 8 for k = 5 , (9.13)

which is a good estimate in this case.

Turning to the truncation, we easily obtain Re(φ) from (9.2), i.e.,

Re (φ) (u) =
( 2u 2 − 4θ)2 + ( 3 + 4θ)2 u 2

4θ [ ( 1 + 4θ) u 2 + 4θ]_ _________________________ . (9.14)

Note that Re(φ) (u) in (9.14) is a decreasing positive function of u, so that we can construct the

bounding function β(u) in (6.3) for γ(u) in (4.4) by

γ(u) ≤
πu

2 Re(φ) (u)__________ =
πu [ ( 2u 2 − 4θ)2 + ( 3 + 4θ)2 u 2 ]

8θ [ ( 1 + 4θ) u 2 + 4θ]_ ______________________________ =
π ( 16u 5 + 41u 3 + u)

6u 2 + 2_ ___________________

≤
π 8u 3

3_ _____ ≡ β(u) for u ≥ 1 . (9.15)

Remark (9.2) For an exponential cdf with mean m, Re(φ) (u) = 1/( 1 + [mu]2 ). Since the cf

of a mixture is the mixture of the cf’s (pp. 504, 509 of Feller [43]), Re(φ) (u) is monotone

whenever φ is the cf of a mixture of exponentials. Moreover, whenever F is a finite mixture of

exponentials, as in this example, Re(φ) (u) = O(u− 2 ). When we apply EULER using (4.6), it

is significant that the real part of the transform of F c (t) is appropriately monotone. In particular,

since
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Re(F̂
c
) (u + iv) = m( 1 + mu)/( ( 1 + mu)2 + m 2 v 2 )

when F is an exponential cdf with mean m, Re(F̂
c
) (u + iv) is positive and decreasing in v when

u ≥ 0 and F is a mixture of exponentials. Thus, (4.6) is indeed an alternating series.

We can estimate the truncation point T = Nh yielding a truncation error of 10 − k by applying

(6.4). If we let t be the mean of F (i.e., t = 6 ), then 1/t = 1/6 > h for k > 2 (see Table 1), so

that (6.4) becomes

max {hβ(T) , β(T)/t} = β(T)/t =
16π T 3

1_ ______ = 10 − k (9.16)

and T ∼∼ ( 10k /16π)1/3 = 12. 6 for k = 5. Finally, we can combine (9.6) and (9.16) to obtain an

estimate for the total number of terms of N = Th − 1 = ( 12. 6 ) ( 16. 4 ) = 207 for k = 5.

If instead we want to achieve a truncation error bound, then we can set

T
∫
∞

β(u) du =
16π T 2

3_ ______ = 10 − k and T =


 16π 10 − k

3_ ________




1/2

= 77. 3 for k = 5 . (9.17)

Hence, a bound of 2 × 10 − k on the total error is achieved by combining (9.12) and (9.17) to

obtain h − 1 = 16. 5, T = 77. 3 and N = T / h = 1276 for k = 5. Even with the relatively crude

Chebychev bound in (9.10), we obtain the feasible computation based on N = 25 , 050 for k = 5.

Table 1 displays the discretization parameter h − 1 , truncation parameter T = Nh and total number

of terms N required to achieve prescribed errors of 10 − k as a function of k for this example, using

estimates and bounds.

Insert Table 1 here (or slightly later)

Table 2 contains a comparison of numerical inversion approximations based on POISSON

with exact values of F c (t) based on (9.3). Also included is the asymptotic expression in (9.5),
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which is known to be an excellent approximation for this example when t is not too small; see

pp. 54-62 of Tijms [118]. (This illustrates the power of asymptotic analysis for computing small

tail probabilities.) Indeed, the asymptotic approximation (9.5) is exact to 10 − 8 for t ≥ 12, but

does not perform well for t < 1.

For the inversion, three levels of accuracy are considered: 2 × 10 − k for k = 3 , 5 and 7. The

inversion parameters are determined by the standard estimates described above, with t = 1 and

t = 6 both being used in (9.16) to determine the truncation point T and thus N. Changing from

t = 6 (as in Table 1) to t = 1 increases the required number of terms N by a factor of

61/3 = 1. 82. The accuracy of the approximation is described in Table 2 by giving the error as a

factor times 10 − k when the desired error is 2 × 10 − k .

Insert Table 2 here (or slightly later).

From Table 2 it is apparent that the estimates are quite accurate. Indeed, the error at the intended

t is 1 × 10 − k when the desired error is 2 × 10 − k in all six cases. Consistent with (6.4) and (9.16),

the error increases as t gets small. This lack of accuracy is anticipated because F c (t), when

reflected about t = 0, has a discontinuous derivative at 0.

Finally, we consider convolution smoothing to obtain a truncation bound independent of the

cdf F. As in §6, we use a normal smoothing cdf with mean 0 and variance σ2 . From

Remark 6.3, we know that the error resulting from convolution smoothing with a normal cdf

having variance σ2 is of order f (t) σ, where f (t) is the density of F at t. From (9.3), here the

density f (t) is 0.146 at t = 1 and 0.057 at t = 6. Thus, for the desired error to be of order

2 × 10 − k , σ should be of order 6. 9 × 10 − k for t = 1 and 1. 75 × 10 − k for t = 6. Thus, the

appropriate value of T as a function of k when t = 1 (t = 6 ) is 411 (162) for k = 3, 6960 (2714)

for k = 5 and 82,600 (32,200) for k = 7. The corresponding values of N, assuming the estimated
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values of h in (100), are 4809 (1895) for k = 3, 114,144 (44,510) for k = 5 and

1,743,000 (680,000) for k = 7. These values are obviously substantially greater than actually

required without convolution smoothing (see the last column of Table 1), so that convolution

smoothing provides no assistance in the required computation in this example.

A similar analysis applies with the variant POISSON-PAB using (6.16). By (6.18),

T = 2 log ( 2/ε 2 )/ε 1 , but the analog of Remark 6.3 implies that we must have f (t) ε 1 ∼∼ ε 2 if

the perturbation error ε 1 does not seriously inflate ε 2 . Hence, we need T ∼∼ 2 f (t) log ( 2/ε 2 )/ε 2 ,

which leads to even larger values, e.g., for k = 5 and x = 1, T ∼∼ 356 , 000 and N ∼∼ 5 , 840 , 000.

From these calculations, it is apparent that we cannot be too demanding about the errors ε 1 and

ε 2 in (6.16), because the resulting computation will soon get out of hand. Of course, we have

little difficulty if we can choose ε 1 relatively large with ε 2 small, but the interpretation of such a

choice is questionable. In an application, we may well know that ε 1 not need be too small, but in

that case it does not seem to make sense to require that ε 2 be very small if f (t) ε 1 is much larger

than ε 2 .

An Irrational Transform: A Γ 1/2 Service-Time Distribution

We now consider the M/G/1 queue with a slightly more difficult service-time distribution, in

particular, a gamma distribution with shape parameter 1/2, which has density

s(t) =
√ 2π t 3

e − t /2
_ _______ , t ≥ 0 , (9.18)

first three moments s 1 = 1, s 2 = 3 and s 3 = 15 and the non-rational cf

ψ(u) = ( 1 − 2iu) − 1/2 . The programs for applying the algorithms EULER, GAVER and

POST-WIDDER to this example are displayed in Sections 1 and 8.

The cf φ of the cdf F (again W(t) = 1 − ρ + ρF(t) ) is thus
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φ(u) =
− (ρ + iu) [ 1 − 2iu]1/2 + ρ
( 1 − ρ) ( [ 1 − 2iu]1/2 − 1 )_ _______________________ , (9.19)

where

( 1 − 2iu)1/2 = X(C + iS) , X = ( 1 + 4u 2 )1/4 ,
(9.20)

C = cos (θ/2 ) , S = sin (θ/2 ) and θ = arctan ( − 2u) .

