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Successive groups of golfers playing on an 18-hole golf course can be represented as a network of 18 queues

in series, but the model needs to account for the fact that, on most holes, more than one group can be

playing at the same time, but with precedence constraints. We show how to approximate the model of

group play on each hole by a conventional G/GI/1 single-server queue, without precedence constraints. To

approximate the distribution of the sojourn time for each group on a full 18-hole golf course, we consider

an idealized model consisting of 18 i.i.d. holes in series. We combine these approximations to obtain a

series of 18 i.i.d. conventional single-server queues. We then apply heavy-traffic approximations to develop

relatively simple analytical formulas to show how the mean and variance of the sojourn time depends on

key parameters characterizing group play on each stage of a hole. Simulation experiments confirm that the

approximations are effective. Thus, we provide useful tools for the analysis, design and management of golf

courses. The techniques also should be useful more broadly, because many service systems combine the four

complicating features of the system studied here: (i) network structure, (ii) heavy-traffic conditions, (iii)

transient performance and (iv) precedence constraints.
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1. Introduction

In this paper we develop new stochastic queueing models, and approximate performance formulas

for those models, that can be used to help design and manage golf courses in order to control the

pace of play. As emphasized by Riccio (2012, 2013), there is a need to control the pace of play,

because the time to play a full round of golf has often become excessive. Kimes and Schruben

(2002), Tiger and Salzer (2004) and Riccio (2012, 2013) already developed queueing models of

groups playing on a golf course and applied computer simulation to study the pace of play. These

models can be used to balance the competing objectives of having as many groups as possible
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play each day and keeping the expected times for those groups to play a full round as short as

possible. They also can be used to examine the consequence of different tee-time schedules and the

exceptional delays caused by lost balls and unusually slow groups. However, these models have not

previously led to analytical performance formulas.

An important feature of golf that needs to be captured by these models is the fact that different

groups of golfers interact on many of the holes. Typically, the groups move forward in a first-come

first-served (FCFS) order, determined by their scheduled tee times on the first hole. However,

typically, two groups can be playing on a par-4 hole at the same time, while three groups can be

playing on a par-5 hole at the same time. This simultaneous play and the conventions for managing

it introduces precedence constraints, as studied in queueing theory based on the max-plus algebra

in Baccelli et al. (1992, 1989) and Heidergott et al. (2006). A conventional par-3 hole is more

elementary because only one group can play on it at the same time, but there also is the modified

par-3 hole “with wave-up,” which allows two groups to play at the same time there too; see Riccio

(2012, 2013).

These complicated precedence constraints tend to rule out conventional queueing theory and

make simulation the only viable analysis tool. However, Whitt (2013) recently developed stochastic

queueing models of group play on each of the holes (par-4, par-5, par-3, and par-3 with wave-up),

with appropriate precedence constraints, and showed how to analytically determine the maximum

possible throughput as a function of the times required for the groups to complete each stage of play

on each hole. The maximum throughput was identified as the departure rate on a “fully-loaded”

hole, i.e., when there always is a group ready to start playing whenever an opportunity arises.

An important contribution of that work is exposing how the random times required for groups

to play the stages on each hole translate to the distribution of the time between successive groups

clearing the green (completing play) on that hole when the hole is fully loaded. For example, on a

par-4 hole three stages of play can be identified, which require random times Si, 1≤ i≤ 3. It was

shown for the model introduced there that the times between successive groups clearing the green

on a fully-loaded par-4 hole should be distributed as
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Y ≡ (S1 ∨S3) +S2, (1)

where a∨ b≡max{a, b}; see §3 and §4. Formula (1) is useful because it shows how changes in the

random stage playing times Si will affect Y , which itself characterizes the possible pace of play on

the hole.

In this paper, we go further by proposing a way to approximate the initial queueing model for

group play on a par-4 hole, where two groups can be playing simultaneously, by a conventional

G/GI/1 single-server queue with unlimited capacity and the FCFS service discipline, having i.i.d.

service times, without any precedence constraints. The main idea is to let the approximating i.i.d.

service times in the conventional queueing model be distributed as Y in (1) above. We show that

this approach is effective to approximate the group waiting times before starting to play on each

hole when the queue tends to be heavily loaded, which is the common case for golf courses. However,

further adjustments are needed to approximate departure times and sojourn times; e.g., see §5.2.

We also develop parametric approximations for the distributions of the stage playing times Si,

which lead to parametric approximations for the distribution of Y in (1). The most promising

of these is a triangular distribution to capture the usual relatively low variability, as in Tiger

and Salzer (2004), plus a modification to allow for occasional lost balls; see §6.4 and §6.5. This

produces tractable models of the triple (S1, S2, S3) and Y depending on a 5-tuple of parameter

values (m,r,a, p,L), where each parameter captures a separate property of the model. In particular,

the three random variables Si are assumed to be independent and are given symmetric triangular

distributions on the intervals [mi − a,mi + a], where m1 = m3 = m2/r = m. Thus S1 is distributed

the same as S3, both having mean m, while E[S2] = rm, so that the ratio E[S2]/E[S1] = r can

be controlled separately. The variability of the three random variables Si is specified by the single

parameter a. We then assume that lost balls occur only on the first stage (including the tee shots)

of each hole, with that happening on any hole with probability p and leading to a fixed large time L

for stage 1 (corresponding to a maximum allowed delay). Thus the parameter pair (p,L) captures

rare longer delays.
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We also create an associated, idealized, more-highly-structured model of group play on the entire

golf course that enable us to apply more of established queueing theory. In particular, we think that

many insights can be gained by considering the simplified model in which all holes are identical.

That is done partly because golf courses are often designed to require approximately equal time

for groups to play each hole. When that is not nearly the case, then experience indicates that it

should suffice to focus attention only on the bottleneck holes. The idealized model is intended for

the case in which the course is approximately balanced. Since the par-4 hole is average in length

and most common, we focus on analyzing a par-4 hole and a series of independent and identically

distributed (i.i.d.) par-4 holes in series. If the course is not balanced, then the approximation may

still be useful if the par-4 holes are the bottleneck holes, as evidently occurs when wave-up is used

on the par-3 holes. Simulation can be used to verify that the insights gained from analyzing this

idealized repetitive identical par-4 course apply to any other specific configuration of holes of the

four types, using the models in Whitt (2013). Simulation can also be used to determine if even

more detail provides valuable insight.

For the idealized model of multiple groups playing on an 18-hole golf course containing identical

par-4 holes, we develop analytical approximation formulas. The approximation formula for the

expected time required for group n to play the idealized 18-hole golf course, assuming constant

intervals between scheduled tee times on the first hole, developed in §8 is

E[V18,n]≈E[Y ]

(

n +17− n− 1

ρ
+7.2

√

nc2
Y

)

+18E[S3], (2)

where ρ is the traffic intensity (assumed to satisfy ρ≥ 1), S3 is the random stage-3 playing time,

while E[Y ] and c2
Y are the mean and squared coefficient of variation (scv, variance divided by the

square of the mean) of the random variable Y in (1).

To develop the approximation in (2), we draw on heavy-traffic limits and approximations for the

transient performance of a heavily loaded series of 18 G/GI/1 queues in series from Iglehart and

Whitt (1970a,b) and Harrison and Reiman (1981). We especially draw on a previous simulation

study by Greenberg et al. (1993) related to the heavy-traffic limits in Glynn and Whitt (1991).



Fu and Whitt: Pace of Play in Golf

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

There the focus was on analyzing the performance of a very large network of identical single-server

queues in series. An efficient simulation algorithm was developed to simulate the performance of

very large numbers of customers flowing through very large numbers of queues (e.g., millions) using

techniques of distributed-event parallel simulation. Here we exploit results of those simulations

to derive approximations for the mean and standard deviation of the heavy-traffic limit, which is

a complex functional of 18-dimensional Brownian motion, exhibited in Theorem 3 of Glynn and

Whitt (1991).

While we think that the issues addressed and the techniques developed in this paper can be

useful to design and manage golf courses, we think that the value can be far greater, because

the golf course illustrates four complicating features that are common in many service systems:

(i) network structure, (ii) heavy-traffic conditions, (iii) transient performance and (iv) precedence

constraints. There is a quite substantial literature on queueing systems with one or two of these

features, but many service systems actually have all four. For example, that is substantiated by

careful analysis of healthcare systems, as in Armony et al. (2011) and references therein.

Here is how the rest of this paper is organized: First, in §2 we illustrate how the approximation

in (2) can be used to help design and manage golf courses. Then, in §3 we review the model of

successive groups playing a par-4 hole from Whitt (2013) and in §4 we review results from Whitt

(2013) for that model under the condition that the hole is fully loaded. The fully-loaded model was

used to determine the maximum possible throughput. In §5 we develop the new approximating

G/GI/1 model. In §6 we consider alternative models of the stage playing times that enable us to

calculate the mean E[Y ] and scv c2
Y as needed in approximation (2) and other approximations.

In particular, we consider exponential, uniform and triangular distributions for the stage playing

times. (Triangular distributions were considered in Tiger and Salzer (2004).) We also analyze the

consequence of rare long delays, as caused by lost balls. In §7 we report results of simulation

experiments showing that the approximating G/GI/1 model can provide a useful approximation

for the transient performance. In §8 we develop and evaluate the approximations for the sojourn

time on the full golf course, consisting of 18 identical independent par-4 holes in series. Finally, in
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§9 we draw conclusions. In the e-companion we show that the model approximation is also effective

for steady-state performance, provided that the traffic intensity is not too low.

2. Application to Manage the Pace of Play

Before we review the model from Whitt (2013) and develop the new standard queueing model

approximation, we start by showing how the approximate performance formula in (2) above can

be applied in the design of a golf course. In particular, we show how to apply formula (2) to

determine the number of groups that should be allowed to play each day, and thus the (assumed

constant) interval between tee times ∆, as a function of the key model parameters (E[Y ], c2
Y ,E[S3])

and specified performance constraints. Thus, if there is a target number, ν, of groups to play each

day, we can see how the other parameters should be set; i.e., which can guide the design and

management of the golf course.

