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Abstract This paper explores grey-box modeling of queueing systems. A stationary
birth-and-death (BD) process model is fitted to a segment of the sample path of the
number in the system in the usual way. The birth (death) rates in each state are estimated
by the observed number of arrivals (departures) in that state divided by the total time
spent in that state. Under minor regularity conditions, if the queue length (number in the
system) has a proper limiting steady-state distribution, then the fitted BD process has
that same steady-state distribution asymptotically as the sample size increases, even
if the actual queue-length process is not nearly a BD process. However, the transient
behavior may be very different. We investigate what we can learn about the actual
queueing system from the fitted BD process. Here we consider the standard G I/G I/s
queueing model with s servers, unlimited waiting room and general independent,
non-exponential, interarrival-time and service-time distributions. For heavily loaded
s-server models, we find that the long-term transient behavior of the original process,
as partially characterized by mean first passage times, can be approximated by a
deterministic time transformation of the fitted BD process, exploiting the heavy-traffic
characterization of the variability.
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1 Introduction

Queueing theory primarily involves white-box modeling, in which queueing models
are defined from first principles and analyzed. To apply these models to analyze the
performance of queueing systems, we check that the assumptions of the models are
satisfied, for example, by performing statistical tests on system data, as in [7,28], and
estimating model parameters, as in [4,5,36] and references therein.

An alternative to white-box modeling of queueing systems is black-box modeling,
in which models (for example, statistical time-series methods) are employed, without
using any structure of queueing models; see [42,59]. Black-box modeling is growing in
popularity as the amount of available data grows, as well as our ability to extract useful
information from it; see [22]. A modeling approach in between these two extremes,
which might conceivably share the advantages of both, is grey-box modeling, which
exploits some model structure together with learning from data; see [6,29].

We examine grey-box modeling applied to queueing processes. In this paper, the
grey-box model is a general stationary birth-and-death (BD) process, which exploits
the common property of many queue-length (number in system) processes that they
almost surely make only unit transitions, corresponding to separate arrivals and depar-
tures. Indeed, BD queueing models such as the Markovian M/M/s model are well
studied and have been extensively used. Moreover, BD models have been found to be
useful approximations for other more general but less tractable models, as illustrated
by the BD approximation in [52] for the M/G I/s +G I model having customer aban-
donment from the queue with non-exponential patience times (the +G I ) as well as
non-exponential service times.

The main idea here is to approach an application where we do not know what
model is appropriate by fitting a stationary BD process to an observed segment of the
sample path of a queue-length stochastic process, assuming only that it increases and
decreases in unit steps. Just as is commonly done for estimating rates in a BD process
[5,26,57], we estimate the birth rate in state k from arrival data over an interval [0, t]
by λ̄k ≡ λ̄k(t), the number of arrivals observed in that state, divided by the total
time spent in that state, while we estimate the death rate in state k by μ̄k ≡ μ̄k(t),
the number of departures observed in that state, divided by the total time spent in
that state. As usual, the steady-state distribution of that fitted BD model, denoted by
ᾱe

k ≡ ᾱe
k(t) (with superscript e indicating the estimated rates), is well defined (under

regularity conditions, see [54]) and is characterized as the unique probability vector
satisfying the local balance equations,

ᾱe
k λ̄k = ᾱe

k+1μ̄k+1, k ≥ 0. (1.1)

Throughout this paper, we assume that limiting values of the rates as t → ∞ exist
and that our estimators are consistent, so we omit the t .

123



Queueing Syst (2015) 79:391–426 393

The BD process is appealing as a grey-box model for queueing systems, because the
fitted BD steady-state distribution {ᾱe

k : k ≥ 0} in (1.1) closely matches the empirical
steady-state distribution, {ᾱk : k ≥ 0}, where ᾱk ≡ ᾱk(t) is the proportion of total
time spent in each state. Indeed, as has been known for some time (for example,
see Chapter 4 of [19]), under regularity conditions, these two distributions coincide
asymptotically as t (and thus the sample size) increases, even if the actual system
evolves in a very different way from the fitted BD process. For example, the actual
process {Q(t) : t ≥ 0} might be periodic or non-Markovian; see [46].

If we directly fit a BD process to data as just described, we should not conclude
without further testing that the underlying queue-length process actually is a BD
process. In fact, the main point of [54] was to caution against drawing unwarranted
positive conclusions from a close similarity in the steady-state distributions, because
these two distributions are automatically closely related. Nevertheless, the fitted BD
process might provide useful insight about the underlying system. The purpose of the
present paper is to start investigating that idea.

