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Abstract

We develop performance approximations that can help manage the pace of play in golf. In
previous work we developed a stochastic model of successive groups of golfers playing on an
18-hole golf course and derived expressions for the capacity (maximum possible throughput) of
each hole and the golf course as a whole. That model captures the realistic feature that, on most
holes, more than one group can be playing at the same time, with precedence constraints. We
now facilitate further performance analysis with that model by developing two new approxima-
tions. First, we develop an approximation involving a series of conventional single-server queues,
without precedence constraints. The key idea is to use the times between successive departures
on a fully loaded hole as aggregate service times in the new model. Second, we apply estab-
lished heavy-traffic limits for a series of conventional queues to develop explicit approximation
formulas for the mean and variance of the time required for group n to play the entire course,
as a function of n. We conduct simulation experiments showing that both approximations are
effective. We show how these formulas can help design and manage a golf course.

Keywords: pace of play on golf courses; optimal interval between tee times; attaining the four-
hour round in golf; queues with precedence constraints; queueing networks; queues in series.
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1 Introduction

We apply stochastic models and computer simulation to develop performance formulas to help
improve the design and management of golf courses. These formulas can help specify the constant
interval between successive tee times (start times) for successive groups of golfers and the total
number of groups that should be scheduled to play each day. They can can help balance the desire
to put more golfers on the course in order to maximize the use of a valuable resource (and earn
more revenue) and the desire to put fewer golfers on the course in order provide a good experience
for the golfers by keeping delays low, and not exceeding the gold standard of a four-hour round.

Our work builds on [18], which in turn follows earlier work in [8, 10, 11, 13]. In [18] a stochastic
model of group play on each hole of the golf course was developed, allowing multiple groups to
be playing on the each hole with precedence constraints, and having random group stage playing
times on each hole as primitives. The capacity (maximum possible throughput) was determined
for each hole and thus the golf course as a whole.

We develop approximations for that model and apply them to develop explicit performance
formulas. Our main contributions are (i) an approximating model involving conventional single-
server queues, without precedence constraints, and (ii) an approximation formula for the expected
value of the course sojourn time (the time for group n to play on the entire course), i.e.,

E[V18,n] ≈ An+B
√
n+ C (1)

with explicit expressions for the constants A, B and C; see (23) in §4. A main case of interest is
critical loading, in which the constant intervals between successive tee times is chosen so that the
arrival rate coincides with the maximum possible throughput rate; then A = 0 in (1).

Approximation (1) is intended for the common case in which (i) the course is heavily loaded,
with management being challenged to meet demand, and (ii) the course is balanced, in that the
pace of play is not dominated by a few bottleneck holes. Underlying approximation (1) is previous
mathematical analysis of heavily loaded networks of conventional single-server queues in series in
[3, 4, 5, 6, 7], but further work has to be done to bring that literature to bear on this problem,
because group play on each hole is affected strongly by the precedence constraints, which are not
part of conventional queueing models.

Figure 1 summarizes our results. It shows three estimates of the expected sojourn times E[V18,n]
in the critically loaded case with A = 0: The results of a detailed simulation are shown by the
circles; the solid line is a least-squares fit of the function B

√
n+C to the simulation data (yielding

8.37
√
n+ 182); and the dashed line is the heavy-traffic approximation 7.98

√
n+ 181.6.

Detailed modeling can produce concrete analogs of approximation (1), but even without such
modeling, formula (1) may be fit to data in order to help understand the relation between delays
on the golf course and the primary controls: the tee intervals and the number of groups allowed to
play. Formula (1) shows the non-obvious way that the mean sojourn time for group n should grow
with n.

Here is how this paper is organized: In §2 we describe how groups of golfers play on a golf
course. In §3 we review the stochastic model introduced in [18] with random stage playing times
as the basic primitives. In §4 we elaborate upon approximation (1) and explain Figure 1 there. In
§5 we show how approximation (1) can be applied to gain insight into the design and management
of a golf course. In §6 we derive (1). In §6.1 we propose the new approximation of group play
on a single hole by a conventional single-server queue, without precedence constraints. In §6.2 we
apply that approximation to derive (1). In §7 we report results of simulation experiments testing
the approximations. We draw conclusions in §8.
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Figure 1: The heavy-traffic approximation in (1) (7.98
√
n + 181.6), developed in §4, and the two-

parameter fit to the simulation estimates (8.32
√
n+ 182) compared to the simulation estimates of

E[V18,n], the expected time for group n to play all 18 holes, as a function of n, for a critically loaded
golf course model with identical par-4 holes, with all stage playing times having the triangular distri-
bution, modified to allow lost balls, with parameter five tuple (m,a, r, p, L) = (4, 1.5, 0.5, 0.05, 8.0),
specified in §3.1.

2 Group Play on Golf Courses

Golf is typically played by small groups (e.g., four) golfers playing 18 (or sometimes 9) holes, usually
maintaining the order of the group start (tee) times on the first hole. Each successive group has a
scheduled tee time on the first hole, and starts thereafter at the first opportunity. Groups continue
from hole to hole, stopping only to wait for the group in front. In practice, the first-come first-
served (FCFS) order may be occasionally broken to cope with slow groups. For example, “rangers”
may drive around the course in carts to speed-up or remove slow groups. However, we will not
consider such modifications here.

There are three types of holes on a golf course: par 3, par 4 and par 5. The goal in golf is to
put the ball into the hole on the green using as few strokes (shots) as possible. A hole is rated
par 4 because good play should require four shots: one from the tee, one from the fairway and two
more to clear the green (put it in the hole on the green). A “birdie” (“eagle”) is earned on the hole
for scoring one (two) under par, while a “bogey” (“double bogey”) is earned for scoring one (two)
over par. Usually, the par value of a hole is higher when the length of the hole is longer. A typical

3



18-hole golf course has 12 par-4 holes, 3 par-3 holes, and 3 par-5 holes, arranged in varied ways.
We will analyze the pace of play from the perspective of queueing theory and the theory of

industrial production lines. Thus, we regard the play of successive groups on a golf course as the
flow of successive “jobs” through a series of 18 queues in series, with unlimited waiting space at each
queue and a FCFS service discipline. However, there is a serious complication, because more than
one group can be playing at the same time on many of the holes, but with precedence constraints.
Typically, two groups can be playing on a par-4 hole at the same time, while three groups can be
playing on a par-5 hole at the same time. A conventional par-3 hole is more elementary because
only one group can play on it at the same time, but there also is the modified par-3 hole “with
wave-up,” which allows two groups to play at the same time there too, while still maintaining the
group order determined by their scheduled tee times on the first hole.

To explain in greater detail, we describe the steps of group play on a par-4 hole. There are five

steps, each of which must be completed before the group moves on to the next step. These five
steps can be diagrammed as

T → W1 → F → W2 → G. (2)

The first step T is the tee shot (one for each member of the group); the second step W1 is walking
up to the balls on the fairway; the third step F is the fairway shot; the fourth step W2 is walking
up to the balls on or near the green; the fifth and final step G is clearing the green, which may
involve one or more approach shots and one or more shots (putts) on the green for each player in
the group. Each step must be completed before the group proceeds to the next step.

This natural characterization of group play closely follows previous simulation models in [8,
10, 11, 13]; e.g., see the single-hole bottleneck model on p. 32 of [11]. However, as in [18], we go
beyond that direct representation by doing additional aggregation. In particular, we do not directly
model the play of each golfer in the group and we also do not directly model the performance of
each individual step. Instead, we aggregate the five steps into three stages, which are important to
capture the way successive groups interact while playing the hole. The three stages are:

(T,W1) → F → (W2, G) (3)

Stage 1 is (T,W1), stage 2 is F and stage 3 is (W2, G). This turns out to be the maximum possible
aggregation permitted by the precedence constraints, which we turn to next.