It turns out that the cf φ in (9.19) can be inverted analytically (which we derive elsewhere) to

obtain the following exact expression for the cdf

F c (t) = Ae − δt + ρ − 1 Φc (√ t ) − Ae − δt Φc ( ( [ 1 + 8ρ]1/2 − 1 ) √ t /2 )

− Be ηt Φc ( ( [ 1 + 8ρ]1/2 + 1 ) √ t /2 ) , (9.21)

where Φc (t) is the complementary standard normal cdf with mean 0 and variance 1,

A = 1 −
√ 1 + 8ρ ( 1 + 2ρ + √ 1 + 8ρ )

2 ( 1 − ρ)_ ___________________________ , B = A +
ρ

1 − 2ρ_______

δ =
4

√ 1 + 8ρ − ( 4ρ − 1 )_ ___________________ and η = 2ρ + δ −
2
1_ _ . (9.22)

Now we calculate F c (t) by numerical inversion using φ(u) in (9.19). EULER, GAVER and

POST-WIDDER all work very well, just as for Example 9.1. EULER produces accuracy of 10 − 7

with n = 15 and A = 19. 1, and accuracy of 10 − 8 with n = 20 and A = 20. 7. (As before, this

requires double precision.) GAVER produces an independent check to 10 − 8 with n = 16 (and

even higher precision). POST-WIDDER produces an independent check to 10 − 8 with m = 6

and j = 10. For POST-WIDDER, double precision suffices.

Turning to POISSON, we consider estimates and bounds of the tail probabilities. Not using

(9.21), we can estimate the tail probability by doing asymptotic analysis using the Laplace

transform of the complementary cdf F c (t), which can be expressed as F̂
c
(s) = N(s)/ D(s),

where
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N(s) = s − 1 [ 1 + (s − 1 ) ( 1 + 2s)1/2 ]
(9.23)

D(s) = ρ + (s − ρ) ( 1 + 2s)1/2 .

In this case, F̂
c
(s) is not rational, but the right-most singularity is a simple pole at s = − δ for δ

in (9.22), so that

F c (t) ∼ Ae − δt as t → ∞ (9.24)

where A is in (9.22) and

A =
s → − δ

lim (s + δ) F̂
c
(s) =

D ′ ( − δ)

N( − δ)_ _______ (9.25)

and D( − δ) = 0; see p. 238 of Doetsch [36]. For example, when ρ = 0. 75,

F c (t) ∼ 0. 963e − 0. 161t as t → ∞ . (9.26)

Assuming that we want to calculate F(t) for t < 30, our estimate for the discretization parameter

based on (5.13), (9.26) and a discretization error of 10 − k is

h
1_ _ ∼∼

2π
1_ __




30 +

− 0. 161
log ( 10 − k /0. 963 )_ _______________





, (9.27)

which equals 11.5, 16.1 and 20.6 for k = 3 , 5 and 7.

It turns out that a good bound can also be found in this case, because as noted above this

service-time distribution is also a mixture of exponentials. Hence, F is a mixture of exponentials

by Keilson [71] and F c (t) ≤ e − 0. 161t .

Turning to the truncation, we first apply (9.19) to determine that

Re(φ) (u) =
A(u)2 + B(u)2

2 ( 1 − ρ) A(u)_ _____________ , (9.28)

where

A(u) = 1 − 2ρ + XC and B(u) = 2u + XS (9.29)
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with X , C and S in (9.20). (By Remark 9.1, Re(φ) (u) is monotone.) Since

arctan ( − 2u) → − π/2 as u → ∞, S → sin ( − π/4 ) = − 1/√ 2 and

C → cos ( − π/4 ) = 1/√ 2 as u → ∞, so that Re(φ) (u) ∼ ( 1 − ρ)/2u 3/2 , which equals

1/8u 3/2 when ρ = 0. 75. For a point t ≤ h − 1 and a truncation error of 10 − k , we apply (6.4) to

obtain an estimated truncation point of

T = Nh ∼∼


 4 π

10k
_ ___





2/5

, (9.30)

which is 2.8, 17.7 and 112 for k = 1 , 2 and 3, respectively.

Table 3 contains a comparison of numerical inversion approximations based on POISSON

with exact values of F c (t) based on (9.21).

Insert Table 3 here (or slightly later)

(The ‘‘exact’’ solution in (9.21) can be computed using the rational approximation for the

complementary cdf Φc (t) in 26.2.17 of Abramowitz and Stegun [8].) The results are similar to

those for the M/H 2/1 case in Example 9.1.

Other Service-Time Distributions

The two service-time distributions considered above were both mixtures of exponential

distributions, implying that Re(F̂
c
) (a + iu) is a decreasing positive function of u, thus favoring

EULER; see Remarks 9.1 and 9.2. Hence, we also consider two service-time distributions for

which Re(F̂
c
) (a + iu) is not a positive decreasing function of u. (We keeping the traffic

intensity at ρ = 0. 75.)

In particular, as service-time distributions we consider the uniform distribution and the E 2

(Erlang of order 2) distribution. Since the cf of the uniform distribution on [ 0 , a] is
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ψ(u) =
iau

e iua − 1_ _______ =
iau

cos ua + i sin ua − 1_ __________________ , (9.31)

we see that the real and imaginary parts of ψ e (a + iu) and thus also Re(F̂
c
) (a + iu) involve

trigonometric functions, so that Re(F̂
c
) (a + iu) is not monotone in u.

Similarly, by (12.1)–(12.6) below, for an E k service-time distribution the real and imaginary

parts of the cf’s ψ(a + iu) and ψ e (a + iu) involve trigonometric functions, so that

Re(F̂
c
) (a + iu) is again not monotone. However, since arctan(u) → π/2 as u → ∞

(see (12.6)), Re(F̂
c
) (a + iu) turns out to be eventually monotone as u gets large. Moreover,

(12.4) shows that the transform of the E k distribution decays rapidly. Thus, the E k service-time

distribution is substantially less difficult than the uniform service-time distribution.

It turns out that EULER performs well on both these examples, obtaining 10 − 7 accuracy with

A = 19. 1 and n about 20, but GAVER performs well only for the E 2 . For the uniform service-

time distribution, GAVER was only able to obtain accuracy to about 10 − 4 for N = 30. These

examples are also more difficult for POST-WIDDER. For m = 6, j = 20 and E ≡ γ = 8, the

error is about 10 − 7 − 10 − 8 for an E 2 service time and 10 − 5 − 10 − 6 for a uniform service time.

10. The Time-Dependent Mean of RBM

This example has three main purposes: first, to illustrate how to obtain the asymptotic

behavior of F c (t) when the right-most singularity of the LST is not a simple pole; second, to

consider a slowly decaying cf for which the standard truncation bound (6.3) for POISSON can be

inadequate; and, third, to illustrate the use of convolution smoothing and other windowing.

For these purposes, we consider the time-dependent mean of regulated or reflecting Brownian

motion (RBM), drawing on Abate and Whitt [2], to which we refer in this section by AW. Let

R(t) be canonical RBM, i.e., Brownian motion with negative unit drift and unit diffusion

coefficient, modified by an impenetrable reflecting barrier at the origin. In this section, let
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F(t) =
ER(∞)

E(R(t)  R( 0 ) = 0 )_ _________________ , x ≥ 0 , (10.1)

i.e., the time-dependent mean starting at 0, normalized by the steady-state limit, which turns out

to be a bonafide cdf on the positive real line with cf

φ(u) =
0
∫
∞

e iut dF(t) =
1 + ( 1 − 2iu)1/2

2_ _______________ =
iu

1 − ( 1 − 2iu)1/2
_ _______________ ; (10.2)

see (4.5) of AW. Explicit expressions for the cdf F, its density f, all its moments, and the

asymptotic behavior as t → 0 and as t → ∞ are given there in Theorems 1.1(a), 1.3 and 4.1,

Corollaries 1.3.1, 1.3.4 and 1.3.5, and the concluding remark in § 4.3. (The first three moments

are 1/2, 1 and 15/4.) Numerical values of the complementary cdf F c and the density f are given

in Table 1 there.