In fact, our earlier paper [54] was largely motivated by exploratory data analysis
carried out in Sect. 3 of [3]. They had fitted several candidate models to data on the
number of patients in a hospital emergency department, and found that a BD process
fit better than others. After writing our previous paper [54], cautioning against drawing
unwarranted positive conclusions, we realized that fitting BD processes to data might
indeed be useful, and started the present investigation. See Sect. 3 of [3] for more
discussion about exploratory data analysis of an emergency department.

There also is a much earlier precedent for exploiting fitted BD processes. This idea
was part of the program of operational analysis suggested by Buzen and Denning
[8,9,15] in early performance analysis of computer systems. However, they expressed
the view that there was no need for an associated “underlying” stochastic model. In
contrast, as in Sects. 4.6–4.7 of [19], we think that an underlying stochastic model
should play an important role. With that in mind, we want to see if the fitted BD model
can provide useful insight into an unknown underlying stochastic model.

Our goal in the present paper is to better understand this fitted BD model. We
primarily want to answer two questions:

(i) How are the fitted birth and death rates related to the key structural features of
an actual queueing model?

(ii) How does the transient behavior of an actual queueing system differ from the
transient behavior of the fitted BD process?

We start to address the first question by estimating the birth and death rates from
simulation experiments for G I/G I/s models. When the interarrival-time (service-
time) distribution is exponential, then the fitted birth (death) rate captures the true
behavior of the queue-length process, but otherwise it does not. For non-exponential
distributions, we see that the fitted rates evidently have substantial structure, which
we do our best to explain.

We start to address the second question by looking at first passage times in the
underlying model and the fitted model. Perhaps our most interesting finding is a simple
connection between the fitted BD process Qf ≡ {Qf(t) : t ≥ 0} and the queue-
length (number in system) process Q ≡ {Q(t) : t ≥ 0} for a stationary G I/G I/s

123



394 Queueing Syst (2015) 79:391–426

model, which holds approximately under two conditions: (i) if we focus on the long-
term transient behavior, as measured by the expected first passage time from the pth

percentile of the stationary distribution to the (1 − p)th percentile and back again for
p suitably small, for example, p = 0.1, and (ii) if we consider models with relatively
high traffic intensity, so that heavy-traffic approximations are appropriate. Under these
two conditions, we find that the two processes differ primarily in a one-dimensional
way, by the speed that they move through the state space. In other words, we suggest
the process approximation

{Q(t) : t ≥ 0} ≈ {Qf(t/ω) : t ≥ 0}, (1.2)

where ω is the speed ratio, which admits the conventional heavy-traffic approximation
(traffic intensity ρ near 1 with finitely many servers)

ω ≈ c2
a + c2

s

2
, (1.3)

with c2
a and c2

s being the squared coefficients of variation (scv’s, variance divided by
the square of the mean) of an interarrival time and a service time, respectively; see
Tables 2, 3, 4, and 5. The approximating speed ratio in (1.3) can be recognized as
the heavy-traffic characterization of the variability in the G I/G I/s queueing model.
We also discuss how to estimate the speed ratio in s-server models without the strong
independent assumptions; see Sect. 7.1.

We provide important mathematical support for (1.2) with (1.3) for both the
G I/G I/s model in the conventional heavy-traffic regime by Corollaries 5.1 and 5.2
(and the results leading up to them) and for the G I/M/∞ model in the many-server
heavy-traffic regime by Corollary 6.2 (and the results leading up to it). These corol-
laries establish that (1.2) with (1.3) is asymptotically correct in a heavy-traffic limit
in considerable generality. In order to establish these results, we have to make quite
strong assumptions on the fitted birth rates (consistent with our simulation results),
but we conjecture that these properties of the fitted rates hold; see Conjectures 2.1, 2.2
and 5.1. The current conventional heavy-traffic results fully cover the G I/M/s model
by virtue of Theorem 3.1.

The proofs of these heavy-traffic limits are interesting because they depend on dif-
ferences in the stochastic-process limits for the original queue-length process and the
fitted BD process. The two processes necessarily have the same steady-state distribu-
tion, as we observed above. Since both processes are asymptotically characterized by
diffusion limits, we see that the common steady-state distribution is achieved by the
non-Markov variability captured by the diffusion coefficient in the diffusion approx-
imation for the original process being transferred into the drift of the diffusion limit
of the fitted BD process. The fitted BD process evidently captures less of the local
variability in the original process. As a consequence, we get the speed ratio as in (1.2)
above.