The precedence constraints follow common conventions in golf. Assuming an empty system
initially, the first group can do all the stages, one after another without constraint. However, for
n ≥ 1, group n + 1 cannot start stage 1 until both group n+ 1 arrives at the tee and group n has
completed stage 2, i.e., has cleared the fairway. Similarly, for n ≥ 1, group n + 1 cannot start on
stage 2 until both group n+1 is ready to begin there and group n has completed stage 3, i.e., cleared
the green. These rules allow two groups to be playing on a par-4 hole simultaneously, but under
those specified constraints. We may have groups n and n+ 1 on the course simultaneously for all
n. That is, group n may first be on the course at the same time as group n− 1 (who is ahead), but
then later be on the course at the same time as group n+1 (who is behind). The groups remain in
their original order, but successive groups interact on the hole. The group in front can cause extra
delay for the one behind.

A par-3 hole without the extra wave-up rule is more elementary. There are three steps for group
play on a par-3 hole, with or without wave-up:

T → W → G.

The first step T is hitting shots off the tee; the second step W is walking to the green, possibly
including approach shots; and the third step G is putting on the green. In this case we identify the
stages with steps, but speak of stages, to be consistent with par-4.
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Even though the par-3 holes are shorter, they often tend to be the bottlenecks because it tends
to take longer for successive groups to clear the green. This can be attributed to the fact that
only one group is allowed to play at the same time on a standard par-3 hole. (This is explained
mathematically by Corollary 3 of [18].) The wave-up rule is intended to reduce the expected time
between successive groups clearing the green, and thus increase the capacity of par-3 holes.

The wave-up rule (only for par-3 holes) stipulates that, after a group has hit its tee shots and
walked up to their balls near the green, they should wait before clearing the green until the following
group hits its tee shots, provided that the following group has already arrived and is ready to play.
If the following group has not yet arrived at the hole, then the current group immediately starts
stage 3. The following group then cannot start play on the hole until after the current group
completes stage 3 and departs.

The longest holes are the par-5 holes. On a typical par-5 hole, three groups can be playing
simultaneously. For a par-5 hole, we identify seven steps instead of the five steps for a par-4 hole
and the three steps of a par-3 hole. There now are two fairway shots instead of only one and three
walking steps instead of only two. These seven steps can be grouped into five stages, as opposed
to three for a par-4 hole:

(T,W1) → F1 → W2 → F2 → (W3, G)

Assuming an empty system initially, the first group can do all the stages, one after another
without constraint. However, for n ≥ 2, group n cannot start stage 1 until both group n arrives
at the tee and group n− 1 has completed stage 2, i.e., has completed its fairway shots (completed
F1). Similarly, for n ≥ 2, group n cannot start stage 2 until both group n arrives at stage 2 and
group n− 1 has completed stage 4, i.e., has cleared the second fairway shot (completed F2). After
completing stage 2, each group may go right on to stage 3. for n ≥ 2, group n cannot start stage
4 until both group n arrives at stage 4 and group n− 1 has completed stage 5, i.e., has cleared the
green (completed (W3, G)). After completing stage 4, each group may go right on to stage 5.

3 A Stochastic Model of Group Play

3.1 Random Stage Playing Times

In order to represent the inevitable variability in the play of actual golfers, stochastic models of
group play on each of the four hole types (P3, P3WU, P4 and P5) were developed in [18] by focusing
on the stages instead of the steps. For each of the hole types, the time required for group n to
complete stage i was modeled as a nonnegative random variables Si,n. As a regularity condition,
these random stage playing times (for the group) were assumed to be mutually independent, having
distributions that depend only on the hole type and the stage number.

We envision this model being carefully fit to data on group play on golf courses, but that is
not done here. Instead, we use the parametric framework introduced in §4 of [18] to develop the
performance formulas and substantiate them with simulation here. Several parametric distributions
of the stage playing times Si were introduced in [18]. The most promising of these is a triangular
distribution, which is appealing to capture the usual relatively low variability. An additional
modification is introduced to allow for occasional lost balls. This produces tractable models of the
triple (S1, S2, S3) for a P4 hole depending on a 5-tuple of parameter values (m, r, a, p, L), where
each parameter captures a separate property of the model; see Example 3 of [18]. In particular,
the three random variables Si are assumed to be independent and are given symmetric triangular
distributions on the intervals [mi − a,mi + a]. Further simplification is obtained by assuming that
the mean values are related by m1 = m3 = m2/r = m. Thus S1 is distributed the same as S3,
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both having mean m, while E[S2] = rm, so that the ratio E[S2]/E[S1] = r can be controlled
separately. (This structure draws on p. 94 of [10] and p. 32 of [11].) The variability of the three
random variables Si is specified by the single parameter a. We then assume that lost balls occur
only on the first stage (including the tee shots) of each hole, with that happening on any hole with
probability p and leading to a fixed large time L for stage 1 (corresponding to a maximum allowed
delay). Thus the parameter pair (p, L) captures rare longer delays.

3.2 Recursions for Each Hole

To illustrate, we describe the stochastic model for a P4 hole in detail. Let An be the arrival time
of the nth group at the tee of this hole on the golf course. Let Si,n be the time required for group
n to complete stage i, 1 ≤ i ≤ 3; these are the stage playing times. With the assumptions above,
{Si,n : n ≥ 1} for 1 ≤ i ≤ 3 are three independent sequences of independent and identically
distributed (i.i.d.) random variables, with distributions that depend on i.

Let Bn be the time that group n starts playing on this hole, i.e., the instant when one of the
group goes into the tee box. Let Tn be the time that group n completes stage 1, including the tee
and the following walk; let Fn be the time that group n completes stage 2, its shots on the fairway;
and let Gn be the time that group n completes stage 3, and clears the green.

A concise mathematical representation is given by the recursion

Bn ≡ An ∨ Fn−1, Tn ≡ Bn + S1,n,

Fn ≡ (Tn ∨Gn−1) + S2,n and Gn ≡ Fn + S3,n, (4)

where ≡ denotes “equality be definition” and a ∨ b ≡ max {a, b}. As initial conditions, assuming
that the system starts empty, we set A1 ≡ F0 ≡ G0 ≡ 0. The precedence constraints can be seen
in the two maxima. Corresponding models for the P3, P3WU and P5 holes are also given in [18].

3.3 Performance Measures

Following [18], associated performance measures for group n on the given hole are: the waiting
time (before starting play on the hole), Wn ≡ Bn −An; the playing time (the total time group n is
actively playing this hole, possibly including some waiting there), Xn ≡ Gn −Bn; and the sojourn
time (the total time spent by group n at the hole, waiting plus playing), Un ≡ Gn−An = Wn+Xn.
Let Xw

n be the waiting time while playing the hole and let Xp
n be the active playing time while

playing on the hole. Since Xp
n = S1,n + S2,n + S3,n for a par-4 hole, we can easily calculate Xw

n

given the playing time Xn as Xw
n = Xn −Xp

n.
A main contribution of [18] was determining the maximum throughput for each hole. We start

by defining the throughput here and later in §3.4 define the maximum throughput. For the golf
course, the definition of throughput is complicated because the course starts empty each day and
gets more congested throughout the day, until new groups no longer are allowed to start. However,
the rate groups complete play may rapidly approach a limit, even if the system is overloaded. That
limit is taken as the defining quantity.

The random cycle time (for group n on the given hole) is defined as

Cn ≡ Gn −Gn−1, n ≥ 1, (5)

and the cycle time for group n is its expected value, E[Cn]. The average random cycle time for the
first n groups is

C̄n ≡ 1

n

n
∑

k=1

Ck =
Gn

n
, n ≥ 1. (6)
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The average cycle time for the first n groups is then just E[C̄n].
The typical case (in a mathematical model with an unlimited number of i.i.d. groups) is to have

Cn ⇒ C∞, E[Cn] → E[C∞] and C̄n ⇒ E[C∞] as n → ∞, (7)

where C∞ is a random variable and ⇒ denotes convergence in distribution, in which case we let
E[C∞] be the cycle time; That is the standard case, referred to on p. 17 of [11].