Suppose now that we wish to calculate F(t) by numerically inverting (10.2). First, the

algorithms EULER (with n = 15 and A = 19. 1 ), GAVER (with n = 16) and POST-WIDDER

(with m = 6 and j = 10) give 10 − 7 accuracy, just as in §9. As in §9, this cdf is a mixture of

exponentials (Theorems 1.3 and 1.7 of AW), so that (4.6) is again a true alternating series.

Next we turn to POISSON. Since F concentrates on the positive real line, we apply the

inversion integral (3.6) using the trapezoidal rule (4.1), which yields (4.4). We can estimate and

bound the discretization error by applying (5.13). As noted in Remark 4.4 of AW, the right-most

singularity of the Laplace transform of F c (t) at s = − 1/2 is not a simple pole, but a branch

point, so that we apply Heaviside’s theorem, p. 254 of Doetsch [36], to deduce that

F c (t) ∼
√π t 3

2e − t /2
_ _____ as t → ∞ . (10.3)

(This is obtained in Corollary 1.1.2 of AW by a different argument.) Numerical values of (10.3)

are given in Tables 3 and 4 of AW. Alternatively, we could apply the exponential approximation

for F c in (1.3) of AW, which is
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F c (t) ∼∼ 0. 276 e − 0. 764t , t ≥ 0 . (10.4)

As in §9, the cdf F is a mixture of exponentials, so that it has decreasing failure rate

(Theorems 1.3 and 1.7 of AW) and we obtain the exponential bound F c (t) ≤ e − t /2 , t ≥ 0.

Since F c ( 10 ) ∼∼ 0. 00024 by (10.4), we decide to calculate F c (t) for 0 < t < 10. Since

F c ( 8 ) ∼∼ 9. 1 × 10 − 4 ∼∼ 10 − 3 and F c ( 16 ) ∼∼ 8. 4 × 10 − 6 ∼∼ 10 − 5 by (10.4), we apply (5.13) to

obtain estimates for the discretization parameter h − 1 of 26/2π ∼∼ 4. 14 and 18/2π ∼∼ 2. 87 when

the discretization error is 10 − 5 and 10 − 3 .

Turning to the truncation error, we find from (9.20) and (10.2) that

Re(φ) (u) =
u

− Im (√ 1 − 2iu )_ ______________ =
u

− ( 1 + 4u 2 )1/4 sin (θ/2 )_ _____________________ ∼
√ u

1_ ___ as u → ∞(10.5)

where θ = arctan ( − 2u). Hence, from (6.2), (6.4) and (10.5), our estimated truncation point is

T = Nh ∼∼


 π t

2 ( 10k )_ ______




2/3

(10.6)

which is 1594 (483) for t = 1 (t = 6 ) and k = 5; the associated values of N using h − 1 = 4. 14

are 6600 (2000) for t = 1 (t = 6 ), which obviously are feasible. Table 4 displays the

computational results for h − 1 = 4. 41 and N = 500 and 2000. As predicted by the estimate, the

error for N = 2000 at t = 6 is 10 − 5 . By (10.6), the estimated error for N = 500 at t = 1

(t = 6 ) is 48 × 10 − 5 ( 8 × 10 − 5 ), which is also consistent with Table 4.

Insert Table 4 here (or slightly later).

Unlike § 9, we have some difficulty when we apply the truncation bound in (6.3). A

bounding function for u ≥ 1 is β(u) = 3/πu 3/2 , which for an error bound of 10 − k leads to the

truncation point of T = Nh ≤ [ 6 ( 10k )/π]2 , which tends to be an infeasible computation for
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large k, e.g., for k = 5.

For this example, it is thus reasonable to consider convolution smoothing. Given that the

truncation error is 10 − 5 , h − 1 = 4. 14 as above and N = 2000 (500), we find from (6.12) that the

normal standard deviation must be σ = 0. 01 (σ = 0. 04 ). Moreover, from (6.17) we see that the

associated allowable perturbation in (6.16) must be ε 1 = σ √ 2 log 2/ε 2 = 5. 47σ = 0. 055

(ε 1 = 0. 22 ), which tends to be inconsistent with an overall accuracy of 10 − 5 . (See Remark 6.3

and Table 1 of AW for numerical values of the density.) To summarize, we can obtain the error

bounds in (6.16) with ε 2 = 10 − 5 and ε 1 = 100/ N by using h − 1 = 4. 14, σ = 182/ N and N.

Even though this is not consistent with an overall error of 10 − 5 , this should usually be adequate

guaranteed accuracy for most applications. (Given ε 2 = 10 − 5 , we have ε 1 = 0. 05 and

σ = 0. 01 for N = 2000, or ε 1 = 0. 005 and σ = 0. 001 for N = 20 , 000.)

To show how the convolution smoothing actually affects the computation, the results with

convolution smoothing are also displayed in Table 4 for the same values of h − 1 and N. As

indicated above, the normal standard deviation is 0.01 and 0.04 for N = 2000 and 500. From

(6.9), (6.12) and (6.19), the weight function here is w(kh) = ε2
(k / N)2

for ε 2 = 10 − 5 and

N = 2000. From Table 4, we see that the convolution smoothing actually tends to improve the

accuracy, except at very low values of t.

Finally, we also consider convolution smoothing with the smoothing cdf that attaches

probability 1/2 to 0 and probability 1/2 to π / Nh, which yields (6.9) with the new weight function

w(kh) = [ 1 + cos (kπ / N) ]/2 . (10.7)

This weight function is a popular window in signal processing, corresponding to a special case of

both the Hanning and Hamming windows; see (27a) and (30a) of Harris [53]. Table 4 shows that

this weight function performs even better than the Gaussian window (convolution smoothing with

the normal cdf). Notice that for this smoothing cdf, the standard deviation is σ = π/2Nh, which
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is 0.0033 (0.013) for N = 3000 (N = 500 ), i.e., smaller than for the normal smoothing cdf.

11. The Number Served in an M/M/1 Busy Period

This example illustrates how lattice probability distributions can be treated by the Fourier-

series method using the algorithm LATTICE-POISSON in §5. Let F(n) be the cdf of the number

of customers served in the busy period of an M/M/1 queue with traffic intensity ρ. From p. 65 of

Riordan [103], the cf is

φ(u) =
√4 β ρ

1 − √ 1 − 4 βe iu
_ ________________ for β = ρ/( 1 + ρ)2 . (11.1)

The known probability mass function is

p n ≡ F(n) − F(n − 1 ) =
n
1_ _ 

 n − 1
2n − 2

ρn − 1 ( 1 + ρ) − 2n + 1 , n ≥ 1 . (11.2)

The mean is ( 1 − ρ) − 1 and the variance is (ρ + ρ2 ) ( 1 − ρ) − 3 . As before, we will consider

ρ = 0. 75, which yields a mean of 4 and a variance of 84.

The algorithm LATTICE-POISSON easily produces the required accuracy (e.g., to 10 − 8)

with no special analysis; see Table 1 of [7]. In contrast, when we applied EULER, GAVER and

POST-WIDDER directly to the transform in (11.1), we got no useful results, which is not

surprising, because the cdf has jumps; see §14. We also applied EULER, GAVER and POST-

WIDDER to the smoothed or interpolated continuous cdf with cf.

φ̃(u) =
iu

1 − e − iu
_ _______ φ(u) , (11.3)

corresponding to the convolution with a uniform distribution on the interval [ − 1 , 0 ], which

leaves the values at integer points unchanged. (This was motivated by Abate and Dubner [1].)