To do so, we formulate an optimization problem, aiming to maximize the number n of groups the

play each day for specified model parameters (E[Y ], c2
Y ,E[S3]) subject to constraints. Let V (ρ,n)≡

E[V18,n(ρ)] be the expected sojourn time on the course for group n (from tee time to clearing the

green) as a function of the traffic intensity ρ≡E[Y ]/∆, where ∆ is the fixed interval between tee

times. We approximate V (ρ,n) by (2) above, assuming that ρ≥ 1. Let G(ρ,n)≡E[G18,n(ρ)] be the

time for group n to clear the green on the last (18th) hole, which is just V (ρ,n) plus the tee time

for group n, which is (n−1)∆ = (n−1)E[Y ]/ρ. It is natural to consider the following optimization

problem:

maximize n (3)

such that V (ρ,n)≤ γ and G(ρ,n)≤ τ for ρ≥ 1.

For example, if we were to aim for 4-hour rounds over a 14-hour day, then we would have

γ = 240 minutes and τ = 840 minutes. The tee times would then be restricted to the interval

[0, τ − γ] = [0,600] minutes.

From (2), we have the following functions of the model parameters and n:

V (ρ,n) = V (1, n) + (n− 1)

(

1− 1

ρ

)

and
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G(ρ,n) = V (ρ,n) +
(n− 1)E[Y ]

ρ
= V (1, n) + (n− 1)E[Y ], (4)

where

V (1, n) = A+B
√

n, with A≡ 18([E[Y ] +E[S3]) and B = 7.2E[Y ]
√

c2
Y . (5)

Since feasible numbers of groups must be integer, we round down to the nearest integer; let ⌊x⌋

be the floor function, the greatest integer less than or equal to x.

Theorem 1. (optimal solution) The functions V (ρ,n) in (4) is increasing in n and ρ, while the

function G(ρ,n) is increasing in n and independent of ρ, provided that n≥ 0 and ρ≥ 1. Hence, if

there is an optimal solution, then one of the two constraints must be satisfied as an equality. If the

first constraint on V is binding, then the optimal decision variables are ρ∗
γ = 1 and

n∗
γ = ⌊[(γ −A)/B]2⌋ (6)

for A and B in (5). If the second constraint on G is binding, then ρτ is unconstrained (but should

be ρτ = 1 to minimize V (ρ,n∗
γ) and the optimal n is

n∗
τ = ⌊(

√
b2 +4ac− b]/2a)2⌋ (7)

where a = E[Y ], b = B = 7.2E[Y ]
√

c2
Y and c = τ −A+E[Y ] = τ − 17E[Y ]− 18E[S3].

Proof. First, suppose that the first constraint involving V is binding. Since V (ρ,n) is increasing

in both ρ and n, in order to achieve the largest value of n, it suffices to restrict attention to

ρ = ρ∗
γ = 1. We then find n∗

γ by solving the equation V (1, n) = γ using (5), which yields (6). Next,

suppose that the second constraint is binding. First observe that ρ does not appear, so that it

suffices to solve the equation G(1, n) = τ , which yields a quadratic equation in x ≡ √
n, whose

solution is given in (7).

Theorem 1 implies that it suffices to focus on ρ = 1 in the optimization problem. This should be

consistent with intuition, because it is impossible to achieve throughput faster than the bottleneck

rate achieved at ρ = 1. Since we achieve ρ = 1 by setting ∆ = E[Y ], we see the importance of

determining E[Y ], which is done in Whitt (2013).
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Example 1. To illustrate Theorem 1, suppose that τ = 840, γ = 240, E[Y ] = 6, E[S3] = 4 and

c2
Y = 0.025. Then A = (18)(6 + 4) = 180, B = 7.47 so that n∗

γ = [(240− 180)/7.47]2 = ⌊64.5⌋ = 64,

while a = 6, b = B = 7.47 and c = 666, so that n∗
τ = ⌊97.9⌋ = 97, Hence, we see that the first

constraint on V is binding. The maximum value of n satisfying both constraints is n∗
γ = 64. Since

the design is inefficient, we see that management has a strong incentive to increase n above n∗
γ = 64

in order to gain more revenue, but it can only do so by causing the expected times for playing a

full round to exceed the target. Thus, this analysis evidently explains what is commonly occurring

on golf courses today.

We say that a golf course design is efficient if the two constraints in (3) are both binding at the

optimal solution. An efficient design has the advantage that it should not be necessary to increase

throughput at the expense of golfer experience (excessive times to play a round). At the same time,

it should not be necessary to restrict the throughput in order to achieve a target bound on the

time to play a round. Efficiency depends on the constraint limits γ and τ as well as the model

parameters. The following elementary result characterizes an efficient design.

Proposition 1. (efficient design) An efficient design for (γ, τ) occurs if and only if there is an

nef such that

V (1, nef) = γ and V (1, nef) + (nef − 1)E[Y ] = τ (8)

That in turn is achieved by nef = n∗
γ in (6) if and only if

τ = γ +(nef − 1)E[Y ]. (9)

Thus, for any specified (γ,E[Y ]), there is a unique τ that yields efficiency.

To illustrate, in Example 1, since n∗
τ = 97 > 64 = n∗

γ , that design is not efficient. Finally, suppose

that we want to have ν groups play the course each day of length τ with V (ρ,n)≤ γ for all n≤ ν,

where 0 < γ < τ . Thus, we let ν = n∗
γ in (6), so that

ν =
γ − 18(E[Y ] +E[S3])

7.2E[Y ]
√

c2
Y

(10)

We can then see what parameter triples (E[Y ], c2
Y ,E[S3]) satisfy target (10). We can aim for an

efficient design by having ν = n∗
τ as well.
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3. Stochastic Model of Groups Playing a Par-4 Hole

In this section we review the stochastic model of successive groups of golfers playing a par-4 hole

developed in Whitt (2013). The group typically contains a few individual players, but the model

describes the progress of the group as a whole. The model incorporates the key property that two

successive groups can be playing on a par-4 hole simultaneously.

There are five steps in the group play on a par-4 hole, each of which must be completed in order

before the group moves on to the next step. The first step is the tee shot (one for each member

of the group), denoted by T ; the second step is walking up to the balls on the fairway, denoted

by W1; the third step is the fairway shot (one for each member of the group), denoted by F ; the

fourth step is walking up to the balls on or near the green, denoted by W2; the fifth and final step

is clearing the green (by all members of the group), denoted by G, which may involve one or more

approach shots and one or more putts on the green for each player in the group.

The model next aggregates the five steps into three stages, which are important to capture the

way successive groups interact while playing the hole. In particular, the three stages are:

(T,W1)→ F → (W2,G) (11)

Stage 1 is (T,W1), stage 2 is F and stage 3 is (W2,G).

Assuming an empty system initially, the first group can do all the stages, one after another

without constraint. However, for n ≥ 1, group n + 1 cannot start stage 1 until both group n + 1

arrives at the tee and group n has completed stage 2, i.e., has cleared the fairway. Similarly, for

n≥ 1, group n+1 cannot start on stage 2 until both group n+1 is ready to begin there and group

n has completed stage 3, i.e., cleared the green. These rules allow two groups to be playing on a

par-4 hole simultaneously, but under those specified constraints. We may have groups n and n+1

on the course simultaneously for all n. That is, group n may first be on the course at the same

time as group n − 1 (who is ahead), but then later be on the course at the same time as group

n+1 (who is behind). The groups remain in their original order, but successive groups interact on

the hole. The group in front can cause extra delay for the one behind.
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Let An be the arrival time of the nth group at the tee of this hole on the golf course. Let Sj,n be

the time required for group n to complete stage j, 1≤ j ≤ 3. Following queueing terminology, these

are also called the stage playing times. These stage playing times are made up of the activities

of the individual group members in each component of the stage. Thus, the stage playing times

themselves should result from careful modeling and data analysis, and should depend on the size

of the group and its characteristics, but these are the primitives in this model.

We now specify the performance measures, showing the result of the groups playing on the hole.

Let Bn be the time that group n starts playing on this hole, i.e., the instant when one of the group

goes into the tee box. Let Tn be the time that group n completes stage 1, including the tee and the

following walk; let Fn be the time that group n completes stage 2, its shots on the fairway; and let

Gn be the time that group n completes stage 3, and clears the green. Clearly, Gn is the group-n

departure or completion time, while Bn is the group-n start time.

The mathematical model from Whitt (2013) relating the primitives to the performance random

variables consists of the following four-part recursion:

Bn ≡ An

∨

Fn−1, Tn ≡Bn +S1,n,

Fn ≡ (Tn

∨

Gn−1) +S2,n and Gn ≡Fn +S3,n, (12)

where ≡ denotes “equality be definition” and a
∨

b ≡ max{a, b}. As initial conditions, assuming

that the system starts empty, we set F0 ≡ G0 ≡ 0. The two maxima capture the two precedence

constraints specified above.

The model in (12) extends directly to any number of par-4 models in series. We simply let the

completion times Gn from one queue be the arrival times at the next queue (ignoring the times

in between, which could be treated separately). The principal time-oriented performance measures

are: the waiting time (of the nth group before starting to play on the hole), Wn = Bn − An; the

cycle time (the total time group n is actively playing this hole, possibly including some waiting

there), Cn ≡Gn −Bn; and the sojourn time (the total time spent by group n at the hole, waiting

plus playing), Un = Gn − An = Wn + Cn. In particular, note that Wn includes only the waiting
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time before starting to play; it does not include any waiting time after play has started, which can

occur.

4. Model of a Fully Loaded Par-4 Hole

In order to determine the capacity of a par-4 hole, i.e., the maximum possible throughput, Whitt

Whitt (2013) focused on a fully-loaded hole, i.e., all groups are at the hole at time 0 ready to

play, i.e., An ≡ 0 for all n. Given the recursion in (12), it actually suffices to have only the weaker

condition An ≤ Fn−1 for all n ≥ 1. Since we will also exploit the results for the fully-loaded par-4

hole, we review the main results for it from Whitt (2013), where the proofs can be found.

Under the fully-loaded condition, the recursion in (12) reduces to

Bn ≡ Fn−1, Tn ≡Bn +S1,n,

Fn ≡ (Tn

∨

Gn−1) +S2,n and Gn ≡Fn +S3,n, (13)

Again, as initial conditions, assuming that the system starts empty, let F0 ≡G0 ≡ 0.