We define the random throughput rate for the first n groups as

Θn ≡ 1/C̄n =
n

Gn
, n ≥ 1. (8)

Given that positive finite limits hold in (7), we have

Θn ⇒ θ ≡ 1

E[C∞]
as n → ∞. (9)

Thus the throughput is θ ≡ 1/E[C∞].
We define other average performance measures just like (6) and (8). For example, the average

sojourn time, i.e., the average time spent at the hole per group (among the first n groups) is

Ūn ≡ 1

n

n
∑

j=1

Uj =
1

n

n
∑

j=1

(Gj −Aj). (10)

These models for individual holes can be combined to obtain corresponding models for the full
golf course for any combination of holes. In the model description, we add a subscript k for the
hole number to go with the subscript n for the group number. We link the holes together by letting
Ak+1,n = Gk,n; i.e., we let the arrival time of group n at hole k + 1 equal the completion time of
group n at hole k. In doing so, we ignore the travel time between holes, but that could be added
as well if it is deemed important. Thus, the model fully specifies group play on a golf course, e.g.,
it can be used to perform computer simulations, given any specification of the hole types and the
stage playing time distributions on each hole.

With these conventions, we are primarily interested in the mean sojourn time E[Vk,n], the mean
sojourn time of group n on the first k holes, where

Vk,n ≡ U1,n + · · ·+ Uk,n = Gk,n −A1,n = Gk,n − (n− 1)∆, k ≥ 1 and n ≥ 1. (11)

In (11), we assume that there is a constant interval ∆ between successive tee times on the first
hole. We are especially interested in the case k = 18 because that is the length of a typical course.

3.4 The Maximum Throughput On Each Hole

An important contribution of [18] is determining the capacity of each hole for the stochastic model
defined above. The capacity is defined as the maximum possible throughput rate given a fully
loaded hole, i.e., given that new groups are always available to start play as soon as possible. The
capacity of the golf course then is the minimum of the capacities of the individual holes on the
course.

In [18] it is shown for each hole type that, when the hole is fully loaded, the random cycle

times Cf
n (with superscript f denoting fully loaded) converge in distribution to a limiting random
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variable Cf
∞, which we call the critical cycle time and denote by Y . In particular, Y = Cf

∞ for Cf
∞

in (7) above, under the condition that the hole is fully loaded. Thus the capacity of the hole is

θ∗ =
1

E[Y ]
=

1

E[Cf
∞]

. (12)

In [18] the distribution of the critical cycle time Y is characterized for each of the hole types.
For example, for a P4 hole, Theorem 1 of [18] shows that

Y (4) ≡ (S
(4)
1 ∨ S

(4)
3 ) + S

(4)
2 , (13)

where a superscript is added to denote the hole type. Formula (13) shows how changes in the

random stage playing times S
(4)
i will affect Y (4), which itself characterizes the possible pace of play

on the hole. Figures 1 and 2 of [18] show the distribution of Y (4) in (13) for the special parametric
model based on a triangular distribution, with and without and lost balls, for the specific parameter
five-tuple (m, r, a, p, L) = (6, 0.5, 3, 0.05, 12) in §3.1. In this case, Y (4) has mean E[Y (4)] = 9.97 and
variance V ar(Y (4)) = 3.81.

Another key random variable describing the performance of a fully loaded hole in steady state
(for group n as n gets large) is the critical playing time X; it is the random time it takes a group

to play the hole, i.e., Xn ≡ Gf
n − Bf

n (assuming a fully loaded hole). For a fully loaded P4 hole,
Theorem 4 of [18] shows that

X(4) d
= Y (4) + S

(4)
3 , (14)

where Y (4) is given in (13), S
(4)
3 is independent of Y (4) and

d
= means “has the same distribution

as.”
In [18] the distributions of the critical cycle time Y and the critical playing time X are derived

for each hole type. Theorem 7 of [18] shows that for a P3WU hole

Y (3) ≡ (S
(3)
2 ∨ S

(3)
3 ) + S

(3)
1 and E[X(3)] = E[Y (3)] + E[S

(3)
1 ]. (15)

Note that the expressions for Y (3) in (15) and Y (4) in (13) are similar, but different. The cor-
responding random variables Y (5) and X(5) for a par-5 hole are more complicated, but they are
characterized in Theorem 11 and Corollary 5 of [18].

4 The Sojourn Time Approximation Formulas

We now exhibit approximation formulas for the mean and standard deviation of the sojourn time
on the entire course for group n as a function of n, and elaborate upon (1) and Figure 1. In §4.1
we relate the constant intervals between tee times and the maximum throughput on each hole to
the traffic intensity. In §4.2 we review the key assumptions underlying the approximation formulas.
In §4.3 we give the full formulas and in §4.4 we explain Figure 1. We derive the approximation
formulas in §6.

4.1 From Tee Times to the Traffic Intensity

To put this problem in standard queueing terminology, let the arrival rate to the first hole and the
course be defined as the reciprocal of the constant interval between tee times on the first hole, i.e.,

λ ≡ λ1 ≡ λ1(∆) ≡ 1/∆. (16)
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For any given arrival rate λk on hole k, there is an associated throughput rate or departure rate
θk ≡ θk(λk), representing the long-run rate of groups completing play on hole k, which becomes
the arrival rate on hole k + 1. The model we use is consistent with the basic throughput formula

θk ≡ θk(λk) = λk ∧ θ∗k, λk ≥ 0, (17)

where a∧b ≡ min {a, b} and θ∗k is the throughput of a fully loaded hole k, which is equal to 1/E[Y ],
where Y is the random critical cycle time on that hole, defined in §3.4. Formula (17) expresses the
simple property that “rate in equals rate out,” provided that the rate in is less than the maximum
possible throughput. Formula (17) also clearly shows that it is not possible to achieve a higher
throughput than θ∗k.

When we consider a sequence of queues, we must consider the maximum throughput through
all previous queues. Thus,

λk+1 = θk ≡ θk(λk) = λk ∧ θ̄∗k, λk ≥ 0, (18)

where θ̄∗k is the maximum throughput rate for the first k holes, which satisifes

θ̄∗k = min {θ∗j : 1 ≤ j ≤ k}, k ≥ 2. (19)

In queueing theory it is common to focus on a dimensionless measure of the arrival rate called
the traffic intensity ρ, but in the present context it requires knowing the maximum possible through-
put rate. The traffic intensity is obtained by dividing the arrival rate by the maximum possible
throughput rate. For hole k in isolation, the definition is

ρk ≡ ρ(λk, θ
∗

k) ≡ λk/θ
∗

k. (20)

For the first k holes combined, the definition is

ρ̄k ≡ ρ(λk, θ̄
∗

k) ≡ λk/θ̄
∗

k. (21)

For the full 18-hole golf course, then, the maximum throughput is θ∗ ≡ θ̄∗18, while the traffic
intensity is ρ ≡ ρ̄18.

The full golf course tends to be underloaded, critically loaded or overloaded as ρ < 1, ρ = 1
and ρ > 1. By the equations above, once the maximum possible throughput has been determined,
the choice of any one of ρ, λ or ∆ implies a corresponding choice for all three. Since expressions of
the maximum throughput have been developed in [18], we can work with the traffic intensities ρk
in (20), ρ̄k in (21) and ρ ≡ ρ̄18. Since we we are interested in heavily loaded courses, we will focus
on the case in which ρ ≥ 1.