Unfortunately, we then only obtained accuracy to about 10 − 4 , even after increasing the number of

terms. Moreover, the estimated truncation errors with EULER seriously underestimated the true
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errors. Hence, the sharp corners of the continuous smoothed cdf still cause serious problems for

EULER, GAVER and POST-WIDDER. We do much better applying EULER, GAVER or

POISSON after smoothing with a nicer smoothing cdf, e.g., the normal with standard deviation

0.05, so that more than 10 standard deviations are required to have the point masses at adjacent

points cross over. Indeed, the algorithm POISSON-PAB in Remark 6.4 with ε 1 = 0. 49 in (6.16)

works quite well for lattice distributions. However, we have not seen anything outperform

LATTICE-POISSON. For further discussion about this example, see [7].

12. Convolutions of Exponential Distributions

As indicated by Harrison [54], convolutions of exponential distributions arise in many

contexts, such as first-passage-time distributions in continuous-time Markov chains, Cox

distributions and sojourn-time distributions in queueing networks. However, contrary to the

claim on p. 74 of [54], these distributions are not difficult to evaluate by numerically inverting

Laplace transforms. First, the transform of the convolution is easily expressed as the product of

the transforms. Second, convolution is a smoothing operation, so that the final distribution tends

to be very smooth, which translates into Re(φ) (u) tending to have a very rapidly decaying tail (by

virtue of the Riemann-Lebesgue lemma discussed after (6.3)).

To support our second claim above, we calculate the real part of the transform of a

convolution of exponentials, bound its tail and describe the asymptotic behavior in the Erlang

case.

Proposition 12.1. If φ is the cf of a convolution of exponentials, i.e., if

φ(u) =
j = 1
Π

n
( 1 − ium j ) − k j (12.1)

for positive integers and positive reals m j , then
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Re(φ) (u) =

j = 1
Π

n
( 1 + (m j u)2 ) k j /2

cos


j = 1
Σ
n

k j ξ j



_ __________________ (12.2)

for ξ j = arctan(m j u), so that

Re(φ) (u) ≤


 j = 1
Π

n
m j u





− 1

. (12.3)

Moreover, for n = 1, as u → ∞

Re(φ) (u) ∼









(m 1 u) k1

1_ _______

(m 1 u) k1 + 1

k 1_ _________

for k 1 even .

for k 1 odd

(12.4)

Proof. Using the polar form, write

( 1 − ium k ) = r k e iξ k = r k ( cos ξ k + i sin ξ k ) , (12.5)

where

r k = √ 1 + (m k u)2 and ξ k = arctan( − m k u) , (12.6)

to obtain

Re[ ( 1 − ium k ) − 1 ] = rk
− 1 cos ξ k (12.7)

for r k and ξ k in (12.6), from which (12.2) follows. It is easy to see that ( 1 + x 2 )1/2 ≥ x, from

which (12.3) follows. Finally, since arctan(u) → π/2 as u → ∞, cosk 1 ξ 1 → 1 for k 1 even

and cosk 1 ξ 1 → 0 for k 1 odd as u → ∞. However, further analysis shows that

cosk 1 ξ 1 ∼ k 1 / m 1 u ∼ k 1 / r 1 as u → ∞, which implies (12.4).

Note that the inequality (12.3) makes it relatively easy to bound the truncation error

associated with POISSON using (6.3). Consistent with this analysis, the numerical results for
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this example are excellent. When there is a large number of components with nearly equal

means, great accuracy is obtained by all the methods with little effort. For example, this was the

case for an E 100 (Erlang of order 100) distribution. Accuracy to 10 − 12 was obtained with only

200 terms using POISSON. For this case, the exact result can be computed directly from a sum

of 101 terms; see (3.5) on p. 11 of Feller [43].

A more interesting example is the convolution of 5 exponentials with mean 10 plus 50

exponentials with mean 1. In fact, this example presented difficulties for EULER, GAVER and

POST-WIDDER with the parameter settings in §9. However, when the number of terms was

increased from 15 to 30 in EULER and from 16 to 32 in GAVER, they agreed to at least 10 − 7 .

For POST-WIDDER, the error was 10 − 7 − 10 − 8 with m = 8, j = 20 and E = 8. The

additional terms in EULER and POST-WIDDER present no problem, but as indicated before, an

increase in n in GAVER must be associated with higher precision. For n = 32, we required 48

decimal places, which tends to slow down the algorithm somewhat. Neither POISSON nor

EULER were seriously stressed by this example, but GAVER was. It is not difficult to apply

POISSON with detailed error analysis.

To quickly understand the nature of these distributions, note that the mean of the distribution

in (12.1) is
j = 1
Σ
n

k j m j and the variance is
j = 1
Σ
n

k j mj
2 . As the number of components increases,

without the mean of any one being large compared to the total mean, the distribution approaches a

normal distribution by virtue of the Lindeberg version of the central limit theorem, p. 262 of

Feller [43].

We close this section by mentioning that a special variant of the Fourier-series method (using

the mid-point rule instead of the trapezoidal rule) was developed by Davies [31] to compute the

distribution of a linear combination of independent χ2 random variables, which includes

exponentials as a special case.
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13. Renewal Functions

The purpose of this section is to illustrate the numerical inversion of Laplace transforms of

functions on the positive real line that are not cdf’s or probability density functions. An example

that is often encountered in queueing and applied probability is the renewal function; e.g., see

Heffes and Lucantoni [55] and Heyman [56].

Let H(t) be the renewal function, recording the expected number of renewals in the interval

( 0 , t), associated with a cdf F(t) with F( 0 ) = 0, defined here as

H(t) =
n = 1
Σ
∞

F n * (t) , t ≥ 0 , (13.1)

where F n∗ (t) is the n-fold convolution of F(t), as in Cox [26]. (Some authors have an extra term

F 0∗ (t) ≡ 1 in (13.1); see (1.2) on p. 358 of Feller [43].) Let f̂ (s) denote the LST of F(t), i.e.,

f̂ (s) = ∫
0

∞
e − stdF(t), which is the Laplace transform of the density f (t) of F(t) when F(t) is

absolutely continuous. Then the Laplace transform of H(t) is

Ĥ(s) = ∫
0

∞
e − stH(t) dt =

s( 1 − f̂ (s) )

f̂ (s)_ __________ , (13.2)

as in (4) on p. 46 of Cox [26].

Thus, given the LST f̂ (s), we can calculate H(t) by numerically inverting Ĥ(s). EULER,

GAVER and POST-WIDDER all can be applied. For EULER, we can use the known asymptotic

behavior of H(t) together with (5.28) to estimate the discretization error; in particular, we can

apply

t→ ∞
lim H(t) −

m
t_ __ =

2
(c 2 − 1 )________ , (13.3)

where m is the mean of F(t) and c 2 is the squared coefficient of variation (variance divided by the

square of the mean), see p. 58 of Cox [26]. We can also apply known bounds for special classes
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of distributions.

Assuming that M(t) ∼∼ t / m + (c 2 − 1 )/2, we obtain from (5.28) and (5.29) the estimate

e d ∼∼


 2

(c 2 − 1 )________ +
m
3t_ __




e − A , (13.4)

from which we obtain an initial estimate of A. (If the method does not seem to be working, then

we can try larger values of A.)

As a concrete example, we considered the case of an E 3 (Erlang of order 3) distribution, with

mean m which has been analyzed analytically in (9) on p. 50 of Cox [26], yielding

H(t) =
m
t_ __ −

3
1_ _ +

3√ 3
1_ ____ e − 9t /2m ( sin ( 3√ 3 t /2m) + √ 3 cos ( 3√ 3 t /2m) ) . (13.5)

For this example, the three inversion methods EULER, GAVER and POST-WIDDER worked

well, producing agreement to 10 − 8 with the same number of terms as in §9. (The parameter A

was set so that 10 − 8 = ( 3t / m) e − A .)