4.1. The Intervals Between Successive Green Clearing Times

The main conclusion from Whitt (2013) is that the intervals between the times that successive

groups clear the green on a fully-loaded par-4 hole has relatively simple structure that facilitates

further analysis. The first step in exposing that structure is the observation that the fairway

completion times can be represented directly as partial sums.

Theorem 2. (representation for Fn as a partial sum) For the fully-loaded par-4 hole with recursion

in (13),

Fn = Fn−1 +Yn, n≥ 2, so that Fn =
n

∑

k=1

Yk, n≥ 1, (14)

where

Yn ≡ (S1,n

∨

S3,n−1) +S2,n, n≥ 2, and Y1 = S1 +S2. (15)

The representation in Theorem 2 can be exploited to establish asymptotic results for the succes-

sive green-clearing (completion) times Gn of n groups playing a fully-loaded par-4 hole, under basic
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stochastic assumptions. The basic idea is that Gn differs very little from Fn, so that Gn has the

same asymptotic behavior as Fn as n →∞. The results require assumptions on the stage playing

times. The next result is a strong law of large numbers (SLLN) for the green clearing times.

Theorem 3. (SLLN for the green clearance times Gn for the fully-loaded model) Consider the fully-

loaded par-4 model in which the sequence of stage playing-time random vectors {(S1,n, S2,n, S3,n) :

n≥ 1} is i.i.d. each distributed as the positive random vector (S1, S2, S3) with finite means. Then

Ḡn ≡ Gn

n
→E[Y ] <∞ w.p.1, (16)

where

Y ≡ (S1

∨

S3) +S2. (17)

Additional results, including a central limit theorem (CLT), appear in Whitt (2013).

4.2. Cycle Times in a Fully-Loaded Model

By the analysis in the previous subsection, the long-run average time between successive groups

completing play of a fully-loaded par-4 hole is E[Y ] for Y in (17), while the time each group spends

on the par-4 hole is the cycle time Cn ≡Gn −Bn. The cycle times in a fully-loaded par-4 hole are

in steady state for all n≥ 2, with a mean that is greater than E[Y ]. Moreover, the difference can

be quantified.

Theorem 4. (the cycle times Cn for the fully-loaded model) In the fully-loaded par-4 model, for

n≥ 2, the cycle times simplify to

Cn ≡Gn −Bn = Yn +S3,n, (18)

so that, if the stage playing times come from three independent sequences of i.i.d. random vari-

ables {Si,n : n ≥ 1}, i = 1,2,3, then the distribution of Cn is independent of n for all n ≥ 2, with

E[Cn] = E[Y ]+E[S3] for all n≥ 2 and, trivially, Cn ⇒C ≡ Y +S∗
3 , where S∗

3 is a random variable

independent of Y and itself distributed as S3.

.



Fu and Whitt: Pace of Play in Golf

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 13

4.3. The Moments of Y

Since the random variable Y in (17) plays a critical role, it is important to have expressions for

its moments. Let G and Gi be the cdf”s of Y and Si, respectively, e.g., Gi(x)≡P (Si ≤ x) and let

Ḡi(x)≡ 1−Gi(x) be the complementary cdf (ccdf).

Theorem 5. (moments of Y ) Consider the fully-loaded par-4 model. (a) If S1 and S3 are inde-

pendent, then

E[Y ] =

∫ ∞

0

G∗(x)dx, where G∗(x)≡ Ḡ1(x) + Ḡ2(x) + Ḡ3(x)− Ḡ1(x)Ḡ3(x). (19)

(b) If, in addition, the random variables S1, S2 and S3 are mutually independent and the cdf ’s

G1 and G3 have densities g1 and g3, then

V ar(Y ) = V ar(S2) +V ar(S1

∨

S3), (20)

where,

E[(S1

∨

S3)
2] =

∫ ∞

0

E[S2
1 |S1 > x]P (S1 > x)g3(x)dx

+

∫ ∞

0

E[S2
3 |S3 > x]P (S3 > x)g1(x)dx (21)

and

E[(S1

∨

S3)] =

∫ ∞

0

[Ḡ1(x) + Ḡ3(x)− Ḡ1(x)Ḡ3(x)]dx. (22)

We develop specific models of the stage playing times in §6 below, which we apply to obtain even

more tractable expressions for the moments of Y . We now introduce our model approximation.

5. The Approximating Conventional G/GI/1 Single-Server Queue

We now propose to approximate the given par-4 model specified in §3 by a conventional G/GI/1

single-server model with unlimited waiting space, the FCFS discipline, the given arrival process of

groups to the hole and i.i.d. (aggregate) service times, with an independent exceptional first service

time. In this approximating model, only one group is being served at a time, ignoring all other

groups. For that purpose, we assume that the stage playing times come from three independent
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sequences of i.i.d random variables {Si,n : n≥ 1} for 1≤ i≤ 3, where Si,n is distributed as Si with

cdf Gi.

The underlying idea is to let the new aggregate service times be approximately equal to the

successive intervals between groups clearing the green, ∆n ≡Gn −Gn−1, n≥ 1, in the fully loaded

model analyzed in §4. We anticipate that this approximation strategy should be effective when the

exact model is heavily loaded, which is the principal case of interest case for golf courses.

By Theorem 3.4 of Whitt (2013), these random variables ∆n for n ≥ 2 come from a somewhat

complicated 2-dependent sequence. However, from Theorem 3, we see that we can choose a closely

related sequence of i.i.d service times that produces the same SLLN behavior as ∆n by letting

these approximate i.i.d. service times be distributed as Y ≡ (S1

∨

S3)+S2 for n≥ 2, as in (17). (By

Theorem 3.3 of Whitt (2013), they also have the same CLT behavior.) However, we let the first

service time be Y ∗
1 ≡ S1 +S2 +S3 as experienced by the first group to play the hole. Hence that is

our main approximation. (Thus we use the same notation Yn.)

5.1. The Classical Recursion

Thus, the approximating G/GI/1 model is specified by the sequence of arrival times {An : n≥ 1}

and the sequence of mutually independent service times {Yn : n ≥ 1}, where Yn
d
= Y , n ≥ 2, for Y

in (17) and Y1
d
= Y ∗

1 ≡ S1 +S2 +S3. Then we can apply the classical single-server queue recursion:

Bn ≡ An

∨

Dn−1 and Dn ≡Bn +Yn, (23)

where D0 ≡ 0. The variables Dn are the departure times in the conventional single-server model.

However, the actual approximate departure times we use are defined differently in §5.2. (We do

not use Dn as an approximation for Gn in §3.)

The exceptional behavior of Fn for n = 1 in Theorem 2 explains the exceptional first service time.

We remark that there is a literature on queues with exceptional first service, which can be traced

from citations to the early paper Welch (1964), but that literature focuses on queues in which the

first service time of every busy period is exceptional. In contrast, here only the very first group
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has a different service time. This exceptional first service time will affect the transient behavior,

but not the limiting behavior, the steady-state limits for ρ < 1 and, after scaling, the heavy-traffic

limits for ρ≥ 1.

We regard the main approximations following directly from (23) as being for the group waiting

times at the tee (before teeing off), defined by Wn ≡ Bn − An. We next develop the remaining

approximations.

5.2. Approximations for the Group Sojourn and Departure Times

The appropriate approximation for the group sojourn times requires care, because we should not

just add the waiting time Wn to the approximating aggregate service time Yn, as we would in the

conventional G/GI/1 single-server model in which customers are served one at a time. Instead,

we let the the sojourn time approximation for the model in §3 be independent sum of the waiting

time and the cycle time in §4.2, i.e.,

Un ≈Wn +Cn, (24)

where Cn is independent of Wn. That is appropriate because the cycle time is the time spent by

the group on the hole (in the fully loaded model). By Theorem 4, the cycle time is the independent

sum of Y and S3, so that both the means and variances add:

E[Un]≈E[Wn] +E[Y ] +E[S3] and V ar(Un)≈ V ar(Wn) +V ar(Y ) +V ar(S3), n≥ 2. (25)

where the mean and variance of the waiting time Wn are obtained from the G/GI/1 model above.

For the exceptional first, group,

E[U1]≈E[S1] +E[S2] +E[S3] and V ar(U1)≈ V ar(S1) +V ar(S2) +V ar(S3). (26)

The departure times from group n from the hole (and thus the arrival times at a subsequent

hole) are necessarily Gn = An +Un. Thus we have the approximations

E[Gn]≈E[An] +E[Un] and V ar(Gn)≈ V ar(An) +V ar(Un), (27)



Fu and Whitt: Pace of Play in Golf

16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

using (25) and (26) above.

We will primarily consider the case of a a fixed deterministic schedule of start times (tee times)

with constant intervals in between on the first hole. For deterministic arrivals, the arrival time

mean and variance used in (27) are E[An] = An = (n− 1)EY/ρ and V ar(An) = 0 above.

For a following queue, the arrival times An are the departure times Gn, using (27), and not using

Dn in the recursion (23). For any queue after the first, the arrival time mean and variance, will be

obtained from (27) for the previous queue. We observe that successive waiting times are typically

not nearly independent. Hence, successive sojourn times Un and interdeparture times Gn −Gn−1

are typically not independent either.

Given the derived green clearing times Gn, we have associated approximations for the number

of of groups at the hole, either waiting or playing, as seen be group n upon arrival, Na
n , and at an

arbitrary time, N(t). As in formulas (2.3) and (2.4) of Whitt (2013), these are defined as

Na
n ≡ n− 1−max{k ≥ 0 : Gk ≤An}, n≥ 1. (28)

and

N(t)≡Na
n +1, An−1 ≤ t < An. (29)

6. Alternative Stage Playing Time Models

In this section we develop alternative models for the stage playing times Si that lead to alternate

overall approximating aggregate service-time random variables Y to use in the approximating

G/GI/1 model. We first consider exponential stage stage playing times, because of the appealing

tractability of the exponential distribution. However, the exponential distribution evidently is too

highly variable for the golf course application. To consider more appealing less-variable alternatives,

we also consider uniform and triangular stage playing times; triangular distributions were used in

Tiger and Salzer (2004). Finally, we develop a model to account for the extra variability caused

by an exceptional long delay, as occurs with a lost ball. Rare long stage service times can have a

dramatic impact, as shown by Riccio (2012, 2013).
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6.1. Independent Exponential Stage Playing Times

We can obtain explicit expressions for the moments of Y when S1, S2 and S3 are mutually inde-

pendent exponential random variables. The following is an easy consequence of Theorem 5.