Consistent with extensive experience about the many-server heavy-traffic regime,
we also discover that a very different story holds for large-scale many-server queue-
ing systems with non-exponential service-time distributions, where the very different
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many-server heavy-traffic approximations are appropriate. In particular, we find that
the approximation in (1.2) is still appropriate for other G I/G I/∞ models with
non-exponential service-time distributions, but that (1.3) is not appropriate. Indeed,
the speed ratio in the M/G I/∞ model tends to depend on the scv c2

s of the non-
exponential service-time distribution in way that is inversely related to (1.3); see
Table 5.

Organization: We start in Sect. 2 by showing simulation estimates of the birth
and death rates in G I/G I/1 single-server and G I/G I/s multi-server models for
s = 40 and s = ∞, for various interarrival-time and service-time distributions.
Next, in Sect. 3 we establish mathematical results showing how the fitted BD rates
depend on the model structure of stable G I/G I/s models, trying to explain as much
as we can of the structure we see in the fitted rates. In Sect. 4 we define the speed
ratios in terms of first passage times and show simulation results for the speed ratio.
Then in Sect. 5 we obtain insights about the fitted BD process and the speed ratio
by making connections to conventional heavy-traffic limit theory. In Sect. 6 we make
corresponding connections to the many-server heavy-traffic theory. In Sect. 7 we dis-
cuss estimation procedures. In Sect. 7.1 we discuss how to estimate the speed ratios,
pointing out the possibility of exploiting indices of dispersion. In Sect. 7.2 we discuss
how to estimate the birth and death rates, pointing out the advantages of smoothing.
Finally, in Sect. 8 we draw conclusions. Additional details are provided in a short
Appendix.

2 Fitted rates in simulation experiments

We start by reporting results of simulation experiments for G I/G I/s models. For
the non-exponential distributions, we use Erlang (Ek , sums of k i.i.d. exponentials
with c2 = 1/k, focusing on k = 2 and k = 4) and hyperexponential (H2(c2),
mixtures of two i.i.d. exponentials with scv c2 > 1) to illustrate non-exponential
distributions less and more variable than exponential. An H2 cdf can be expressed as
F(x) ≡ p1(1−e−λ1x )+ p2(1−e−λ2x ). We fix one of the three parameters by assuming
balanced means, p1/λ1 = p2/λ2, as on p. 137 of [44]. We primarily consider H2(2)

with scv c2 = 2.
For these models, it can be shown that the fitted rates are consistent estimators of

finite limiting values; i.e., λ̄k(t) → λ̄k , k ≥ 0, and μ̄k(t) → μ̄k , k ≥ 1, as t → ∞.
(Justification can be by an application of the law of large numbers for renewal reward
processes, as in Ch. 3 of [37]; arrivals to an empty system can be the renewal epochs.)
We assume that the t in question is sufficiently large that we can regard our estimate
as the limiting value. We estimated the rates from 30 independent replications of 1
million customers. This large sample size is sufficient for 95 % confidence intervals
of the state-dependent rates to be within 1 % of the rates for states k with steady-state
probability αk ≥ 0.01. The width of the confidence intervals increases as a function
of the variability parameters c2

a and c2
s . Of course, even though our simulation runs

are long, good estimates of the rates are only possible for states k that are frequently
visited.
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Fig. 1 Fitted birth rates λ̄k (left) and death rates μ̄k (right) for seven G I/G I/1 models with ρ = λ = 0.8
and μ = 1

2.1 Single-server queues

We first fit birth rates and death rates to data from simulations of various G I/G I/1
single-server models, all with traffic intensity ρ = 0.8. We let the mean service time
be 1/μ = 1 in all cases, so that the overall arrival rate is λ = ρ = 0.8. Fig. 1 shows
the fitted birth rates (left) and death rates (right) for seven different models. Some loss
of statistical precision is seen in some of the plots for large values around k = 30 at
the right end of these plots.

From Fig. 1, the fitted rates seem to satisfy, at least approximately, the property

λ̄k = λ̄ and μ̄k = μ̄ for all k ≥ k0, (2.1)

for some k0, for example, k0 = 5. We show that the relations in (2.1) hold exactly in
the G I/M/s model (Theorem 3.1). We show that the fitted death rates differ in the
M/G I/1 model for any two different service-time distributions (Theorem 3.3). Thus,
the relation (2.1) evidently does not hold exactly for any non-exponential distribution
in the M/G I/1 model. Evidently limits exist as k → ∞ for a large class of models.