4.2 Key Assumptions

A golf course is said to be balanced if the maximum throughput on each hole coincides with the
overall maximum throughput, i.e., if

θ∗k = θ∗ for all k, 1 ≤ k ≤ 18. (22)

Golf courses are usually designed to be roughly balanced, but in practice they achieve this goal
only approximately, with some courses more balanced than others. Our analysis is based on the

assumption that the golf course is balanced. Thus we assume that (22) holds, i.e., all holes have the
same maximum throughput θ∗. When a series of queues is not balanced, the performance tends
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to be determined by the bottleneck queues, which are the queues with the least maximum possible
throughput.

Given that we do have a balanced course, which implies that the mean critical cycle times
E[Y ] are identical for all holes, to approximate the expected waiting times at all the queues as a
function of n, we made a further approximation: We consider a more stylized model by assuming
that all holes are identical P4 holes. This assumption seems reasonable, provided that the course is
balanced, because usually 12 of the 18 holes are P4 holes. Work is in progress to carefully evaluate
the extent to which this stylized model captures the essential performance of typical balanced
courses, having the usual variety of holes.

To many, especially experience golfers, this approximation assumption may seem counterintu-
itive, because from experience they know that the playing time tends to increase significantly as
the par value increases. However, we are using the identical-P4 approximation only to approximate
the random critical cycle time Y , and the associated expected waiting times. We include sepa-
rate approximations of the expected playing times, which depend on the hole type, as well as the
common random critical cycle time Y . Indeed, simulations of the models in [18] confirm that the
playing times on P3WU, P4 and P5 holes can be very different even when E[Y ] is the same.

4.3 Approximation for the Golf Course Model

As we will explain in §6.2, the approximation (1) is based on a heavy-traffic limit for a critically
loaded network of single-server queues. That means that a variant of approximation formula (1)
can be justified for a series network of conventional single-server queues asymptotically as n → ∞.
The scaling in the limit (given in (36)) implies that the error is asymptotically negligible compared
to

√
n. Hence, the constants A and B in (1) are more well justified than the constant C.

Our heavy-traffic approximation for the mean sojourn time of group n on a balanced golf course
with ρ ≥ 1 is (1) with the constants given by

A ≡ A(ρ,E[Y ]) =
E[Y ](ρ− 1)

ρ
, B ≡ B(E[Y ], c2Y ) = 7.2E[Y ]

√

c2Y = 7.2σY ,

and C ≡





18
∑

j=1

E[Xj ]



−A−B, (23)

where E[Y ], σY and c2Y ≡ σ2
Y /E[Y ]2 are, respectively, the mean, standard deviation and the squared

coefficient of variation (scv) of the critical cycle time Y in §3.4, which is assumed to be the same
for all holes, while E[Xj ] is the mean playing time on hole j, which may depend on j. We use the
random critical cycle time Y for a typical par-4 hole, which is defined in (13).

The leading constant A in (1) depends only on the interval ∆ and the mean critical cycle time
E[Y ], and so is robust for the fully loaded case with ρ ≥ 1. On the other hand, the constant B
depends on both the mean E[Y ] and the scv c2Y . The presence of c

2
Y in B shows how the variability

of the random cycle times can have a significant impact on the mean sojourn time. That echoes
a familiar theme in queueing theory, seen in in the famous Pollaczek-Khintchine formula for the
mean waiting time in a conventional M/GI/1 single-server queue [2]. Since approximation (1) with
(23) is based on assuming that the critical cycle times are approximately the same on all holes,
the approximation for the scv c2Y is somewhat problematic, even for a balanced course (which only
requires that the mean E[Y ] is the same for all holes.)

As discussed in [18], the variability in the stage playing times Si has a significant impact on
the mean critical cycle time E[Y ] as well as its variance. Such variability might arise if (i) groups
of widely varying skills are allowed to play the course, or if (ii) the size of groups is allowed to be
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quite variable, or if (iii) groups of golfers are allowed to either walk the course or ride in carts. Now
we see that the mean and variability of Y both have a significant impact on the mean time for a
group to play the course, E[V18,n].

The core of the constant C in (23) is the first term, which is the sum of the mean playing times
on each hole, assuming that they are all fully loaded. This formula allows these mean hole playing
times to vary from hole to hole. For a network of identical P4 holes, the first term reduces to

18E[X(4)] = 18(E[Y (4)]+E[S
(4)
3 ]), using (14). The second and third terms in C are adjustments to

get formula (1) expressed simply in terms of n and
√
n. These adjustments are based on consistency

conditions, such as the experience of the first group, and are less well justified. In practice there
should be opportunities to make refinements to C in special cases, as we indicate for Figure 1 below.

We also propose an approximation for the standard deviation of the total sojourn time based
on the same heavy-traffic limit.

SD[V18,n] ≈ 0.6E[Y ]
√

nc2Y = 0.6σY . (24)

As noted in [3, 4], the relatively low variability for large n is a significant property of many i.i.d.
single-server queues in series.

4.4 The Simulation Experiment Leading to Figure 1

We now introduce the specific model used to generate Figure 1. It is a stylized model containing
18 identical P4 holes in series with ρ = 1, which makes A = 0 in the approximation. We let
all stage playing times have the tri + LB triangular distribution modified to allow for lost balls
(only from the tee, i.e., on the first stage) introduced in §3.1. We let the parameter vector be
(m,a, r, p, L) = (4, 1.5, 0.5, 0.05, 8). With these parameters, E[Y ] = 6.5325 and E[Y 2] = 43.9025,

so that σ2
Y = 1.2285, σY = 1.1085, c2

Ȳ
≡ V ar(Y )/E[Y ]2 = 0.02880,

√

c2Y = 0.1697. The associated

means are E[X] = 10.5325 and E[S1 + S2 + S3] = 10.
The simulations are based on 2000 independent replications. This consistently makes the half-

width of 95% confidence intervals less than 5% of the estimated means and 10% of the estimated
standard deviations. The smooth plot of the simulation mean values for successive groups is further
evidence of the simulation precision.

Note that these parameter values appear to be reasonable. The expected time for the first
group to play the course is 18× 10 = 180 minutes or three hours. We see that the expected times
to play the course (from tee time on the first hole to clearing the green on hole 18) for each of the
first 60 groups is under the target four hours, but the expected times for later groups are longer.
The expected time for group 100 is about 4.5 hours. And this is for a fairly idealized model (what
we take to be a good case).

As shown in Figure 1, for ρ = 1.0, the heavy-traffic approximation in (1) and (23) becomes

E[V18,n] ≈ = 7.982
√
n+ (189.6 − 7.98) = 7.98

√
n+ 181.6.

That is compared to the function B
√
n + C fit to the simulation results, where B = 8.366 and

C = 182.7, as shown in the Figure 1.
Note that we apply the heavy-traffic approximation in (1) to obtain the functional form B

√
n+C

to fit to the simulation data. Figure 1 shows that functional form fits nearly perfectly. That
illustrates what can be done in applications. Figure 1 also illustrates the accuracy of the direct
heavy-traffic approximation in (1) and (23) that should hold for stylized critically loaded balanced
models. There is only 4.6% error in the constant B.

11



However, the approximation for the constant C is not so well supported, which may be explained
by the complexity of the model, including the exceptional experience of the first group on all holes.
For n = 100, the heavy-traffic approximation underestimates the simulation estimate by about 5;
indeed, the heavy-traffic approximation falls on top of the simulation estimate if we increase C to
186. As in all heavy-traffic approximations, there is room for refinements, as in [16].

5 Application to Manage the Pace of Play

We now show how the approximate performance formula for the mean sojourn time E[V18,n] in (1)
and (23) can be applied in the design of a golf course. In particular, we show how it can be used
to help determine the number of groups that should be allowed to play each day, and thus the
(assumed constant) interval between tee times ∆, as a function of the key model parameters and
specified performance constraints. For this analysis, we consider the special case of a course that
contains 18 identical P4 holes.