Corollary 1. (moments of Y for independent exponential stage playing times) For the fully-

loaded par-4 hole in which Si are mutually independent exponential random variables with means

µ−1
i , i = 1,2,3, then

E[Y ] =
1

µ1

+
1

µ2

+
1

µ3

− 1

µ1 +µ3

(30)

and

V ar(Y ) =
1

(µ1 +µ2)2
+V ar(Z), (31)

where

E[Z2] = P (S1 < S3)E[S2
3 ] +P (S3 < S1)E[S2

1 ] =

(

µ1

µ1 +µ3

)

2

µ2
3

+

(

µ3

µ1 +µ3

)

2

µ2
1

(32)

and

E[Z] = P (S1 < S3)E[S3] +P (S3 < S1)E[S1] =

(

µ1

µ1 +µ3

)

1

µ1

+

(

µ3

µ1 +µ3

)

1

µ3

. (33)

If, in addition, µ1 = µ3, then Z
d
= S1

d
= S3, so that

V ar(Y ) = V ar(S2) +V ar(S1

∨

S3) = E[S2]
2 +

(

E[S1]

2

)2

+V ar(S1). (34)

Proof. First, we obtain (30) directly from the relation

Y
d
= (S1

∨

S3) +S2 = S1 +S2 +S3 −S1

∧

S3, (35)

and the property that the minimum of exponential variables is exponential with a rate equal to

the sum of the rates. For (31), we use (20) and

(S1

∨

S3) = (S1

∧

S3) +Z, (36)

where, by the lack of memory property, these are independent with (32) and (33) holding. For the

special case in which S1
d
= S3, those formulas simplify.
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6.2. Parametric Models with Special Structure

We now introduce additional structure in the stage playing time distributions in order to obtain

models with only a few parameters. In particular, in the spirit of p. 94 of Riccio (2012), we assume

that S1, S2 and S3 are mutually independent random variables with

S1
d
= S3, (37)

so that one parameter can be the means E[S1] = E[S3]; i.e., we have

m = E[S1] = E[S3] =
E[S2]

r
. (38)

Hence there are only the two parameters m and r beyond the distributions of S1 and S2. Moreover,

we let S2 have a distribution of the same type as S1.

Example 2. (a concrete exponential example) We now consider a concrete example of the expo-

nential stage playing times satisfying (37) and (38) in (38). For this example, we have

E[Y ] =
(3 +2r)m

2
, V ar(Y ) =

(5 +4r2)m2

4
and c2

Y ≡ V ar(Y )

E[Y ]2
=

5 +4r2

(3 +2r)2
. (39)

Following p. 94 of Riccio (2012) again, we now let m = 6 and r = 1/2. First, for r = 1/2, E[Y ] =

3m/2, var(Y ) = 3m2/2 and c2
Y = 3/8 = 0.375. From (39), we see that, for m = 6, E[Y ] = 12 and

V ar(Y ) = 54. We look at m = 6 throughput the paper, but the value m = 6 gives reasonable sojourn

times on the golf course only in the case of deterministic stage playing times. For realistic random

stage service times, a more realistic value evidently would be m = 4.

6.3. Independent Uniform Stage Playing Times

As a first step toward considering more realistic models of the stage playing times, we now assume

that all three random stage playing times are independent uniform random variables satisfying

(37) and (38). In particular, we assume that

Si
d
= mi − ai +2aiU, (40)
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where U ≡U [0,1] is uniformly distributed on the interval [0,1] and 0≤ ai ≤ 1. That is tantamount

to assuming that Si is uniformly distributed on the interval [mi − ai,mi + ai]. Since E[U ] = 1/2

and V ar(U) = 1/12, we see that E[Si] = mi and V ar(Si) = a2
i /3.

We further simplify by assuming that the parameters ai in (40) coincide, i.e.,

a1 = a2 = a3 = a, (41)

so that only two parameters remain: m and a.

With those simplifying assumptions, we have

S1 ∨S3 = m− a+2a(U1 ∨U2)), (42)

where U1 and U2 are two i.i.d. uniform random variables on [0,1]. Since

FU1∨U2
(t)≡ P (U1 ∨U2 ≤ t) = P (U1 ≤ t)2 = t2, 0≤ t≤ 1,

we have E[U1 ∨U2] = 2/3, E[(U1 ∨U2)
2] = 1/2 and V ar(U1 ∨U2) = 1/18. Hence,

E[S1 ∨S3] = m+
a

3
and V ar(S1 ∨S3) =

2a2

9
, (43)

so that

E[Y ] = (1 + r)m+
a

3
and V ar(Y ) =

5a2

9
. (44)

Example 3. (the uniform analog of Example 2)

Paralleling Example 2, suppose that m = 6 and r = 1/2. If a = 3 (which is as large as possible),

then E[Y ] = 10.0, V ar(Y ) = 5.0 and c2
Y = 0.05; if a = 1, then E[Y ] = 9.333, V ar(Y ) = 0.5555 and

c2
Y = 006377. Notice that the mean is substantially smaller than in the corresponding exponential

example, but c2
Y is much smaller. From (2), we see that it is important to look at

√

c2
Y . In the

exponential case,
√

c2
Y = 0.612, whereas for a = 1,

√

c2
Y = 0.07985, which is 7.7 times smaller.
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6.4. The Case of Independent Triangular Stage Playing Times

Aiming for an even more realistic model, as in Tiger and Salzer (2004), we now assume that Si has

a symmetric triangular distribution. In particular, paralleling (40), let

Si
d
= mi − ai +2aiT, (45)

where T ≡ T [0,1] is a (symmetric) triangular distribution on the interval [0,1] with density

fT (x) = 4t, 0≤ t≤ 0.5, and 4− 4t, 0.5≤ t≤ 1. (46)

so that E[T ] = 1/2 and V ar(T ) = 1/24.

That is tantamount to assuming that Si has a triangular distribution on the interval [mi −

ai,mi + ai], so that E[Si] = mi and V ar(Si) = a2
i /6. We further simplify by assuming that (41)

and (38) hold, so that there are only the three parameters m, r and a. With that simplifying

assumption, we have

S1 ∨S3 = m− a+2a(T1 ∨T2), (47)

where T1 and T2 are two i.i.d. triangular random variables on [0,1].

Since

P (T ≤ t) = 2t2, 0≤ t≤ 1/2, and P (T ≤ t) = 1− 2(1− t)2, 1/2≤ t≤ 1,

we have

P (T1 ∨T3 ≤ t) = P (T ≤ t)2 = 4t4 and fT1∨T3
(t) = 16t3, 0≤ t≤ 1/2, (48)

P (T1 ∨T3 ≤ t) = (1− 2(1− t)2)2 and fT1∨T3
(t) = 8[−1 +5t− 6t2 +2t3], 1/2≤ t≤ 1,

so that E[T1 ∨T3] = 37/60 and V ar(T1 ∨T3) = 101/3600. Hence,

E[S1 ∨S3] = m+
7a

30
and V ar(S1 ∨S3) =

101a2

900
(49)

and

E[Y ] = (1 + r)m+
7a

30
and V ar(Y ) =

251a2

900
. (50)
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Example 4. (triangular analog of Example 2) Just as in Examples 2 and 3, suppose that m = 6 and

r = 1/2. If a = 3 (which is as large as possible), then E[Y ] = 9.7, V ar(Y ) = 2.51 and c2
Y = 0.02667; if

a = 1, then E[Y ] = 9.233, V ar(Y ) = 0.2789 and c2
Y = 0.003271. Notice that the mean and variance

are both slightly smaller than in corresponding the uniform case. We will find that it is important

to look at
√

c2
Y . In the exponential case,

√

c2
Y = 0.612, whereas for a = 1,

√

c2
Y = 0.0572, which is

10.7 times smaller.

6.5. Modification for Occasional Lost Balls

The uniform and triangular distributions capture the lower variability we expect to have in group

playing times under normal circumstances. However, there can be unexpected delays, such as are

caused by a lost ball, which makes the time much longer than it would be otherwise. To avoid

excessive delays, golf courses often impose an upper limit on the playing time of each group on

each hole, such as 20 minutes.

To model these rare events in a relatively simple way, we consider random extra delays at an

upper limit. For simplicity, we assume that a lost ball can only occur on the tee shot, so we only

modify the distribution of S1. We first let this upper limit be the constant value L minutes. We

then assume that such unexpected events occur for each group on the first stage of each hole with

probability p. So we introduce the two extra parameters p and L.

Thus given any of the models for Si discussed above, this modification leads to a new distribution

for S1. Let the new random time for group play on stage 1 be S̄1, and let Ȳ , be the new random time

between successive times to clear the green, which is still defined by (17), but with S̄1 replacing

S1. Now we have

P (S̄1 = S1) = 1− p and P (S̄1 = L) = p. (51)

Then the first two moments of S̄1 are

E[S̄1] = (1− p)E[S1] + pL and E[S̄2
1 ] = (1− p)E[S2

1 ] + pL2, (52)
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so that

V ar(S̄1) = (1− p)[σ2
S1

+ p(L−E[S1])
2]. (53)

Then

Ȳ = (S̄1 ∨S3) +S2.

However, for bounded stage playing times such as occur with the uniform and triangular distri-

butions, we can go further. If, in addition to (37) and (38), we have

P (S̄1 > S3) = 1, (54)

then we have

Ȳ = S̄1 +S2, E[Ȳ ] = p(L+ rm) + (1− p)E[Y ] and

E[Ȳ 2] = p(L+ rm)2 +(1− p)E[Y 2]. (55)

Hence we can combine the lost-ball feature with one of the models in §6.3 and §6.4 to obtain

a tractable model. If we add condition (41), then we obtain tractable models depending on the

parameter 5-tuple (m,r,a, p,L). We can thus incorporate the rare lost ball with the usual low

variability of the uniform or triangular distribution to obtain a final estimate of the pace of play.