We can make inferences about the interarrival-time and service-time distributions
from Fig. 1. First, from the queue-length sample path we can also estimate the arrival
rate λ and the service rate μ, which of course are known in advance in the simulation
experiments. Our estimated arrival (service) rate is A(t)/t (D(t)/B(t)), where A(t)
(D(t)) is the total number of arrivals (departures) over the interval [0, t] (with D(t) ≈
A(t) if t is large) and B(t) is the total time that the server is busy in [0, t].

Of particular importance for understanding performance is the fitted traffic inten-
sity ρ̄ ≡ λ̄/μ̄, which we would estimate or calculate directly as the limit of
ρ̄k ≡ λ̄k/μ̄k+1 = αk+1/αk as k → ∞; see Sect. 3.3. For its impact on congestion,
we would focus on (1 − ρ̄)−1 and its relation to (1 − ρ)−1 via ω̄ ≡ (1 − ρ)/(1 − ρ̄).
An important observation is that all these quantities—λ̄, μ̄, ρ̄, and ω̄—are actually
functions of ρ. Theorems 3.5 and 5.1 show that for a large class of G I/G I/s models

ω̄(ρ) ≡ 1 − ρ

1 − ρ̄(ρ)
≈ ω ≡ c2

a + c2
s

2
(2.2)
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Table 1 Estimates of the asymptotic fitted birth rate λ̄, death rate μ̄, traffic intensity ρ̄, and speed ratio ω̄

via (2.2) for the nine G I/G I/1 models with ρ = 0.8 in Fig. 1

Model λ̄ μ̄ ρ̄ ω̄ ω ≡ (c2
a + c2

s )/2

E2/E2/1 0.700 ± 0.002 1.138 ± 0.026 0.603 ± 0.044 0.520 ± 0.035 0.500

E2/M/1 0.741 ± 0.001 1.002 ± 0.003 0.740 ± 0.001 0.770 ± 0.004 0.750

E2/H2(2)/1 0.766 ± 0.001 0.910 ± 0.001 0.843 ± 0.001 1.271 ± 0.010 1.250

M/E2/1 0.801 ± 0.001 1.074 ± 0.002 0.746 ± 0.003 0.788 ± 0.008 0.750

M/M/1 0.800 ± 0.001 1.000 ± 0.001 0.800 ± 0.002 1.000 ± 0.011 1.000

M/H2(2)/1 0.799 ± 0.001 0.926 ± 0.002 0.865 ± 0.001 1.478 ± 0.014 1.500

H2(2)/E2/1 0.867 ± 0.001 1.047 ± 0.001 0.828 ± 0.001 1.161 ± 0.009 1.250

H2(2)/M/1 0.857 ± 0.001 0.945 ± 0.003 0.857 ± 0.001 1.399 ± 0.011 1.500

H2(2)/H2(2)/1 0.843 ± 0.001 0.945 ± 0.003 0.893 ± 0.002 1.877 ± 0.027 2.000

when ρ is not too small, where ω is the theoretical speed ratio in (1.3).
Table 1 shows the estimates of the asymptotic BD rates λ̄ and μ̄ with 95 % con-

fidence intervals and the associated estimates of the fitted traffic intensity ρ̄ and the
speed ratio ω̄ for the models with ρ = 0.8 in Fig. 1. This last estimate is compared
to the approximation in (2.2). These statistical estimates are obtained directly from
the final estimated rates λ̄k and μ̄k by treating the values with 5 ≤ k ≤ 24 as a
sample from 20 i.i.d. normally distributed random variables with unknown variance,
so that the confidence intervals are constructed with the Student t distribution having
19 degrees of freedom. Of course, in this case the statistical precision is compounded
with the actual deterministic variation in the rates, but Table 1 shows that both sources
of variability are not great.

Figure 1 and Table 1 show that λ̄ (μ̄) is increasing in c2
a (c2

s ) with λ̄ = λ (μ̄ = μ) in
the M case when c2

a = 1 (c2
s = 1). We provide theoretical support for this conclusion

in the G I/M/s model in Theorem 3.2. The last two columns of Table 1 provide support
for the approximation in (2.2). The analogs of Fig. 1 and Table 1 for ρ = 0.9 are given
in the Appendix.

2.2 Many-server models

We next look at many-server models. Specifically, we consider seven G I/G I/s models
with s = 40 and seven G I/G I/∞ models. These all have the parameters λ = 39 and
μ = 1. The fitted birth and death rates are shown in Figs. 2 and 3. By Little’s law,
the mean number of busy servers is always ρ ≡ λ/μ = 39. Since the number in the
system tends to concentrate in the interval [20, 60], we show only that part. We would
see the impact of unreliable estimation outside of that interval.