We formulate an optimization problem, aiming to maximize the number n of groups the play
each day for specified model parameters (E[Y ], c2Y , E[S3]) subject to constraints. Let V (ρ, n) ≡
E[V18,n(ρ)] be the expected sojourn time on the course for group n (time for group n to play a full
round, from tee time on the first hole to clearing the green on the last (18th) hole) as a function
of the traffic intensity ρ ≡ E[Y ]/∆, where ∆ is the fixed interval between tee times on the first
hole. We approximate V (ρ, n) by (1) and (23), assuming that ρ ≥ 1. Let G(ρ, n) ≡ E[G18,n(ρ)]
be the expected time for group n to clear the green on the last hole, which is just V (ρ, n) plus the
tee time for group n, which is (n − 1)∆ = (n − 1)E[Y ]/ρ. It is natural to consider the following
optimization problem:

maximize n (25)

such that V (ρ, n) ≤ γ and G(ρ, n) ≤ τ for ρ ≥ 1.

For example, if we were to aim for 4-hour rounds over a 14-hour day, then we would have
γ = 240 minutes and τ = 840 minutes. The tee times could then be restricted to the interval
[0, τ − γ] = [0, 600] minutes.

From (1) and (23), we have for ρ ≥ 1 the following functions of the model parameters and n:

V (ρ, n) = V (1, n) + (n− 1)E[Y ]

(

ρ− 1

ρ

)

and

G(ρ, n) = V (ρ, n) +
(n− 1)E[Y ]

ρ
= V (1, n) + (n− 1)E[Y ], (26)

where

V (1, n) = B
√
n+ C, with B = 7.2E[Y ]

√

c2Y and C ≡ 18([E[Y ] + E[S3])−B. (27)

Since feasible numbers of groups must be integer, we round down to the nearest integer; let ⌊x⌋
be the floor function, the greatest integer less than or equal to x.

Theorem 5.1 (optimal solution) The function V (ρ, n) in (26) is increasing in n and ρ, while the

function G(ρ, n) is increasing in n and independent of ρ, provided that n ≥ 1 and ρ ≥ 1. Hence, if
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there is an optimal solution, then one of the two constraints must be satisfied as an equality. If the

first constraint on V is binding, then the optimal decision variables are ρ∗γ = 1 and

n∗

γ = ⌊[(γ − C)/B]2⌋, (28)

for B and C in (27). If the second constraint on G is binding, then ρτ is unconstrained (but should
be ρτ = 1 to minimize V (ρ, n∗

γ) and the optimal n is

n∗

τ = ⌊(
√

b2 + 4ac− b]/2a)2⌋, (29)

where a = E[Y ], b = B = 7.2E[Y ]
√

c2Y and c = τ − C + E[Y ] = τ − 17E[Y ]− 18E[S3]−B.

Proof. First, suppose that the first constraint involving V is binding. Since V (ρ, n) is increasing
in both ρ and n, in order to achieve the largest value of n, it suffices to restrict attention to the
smallest value of ρ, yielding ρ = ρ∗γ = 1. We then find n∗

γ by solving the equation V (1, n) = γ using
(27), which yields (28). Next, suppose that the second constraint is binding. First observe that
ρ does not appear, so that it suffices to solve the equation G(1, n) = τ , which yields a quadratic
equation in x ≡ √

n, whose solution is given in (29).
Theorem 5.1 implies that it suffices to focus on ρ = 1 in the optimization problem. This

should be consistent with intuition, because it is impossible to achieve throughput faster than the
bottleneck rate achieved at ρ = 1. Since we achieve ρ = 1 by setting ∆ = E[Y ], we see the
importance of determining E[Y ] in [18].

We say that a golf course design is efficient if the two constraints in (25) are both binding at the
optimal solution. An efficient design has the advantage that it should not be necessary to increase
throughput at the expense of golfer experience (excessive times to play a round). At the same
time, it should not be necessary to restrict the throughput in order to achieve a target bound on
the time to play a round. Efficiency depends on the constraint limits γ and τ as well as the model
parameters. The following elementary result characterizes an efficient design.

Theorem 5.2 (efficient design) An efficient design for (γ, τ) occurs if and only if there is an nef

such that

V (1, nef ) = γ and V (1, nef ) + (nef − 1)E[Y ] = τ (30)

That in turn is achieved by nef = n∗

γ in (28) if and only if

τ = γ + (nef − 1)E[Y ]. (31)

Thus, for any specified (γ,E[Y ]), there is a unique τ that yields efficiency.

Example 5.1 To illustrate Theorem 5.1, suppose that τ = 840, γ = 240, E[Y ] = 6, E[S3] = 4
and c2Y = 0.025. Then B = 7.47 and C = (18)(6 + 4) − 7.47 = 172.53, so that n∗

γ = [(240 −
172.53)/7.47]2 = ⌊81.6⌋ = 81, while a = 6, b = B = 7.47 and c = 667, so that n∗

τ = ⌊111.1⌋ = 111.
Hence, we see that the first constraint on V is binding. The maximum value of n satisfying both
constraints is n∗

γ = 81. Since the design is inefficient, we see that management has a strong
incentive to increase n above n∗

γ = 81 towards 111 in order to gain more revenue, but it can only do
so by causing the expected times for playing a full round to exceed the target. Thus, this analysis
evidently explains what is commonly occurring on golf courses today.
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To illustrate Theorem 5.2, observe that, since n∗

τ = 111 > 81 = n∗

γ , that design is not efficient.
Finally, suppose that we want to have ν groups play the course each day of length τ with V (ρ, n) ≤ γ
for all n ≤ ν, where 0 < γ < τ . Thus, we let ν = n∗

γ in (28), so that

ν =
γ − 18(E[Y ] +E[S3])− 7.2E[Y ]

√

c2Y

7.2E[Y ]
√

c2Y

(32)

We can then see what parameter triples (E[Y ], c2Y , E[S3]) satisfy target (32). We can aim for an
efficient design by having ν = n∗

τ as well.

6 Derivation of the Approximation Formulas

In this section we derive the approximation formulas for the mean total sojourn time in (1) and
(23) and for the standard deviation in (24). In §6.1 we show how to approximate the group waiting
times (before starting to play) on each of the holes by the waiting times in associated conventional
G/GI/1 single-server models with unlimited waiting space, the FCFS discipline, the given arrival
process of groups to the hole and i.i.d. (aggregate) service times. In §6.2 we then apply established
heavy-traffic limits for a series of identical conventional queues to develop the final approximation.
In §6.2.2 we show how we obtain the final formulas for the golf course.

6.1 An Approximation Without Precedence Constraints

In order to apply conventional queueing theory to develop approximations for the sojourn time
on the course, we now approximate the P3WU, P4 and P5 holes specified in §3 by conventional
G/GI/1 single-server models with unlimited waiting space, the FCFS discipline, the given arrival
process of groups to the hole and i.i.d. (aggregate) service times. In this case, there also are some
exceptional initial conditions: (i) the first customer arrives at time 0 instead of after an interarrival
times and (ii) the first customer has an exceptional service time. These features will require some
adjustment in the approximations. The main point is: In these approximating models, only one

group is being served at a time, ignoring all other groups. The approximation is avoiding the
precedence constraints.

6.1.1 The Approximating Conventional Single-Server Queue

We now approximate each individual hole by a conventional G/GI/1 single-server queue, which has
no precedence constraints. By “conventional G/GI/1 single-server queue,” we mean a single-server
queue with unlimited waiting space, the FCFS service discipline, the given arrival process and
i.i.d. service times with a general distribution (which are independent of the arrival process). In a
conventional single-server queue, whenever the server remains busy, the intervals between successive
departures are the exogenously defined service times. Thus in our approximation we let the new
aggregate service times be i.i.d. versions of the critical random cycle times, distributed as Y in
§3.4. We should only expect this approximation to be effective when the hole is heavily loaded, but
that is the important case that we consider.