In particular, we can combine (55) and (50) to obtain the first two moments of Ȳ for the tri+LB

model with parameter 5-tuple (m,r,a, p,L):

E[Ȳ ] = p(L+ rm) + (1− p)

(

(1 + r)m+
7a

30

)

E[Ȳ 2] = p(L+ rm)2 +(1− p)

(

251a2

900
+E[Ȳ ]2

)

. (56)

Example 5. (Example 4 revisited with the triangular distribution and lost balls) For example,

Let Si have triangular distributions as in §6.4 with parameters m, r and a. Since E[S1] = m and

V ar(S1) = a2/6.

E[S̄1] = (1− p)m+ pL and E[S̄2
1 ] = (1− p)

(

m2 +
a2

6

)

+ pL2, (57)
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Suppose that we use the parameters m = 6 and r = 1/2 for the triangular distribution, as in

Example 4, and let p = 0.05 and L = 12 for the lost balls. Then

E[S̄1] = 0.95(6) + (0.05)(12)= 6.3 and E[S̄2
1 ] = (0.95)

(

36 +
9

6

)

+(0.05)(144)= 42.825 (58)

so that

V ar(S̄1) = 42.825− (6.3)2 = 42.825− 39.69 = 3.135 (59)

Since V ar(S1) = 1.50, the variance of S1 increased by more than a factor of 2.

The next step is to determine the distribution of Ȳ . Notice that

P (Ȳ = 12 +S2) = 0.05 = 1−P (Ȳ = Y ). (60)

Hence,

E[Ȳ ] = (0.05)(15) + (0.95)(9.7)= 0.75 +9.215 = 9.965 and

E[Ȳ 2] = (0.05)(226.5) + (0.95)(96.6)= 11.325 +91.77 = 103.095 (61)

so that

V ar(Ȳ ) = 103.095− (9.965)2 = 103.095− 99.30 = 3.795 and

c2
Ȳ = 3.795/(9.965)2 = 0.03822 (62)

As expected, c2
Ȳ

is greater than c2
Y = 0.02667, by a factor of about 1.5, but c2

Ȳ
is still 10 times smaller

than for the exponential distribution. It is thus natural to regard the exponential distribution as a

crude upper bound.

We show histograms of Y when the stage playing times have the triangular distribution with

(m,r,a) = (6,0.5,3) in Figure 1 and that triangular distribution modified to account for lost balls

with (p,L) = (.05,12) in Figure 2. The lost balls clearly produce a heavier upper tail, but within a

reasonable range, because Y remains bounded above by (S̄1∨S3)+S2 ≤ 12+(3+3) = 18 (compared

to ((S1 ∨S3) +S2 ≤ ([6 +3]∨ [6 + 3]) + (3 +3) = 15 for the triangular distribution).
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Figure 1 Histogram of the distribution of

Y when the stages have a trian-

gular distribution with (m,a) =

(6,3)
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Figure 2 Histogram of the distribution of Y

when the stages have a triangular dis-

tribution modified to account for lost

balls with (p,L) = (.05,12)

7. Simulation Comparisons for the Transient Performance

In this section we show that the approximating G/GI/1 model in §5 with exceptional first service in

§5, with the sojourn time adjustment in §5.2, provides an effective approximation for the transient

performance of the exact model in §3. We consider the case of identical par-4 holes in series. To do

so, we report simulation results estimating the mean and standard deviation of the sojourn time

of group n on each hole and on the first h holes for the cases (h,n) = (10,20) and (18,100).

7.1. Sojourn Times

We now label the variables with two subscripts, the first indexing the hole and the second indexing

the group. With this notation, we now aim to approximate the sojourn time of group n on hole h,

Uh,n ≡Gh,n −Ah,n, for various holes h and the total sojourn time of group n on the first h holes,

Vh,n ≡U1,n + · · ·+Uh,n. (63)

We illustrate by displaying simulation results for the cases (h,n) = (10,20) and (18,100).

For our first experiment, we consider the all-exponential model with independent all-exponential

stage playing times with parameters (m,r) = (6,0.5), having means E[S1] = E[S3] = 6, E[S2] = 3, as

in Example 2, and constant intervals between tee times on the first hole. The interval between tee
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times is used to adjust the traffic intensity. We perform the transient simulations for three values

of the traffic intensity ρ, defined by ρ≡ λE[Y ]: 0.9, 1.0, and 1.1. The simulations are based on 2000

independent replications. This consistently makes the half-width of 95% confidence intervals less

than 5% of the estimated means and 10% of the estimated standard deviations.

We find that the sojourn times over several holes tend to be approximately normally distributed,

so that the mean and standard deviation serve to describe the entire distribution. Figure 3 illus-

trates by showing the histogram of the sojourn times V10,20 for ρ = 0.9 (on the left) and ρ = 1.1 (on

the right) estimated for the exact model in §3. (The approximation produces very similar plots.)
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Sojourn time distribution for 20th customer through 10 holes (Exact model ρ=0.9)
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Figure 3 Histogram of the sojourn times

V10,20 in the all exponential

model with for ρ = 0.9
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Figure 4 Histogram of the sojourn times V10,20

in the all exponential model with for

ρ = 1.1

We give simulation estimates of the mean and standard deviation of these sojourn times Uh,20

for the exact and approximate models in Table 1 for holes h = 1,2,3,6 and 10 and the total sojourn

time V10,20. Overall, we see that the mean sojourn time may increase from h = 1 to h = 2 but then

gradually declines thereafter; the standard deviations evidently decline only after h = 3. We see

that the approximate model consistently overestimates the mean and standard deviation but not

by too much. It overestimates the mean and standard deviation of V10,20 for ρ = 0.9 by 7% and

12%, respectively.
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Table 1 Simulation comparison of the transient performance predicted by the exact model in §3 and the

approximate model in §5: estimates of the mean and standard deviation of the sojourn times of group 20 on several

holes, (Uh,20), and over the first 10 holes, (V10,20), for a series of i.i.d. par-4 holes with exponential stage playing

times, for three traffic intensities ρ = 0.9, 1.0 and 1.1

traffic intensity ρ = 0.9 ρ = 1.0 ρ = 1.1
perf. measure mean std dev mean std dev mean std dev
hole 1, exact model 28.0 18.1 36.6 22.3 48.4 26.5

approx model 30.6 20.3 38.9 23.1 52.6 27.9
hole 2, exact model 32.7 20.0 37.8 24.1 42.2 25.5

approx model 33.5 21.1 40.1 23.7 43.2 25.2
hole 3, exact model 31.1 20.4 34.8 21.7 35.6 22.5

approx model 33.9 21.7 36.9 22.6 38.1 23.7
hole 6, exact model 28.5 18.2 29.0 18.0 29.7 22.8

approx model 29.4 19.5 30.7 18.3 31.4 19.5
hole 10, exact model 25.1 16.1 26.0 16.8 25.8 16.8

approx model 27.1 17.5 27.7 16.6 27.9 16.6
first 10 holes, exact model 283.8 34.2 305.9 35.1 326.6 36.6

approx model 303.8 38.5 328.2 38.0 346.7 40.2

We now focus on the different stage playing time distributions. In particular, as in Examples

2, 4 and 5, we now consider the exponential distribution with (m,r) = (6,0.5), the triangular

distribution (tri(m,a)) for (m,r,a) = (6,0.5,3), that same triangular distribution with the lost ball

parameters (p,L) = (0.05,12). In all cases we let E[S1] = E[S3] = 2E[S2] = m = 6. In Examples 2,

4 and 5 we have calculated the means and variances of Y for each of these three cases. They are,

respectively,

(E[Y ], V ar(Y )) = (12.00,54.00), (9.70,2.51) (9.97,3.80).

Even though the stage playing times have identical means in all three models, they have different

variability, which affects both the mean and variance of Y . The mean and variance of Y in turn

strongly affect the mean sojourn times E[Uh,n] and E[Vh,n].

Table 2 gives simulation estimates of the mean and standard deviation of these sojourn times

Uh,100 for the exact and approximate models for holes h = 1,2,3,6,10,18 and the total sojourn

time V18,100. (Now we consider (h,n) = (18,100 instead of (10,20).) These results are again based

on 2000 independent replications. For the less variable triangular stage playing time distribution,

the half-width of 95% confidence intervals is consistently less than 1% of the mean estimate and
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5% of the standard deviation estimate.

Again, we see that the mean sojourn time may increase from h = 1 to h = 2 but then gradually

declines thereafter; the standard deviations evidently decline only after h = 3. We see that the

approximate model consistently overestimates the mean and standard deviation but not by too

much.

Table 2 Simulation comparison of the transient performance predicted by the exact model in §3 and the

approximate model in §5: estimates of the mean and standard deviation of the sojourn times of group 100 on

several holes, (Uh,100), and over the full course of 18 holes, (V18,100), for a series of i.i.d. par-4 holes with traffic

intensity ρ = 1.1 and three stage playing time distributions, as in Examples 2, 4 and 5.

distribution tri. (m,a) = (6,3) tri. + LB (p,L) = (.05,12) expon. m = 6
perf. measure mean std dev mean std dev mean std dev
hole 1, exact model 103.6 15.8 106.4 19.0 142.7 66.1

approx model 108.4 15.9 111.1 19.3 144.8 65.9
hole 2, exact model 31.6 13.6 35.3 16.2 87.3 59.7

approx model 33.1 14.2 36.9 17.2 87.3 57.0
hole 3, exact model 26.4 10.3 29.6 12.7 65.7 46.3

approx model 27.7 10.6 30.4 13.2 68.3 47.1
hole 6, exact model 21.9 6.7 24.3 8.9 47.7 35.4

approx model 23.10 7.7 25.0 9.7 50.6 34.8
hole 10, exact model 20.4 5.8 21.8 7.0 40.7 30.1

approx model 21.7 6.8 23.0 8.16 41.3 27.9
hole 18, exact model 18.7 4.3 19.9 16.8 33.3 23.8

approx model 20.7 6.0 21.4 5.7 35.3 23.4
first 18 holes, exact 468.8 10.1 503.7 14.1 908.5 58.6

approx model 498.3 12.4 526.7 15.3 938.5 61.8

We also simulated the standard D/GI/1 model with service times distributed as Y , without any

exceptional first service times. We found that the exceptional first service times did not significantly

alter the results, but it is important to include the sojourn time adjustment in §5.2.