The most striking behavior in Figs. 2 and 3 is the systematic structure of the death
rates within the interval [20, 60] of frequently visited states. We evidently have, at
least approximately,

μ̄k = (k ∧ s)μ = (k ∧ s), k ≥ 1, (2.3)
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Fig. 2 Fitted birth and death rates for seven G/G/40 models with λ = 39 and μ = 1

Fig. 3 Fitted birth and death rates for seven G/G/∞ models with λ = 39 and μ = 1

for all interarrival-time and service-time distributions, where a ∧ b ≡ min {a, b}.
We show that relation (2.3) holds exactly in the M/G I/∞ model (Theorem 3.4) by
applying the classical insensitivity property for the M/G I/∞ model, stating that the
steady-state queue length depends on the service-time distribution only through its
mean.

The observed relation in (2.3) leads us to conjecture that it is asymptotically correct
in a many-server heavy-traffic limit. However, it is not immediate how to properly
formulate such a limit, because the frequently visited states evidently fall in an interval
[ρ − c

√
ρ, ρ + c

√
ρ] for some positive constant c, where ρ ≡ λ/μ → ∞. We give

the following specific conjecture. Let μ̄k(ρ) be the death rate in state k of model ρ and
let 
x� be the greatest integer less than or equal to x . Recall that f (ε) = o(ε) (O(ε))
if f (ε)/ε → 0 (remains bounded) as ε ↓ 0.

Conjecture 2.1 (many-server HT limit for fitted death rates) Consider a family of
G I/G I/s models indexed by ρ > 0 with fixed service-time distribution having finite
mean 1/μ and variance, and arrival process Aλ(t) ≡ A(λt), where A is a rate-
1 renewal process whose interarrival time has a finite variance, and λ ≡ ρμ. If
there exists an ε > 0 such that sρ > (1 + ε)ρ for each ρ, then μ̄
ρ+c

√
ρ�(ρ) =

(ρ + c
√

ρ)μ + o(
√

ρ) as ρ → ∞ for all real numbers c; i.e., for any real number c,

μ̄
ρ+c
√

ρ�(ρ) − (ρ + c
√

ρ)μ√
ρ

→ 0 as ρ → ∞. (2.4)

Support. Conjecture 2.1 is consistent with (but not directly implied by) the Poisson
limit for the departure process as λ and s grow for fixed μ, as established in [47].
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Figure 3 also shows regularity in the arrival rates in infinite-server models. For
infinite-server models with individual service rate μ = 1 and arrival rate ρ, we see
that, again at least approximately, the fitted birth rate in state k is

λρ,k ≡ 0 ∨ [ρ + b(k − ρ)], k ≥ 0, (2.5)

where the constant b depends on the interarrival-time distribution, satisfying −∞ <

b < 1, and a ∨ b ≡ max {a, b}. (The maximum is needed to prevent the arrival rate
from becoming negative as k increases if b < 0.)

Paralleling Conjecture 2.1, we conjecture that the conclusions of (2.5) hold more
generally.

Conjecture 2.2 (HT limit for fitted arrival rates in infinite-server models) In addition
to Conjecture 2.1, for G I/G I/∞ infinite-server models,

λρ,k − 0 ∨ [ρ + b(k − ρ)]√
ρ

→ 0 as ρ → ∞ (2.6)

for all integers k.

Formula 2.5 holds exactly with b = 0 for exponential interarrival times; otherwise
Fig. 3 shows that b > (<)0 when c2

a > (<)1. Formula (2.5) also is appropriate for
k ≤ s in s-server systems provided that s is suitably large, at least s > n, as in Fig. 2.

2.3 Detecting deviations from the G I/G I/s model

In applications, estimating birth and death rates may be especially useful to detect
deviations from the G I/G I/s model. Figs. 1 and 2 suggest that such deviations may
be easy to detect, because these figures show remarkable consistency in the estimated
birth and death rates. For states k > s, the rates are nearly constant in all cases. We
should thus be able to detect model deviations in which customers are less likely
to join if there is a long queue (causing birth rates to decrease in k) or impatient
customers abandon the queue (causing death rates to increase in k) as k increases
above s. A specific model with these features is the modification of the M/M/s queue
with state-dependent balking and abandonment, having parameters

λk ≡ λe−(k−s)+ and μk ≡ μ(k ∧ s) + θ(k − s)+, k ≥ 0. (2.7)

where (x)+ ≡ max {x, 0}. Figures 1 and 2 show that those effects are highly unlikely
to be caused by just having a G I/G I/s model with non-exponential distributions.