Moreover, we only use this approximating aggregate service time model to generate approxi-
mations for the waiting times before beginning service, i.e, for Wn ≡ Bn−An. From [18], we know
that the actual time spent playing on the hole is distributed as Xn, which tends to be larger than
Yn. Thus, to approximate the sojourn time on the hole, we use the approximation

Un ≈ Wn +Xn, (33)
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where Wn and Xn are independent and the waiting time is approximated by the waiting time in
the conventional GI/GI/1 model with i.i.d. service times distributed as Y , while Xn is the exact
playing time, for which formulas were developed in [18].

For a P4 hole, approximation (33), together with (13) and (14), implies that

E[U (4)
n ] ≈ E[W (4)

n ] + E[Y (4)] + E[S
(4)
3 ] and

V ar(U (4)
n ) ≈ V ar(W (4)

n ) + V ar(Y (4)) + V ar(S
(4)
3 ), n ≥ 2. (34)

For n = 1, we have Wn = 0 and Xn = S1 + S2 + S3. In (34) Y (4) and S
(4)
3 are the critical cycle

time and third stage playing time directly defined for the P4 hole, while W
(4)
n is the approximating

waiting time based on using i.i.d. service times distributed as Y (4).

6.1.2 The Classical Recursion

Thus, for each hole type, the approximating G/GI/1 model is specified by the sequence of arrival
times {An : n ≥ 1} and the sequence of mutually independent service times {Yn : n ≥ 1}, where
Yn

d
= Y , n ≥ 2, and Y1 the sum of the stage playing times. For a P4 hole, Y is given in (13) and

Y1
d
= Y ∗

1 ≡ S1 + S2 + S3. For each hole we can apply the classical single-server queue recursion:

Bn ≡ An ∨Dn−1 and Dn ≡ Bn + Yn, (35)

where D0 ≡ 0. The variables Dn are the departure times in the conventional single-server model.
However, the actual approximate departure times we use are different. They are obtained by using
Gn ≈ An + Un for Un in (33). Thus, this approximation scheme can be applied to any sequence of
hole types. We compare the approximations in this section to simulations in §7.1.

As indicated above, there is an exceptional first service time at each hole. We remark that there
is a literature on queues with exceptional first service, which can be traced from citations to the
early paper [14], but that literature focuses on queues in which the first service time of every busy
period is exceptional. In contrast, here only the very first group has a different service time.

6.2 The Heavy-Traffic Approximation for the Series Network

We first consider a series of i.i.d. standard G/GI/1 queues, where the first queue has a deterministic
arrival process and the service times are taken from 18 independent sequences of i.i.d. random
variables distributed as Y (4), the critical P4 cycle time variable in (13). Then we show how to
modify that approximation to obtain approximations for the mean and standard deviation of the
total sojourn time of each group in the general (critically loaded and balanced) golf course model.

6.2.1 Heavy-Traffic Limit for the Standard Model

Let Gstd
k,n denote the departure time of group n from hole k in this model. By Theorem 3.2 of [3],

Gstd
k,n − (n+ k − 1)E[Y ]

√
n

⇒ σY D̂k(1) as n → ∞, (36)

where D̂k(1) is a complex function of k-dimensional standard Brownian motion (BM), as arises in
the case E[Y ] = V ar(Y ) = 1. The key approximation stemming from (36) is

Gstd
k,n ≈ E[Y ]

(

n+ k − 1 + (
√
n− 1)

√

c2Y D̂k(1)

)

, (37)

15



where c2Y ≡ σ2
Y /E[Y ]2 is the squared coefficient of variation. We have replaced

√
n by its asymp-

totically equivalent value
√
n− 1 to make the approximation correct for n = 1. As in §4.3, we note

that the approximation in (37) is only asymptotically correct to order o(
√
n); i.e., the error is small

compared to
√
n as n → ∞. Hence constant adjustments as we made are not directly supported

(or ruled out) by (36).
It remains to evaluate the distribution of the random variable D̂k(1) appearing in (36) and (37).

To evaluate its mean and standard deviation, we exploit simulation results from [4]. In particular,
we apply Table 5 of [4] to produce the approximation

E[D̂k(1)] ≈ bk
√
k and SD[D̂k(1)] ≈ ck (38)

where bk and ck are constants that in general should depend on k with bk ↑ 2 as k ↑ ∞, while ck
decreases. For k = 10, bk ≈ 1.62 and ck ≈ 0.65; for k = 100, bk ≈ 1.95 and ck ≈ 0.45. Hence, we
use the approximations b18 ≈ 1.7 and c18 ≈ 0.6, yielding

E[D̂18(1)] ≈ 1.7
√
k ≈ 7.2 and SD[D̂18(1)] ≈ 0.6 (39)

Since V std
k,n = Gstd

k,n −A1,n and A1,n = (n − 1)∆ = (n− 1)E[Y ]/ρ, which is deterministic,

SD[V std
k,n ] = SD[Gstd

k,n]. (40)

Combining (37), (39) and (40), we obtain the approximations

E[V std
18,n] ≈ E[Y ]

(

18 + (n− 1)
ρ− 1

ρ
+ 7.2(

√
n− 1)

√

c2Y

)

and ,

SD[V std
18,n] ≈ 0.6E[Y ]

√

nc2Y = 0.6σY . (41)

6.2.2 Extending the Approximation to the Golf Course

To obtain the corresponding approximation for the sojourn time in the golf model, we need to
include the sojourn time adjustment in §6.1.1. Since the expected playing time on hole k is E[Xk]
instead of E[Y ], we need to add E[Xk]−E[Yk] to the approximation for the mean E[V std

18,n], which
depends on the type of hole k. Assuming that the distribution of Y is approximately independent
of the hole type, but the distribution of X is not, we have formula (1) with the first term of C in
(23).

We subtract the constants B = 7.2σY in C in (23) to account for the shift from
√
n−1 in (41) to√

n in (1) and we subtract the final A = E[Y ](ρ− 1)/ρ to account for the adjustment from n− 1 to
n in the first term, both of which are is appealing in (1) for the simplicity. For the case of identical

P4 holes, we have the special case in which Xj is independent of j and E[X
(4)
j ] = E[Y (4)]+E[S

(4)
3 ],

so that C = 18E[X(4) ]− 7.2σY − E[Y ](ρ− 1)/ρ in (23).
For the standard deviation, there evidently is dependence among these stage playing times used

in the adjustment. Hence, we advocate the simple approximation

√

c2V18,n
≈

√

c2
V std
18,n

=
SD[V std

18,n]

E[V std
18,n]

, (42)

where the terms on the right are given in (41). Since we have nothing new to add, we exploit the
thorough study for the standard model in [4]. We compare these approximations to simulation in
§7.
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7 Simulation Experiments

We now report results of additional simulation experiments conducted to evaluate the approxima-
tions.

7.1 Simulation to Test the Conventional Queue Approximation

We first report the results of simulation experiments to test the approximation by conventional
G/GI/1 single-server queues with i.i.d. service times distributed as the critical cycle time Y ,
proposed in §6.1.1. Again, the simulations are based on 2000 independent replications, which
makes the half-width of 95% confidence intervals less than 5% of the estimated means and 10% of
the estimated standard deviations.