14. Examples to Reveal the Limitations of the Fourier Series Method

The Fourier-series method is satisfactory for numerical inversion unless finite approximations

of the infinite series in (4.4) or (4.6) are not sufficiently accurate. First, note that the step size h

actually presents no difficulty, because given any cdf F(t) yielding a step size h, we can scale

(change the measuring units) by considering F(t / y) to obtain an equivalent step size of h / y.

Hence, it suffices to assume that h is of order 1. The critical issue then is the truncation point

T = Nh, which depends on the smoothness of the cdf F (in a scale for which h is approximately

of order 1 ).

The worst case occurs when F is discontinuous, i.e., when the probability distribution has

atoms (point masses). Since the approximate cdf is always continuous, even with an alternate
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method of summation, there is no N such that the error from the approximation is uniformly

small in a neighborhood of a jump. (We avoid this difficulty for lattice distribution in §5 by

recognizing that F is lattice.)

Whenever F has an atom, Re φ(u)does not converge to 0 as u → ∞, so that the integral

for the truncation bound in (6.3) diverges. (This behavior of the cf holds for any choice of the

measuring units.) Moreover, this difficulty will occur with continuous cdf’s having a

concentration of probability like a point mass, i.e, with a density having very high peaks (in the

scale for which h is approximately of order 1). However, this difficulty is typically not so serious

for practical applications, because we rarely need to know the cdf precisely in the neighborhood

of a jump.

A Mixture of Two Out-of-Scale Distributions

A simple example to illustrate the possible difficulties is a mixture of two out-of-scale

distributions. Thus, suppose that F is the cdf of the mixture of two exponential distributions, one

with mean 10 − 6 and the other with mean 106 , with each component having probability 1/2.

From (5.12), we see that we achieve a discretization error of 0.0025 for h − 1 = 106 and t = 1.

On the other hand, since

Re(φ) (u) =
2 ( 1 + 1012 u 2 )

1_ _____________ +
2 ( 1 + 10 − 12 u 2 )

1_ ______________ ∼∼
2 ( 1 + 10 − 12 u 2 )

1_ ______________ , (12.1)

we can apply (6.4) to obtain the estimated truncation error of 0.0032 when h − 1 = 106 , t = 1 and

N = 108 . Hence, we get overall accuracy of only about 0.006 at t = 1 with the large

computation based on N = 108 .

This example is easier to understand if we change the scale, e.g., so that the two exponential

components have means 10 − 12 and 1 instead of 10 − 6 and 106 . Then we recognize that in the

new scale of order 1 the distribution is essentially the same as a mixture of a point mass at 0 and
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an exponential with mean 1. This distribution is essentially just as difficult to invert numerically

as a simple point mass at 0, which we consider below. The difficulty is not great provided we do

not consider t too close to 0. Certainly we have no difficulty if t is of order 1.

Translating this back to the original problem, we see that we have no serious difficulty there

either, provided that we only seek moderate accuracy and consider t of order 106 . Indeed, when

we consider x > h − 1 , the truncation error estimate in (6.4) becomes hβ(Nh) instead of β(Nh)/ t.

Since e − 8 = 3. 3 × 10 − 4 , we achieve a discretization error of at most 3. 3 × 10 − 4 in the original

problem if we set π / h − x = 8 × 106 , by (5.13). For t ≤ 8 × 106 , we have h − 1 = 2. 5 × 106 .

Hence, for 2. 5 × 106 < t < 8 × 106 , the estimated truncation error from (6.4) is

hβ(Nh) ∼∼ 1/πN. For N = 1000, then, the estimated truncation error is 3. 2 × 10 − 4 and the

estimated overall error is 6. 5 × 10 − 4 . As noted above, we run into serious difficulty only when

we try to consider t much smaller than 106 .

A Unit Point Mass

To continue exploring difficult cases for numerical inversion, we now consider the numerical

inversion of the cdf of a unit point mass (a simple step function). To relate to §9, we put the unit

point mass at t = 6.

If we apply POISSON in the framework of the whole line, then we can choose h − 1 arbitrarily

small and obtain no discretization error. To relate to the previous examples, we work instead on

the positive real line, where we apply (5.13) to obtain no discretization error for

h − 1 > ( 6 + t)/2π. We consider t ≤ 8, so we set h − 1 = 7/π.

The difficulty, of course, is with the truncation. As noted before, the truncation error bound in

(6.3) is not applicable. The estimated error from (6.4) for t > 7/π is hβ(Nh) = 2/πN. Of

course, we know that this estimate is useless in the immediate neighborhood of t = 6, but we

expect it to give a rough indication elsewhere.
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Table 5 displays the errors for POISSON with h − 1 = 7/π and two cases of N: N = 5000 and

N = 100. The estimated error in these two cases is 0.00013 and 0.0064, which is roughly correct

for t not too near 6. The errors multiplied by 105 are displayed in Table 5.

Insert Table 5 here (or slightly later).

For this example we also consider convolution smoothing with the Gaussian window in §6

and the Hanning window in (10.7). For the Gaussian window, we apply (6.16)-(6.19) with

ε 2 = 2 × 10 − 5 , h − 1 = 7/π and N as above (100 and 5000). Thus, from (6.17) and (6.18), we

obtain an overall 2 × 10 − 5 error bound for t − 6 > ε 1 by setting

ε 1 = 2 log ( 2/ε 2 )/ Nh ∼∼ 67/ N and σ = ε 1 /√ 2 log ( 2/ε 2 ) ∼∼ ε 1 /5. 5 ∼∼ 12. 2/ N. The final

weighting function is w(k, N) = ( 10 − 5 )(k / N)2

. Table 5 shows that the actual performance of the

convolution smoothing away from the point t = 6 is much better than these bounds indicate.

Similar performance is seen with the Hanning window.

In addition, for this example we consider EULER, GAVER and POST-WIDDER. These

methods produce results similar to those for POISSON without convolution smoothing, as shown

for EULER and POST-WIDDER in Table 5. For the parameters used in §9-10, the accuracy is

much less here, being about 10 − 4 at t = 5 and 7 instead of 10 − 7 . However, it is significant that

the estimated truncation error in EULER is quite accurate. We also consider the variant of

EULER based on (4.6a) and (5.30) instead of (4.6) and (5.27). Just as for other examples, its

performance on this example is essentially the same as EULER.

Finally, we also apply algorithm LATTICE-POISSON for lattice distributions. Of course, it

works very well. We would also have small error with convolution smoothing algorithms.
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15. Literature Review

The Fourier-Series Method

The 1968 paper by Dubner and Abate [40] is widely recognized as the first to present the

Fourier-series method for numerically inverting Laplace transforms, but in 1935 Koizumi [77]

proposed a variant of the same method, as was only recently discovered by Squire [112].

Independently, in 1960-1972, Bohman [13], [14], [15] proposed variants of the same method for

numerically inverting cf’s, applying the Poisson summation formula to characterize the

discretization error and convolution smoothing to reduce the truncation error. Between 1935 and

1970 others recognized the value of the trapezoidal rule and the Fourier-series method for

calculating Fourier and related integrals. The Poisson summation formula is evidently due to

Poisson [100] in 1823. We have remarked it plays a prominent role in Ramanujan’s notebooks;

see Berndt [11]. Clear presentation of its use were given by Fettis [44] in 1955 and De Balbine

and Franklin [34] in 1966, who were apparently unaware of Fettis [44]. De Balbine and Franklin

cite a related 1955 paper by Luke [81]. Fettis [44] was discovered by Rice [105], [106], who was

apparently unaware of De Balbine and Franklin [34].

The Fourier-series method is probably best known through its use with the Fast Fourier

Transform (FFT), which we discussed in §4. Key early references are Cooley and Tukey [25] and

Cooley, Lewis and Welch [22], [23], [24]. References [22] and [23] relate specifically to the

inversion problem. They understood the advantage of constructing the periodic function as in

(5.1), but they did not use the Poisson summation formula and they did not exhibit the

discretization error. See Rabiner and Gold [102] for further discussion about the FFT. We have

not discussed the FFT much because there seems to be little need for it itself in standard

numerical inversion applications. It may play a greater role in more computationally intensive

inversions involving many functions and/or many time points, perhaps associated with elaborate
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graphics.