The consistent piecewise-linear structure for larger s in Fig. 2 shows that we should
be able to detect if the actual number of servers varies over time, as in [53]. For
example, if there were s1 servers over the interval [0, t/2) and s2 servers over the
interval [t/2, t], where s1 < s2, then we would have the average of two of the plots
in Fig. 2. Unlike Fig. 2, the estimated birth and death rates would have three separate
linear pieces, over the intervals [0, s1], [s1, s2], and [s2,∞).
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For the M/G I/s + G I model, having customer abandonment from the queue,
where customers have i.i.d. patience times with a general distribution, fitting the death
rates provides a direct statistical approach to constructing an approximating BD model,
paralleling the analytical BD approximation developed for this model in [52]. (In a
separate study, we found that the estimated death rates agree quite closely with the
analytical approximations of the death rates developed in [52].)

3 Rate properties

We now establish properties of the fitted rates λ̄k and μ̄k in the stationary stable
G/G/s model with arrival rate λ and individual service rate μ. The G instead of G I
means that we allow general stationary arrival and service processes, as in [38], but
we assume that the service times are independent of the arrival process. We assume
that P(Q(t) = k) → αk as t → ∞, where

∑∞
k=0 αk = 1.

We first make the elementary observation (by applying the lack of memory property
of the exponential distribution) that the fitted rates are asymptotically correct in the
Markovian (M) cases (which includes i.i.d.). For the G/M/s model, μ̄k = min {k, s}μ,
k ≥ 1, and for the M/G/s model, λ̄k = λ, k ≥ 0. We also observe that there is a basic
rate conservation, which is an elementary consequence of the limits of the averages
(assumed in Sect. 1):

λ =
∞∑

k=0

αk λ̄k =
∞∑

k=0

αkμ̄k . (3.1)

3.1 G I/M/s models

Additional structure allows us to say more. We can apply standard results for G I/M/s
models to deduce the following results.

Theorem 3.1 (explicit expression for the fitted rates in G I/M/s) In the G I/M/s
model,

μ̄k = (k ∧ s)μ, k ≥ 1, and λ̄k = sμσ, k ≥ s, (3.2)

where σ is the unique root of the equation

φa((1 − σ)μs) = σ, (3.3)

where φa(s) is the Laplace–Stieltjes transform of an interarrival time, i.e., φa(s) =
E[e−sU ] = ∫ ∞

0 e−st dFa(t), where Fa(t) ≡ P(U ≤ t) is the cdf of an interarrival
time.

Proof Use (1.1) together with Sect. 5.14 of [13]. ��
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Corollary 3.1 (the case s = 1) In the G I/M/1 model,

λ̄0 = ρμ(1 − σ)

1 − ρ
and λ̄k = σμ, k ≥ 1, (3.4)

where μ = μ̄k for all k and σ is the unique root to the equation (3.3) in the case s = 1.

Proof We can apply Little’s law with the server to get 1 −α0 = ρ. We then can apply
the rate-conservation formula in (3.1) and Theorem 3.1. ��
Example 3.1 (the case of H2/M/40)We illustrate by considering the H2/M/40 model
with λ = 39, μ = 1, and an H2 interarrival-time cdf with scv c2

a = 2. Here ρ =
39/40 = 0.975. Our simulation experiment confirms that the conclusions of Theorem
3.1 hold with λ̄k = 39.35, k ≥ 40, and σ = λ̄k/40 = 39.35/40 = 0.98375. (Again we
can obtain high accuracy by fitting a linear or constant rate function for k ≥ 1.) For this
model, the one-term (order O(1−ρ)) and two-term (order O((1−ρ)2)) heavy-traffic
approximations for the root σ in (5.3) are, respectively, σ ≈ 1 − (0.05)/3 = 0.9833
and σ ≈ 0.98370.

To compare the fitted birth rates in G I/M/s models with different interarrival-time
distributions, we can use convex stochastic order. We say that one random variable X1
is less than or equal to another, X2, in convex stochastic order and write X1 ≤c X2 if
E[g(X1)] ≤ E[g(X2)] for all convex real-valued functions g; see Chapter 9 of [37].
Convex stochastic order is a variability ordering; in fact it implies that the two random
variables necessarily have the same mean (because g(−x) is convex if g(x) is convex).
Useful examples are

D(m) ≤c Ek(m) ≤c M(m) ≤c Hk(m), (3.5)

where D(m), Ek(m), M(m), and Hk(m) denote, respectively, a deterministic, Erlang
of order k (sum of k i.i.d. exponentials), exponential and hyperexponential of order k
(mixture of k independent exponentials) random variable, all with mean m.