7.2. Negative Dependence

When we consider the sojourn time over several holes, we might think that the variance should be

approximately the sum of the variances on the individual holes, but the simulation experiments

show that is not nearly the case. The estimated sum of the variances of the sojourn times on the

first 10 holes in Table 1 and over the first 18 holes in Table 2 is much larger than the variance of
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the sojourn time over all the holes. We make an explicit comparison in Table 3. Fortunately, we

see that this effect is well captured by the approximation. Table 3 shows that the ratio is greatest

for the least variable triangular distribution.

Table 3 A comparison of the variance of the sojourn time of n groups over h holes with the sum of the variances

of the sojourn times in the six experiments in Tables 1 and 2

case var. of sum sum of vars. ratio

exponential with ρ = 0.9 V ar(V10,20)
∑10

i=1 V ar(Ui,20)
exact 1197 3418 2.85
approx. 1412 3413 2.41

exponential with ρ = 1.0 V ar(V10,20)
∑10

i=1 V ar(Ui,20)
exact 1234 3835 3.10
approx. 1440 3936 2.73

exponential with ρ = 1.1 V ar(V10,20)
∑10

i=1 V ar(Ui,20)
exact 1342 4353 3.24
approx. 1617 4393 2.72

triangular with ρ = 1.1 V ar(V18,100)
∑18

i=1 V ar(Ui,100)
exact 102.7 1071 10.4
approx. 154.1 1297 8.4

tri. and LB with ρ = 1.1 V ar(V18,100)
∑18

i=1 V ar(Ui,100)
exact 200.3 1651 8.2
approx. 236.2 1881 8.0

exponential with ρ = 1.1 V ar(V18,100)
∑18

i=1 V ar(Ui,100)
exact 3823 23291 6.09
approx. 3434 22893 6.66

We also estimated the correlations c(j, k) of the sojourn times on holes j and j + k for all j

and k. We find that these correlations are consistently negative with absolute values that decrease

in j and k, with c(j,1)≈−0.14 for the triangular distribution and c(j,1)≈−0.10 for the tri and

tri+LB distributions, respectively, for j ≥ 4.

8. The Time Required for a Group to Play a Full Round of Golf

In this section we develop and evaluate heavy-traffic (HT) approximations for the time required

for each successive group to play a full round of golf on the idealized course containing a series of

18 i.i.d. par-4 holes.

Let Gh,n be the time that group n clears the green on hole h (completes play on the first h holes).

Let A1,n be the time that group n is scheduled to start (tee off) at the first hole. (The group may
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in fact have to wait for other groups in front of them.) Let Vh,n = U1,n + · · ·+ Uh,n be the sojourn

time of group n on the first h holes. These three performance descriptors are related by

Vh,n = Gh,n −A1,n. (64)

Here we assume that the tee times are evenly spaced deterministic times so that

A1,n =
n− 1

λ
=

(n− 1)E[Y ]

ρ
, (65)

where λ is the arrival rate and 1/λ is the fixed interval between successive scheduled group tee

times on the first hole, with λ chosen so that the traffic intensity ρ = λE[Y ] is some specified value,

with Y as in (17). Here we consider cases in which ρ≥ 1, so that groups are usually ready to tee

off at the first green whenever the opportunity arises.

8.1. The Standard Series-Queue Model

We first consider the standard series-queue model, with i.i.d ·/GI/1 queues in series, each having

service times distributed as Y in (17). We evaluate HT approximations from Iglehart and Whitt

(1970a,b), elaborated upon in Glynn and Whitt (1991), Greenberg et al. (1993), Harrison and

Reiman (1981), Reiman (1984) based on stochastic-process limits where we let n →∞ for fixed

ρ ≥ 1. We compare to the simulations of both this same model and the exact golf-course model,

focusing on the sojourn time of group n = 100 on the first h = 18 holes.

A reference case is the series of deterministic ·/D/1 queues with the deterministic arrival process

and deterministic service times with mean E[Y ], Then

GD,std
h,n = (n+h− 1)E[Y ], A1,n =

(n− 1)E[Y ]

ρ
and V D,std

h,n = GD,std
h,n −A1,n. (66)

For example, with n = 100, h = 18, ρ = 1.1 and S1 = S6 = 2S2 = 6 and Y = 9.0, so that

GD,std
18,100 = (117)9 = 1053, A1,100 =

(99)9

1.1
= 810 and V D,std

18,100 = 1053− 810 = 243. (67)

From this example, we see that these deterministic stage service times would make the pace of

play far too slow. Before we introduce the important variability, which will slow the pace of play
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even more, we see that the required time for 100 groups to play on the course is 1053/60≈ 17.5

hours, which could just be realized in mid-summer, from 5:00 am until 10:30 pm, while the sojourn

time of the last group is just over 243/60≈ 4 hours. That sojourn time is composed of 18×9 = 162

minutes of service time and 81 minutes waiting to tee off at the first hole. Thus, we probably want

to have ρ < 1.1. More importantly, the extra variability raises these times to untenable levels.

To treat the case of stochastic service times, we apply the heavy-traffic (HT) limit in which

n →∞ for a series of standard ·/GI/1 queues, where the service times at the queues come from

independent sequences of i.i.d. random variables distributed as Y in (17), with mean E[Y ] and scv

c2
Y ≡ V ar(Y )/E[Y ]2. Given that ρ≥ 1, there will almost always be groups ready to start play on

the first hole whenever the opportunity arises. Thus,we can apply Theorem 3.2 of Glynn and Whitt

(1991), which reduces to previous HT limit in Iglehart and Whitt (1970a,b), as noted in Remark

3.1 there. That HT limit is in turn a special case of more general HT limits for open networks of

queues in Harrison and Reiman (1981), Reiman (1984) and Ch. 14 of Whitt (2002). The connection

to this earlier work is seen by observing that, for h≥ 2, GD,std
h,n is approximately the departure time

in a series network of h − 1 queues with traffic intensity ρ = 1 and interarrival-time distribution

equal to the service time distribution on Y . (We consider the service time on the first hole as the

interarrival time to the rest of the model.)

For h≥ 2, The HT limit takes the form

GD,std
h,n − (n+h− 1)E[Y ]√

n
⇒ σY D̂h(1) as n→∞, (68)

where D̂h(1) is a complex function of (h)-dimensional standard Brownian motion (BM), as arises

in the case E[Y ] = V ar(Y ) = 1. (The term h− 1 on the left could be omitted because it is asymp-

totically negligible as n →∞ when divided by
√

n, but we include it to be consistent with (66)

above.) The key approximation stemming from the HT limit is

GD,std

h,n ≈E[Y ]
(

n+h− 1 +
√

nc2
Y D̂h(1)

)

. (69)

It remains to evaluate the distribution of the random variable D̂h(1) appearing in (68) and (69).

To evaluate its mean and standard deviation, we now exploit simulation results from Greenberg
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et al. (1993). In particular, we apply Table 5 of Greenberg et al. (1993) to produce the approxima-

tion

E[D̂h(1)]≈ bh

√
h and SD[D̂h(1)]≈ ch (70)

where bh and ch are constants that in general should depend on h with bh ↑ 2 as h ↑ ∞, while ch

decreases. For h = 10, bh ≈ 1.62 and ch ≈ 0.65; for h = 100, bh ≈ 1.95 and ch ≈ 0.45. Hence, we use

the approximations b18 ≈ 1.7 and c18 ≈ 0.6, yielding

E[D̂18(1)]≈ 1.7
√

h≈ 7.2 and SD[D̂18(1)]≈ 0.6 (71)

Since V std
h,n = GD,std

h,n − A1,n, we can combine the results to approximate the distribution of the

sojourn time V std
h,n . Since A1,n is deterministic,

SD[V std
h,n ] = SD[GD,std

h,n ]. (72)

Combining (69), (71) and (72), we obtain the approximations

E[V std
18,n] ≈ E[Y ]

(

n+17− n− 1

ρ
+7.2

√

nc2
Y

)

and ,

SD[V std
18,n] ≈ 0.6E[Y ]

√

nc2
Y . (73)

For the case n = 100, we obtain

E[V std
18,100]≈E[Y ]

(

27 +7.2
√

100c2
Y

)

and SD[V std
18,100]≈ 0.6E[Y ]

√

100c2
Y (74)

To evaluate the quality of the approximation in (74), we simulated the standard model with

i.i.d. service times distributed as Y in (17) with traffic intensity ρ = 1.1 (arrival rate E[Y ]/1.1) and

ρ = 1.0 for the stage playing time distributions in Table 2. The results are shown in Table 4. For

ρ = 1.0, the approximations for the mean sojourn time of group 100 over 18 holes with the tri,

tri+LB and exp stage service time distributons are, respectively, 3.9% high, 10.6% high and 3.7%

high.

For the cases with ρ ≥ 1, Table 4 shows that (73) and (74) provide useful approximations for

the mean E[V18,n] and standard deviation SD[V std
18,n], showing the dependence upon the five key
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Table 4 Comparison with simulation estimates of the heavy-traffic approximation in (74) for the mean and

standard deviation of V std
18,100, the sojourn time in the standard model, for service times distributed as Y in (17)

with four different stage playing times satisfying (38) with m = 6, based on 2000 replications, ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) HT approx (75) (76)

ρ = 1.1 mean SD mean SD
√

c2
V

deterministic, m = 6 243 0.0 9.00(27 +0.00) = 243 0.0 0.0000
triangular, (m,a) = (6,3) 363 9.5 9.70(27 +11.75)= 376 9.5 0.0253
tri+LB, (p,L) = (.05,12) 398 14.0 9.97(27 +16.42)= 433 11.6 0.0268
exponential, m = 6 826 56.4 12.00(27 +44.1)= 853 44.1 0.0517
ρ = 1.0
deterministic, m = 6 162 0.0 9.00(18 +0.00) = 162 0.0 0.0000
triangular, (m,a) = (6,3) 278 9.5 9.70(18 +11.75)= 289 7.3 0.0253
tri+LB, (p,L) = (.05,12) 310 13.8 9.97(18 +16.42)= 343 9.2 0.0268
exponential, m = 6 722 56.7 12.00(18 +44.1)= 749 38.7 0.0517
ρ = 0.9
deterministic, m = 6 162 0.0 9.00(18 +0.00) = 162 0.0
triangular, (m,a) = (6,3) 201 5.6 162 +9.7(18)(9)(0.0267)= 204 7.3
tri+LB, (p,L) = (.05,12) 224 9.8 162 +9.97(18(9)(0.0382)= 224 9.2
exponential, m = 6 597 52.9 162 +12(18(9)(0.375)(0.727)= 691 38.7

variables E[Y ], ρ, n, h and c2
Y . For example, from (73), we see that the mean E[V18,n] is directly

proportional to E[Y ].