Dubner and Abate [40] rederived the Poisson summation formula for a damped function

e − atf (t) on the positive real line in (5.25), thus obtaining the Fourier-series method for inverting

Laplace transforms with explicit expression for the discretization error. Related literature on the

Fourier-series method (in chronological order since 1969) include Nuttall [93], Brigham and

Conley [16], Requicha [103], Silverberg [109], Ichikawa and Kishima [64], [65], Simon, Stroot

and Weiss [110], Rice [105], [106], Veillon [122], [123], Davies [30], Durbin [41], Schorr [108],

Crump [27], Mullineux and Reed [89], Hosono [58], [59], Kiefer and Weiss [73], De Hoog,

Knight and Stokes [35], Hosono [60], Honig and Hirdes [57], Piessens and Huysmans [98],

Squire [112], Carasso [17], Hsu and Dranoff [63], Platzman et al. [99], Kwok and Barthez [79]

and Beaulieu [9]. Surprisingly, several papers, including recent ones such as Hosono [58], [59],

[60], Platzman et al. [99], Kwok and Barthez [79] and Beaulieu [9], develop variants of the

Fourier-series method without recognizing that they are in fact variants of the Fourier-series

method, and thus without recognizing that there is a substantial body of related literature.

The Euler summation we have used to accelerate convergence of the nearly alternating series

in (4.6) and (5.27) was first proposed in 1972 by Simon, Stroot and Weiss [110]. The nearly

alternating series itself (with cosine terms replaced by ±1) comes from (21) of Dubner and

Abate [40]. Essentially this same procedure was proposed by Hosono [57], [58], [59]; see (3.3a),

(4.6a) and (5.30). Hosono’s [59] method was discovered by Bertsimas and Nakazato [12] and

found to be very effective for queueing problems. Following Hosono [59], Kwok and

Barthez [79] rederive (5.27).

Brigham and Conley [16], Crump [27], Kiefer and Weiss [73], De Hoog et al. [35], Honig and

Hirdes [57] and Piessens and Huysmans [98] consider other methods for accelerating

convergence. The method described here using Euler summation is appealing for its simplicity,
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especially when expressed as binomial averaging as in (6.26). The algorithms by Honig and

Hirdes [57] and Piessens and Huysmans [98] require 550 and 740 lines of code, respectively,

while the algorithm here in Figure 1 requires less than 50 lines of code.

In §6 we pointed out that convolution smoothing or windowing is intimately related to

alternative methods of summation to accelerate convergence. There is a long history, as can be

seen from Harris [53]. In the early inversion literature, Bohman [13], [14], [15] and

Silverberg [109] applied convolution smoothing. Platzman et al. [99] present the convolution

smoothing using the normal distribution with a nice computational complexity analysis, which

we discussed in Remark 6.4.

An early Fourier-series method for inverting generating functions is due to Abate and

Dubner [1], which was mentioned in Remark 5.7. It is applied in Dubner [39]. The direct

Fourier-series method for inverting generating functions in §5 is proposed without error analysis

by Cavers [19]. The full procedure was employed by Jagerman [67] in his algorithm for inverting

Laplace transforms discussed in §8. Hosono [61] also develops the essentially equivalent

algorithm involving the complementary form in (5.41). A variant of the Fourier-series method

without the error-controlling damping constant r was recently suggested by Daigle [28]. Other

earlier work related to inverting generating functions is contained in Lyness and Moler [84],

Lyness [82] and Fornberg [45]. Another application is Mills [87].

Other Methods

Of course, the Fourier-series method is only one of many methods for performing numerical

transform inversion. An extensive bibliography on the numerical inversion of Laplace transforms

was completed by Piessens [96] and Piessens and Dang [97]. Davies and Martin [29]

systematically compare fourteen different methods for inverting Laplace transforms, including

three versions of the Fourier-series method (Dubner and Abate [40], Silverberg [109] and
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Crump [27]). The comparison of fourteen methods on sixteen test functions seems very laudable,

but we doubt that all methods were equally well implemented. From the numerical results in

[29], it appears that the last test function, t − 1 sin t, can perhaps be considered most difficult. The

stated results for the three Fourier-series methods on this example were not good, but we easily

obtained accuracy to 10 − 7 using the algorithms EULER, GAVER and POST-WIDDER. (As for

the examples in §9-13, the Gaver-Stehfest method required high precision to work.)

At AT&T Bell Laboratories, a method for inverting Laplace transforms developed by

M. Eisenberg (related to Weeks [124], which he helped develop) and the algorithm JAGERMAN

in §8, [66] and [67] have been used quite frequently for probability applications; e.g., see

Doshi [37], Doshi and Kaufman [38], Heffes and Lucantoni [55], and Heyman [56]. (The last

two applications involve the renewal function, as in §13.) The Weeks method is also an excellent

candidate to use as one of two methods. Indeed, Davies and Martin [29] found the Weeks [124]

method to be the most accurate of the methods they considered. A variant of the Weeks [124]

method is now available from the ACM library of software algorithms in Algorithm 662 by

Garbow et al. [47]. The algorithm JAGERMAN in §8 is only one of many routines in Jagerman’s

[68] MATHCALC library. Even though the direct Fourier-series method (e.g., the algorithms

POISSON and EULER) is not used in this library for inverting transforms, extensive use is made

of the trapezoidal rule, the Poisson summation formula and the Whittaker cardinal function in

(4.7). Hence, the present paper is in the same spirit as [68] and the algorithms here can easily be

implemented using [68].

The Gaver [49]-Stehfest [113] method for inverting Laplace transforms in §8 has also been

used with success for probability applications by Gaver [50], Nance, Bhat and Claybrook [90],

Middleton [86] and Abate and Whitt [2], [3], [4]. The Gaver-Stehfest algorithm is especially

convenient for implicitly defined Laplace transforms, as occurs with the M/G/1 busy-period cdf

(p. 212 of Kleinrock [75]), because it works with the transform evaluated only at real arguments.
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(However, iterative methods also seem to work with complex arguments.) However, as noted in

§8, the Gaver-Stehfest procedure requires high precision.

There are five methods for inverting Laplace transforms available from the ACM library of

software algorithms: (1) Algorithm 368 by Stehfest [113], (2) Algorithm 486 by Veillon [123]

(3) Algorithm 619 by Piessens and Huysmans [98], (4) Algorithm 662 by Garbow et al. [47] and

(5) Algorithm 872 by Murli and Rizzardi [69]. Of course, Algorithm 368 is the Gaver-Stehfest

method. Algorithms 486 and 619 are variants of the Fourier-series method. Algorithm 662 is a

variant of the Weeks [124] method; and Algorithm 682 is Talbot’s [116] method. (Talbot’s

method is the trapezoidal rule on a very special contour applied to the Bromwich inversion

integral (3.3).) The program line counts for Algorithms 619, 662 and 682 are 740, 4540 and

3090, respectively. These program line counts might suggest that inversion is necessarily

difficult. The versions of the Fourier-series method EULER, POISSON, LATTICE-POISSON

and POST-WIDDER presented here are elementary to program directly, as illustrated by the

displays. While there are many possibilities for sophisticated refinements, we believe that

methods here, which are easy to understand and implement, are adequate for most queueing

applications.
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_ ___________________________________________________________________________

Number of Terms N
Discretization h − 1 Truncation T = Nh for Error of 2ε

_ ________________________________________________________________
Standard

Chebychev Estimate
Prescribed Estimate Bound (9.16) Bound Two Two

Error ε (9.6) (9.10) with t = 6 (9.17) Estimates Bounds_ ___________________________________________________________________________

10 − 2 9.4 15.8 1.3 2.5 13 40

10 − 3 11.7 37.6 2.7 7.8 32 294

10 − 4 14.0 107 5.9 24.5 83 2,630

10 − 5 16.4 324 12.6 77.3 207 25,050

10 − 6 18.7 1013 27.1 245 507 249,000

10 − 7 21.1 3190 58.4 773 1232 2,470,000

10 − 8 23.4 10,075 126 2450 2949 24,700,000
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Table 1. Required discretization parameter h − 1 and truncation parameter T = Nh to achieve
prescribed errors of 10 − k (overall error of 2 × 10 − k) as a function of k for the M/H 2/1 waiting-
time example in Section 9 using algorithm POISSON based on estimates and bounds.