Theorem 3.2 (the implication of convex order for interarrival-time distributions)
Consider two G I/M/s queueing models with the same s, λ, and μ, and thus also
ρ ≡ λ/sμ < 1, but different interarrival-time distributions U1 and U2. If U1 ≤c U2,
then σ1 ≤ σ2, where σi is the root for model i in (3.3) and the limiting values of the
BD fitted arrival rates satisfy

λ̄
(1)
k = λ̄(1) = sμσ1 ≤ sμσ2 = λ̄(2) = λ̄

(2)
k , k ≥ s, (3.6)

where λ̄(i) denotes the limiting value of the fitted birth rate in model i as k → ∞.
Since λ̄k = λ for an exponential interarrival-time distribution, i.e., for the M/M/s
model, we have λ̄ ≤ (≥)λ whenever U ≤c (≥c)M.

Proof Observe that the Laplace–Stieltjes transform that determines the root σ of the
equation in (3.3) is the expectation of a convex function. ��
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More generally, Theorem 3.2 tells us that we expect to have λ̄k ≤ (≥)λ for k ≥ s
whenever the arrival process is less (more) variable or bursty than a Poisson process.
This ordering helps us interpret fitted birth rates.

3.2 M/G I/s models

For M/G I/s models, the cases s = 1 and s = ∞ are very different in what the
fitted rates tell us about the original model, i.e., about the service-time distribution.
For s = 1, at least in principle, the fitted death rates tell us everything; for s = ∞, the
fitted death rates tell us nothing.

Theorem 3.3 (the M/G I/1 model) For the M/G I/1 model, λ̄k = λ for all k ≥ 0
and there is a one-to-one correspondence between the fitted BD death rates μ̄k and
the service distributions with mean 1/μ. Hence, the service-time cdf is exponential if
and only if μ̄k = μ, k ≥ 1.

Proof It is well known that there is a one-to-one correspondence between the steady-
state distribution {αk} and the service-time distribution, via the classical Pollaczek-
Khintchine generating function, see Sect. 5.8 of [13]. Since there is a one-to-one
correspondence between the fitted BD rates and the steady-state distribution, the final
conclusion follows. ��

Theorem 3.4 (the M/G I/∞ model) For the M/G I/∞ model, the fitted BD rates
satisfy λ̄k = λ and μ̄k = kμ for all k ≥ 0, just as in the M/M/∞ model.

Proof By the well-known insensitivity property, the steady-state distribution of the
M/G I/∞ model is Poisson with mean λ/μ for all service-time distributions with
mean 1/μ. Hence, the fitted BD rates are the same as for the M/M/∞ model. ��

3.3 Tail-probability asymptotics: limits as k → ∞

In many G/G/s queueing models, the steady-state distribution of Q(t) has an asymp-
totically geometric tail, i.e.,

αk ∼ βσ k as k → ∞, (3.7)

i.e., αk/βσ k → 1 as k → ∞. Hence, for k not too small, the approximation αk ≈ βσ k

is effective and useful; see [2,11] and references therein. However, it is important to
note that (3.7) does not cover all possibilities. For example, with heavy-tail service-
time cdf’s we can have

αk ∼ Ak−p as k → ∞ (3.8)

for positive constants A and p.
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Fig. 4 Estimated steady-state probabilities ᾱk (left) and their logarithms loge ᾱk (right) for seven G I/G I/1
models with ρ = λ = 0.8 and μ = 1

Theorem 3.5 (limits for the fitted rate ratios) If the steady-state distribution satisfies
(3.7), then the limiting fitted BD rate ratios satisfy

ρ̄k ≡ λ̄k

μ̄k+1
→ σ as k → ∞. (3.9)

If the arrival process is Poisson, then μ̄k → λ/σ as k → ∞. If instead the steady-state
distribution satisfies (3.8), then the limiting fitted BD rate ratios satisfy

(k + 1) log ρ̄k → −p as k → ∞. (3.10)

Proof For (3.9), use the local balance equation (1.1) with (3.7). For (3.10), use (1.1)
with (3.8) to get ρ̄k = p log (1 − [1/(1 + k)]) and then log (1 + ε)/ε → 1 as ε ↓ 0.

��
We first illustrate the main case in (3.7) in Fig. 4 by showing the estimated steady-

state probability mass function (left) and its logarithm (right) for the seven G I/G I/1
models with λ = ρ = 0.8 and μ = 1 in Fig. 1. The near-linear plots on the right
illustrate the relation (3.7) which is known to hold for all these models. We will exploit
this geometric-tail structure extensively in our conventional heavy-traffic analysis in
Sect. 5.