7.1.1 A Single Critically Loaded P4 Hole

We first consider the case of a single P4 hole that is critically loaded. The approximation yields a
conventional D/GI/1 queue, with two modifications: the first customer arrives at time 0 and has
an exceptional service time. Theorem 4.1 of [15] gives a heavy-traffic limit for the mean waiting
time in a GI/GI/1 queue as n → ∞ when ρ = 1. For the D/GI/1 model with service time having
variance σ2

Y ,

E[W1,n]/
√

σ2
Y n →

√

2/π as n → ∞, (43)

For a P4 hole with σ2
Y = 1.2285, the limit (43) supports the approximation

E[W1,n] ≈
√

2(1.2285)n/π = 0.884
√
n, (44)

which should be good for suitably large n. However, there is an obvious error in (44) for n = 1,
because the exact value is E[W1,1] = 0. To correct for that error, we use the adjusted approximation

E[W1,n] ≈ 0.884(
√
n− 1), n ≥ 1. (45)

Figure 2 compares the heavy-traffic approximation in (45) to simulation estimates for the first
P4 hole of the same tri+ LB model used in Figure 1 and a fitted function, which turns out to be
0.903

√
n− 0.777.

7.1.2 A Series of Identical P4 Holes

We next consider the case of identical P4 holes in series with different distributions for the stage
playing time Si, 1 ≤ i ≤ 3. We report simulation results estimating the mean and standard
deviation of the sojourn time of group n on hole k, Uk,n ≡ Gk,n −Ak,n, and of group n on the first
k holes, Vk,n ≡ U1,n + · · ·+ Uk,n for the cases (k, n) = (10, 20) and (18, 100).

We find that the sojourn times over several holes tend to be approximately normally distributed,
so that the mean and standard deviation serve to describe the entire distribution. Figures 3 and 4
illustrate by showing the histogram of the sojourn times V10,20 for ρ = 0.9 (on the left) and ρ = 1.1
(on the right) estimated for the exact model in §3. (The approximation produces very similar
plots.)

For our first experiment, we consider an all-exponential model with independent all-exponential
stage playing times having means E[S1] = E[S3] = 6, E[S2] = 3. The interval between tee times is
used to adjust the traffic intensity ρ. We perform the transient simulations for three values of the
traffic intensity ρ, defined by ρ ≡ λE[Y ]: 0.9, 1.0, and 1.1.
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Figure 2: The heavy-traffic approximation (45) and a two-parameter fit to the simulation estimates
(0.903

√
n − 0.777) compared to the simulation estimates of E[W1,n], the expected waiting time

of group n on the first hole (before starting to play), as a function of n, for a P4 hole with
ρ = 1, where all stage playing times have the tri + LB distribution with parameter five tuple
(m,a, r, p, L) = (4, 1.5, 0.5, 0.05, 8.0), reviewed in §3.1 (the same as in Figure 1).

We give simulation estimates of the mean and standard deviation of these sojourn times Uk,20

for the exact and approximate models in Table 1 for holes h = 1, 2, 3, 6 and 10 and the total sojourn
time V10,20. Overall, we see that the mean sojourn time may increase from k = 1 to k = 2 but then
gradually declines thereafter; the standard deviations evidently decline only after k = 3. We see
that the approximate model consistently overestimates the mean and standard deviation but not
by too much. It overestimates the mean and standard deviation of V10,20 for ρ = 0.9 by 7% and
12%, respectively. Assuming approximate normality, as supported by Figures 3-4, the half-width
of 95% confidence intervals for the mean can be estimated directly from the results in each table
by 1.96σ̂/

√
n ≈ σ̂/22.8, where σ̂ is the estimated standard deviation given in the table.

We now focus on the different stage playing time distributions. In all cases the three distribu-
tions are given the same form and three means are m1 = m3 = 6 and m2 = 3. In addition to the
exponential distribution, we consider the triangular distribution (tri(m,a)) for (m, r, a) = (6, 0.5, 3)
and that same triangular distribution with the lost ball parameters (p, L) = (0.05, 12). As indicated
in [18], the means and variances of Y can readily be computed for each of these three cases. They
are, respectively, (E[Y ], σ2

Y ) = (12.00, 54.00), (9.70, 2.51) and (9.97, 3.80). Even though the stage
playing times have identical means in all three models, they have different variability, which affects
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Table 1: Simulation comparison of the transient performance predicted by the exact and approx-
imate models: estimates of the mean and standard deviation of the sojourn times of group 20 on
several holes, (Uk,20), and over the first 10 holes, (V10,20), for a series of i.i.d. par-4 holes with
exponential stage playing times, for three traffic intensities ρ = 0.9, 1.0 and 1.1

traffic intensity ρ = 0.9 ρ = 1.0 ρ = 1.1
perf. measure mean std dev mean std dev mean std dev

hole 1, exact model 28.0 18.1 36.6 22.3 48.4 26.5
approx model 30.6 20.3 38.9 23.1 52.6 27.9

hole 2, exact model 32.7 20.0 37.8 24.1 42.2 25.5
approx model 33.5 21.1 40.1 23.7 43.2 25.2

hole 3, exact model 31.1 20.4 34.8 21.7 35.6 22.5
approx model 33.9 21.7 36.9 22.6 38.1 23.7

hole 6, exact model 28.5 18.2 29.0 18.0 29.7 22.8
approx model 29.4 19.5 30.7 18.3 31.4 19.5

hole 10, exact model 25.1 16.1 26.0 16.8 25.8 16.8
approx model 27.1 17.5 27.7 16.6 27.9 16.6

first 10 holes, exact model 283.8 34.2 305.9 35.1 326.6 36.6
approx model 303.8 38.5 328.2 38.0 346.7 40.2

both the mean and variance of Y . The mean and variance of Y in turn strongly affect the mean
sojourn times E[Uk,n] and E[Vk,n].

Table 2 gives simulation estimates of the mean and standard deviation of these sojourn times
Uk,100 for the exact and approximate models for holes k = 1, 2, 3, 6, 10, 18 and the total sojourn
time V18,100. These results are again based on 2000 independent replications. For the less variable
triangular stage playing time distribution, the half-width of 95% confidence intervals is consistently
less than 1% of the mean estimate and 5% of the standard deviation estimate.

Again, we see that the mean sojourn time may increase from k = 1 to k = 2 but then gradually
declines thereafter; the standard deviations evidently decline only after k = 3. We see that the
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approximate model consistently overestimates the mean and standard deviation but not by too
much. The values decrease going from exponential to triangular with lost balls, and then to trian-
gular without lost balls, because the variability decreases dramatically. Thus, Table 2 illustrates
the strong impact of variability on performance, so pervasive in queueing theory.

Table 2: Simulation comparison of the transient performance predicted by the exact and approxi-
mate models: estimates of the mean and standard deviation of the sojourn times of group 100 on
several holes, (Uk,100), and over the full course of 18 holes, (V18,100), for a series of i.i.d. par-4 holes
with traffic intensity ρ = 1.1 and three stage playing time distributions.

distribution tri. (m,a) = (6, 3) tri. + LB (p, L) = (.05, 12) expon. m = 6

perf. measure mean std dev mean std dev mean std dev

hole 1, exact model 103.6 15.8 106.4 19.0 142.7 66.1
approx model 108.4 15.9 111.1 19.3 144.8 65.9

hole 2, exact model 31.6 13.6 35.3 16.2 87.3 59.7
approx model 33.1 14.2 36.9 17.2 87.3 57.0

hole 3, exact model 26.4 10.3 29.6 12.7 65.7 46.3
approx model 27.7 10.6 30.4 13.2 68.3 47.1

hole 6, exact model 21.9 6.7 24.3 8.9 47.7 35.4
approx model 23.10 7.7 25.0 9.7 50.6 34.8

hole 10, exact model 20.4 5.8 21.8 7.0 40.7 30.1
approx model 21.7 6.8 23.0 8.2 41.3 27.9

hole 18, exact model 18.7 4.3 19.9 6.8 33.3 23.8
approx model 20.7 6.0 21.4 5.7 35.3 23.4

first 18 holes, exact 468.8 10.1 503.7 14.1 908.5 58.6
approx model 498.3 12.4 526.7 15.3 938.5 61.8

7.2 Simulations to Evaluate the Approximation Formulas

We now report the results of simulations to evaluate the approximation formulas developed in §4.