_ _______________________________________________________________________________________

ε = 2 × 10 − 7 ε = 2 × 10 − 5 ε = 2 × 10 − 3

h − 1 = 21. 1 h − 1 = 16. 4 h − 1 = 11. 7
_ ________________________________________________________

F c (t) asymptotic
exact approximation t = 1 t = 6 t = 1 t = 6 t = 1 t = 6

t (9.3) (9.5) N = 2238 N = 1232 N = 375 N = 206 N = 58 N = 32
_ _______________________________________________________________________________________

0.1 0.97589492 0.921 −6 +34 +1 +26 +1 +3

0.3 0.93237079 0.892 +3 +2 +3 −15 +2 +6

0.5 0.89383953 0.865 −2 −7 +10 +4

1.0 0.81254551 0.799 +1 −2 −1 +5 −1 −2

1.5 0.74498610 0.739 −1 +4 −1 +3 −2

2.0 0.68595171 0.6833 −2 +3 +1

4.0 0.49932501 0.49921 −1 +1

6.0 0.36474142 0.364737 +1 +1 −1

9.0 0.22778160 0.22778156 +1

12.0 0.14225171 0.14225171 +1

15.0 0.08883752 0.08883752

18.0 0.05547986 0.05547986 −1 +1

24.0 0.02163781 0.02163781 −1 −1 −1 −1

30.0 0.00843900 0.00843900 −1 −1 −1 −1 −1 −1
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Table 2. A comparison of approximations obtained by numerical inversion using POISSON with exact values
for the M/H 2/1 complementary conditional waiting-time cdf F c (t) in Section 9. For the numerical inversions,
the displayed numbers are the errors multiplied by 10k when the prescribed error is 2 × 10 − k; no entry means
less than 0.5.



_ ______________________________________________________________________________________

ε = 2 × 10 − 7 ε = 2 × 10 − 5 ε = 2 × 10 − 3

h − 1 = 20. 6 h − 1 = 16. 1 h − 1 = 11. 5
_ ________________________________________________________

F c (t) asymptotic
exact approximation t = 1 t = 6 t = 1 t = 6 t = 1 t = 6

t (9.21) (9.26) N = 4729 N = 2309 N = 585 N = 285 N = 66 N = 32
_ ______________________________________________________________________________________

0.1 0.9784447 0.948 −6 –6 +14 +2 +4

0.3 0.9408811 0.918 +3 –8 –1 +3 +1 +4

0.5 0.9068208 0.889 +8 +1 –6 –1 +2

1.0 0.8305714 0.820 –1 +1 +2 –2

1.5 0.7630251 0.756 –1 +1 –1

2.0 0.7020169 0.697 +1 –1 –1 –2 +1

4.0 0.5060261 0.5050

6.0 0.3659234 0.36566 +1 +1 +1

9.0 0.2253310 0.22529 +1

12.0 0.1388133 0.138807 +1

15.0 0.0855228 0.0855217

18.0 0.0526919 0.0526917 –1 –1

24.0 0.0200020 0.0200020 –1 –1

30.0 0.0075928 0.0075928 –1 –1 –1 –1 –2
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Table 3. A comparison of approximations obtained by numerical inversion using POISSON with exact values
for the M/Γ 1/2/1 complementary conditional waiting-time cdf F c (t) in Section 9. For the numerical inversions,
the displayed numbers are the errors multipled by 10k when the prescribed error is 2 × 10 − k; no entry means
less than 0.5.



_ _____________________________________________________________________________

N = 2000 N = 500
h − 1 = 4. 41 h − 1 = 4. 41

_ _____________________________________________________________
convolution smoothing convolution smoothing_ ____________________ _ ____________________
Gaussian Hanning Gaussian Hanning

F c (t) POISSON window window POISSON window window
t exact (4.4) (6.19) (10.7) (4.4) (6.19) (10.7)

_ _____________________________________________________________________________

0.1 0.5870048 –22 +60 +13 +391 +1277 +197

0.3 0.3829011 +18 +10 +2 +19 +168 +36

0.5 0.2798589 –12 +4 +1 –69 +70 +15

0.7 0.2143120 +6 +3 +1 –67 +38 +8

1.0 0.1506796 +6 +1 +1 +19 +4

1.5 0.0900794 –3 +22 +8 +2

2.0 0.0567901 +2 –24 +4 +1

3.0 0.0246974 +1 +1

4.0 0.0115375 +12

5.0 0.0056341 +1

6.0 0.0028368 –1 –9

7.0 0.0014610 –1

8.0 0.0007656 –1 –1 –1 +6 –1 –1

9.0 0.0004069 –1 –1 –1 –1 –1 –1

10.0 0.0002187 –1 –1 –1 –7 –1 –1
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Table 4. A comparison of three numerical inversion approximations based on POISSON with the exact values
of the RBM complementary cdf F c (t) in §10. For the numerical inversions, the displayed numbers are the
errors multiplied by 105; no entry means less than 0.5.



_ _________________________________________________________________________________________________
N = 5000 N = 100 N = 16

_ ______________________________________________________________________________________
convolution smoothing convolution smoothing_ __________________ _ __________________
Gaussian Hanning Gaussian Hanning EULER

POISSON window window POISSON window window A = 7 GAVER
t (4.4) (6.19) (10.7) (4.4) (6.19) (10.7) (4.6) (8.6) and (8.9)

_ _________________________________________________________________________________________________

0.001 –2 –6

0.01 +1 –61

0.1 +3 +138

1.0 –3 –137

3.0 +2 +111 −710

5.0 –1 –74 +1 +48 x

5.7 –21 –1145 –251 +51 −483 x

5.9 +23 +2269 x –1787 −3773 x

5.99 +1292 –13 x x x x x

5.999 +4224 x x x x x x x

6.001 –4230 x x x x x x x

6.01 –1300 +13 x x x x x

6.1 –24 –2332 x +1787 +3520 x

6.3 +25 +1338 +251 –51 –2201 x

6.5 +25 –1273 +13 +1146 x

6.7 +26 +1267 –5 −971 +3765

7.0 −534 +4179

7.5 +25 +1273 –13 −183 +6408
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Table 5. A comparison of several numerical inversion approximations of the complementary cdf of a unit point
mass at t = 6, as discussed in §14. The displayed numbers are the errors multiplied by 105; no entry means less
than 0.5 in this scale. An x means greater than 104 . The computations involving POISSON are based on
h − 1 = 7/π.