Our main focus is on cases with ρ ≥ 1, but Table 4 also includes results for ρ = 0.9 to show

what happens. Table 4 shows that there are no dramatic changes; we can obtain reasonable rough

estimates for the mean values at ρ = 0.9 by subtracting the difference of the values at ρ = 1.1 and

ρ = 1.0 from the value for ρ = 1.0. However, the approximations for ρ = 0.9 have a very different

basis. For ρ < 1, we use a variation of the approximation for the steady-state mean from Whitt

(1983), which is discussed in the appendix. For the standard deviation, we draw on (73), assuming

that SD(V std
18,n(ρ)) for ρ < 1 has the same value as in the approximation for ρ = 1.0.

8.2. Approximation for the Golf Model

To obtain the corresponding approximation for the sojourn time in the golf model, we need to

include the sojourn time adjustment in §5.2. To do so for the mean, we should add 18E[S3] to the

approximation for the mean E[V std
18,n] in (73) and (74) above. That yields the final approximation

for the mean sojourn time for our golf model; i.e., for h = 18 and 30 ≤ n ≤ 300, we suggest the
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approximation

E[V18,n]≈E[Y ]

(

n +17− n− 1

ρ
+7.2

√

nc2
Y

)

+18E[S3]. (75)

Unlike the approximation formula for the standard model in (73), the approximation for the mean

E[V18,n] in (75) is not directly proportional to E[Y ]. However, it is directly proportional to m if we

assume that (38) holds.

For the standard deviation, there evidently is dependence among these stage playing times used

in the adjustment. Hence, we advocate the simple approximation

√

c2
V18,n

≈
√

c2
V std
18,n

=
SD[V std

18,n]

E[V std
18,n]

, (76)

where the terms on the right are given in (73). This method allows us to exploit the thorough

study in Greenberg et al. (1993).

We compare the approximation to simulation estimates in Table 5.

Table 5 Comparison of the heavy-traffic approximation for the mean sojourn time of group 100 on the full

18-hole golf course, E[V18,100], in (75) with simulation estimates for four different stage playing times satisfying (38)

with m = 6 based on 2000 independent replications, ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) model approx (sim) HT approx (75)
ρ = 1.1 mean SD mean SD mean SD
deterministic, m = 6 351 0.0 351 0.0 351 0.0
triangular, (m,a) = (6,3) 469 10.1 498 12.4 484 12.2
tri+LB, (p,L) = (.05,12) 503 14.2 526 15.3 531 14.2
exponential, m = 6 908 61.7 938 61.0 961 50.0
ρ = 1.0 mean SD mean SD mean SD
deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m,a) = (6,3) 382 9.9 411 12.7 396 10.0
tri+LB, (p,L) = (.05,12) 416 14.4 437 15.3 440 11.8
exponential, m = 6 807 59.0 832 60.5 852 44.1
ρ = 0.9 mean SD mean SD mean SD
deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m,a) = (6,3) 306 6.6 312 8.8 312 7.9
tri+LB, (p,L) = (.05,12) 330 11.9 335 11.9 332 8.9
exponential, m = 6 683 56.2 707 60.6 852 44.0

Table 5 show that the HT approximation gives a useful approximation for the mean E[V18,n] and

standard deviation SD[V18,n]. From Tables 4 and 5, we see that the errors in Table 5 are primarily

due to the quality of the heavy-traffic approximation for the standard model in this setting.
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The approximation formulas in (75) and (76) effectively reveal the important (and somewhat

complex) dependence upon the six key variables E[Y ], ρ, n, k, c2
Y and E[S3]. For the mean, first

E[V18,n]≈E[Y ]An +18E[S3], (77)

where

An ≡An(ρ, c2
Y ) = (n+17) +

n− 1

ρ
+7.2

√

nc2
Y . (78)

For example, suppose that n = 1.1 and ρ = 1.1. For the exponential stage playing time model with

E[S1 = E[S3] = 2ES2] = m = 6, E[Y ] = 12, E[S3] = 6 and An = 117− 90 +7.2
√

37.5 = 27 +44 = 71,

so that 7.2
√

nc2
Y contributes 62% of An. In contrast, for the triangular distribution with (m,a) =

(6,3), E[Y ] = 9.7, E[S3] = 6 and An = 117− 90 + 7.2
√

2.667 = 27 + 11.8 = 38.8. For the triangular

distribution, the mean E[Y ] is 81% of the mean in the exponential case, while 7.2
√

nc2
Y contributes

only 30% of An.

9. Conclusions

In this paper we developed a modeling framework for analyzing the pace of play on golf courses.

We started in §2 by illustrating how the reslting approximation formulas can be used to analyze

the pace of play. Then in §3 we reviewed the stochastic queueing model of successive groups of

golfers playing on a generic par-4 hole from Whitt (2013). This model captures the random times

required for groups to complete play on separate stages of the hole, but the model is complicated

by the fact that more than one group can be playing on each hole at the same time. In §5 we

proposed a new approach for approximating this model by a conventional G/GI/1 single-served

model in which only one group is playing on the hole at any time. The main idea is to let the

approximating “aggregate” service times be chosen to appropriately match the successive times

between successive groups clearing the green (competing play) on that hole in the fully-loaded

version of the original model. Hence in §4 we also reviewed the analysis of the fully-loaded par-4

model. We use this approximating G/GI/1 model to directly approximate the waiting times, but

a modification is needed to approximate the sojourn and departure times, as shown in §5.2.
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Both the original stochastic models from Whitt (2013) and the corresponding approximating

conventional models introduced here extend directly to models of play on an 18-hole golf course

with any configuration of these holes, but we suggest focusing on 18 identical holes to conveniently

derive important insights, because then relatively simple analytical approximation formulas are

readily available. In particular, we propose (75) and (76) as approximations for the mean and

standard deviation of the sojourn time of group n on the entire 18-hole golf course (provided that

n is not too small, which is appropriate if we focus on the last group to play).

To focus on key aspects of group play on each hole, in §6 we developed alternative models of the

stage playing time distributions. We think that the model combining the triangular distribution

with the possibility of lost balls is especially promising. It has the parameter 5-tuple (m,r,a, p,L),

where each parameter captures a different aspect of the model. Extending the model to asymmetric

triangular distributions, skewed to the right, would evidently be even more realistic.

We conducted simulation experiments to show that these approximating conventional G/GI/1

single-served models and the analytical approximation formulas provide good performance approx-

imations for the more complex original model under heavy loading, which is the principal case

for golf courses. The analytical performance formulas for the conventional model can be used to

obtain important insights. The approximation formulas can be used to quickly perform back-of-

the-envelope calculations to understand how the golf course performance depends on the interval

between successive tee times and the stage playing times.

There are many remaining problems. One important next step is to examine data of group play

on golf courses and estimate the distributions of (i) the waiting times and the times to play each

hole for successive groups, and (ii) the stage playing times Si on each hole. It also remains to

examine alternative ways to control the pace of play.
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E-Companion

We now investigate how the model approximation performs for steady-state distributions. For

the less variable tri and tri+LB stage playing time distributions, the steady-state approximations

are quite useful, but for the more variable exponential stage playing time distribution the steady

state distribution is not so useful because steady-state is not reached during the day. Nevertheless,

it is interesting to see how the GI/GI/1 model approximation performs in steady-state, which of

course requires that the rate in be less than the maximum rate out. We first introduce analytical

approximations that we can exploit in this case.

EC.1. QNA Approximations for the Steady-State Waiting Time

Unfortunately, the approximating G/GI/1 model itself is complicated, even in the D/GI/1 case of

primary interest to us for the first queue. (Subsequent queues are substantially more complicated.)

Thus, for the resulting G/GI/1 approximating model, we also propose steady-state performance

approximations from the Queueing Network Analyzer (QNA) in Whitt (1983). Fortunately, the

steady-state behavior does not depend on the exceptional first service times.

These QNA approximations depend on the mean service time E[Y ], the traffic intensity ρ ≡

λE[Y ] and the squared coefficients of variation (scv, variance divided by the square of the mean) c2
a

and c2
s of an interarrival time and a service time, i.e., Y . These in turn draw heavily upon Kraemer

and Langenbach-Belz (1976). Here we only consider the case c2
a ≤ 1 and c2

s ≤ 1, which seems most

relevant here, but the other cases are also given in Whitt (1983). (For the D/GI/1 model, c2
a = 0.)

From (44) and (45) of Whitt (1983), the approximate mean steady-state waiting time is

E[W ]≈ E[Y ]ρ(c2
a + c2

s)g

2(1− ρ)
, (EC.1)

where

g(ρ, c2
a, c

2
s)≡ exp

[−2(1− ρ)(1− c2
a)

2

3ρ(c2
a + c2

s)

]

. (EC.2)

From (48) and (49) of Whitt (1983), the approximate steady state delay probability is

P (W > 0)≈ ρ+(c2
a − 1)ρ(1− ρ)h, where h(ρ, c2

a, c
2
s)≡

1 + c2
a + ρc2

s

1 + ρ(c2
s − 1) + ρ2(4c2

a + c2
s)

. (EC.3)
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From (50)-(54) of Whitt (1983), the approximate variance of the steady-state waiting time is

V ar(W ) = (EW )2c2
W , where c2

W =
c2

D +1−P (W > 0)

P (W > 0)
,

c2
D ≈ 2ρ− 1 +

4(1− ρ)d3
s

3(c2
s +1)2

and d3
s ≡ (2c2

s +1)(c2
s +1). (EC.4)

The QNA approximation is intended for complex networks of queues, and takes a relatively

simple form for the series of G/GI/1 queues we consider. In particular, given the parameters of

one queue, the departure rate necessarily equals the arrival rate and, from (38) of Whitt (1983),

the approximating scv of the departure process is

c2
d ≈ ρ2c2

s +(1− ρ2)c2
a. (EC.5)

For the kth queue of i.i.d. queues in series, the resulting simple approximation is

c2
a,k+1 = c2

d,k ≈ (1− ρ2)kc2
a + [1− (1− ρ2)k]c2

s. (EC.6)

As k increases c2
d,k → c2

s. For suitably large k and ρ, c2
a,k+1 = c2

d,k ≈ c2
s.