7.2.1 The Approximations for the Standard Series Network

To evaluate the quality of the approximation in (41), we simulated the standard model with i.i.d.
service times distributed as Y in (13) with traffic intensities ρ = 1.1, 1.0 and 0.9 for the stage playing
time distributions in Table 2. The results are shown in Table 3. For ρ = 1.0, the approximations
for the mean sojourn time of group 100 over 18 holes with the tri, tri+ LB and exp stage service
time distributions are, respectively, 3.9% high, 10.6% high and 3.7% high.

For the cases with ρ ≥ 1, Table 3 shows that (41) and (41) provide useful approximations for
the mean E[V18,n] and standard deviation SD[V std

18,n], showing the dependence upon the five key

variables E[Y ], ρ, n, k and c2Y . For example, from (41), we see that the mean E[V18,n] is directly
proportional to E[Y ].

Our main focus is on cases with ρ ≥ 1, but Table 3 also includes results for ρ = 0.9 to show
what happens. Table 3 shows that there are no dramatic changes; we can obtain reasonable rough
estimates for the mean values at ρ = 0.9 by subtracting the difference of the values at ρ = 1.1 and
ρ = 1.0 from the value for ρ = 1.0. However, the approximations for ρ = 0.9 have a very different
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Table 3: Comparison with simulation estimates of the heavy-traffic approximation in (41) for the
mean and standard deviation of V std

18,100, the sojourn time in the standard model, for service times
distributed as Y in (13) with four different stage playing times for ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) HT approx (41) (40)

ρ = 1.1 mean SD mean SD
√

c2V
deterministic, m = 6 243 0.0 9.00(27 + 0.00) = 243 0.0 0.0000
triangular, (m,a) = (6, 3) 363 9.5 9.70(27 + 11.75) = 376 9.5 0.0253
tri+LB, (p, L) = (.05, 12) 398 14.0 9.97(27 + 16.42) = 433 11.6 0.0268
exponential, m = 6 826 56.4 12.00(27 + 44.1) = 853 44.1 0.0517

ρ = 1.0

deterministic, m = 6 162 0.0 9.00(18 + 0.00) = 162 0.0 0.0000
triangular, (m,a) = (6, 3) 278 9.5 9.70(18 + 11.75) = 289 7.3 0.0253
tri+LB, (p, L) = (.05, 12) 310 13.8 9.97(18 + 16.42) = 343 9.2 0.0268
exponential, m = 6 722 56.7 12.00(18 + 44.1) = 749 38.7 0.0517

ρ = 0.9

deterministic, m = 6 162 0.0 9.00(18 + 0.00) = 162 0.0
triangular, (m,a) = (6, 3) 201 5.6 162 + 9.7(18)(9)(0.0267) = 204 7.3
tri+LB, (p, L) = (.05, 12) 224 9.8 162 + 9.97(18(9)(0.0382) = 224 9.2
exponential, m = 6 597 52.9 162 + 12(18(9)(0.375)(0.727) = 691 38.7

basis. For ρ < 1, we use a variation of the approximation for the steady-state mean from [17]. For
the standard deviation, we draw on (41), assuming that SD(V std

18,n(ρ)) for ρ < 1 has the same value
as in the approximation for ρ = 1.0.

7.2.2 The Approximations for the Golf Course

We use simulation to evaluate the approximations for the mean in (1) and (23) and for the standard
deviation in (41) and (42). The results are in Table 4.

Table 4 show that the HT approximation gives a useful approximation for the mean E[V18,n] and
standard deviation SD[V18,n]. From Tables 3 and 4, we see that the errors in Table 4 are primarily
due to the quality of the heavy-traffic approximation for the standard model in this setting.

8 Conclusions

We have developed two new approximations for the stochastic model of group play on a golf
course introduced in [18]. In §6.1 we developed the approximation involving conventional G/GI/1
single-server queues, without precedence constraints. In §4 we exploited that approximation plus
established heavy-traffic limits for queues in series reviewed in §6.2 to develop approximation for-
mulas for the mean and standard deviation of V18,n, the random time spent playing the course by
group n, as a function of n. The approximation for the mean is given in (1) and (23), while the
approximation for the standard deviation is given in (24).

The mathematical basis was an established heavy-traffic limit for a network of conventional
single-server queues in series. In particular, we used Theorem 3.2 of [3], but also simulation experi-
ments in [4]. As noted in [3, 4], the variability in the total sojourn time is impressively low. However,

21



Table 4: Comparison of the heavy-traffic approximation for the mean sojourn time of group 100 on
the full 18-hole golf course, E[V18,100], in (1) and (23) with simulation estimates for four different
stage playing times for ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) model approx (sim) HT approx (42)

ρ = 1.1 mean SD mean SD mean SD

deterministic, m = 6 351 0.0 351 0.0 351 0.0
triangular, (m,a) = (6, 3) 469 10.1 498 12.4 484 12.2
tri+LB, (p, L) = (.05, 12) 503 14.2 526 15.3 531 14.2
exponential, m = 6 908 61.7 938 61.0 961 50.0

ρ = 1.0 mean SD mean SD mean SD

deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m,a) = (6, 3) 382 9.9 411 12.7 396 10.0
tri+LB, (p, L) = (.05, 12) 416 14.4 437 15.3 440 11.8
exponential, m = 6 807 59.0 832 60.5 852 44.1

ρ = 0.9 mean SD mean SD mean SD

deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m,a) = (6, 3) 306 6.6 312 8.8 312 7.9
tri+LB, (p, L) = (.05, 12) 330 11.9 335 11.9 332 8.9
exponential, m = 6 683 56.2 707 60.6 852 44.0

we mainly emphasize the formula for the mean in in (1) and (23). It goes beyond widespread golfer
experience that the expected time to play a round increases the later you start by revealing the
form of that increase. In §5 we showed how that mean formula can be used to help design and
manage a golf course.

There are many remaining research problems. First, work is underway to see how well the
approximations perform for balanced courses with the usual variety of holes; all the simulations
reported here were for 18 identical par-4 holes. For the more general model with different hole
types, we use approximation (1) with the general approximation for C in (23), involving the mean
stage playing times on the different holes, but we still assume that the distribution of the critical
cycle time Y defined in §3.4 is the same for all holes.

Much remains to be done investigating data from group play on golf courses, going beyond the
initial study in [12]. To what extent are group tee times consistent with the assumed deterministic
schedule? To what extent are group sojourn times and departure times consistent with the ap-
proximation in (1)? To what extent are golf courses underloaded, critically loaded or overloaded?
To what extent are golf courses balanced or unbalanced? What are the actual stage playing time
distributions? To what extent are stage playing times mutually independent?

One reason that the stage playing times may not be independent is that there may be excep-
tionally slow groups. If there are occasional slow groups, and these groups are allowed to play the
course, then they can have a major impact, as observed in [10, 11]. Such slow groups would make
the mean and variance of stage playing times larger. Even more important, they would make the
successive stage playing times highly dependent. How should slow groups be analyzed? How should
slow groups be managed?

For balanced courses, to what extent are the designs efficient as defined in §5? When the
courses are inefficient, is the throughput constraint the binding constraint, as in Example 5.1? For
unbalanced courses, what are effective performance approximations?
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Finally, it appears that the present approximations can be fruitfully applied in other systems
with precedence constraints, which commonly occur in many service systems, e.g. [1, 9]. That
remains to be explored.
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