Appendices

to

THE FOURIER-SERIES METHOD FOR INVERTING TRANSFORMS

OF PROBABILITY DISTRIBUTIONS

by

Joseph Abate and Ward Whitt



Appendix A. Applying the Gil-Palaez Inversion Formula

In this appendix we indicate how to apply the Poisson summation formula to the Gil-Palaez

inversion formula (3.5). For an even function γ, we have from (2) of Fettis (1955) that

0
∫
∞

γ(u) du = h


 2

γ( 0 )_ ____ +
k = 1
Σ
∞

γ(kh)




− 2
k = 1
Σ
∞

g


 h

2πk_ ___




, (A-1)

where

g(t) =
0
∫
∞

γ(u) cos tu du . (A-2)

We can apply this to (3.5) in the form

2
1_ _ − F(t) =

0
∫
∞

γ(u) du (A-3)

with

γ(u) = [ cos ut Im(φ) (u) − sin ut Re(φ) (u) ]/πu , (A-4)
because γ in (A-4) is an even function. Moreover, by applying the trigonometric identities

2 sin x cos y = sin (x − y) + sin (x + y) and 2 cos x cos y = cos (x + y) + cos (x − y) , (A-5)
we see that the discretization error simplifies; in particular,

e d = − 2
k = 1
Σ
∞

g


 h

2πk_ ___




= 2
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Σ
∞ 




1 − F
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

t +

h
2πk_ ___



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− F



t −

h
2πk_ ___




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
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= 2
k = 1
Σ
∞

F c

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t +

h
2πk_ ___



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− 2
k = 1
Σ
∞

F



t −

h
2πk_ ___





. (A-6)

Unfortunately, in this case it is not as easy to bound or estimate the resulting discretization

error as it was in Sections 5.2 and 5.3. Of course, if

F(t) ≤ ae − bt for t ≤ t 1 ≤ 0 and F c (t) ≤ ce− dt for t ≥ t 2 ≥ 0 , (A-7)
then

e d ≤ max


 1 − e − b2π/ h

2ae − b(t + 2π/ h)
_ ____________ ,

1 − e − d2π/ h

2ce− d(t + 2π/ h)
_ ____________





(A-8)

provided that t − 2π / h ≤ t 1 and t + 2π / h ≥ t 2 .

_ _____________________________________________________________________________________________________________________
N = 5000 N = 100 N = 15 , m = 11 m = 8 , j = 20 N = 16
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_ __________________________________________________________________________________________________________
convolution smoothing convolution smoothing EULER POST-WIDDER GAVER
_ __________________ _ __________________ _ ______________
Gaussian Hanning Gaussian Hanning (8.15) (8.6)

POISSON window window POISSON window window A = 7 A = 7 and and

t (4.4) (6.19) (10.7) (4.4) (6.19) (10.7) (4.6) (4.6a) (8.16) (8.9)

_ _____________________________________________________________________________________________________________________

0.001 –2 –6

0.01 +1 –61

0.1 +3 +138

1.0 –3 –137 +1

3.0 +2 +111 −710

5.0 –1 –74 +1 +48 +86 −1588 x

5.7 –21 –1145 –251 +51 −483 −371 +1682 x

5.9 +23 +2269 x –1787 −3773 −3592 x x

5.99 +1292 –13 x x x x x x x

5.999 +4224 x x x x x x x x x

6.001 –4230 x x x x x x x x x

6.01 –1300 +13 x x x x x x x

6.1 −24 −2332 x +1787 +3520 +3409 x x

6.3 +25 +1338 +251 –51 –2201 −2247 +2862 x
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6.5 +25 −1273 +13 +1146 +1258 −7135 x

6.7 +26 +1267 −5 −971 −1057 −4928 +3765

7.0 −534 −666 +1343 +4179

7.5 +25 +1273 −13 −183 −339 +554 +6408
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Table 5. A comparison of several numerical inversion approximations of the complementary cdf of a unit point

mass at t = 6, as discussed in §14. The displayed numbers are the errors multiplied by 105; no entry means less

than 0.5 in this scale. An x means greater than 104 . The computations involving POISSON are based on

h − 1 = 7/π.

1 ’The Algorithm EULER

2 ’

3 ’A variant of the Fourier-series method

4 ’using Euler summation

5 ’applied to the M/G/1 transform (1.1)

6 ’

10 dim SU(13),C(12)

11 C(1)=1:C(2)=11:C(3)=55:C(4)=165:C(5)=330:C(6)=462

12 C(12)=1:C(11)=11:C(10)=55:C(9)=165:C(8)=330:C(7)=462

13 ’

20 input "TIME=";T
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21 A=19,1

22 Ntr=15

23 U=exp(A/2)/T

24 X=A/(2*T)

25 H=#pi/T

26 ’

30 Sum=fnRf(X,0)/2

31 for N=1 to Ntr:Y=N*H

32 Sum+=(−1)ˆN*fnRf(X,Y):next

33 ’

40 SU(1)=Sum

41 for K=1 to 12:N=Ntr+K:Y=N*H

42 SU(K+1)=SU(K)+(−1)ˆN*fnRf(X,Y):next

43 ’

50 Avgsu=0:Avgsu1=0

51 for J=1 to 12

52 Avgsu+=C(J)*SU(J)

53 Avgsu1+=C(J)*SU(J+1):next

54 Fun=U*Avgsu/2048:Fun1=U*Avgsu1/2048

55 ’

60 Errt=abs(Fun-Fun1)/2

61 ’

70 print
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71 print "TIME=";T,"FUNCTION=";using(2.7),Fun1

72 print

73 print "Truncation Error Estimate=";using(1,7),Errt

74 end

75 ’

90 fnRf(X,Y)

91 S=X+#i*Y

92 Rho=0.75:Mean=1

93 Gs=1/sqrt(1+2*S)

94 Gse=(1−Gs)/(Mean*S)

95 Fs=(1−Gse)/(S*(1−Rho*Gse))

96 Rfs=re(Fs)

97 return(Rfs)

1 ’The Algorithm TRIGAMMA

2 ’

3 ’A variant of the Fourier-series method

4 ’for lattice distributions using the trigamma function,

5 ’applied to the cdf of the number of customers

6 ’served in an M/M/1 busy period

7 ’

20 input "Lattice Point=";N

21 M=150;N=N+1
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22 H=#pi/M

23 U=2*M*#piˆ2

24 ’

30 Sum=0

31 for K=1 to 2*M−1:Y=K*H:W=K/(2*M)

32 Sum+=fnTrigam(W)*fnGemz(Y)*sin(N*Y):next

33 Fun=1-N/M-Sum/U

34 ’

40 print

41 print "Lattice point=";N−1,"Functions=";using(,6),Fun

42 end

43 ’

80 fnTrigam(W)

81 Tri=0

82 for J=0 to 6

83 Tri+=1/(J+W)ˆ2:next

84 V=1/(7+W)

85 Tri+=V+Vˆ2/2+Vˆ3/6−Vˆ5/30+Vˆ7/42

86 return(Tri)

87 ’

90 fnGemz(Y)

91 S=#i*Y

92 Z=exp(−S)
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93 Rho=0.75:Bt=4*Rho/(1+Rho)ˆ2

94 Gen=(1−sqrt(1−Bt*Z))/sqrt (Bt*Rho)

95 Gz=im((1−Z)*Gen)

96 return(Gz)

1 ’The Algorithm GAVER

2 ’

3 ’The Gaver-Stehfest method

4 ’for inverting Laplace transforms,

5 ’applied to the M/G/1 transform (1.1)

6 ’

10 NN=16

11 dim A (2*NN),B(2*NN),G(NN)

12 ’

20 input ‘‘TIME=’’;T:Alfa=log(2)/T

21 ’

30 for K=1 to 2*NN

31 A(K)=K*Alfa*fnFs(K*Alfa):next

32 ’

40 for J=1 to NN

41 for M=J to 2*NN-J

42 B(M)=(1+M/J)*A(M)-(M/J)*A(M+1)

43 next M
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44 for I=J to 2*NN-J

45 A(I)=B(I):next I

46 G(J)=B(J):next J

47 ’

50 ’Fun=0

51 for N=1 to NN

52 Wt=(-1)ˆ(NN-N)*NˆNN/(!(N)*!(NN-N))

53 Fun+=Wt*G(N):next

54 ’

60 print

61 print "TIME=";T,"FUNCTION=";using(2,7),Fun

62 end

63 ’

90 fnFs(S)

91 Rho=0.75:Mean=1

92 Gs=1/sqrt(1+2*S)

93 Gse=(1−Gs)/(Mean*S)

94 F=(1−Gse)/(S*(1−Rho*Gse))

95 return(F)