Finally, we remark that the overall mean waiting time and sojourn time on the full 18-hole course

can be expressed as the sum of the means on the individual holes. The QNA approximation for the

variance of the sum is the sum of the component variances, but we have seen that is inappropriate

here. The variance of the sum is more complicated because of the dependence noted in §7.2. In

particular, for the case of the exponential stage playing times and ρ = 0.9, the sum of the variances

of the sojourn times at the 18 queues is more than 4 times greater than the estimated variance of

the sum of the sojourn times.

EC.2. Simulation Comparisons for Steady-State Performance

We now report results of a simulation experiment comparing the steady-state performance of the

exact par-4 model in §3 to the performance of the approximating G/GI/1 model with exceptional

first service in §5 when ρ = 0.9. The exceptional first service does not influence the steady-state

behavior.
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For the steady-state performance, We compare three different approximations: The first is based

on simulation estimates of the G/GI/1 model with i.i.d. service times Y as in (17). The second is

based on simulation estimates of the same G/GI/1 model except the service-time distribution is

fit to a gamma distribution. The third is based on the QNA analytical approximation formulas.

We first consider one queue and then we consider 18 queues in series. Since the golf course tends

to be heavily loaded, our main steady-state case has ρ = 0.9, but we also examine lighter loads

ρ = 0.7 and ρ = 0.5.

EC.2.1. One Queue with traffic Intensity ρ = 0.9

Consistent with the common use of deterministic evenly spaced tee times, we consider the case

of a D/GI/1 model with deterministic arrival times and mutually independent exponential stage

playing times as in §6.1.

Following p. 94 of Riccio (2012), we consider a concrete example with mean stage playing times

E[S1] = E[S3] = 6 and E[S2] = 3. As above, we assume that Si is exponential for all i. Hence,

E[Y ] = 12 and V ar(Y ) = 54, so that the scv is c2
Y = V ar(Y )/E[Y ]2 = 0.375. We find that this pdf is

well approximated by a gamma pdf with shape parameter k = 2.66 and scale parameter θ = 4.505,

having mean kθ = 11.98≈ 12 and variance kθ2 = 53.98≈ 54. (For comparison, note that if the stage

playing times were deterministic, then Y = (S1∨S3)+S2 = 9, so that the exponential distributions

inflate the mean E[Y ] by 1/3 from its deterministic-case value.) Consistent with the heavy loading

of golf courses, we let the traffic intensity be ρ = λE[Y ] = 0.9, so that λ = 0.9/12 = 0.075 and the

fixed interval between group tee times is 13.3333.

Each simulation run has 10,000 groups (arrivals) and 2,000 runs were made. The simulation

estimates of steady-state performance uses the data for groups 7,501 to 9,500; thus the total

number of data points is 4×106 for these estimates. Table EC.1 shows simulation results for three

models, the exact model and the two D/GI/1 approximate models, with service times distributed

as Y and gamma(2.66,4.605), plus the QNA analytical approximations from §EC.1. The results

show that: (i) the gamma distribution does not significantly alter the G/GI/1 approximation, (ii)
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the G/GI/1 model approximations are quite accurate and (iii) the relatively simple analytical QNA

approximations for the performance measures are quite accurate for this case as well. Moreover,

consistent with heavy-traffic limits, the conditional waiting time D ≡W |W > 0 fits an exponential

very well.

Table EC.1 Simulation comparisons for the steady-state performance on the first hole: exact model in §3 versus

the D/GI/1 approximate model in §5 with aggregate service according to Y and gamma fit, and the QNA formulas

from §EC.1. Waiting-time (W ) and sojourn-time (U) performance measures are shown for deterministic arrival

times, ρ = 0.9 and independent exponential stage playing times with E[S1] = E[S3] = 6 and E[S2] = 3.

model E[W ] V ar(W ) P (W > 0) E[W |W > 0] c2
W |W>0 E[U ] V ar(U)

sim. (exact) 16.2 506 0.673 23.93 1.01 33.7 613
sim. (app,Y) 17.4 527 0.729 23.79 0.97 35.4 617
sim (app,gam) 17.4 517 0.732 23.66 0.98 35.4 607
QNA, §EC.1 16.6 472 0.727 22.83 0.97 34.6 562

EC.2.2. Eighteen i.i.d. par-4 Holes in Series

We now evaluate the approximation for 18 i.i.d. par-4 holes in series. As before, we consider a

deterministic arrival process at the first hole, with traffic intensity ρ = 0.9 at all queues. The flow

through the network makes the arrival process at each successive queue somewhat more variable,

causing the congestion to steadily increase. The QNA approximating arrival process scv is now

c2
a ≈ c2

s = 0.375 instead of c2
a = 0 at queue 1. Table EC.2 shows the performance results just as in

Table EC.1 for the last (18th) queue, using c2
a ≈ 0.375 in the QNA approximation. Table EC.2 shows

that the performance approximations are very good for the G/GI/1 model, just as in Table EC.1,

but the QNA approximations tend to be somewhat high. Nevertheless the y should bed useful for

engineering applications.

EC.2.3. Lighter Loads

We also did simulation comparisons for lighter loads. As might be anticipated, we found that the

quality of the performance approximation provided by the approximating G/GI/1 model degrades

significantly as ρ decreases. For lower ρ, the approximation provides only a crude upper bound.
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Table EC.2 Simulation comparisons for the steady-state performance on the 18th hole: exact model in §3 versus

the G/GI/1 approximate model in §5 with aggregate service according to Y and gamma fit, and the QNA formulas

from §EC.1. Waiting-time (W ) and sojourn-time (U) performance measures are shown for deterministic arrival

times, ρ = 0.9 and independent exponential stage playing times with E[S1] = E[S3] = 6 and E[S2] = 3.

model E[W ] V ar(W ) E[U ] V ar(U)
exact (sim) 37.1 1860 54.8 1976
approx (Y, sim) 37.4 1743 55.4 1797
approx (gam, sim) 37.1 1754 55.1 1808
approx (QNA, §EC.1) 38.5 2134 56.5 2188

For example, the exact (approximate) estimates of the mean steady-state wait EW for ρ = 0.7 and

0.5 were 2.20 (2.97) and 0.333 (0.568), respectively. The performance is roughly consistent with

the approximation

E[W,exact]≈√
ρE[W ;approx]. (EC.7)

EC.2.4. Application to Fewer than 100 Groups

From the simulations above based on 10,000 groups, we see that both the model approximation

and the QNA approximation from Whitt (1983) are effective for approximating the steady state

behavior of the system. That is supported by the simulation results above for 10,000 groups.

However, the actual golf course will have only 20 − 100 groups playing each day. Clearly, the

steady-state approximations will also apply to these transient settings if the system is nearly in

steady state for these smaller numbers. We investigated this issue and have drawn a few tentative

conclusions. Mainly, we conclude that this issue is worth further study.

Our first conclusion, as expected, because it is consistent with established results about the

approach to steady state, especially for single-server queues and reflected Brownian motion, as in

Abate and Whitt (1987) and §4.3 of Whitt (1989), is that the approach to steady state becomes

much slower as the variability in the arrival and service processes increases. In particular, we find

direct steady-state approximations work quite well for the tri and tri+LB distributions, but not

for the exponential distribution.

Our second conclusion is that the time required for the kth queue to approach steady state is

increasing in k. For the example with exponential stage playing times, the estimated expected
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waiting and sojourn times for group 100 on the first hole are approximately the same as for group

10,000 on the first hole, which we take to be approximately the steady-state value. However, the

estimated expected waiting time for group 100 on the 18th hole is only 72.7% of the estimated

expected waiting time for group 10,000 on the 18th hole. This phenomenon is evidently consistent

with experience that different performance descriptions of the same model approach their steady-

state limits at different rates, but it is worth further study.

Based on our simulation experiments, we propose some simple approximations for the perfor-

mance of the models when ρ < 1. These are used in Table 4, which includes results for ρ = 0.9. First,

for n = 100 groups (and other n not too small), we conclude that direct steady-state approxima-

tions from Whitt (1983) should provide reasonable rough approximations for the tri and tri+LB

distributions. In particular, for these cases we suggest the approximation formulas

E[V std
18,n(ρ)]≈ 18E[Y ] +

E[Y ]ρc2
Y

1− ρ
and SD(V std

18,n(ρ))≈ SD[V std
18,n(1)]. (EC.8)

The approximation for the mean in (EC.8) is based on (EC.1) assuming, first, that and c2
a,k ≈ c2

s

at each queue, so that c2
ak

+ c2
s)/2≈ c2

s for each k, as supported by (EC.6), and, second, that g ≈ 1

in (EC.2), which tends to be nearly correct when c2
a ≈ c2

s.

In Whitt (1983) the variance of the sum of the sojourn times is approximated by the sum of

the variances at the individual queues. We have consistently found that is in appropriate, with the

variance of the sum being much less than the sum of the variances. That property is found to hold

for ρ = 0.9 just as for ρ≥ 1, but with somewhat less force. We find that a much better approximation

for SD(V std
18,n(ρ)) for ρ = 0.9 is the well-studied approximation for ρ = 1.0. The simulation results in

Table 4 confirm that the standard deviation is very nearly the same for ρ = 0.9 as it is for ρ = 1.0.

However, the same approximation performs very poorly for the mean E[V std
18,n(ρ)] when ρ = 0.9

and the stage playing times are exponential, yielding the value 891 compared to the simulation

estimate of 597. However, since the simulation estimates for the mean waiting times for groups 100

and 10,000 on hole 18 were 28.0 and 38.5, respectively, we reduce the expected waiting times used

in (EC.8) for the exponential stage playing times by 28.0/38.5 = 0.727.