We also illustrate the power-tail case by considering the M/G I/1 queue with a
service-time pdf g(x) = Bx−q , x ≥ c, for B = cq−1/(q − 1) and c chosen so that
it has mean 1/μ = 1. In the case q = 3, this power-tail pdf has an infinite variance.
We show the fitted death rates and the estimated values of (k + 1) log ρ̄k in Fig. 5 for
three cases: q = 3, 5, and 7. Figure 5 shows that the estimated death rate is decaying
and that (3.8) indeed evidently holds with p = q − 1 = 2 for the case q = 3, but
that (3.7) holds for q = 5 and q = 7. In particular, we see that a power-tail service-
time distribution affects the steady-state queue-length distribution differently from the
steady-state waiting time, which always has a power tail in these cases; see [1,12,30]
and citations to these papers. We intend to discuss this phenomenon in a future paper.

4 Transient behavior: the speed ratio

We wish to understand how the transient behavior of the fitted BD process differs
from the transient behavior of the original model. To approximately characterize the
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Fig. 5 Estimated death rates μ̄k (left) and the scaled logarithms (k + 1) log ρ̄k (right) for the M/G I/1
model with ρ = λ = 0.8 and the power-tail service-time pdf g(x) = Ax−q , x ≥ c, with μ = 1 and three
values of q: 3, 5, and 7

transient behavior, we focus on first passage times. Let T (p) be the first passage time
from the pth percentile of the steady-state distribution to the (1− p)th percentile of the
steady-state distribution and then back again (round trip) in the original process, and
let Tf(p) be the corresponding round-trip first passage time in the fitted BD process.
(Since the steady-state distribution is discrete, we use the state closest to the percentile,
which will be the same for both processes because they have the same steady-state
distribution.)

These first passage times are fully specified for the fitted BD process because it
is a Markov process, but they are not fully specified in the original model, because
the stochastic process {Q(t) : t ≥ 0} is in general not Markov. Thus, we need to
specify the initial conditions. We understand the system to be in steady state, so the
initial condition is the steady-state distribution of the process conditional on starting
at percentile p.

We will in fact estimate the expected first passage times for the original process
from simulations, by considering successive alternating visits to the pth and (1 − p)th

percentiles of the steady-state distribution. As an approximation, which we regard as
reasonable as long as p is not too close to 1/2, we will assume that these successive first
passage times are i.i.d. We estimate the expected values of these first passage times by
sample averages and estimate 95 % confidence intervals under the i.i.d. assumption.
The rate at which these transitions occur can be defined by

r(p) ≡ 1

E[T (p)] and rf(p) ≡ 1

E[Tf(p)] (4.1)

and the p-speed ratio can be defined by

ω(p) ≡ r(p)

rf(p)
= E[Tf(p)]

E[T (p)] . (4.2)

If the fitted BD process had the same transient behavior as the original process,
then we would find that ω(p) ≈ 1 for all p. However, in simulation experiments we
find that these speed ratios differ significantly from 1 when p is not close to 1/2. We
see regularity in ω(p) as p ↓ 0 and as the load increases (always assuming stability,
i.e., ρ < 1).
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4.1 Examples in the conventional heavy-traffic regime

We start with very heavily loaded G I/G I/1 single-server models. We let the mean
service time be 1 and the arrival rate be 0.975, so that the traffic intensity is ρ = 0.975.
This is an extremely high traffic intensity, so that heavy-traffic approximations are
clearly appropriate. Table 2 shows, first, simulation estimates of the average round-
trip first passage times E[T (p)] for p = 0.1 and associated half widths of 95 %
confidence intervals for ρ = 0.975, assuming (as a reasonable approximation) that
successive first passage times are i.i.d. and, second, the estimated speed ratios ω̄(p)

for p = 0.1. The speed ratios are estimated by the reciprocal of the ratio of the first
passage times, as in (4.2). The final two columns give the associated estimated speed
ratio for ρ = 0.8 with p = 0.1 and the associated approximation for the speed ratio in
(1.3). These first passage times were simulated using (i) a birth–death process using the
birth and death rates obtained from 30 i.i.d. replications of 1 million customers and (ii)
the true process, each based on 8 million simulated customers (independent of the data
used to estimate the parameters). Process (i) utilizes the average rates from the 30 i.i.d.
replications. In order to lessen the effects of noisy data, we prevented the birth–death

Table 2 Estimated speed ratios of transitions between the 10th and 90th percentile of the steady-state
distributions, i.e., ω(p) in (4.2) for p = 0.1, in nine G I/G I/1 single-server queues for ρ = 0.975 and
ρ = 0.800, with estimation details only for ρ = 0.975

Speed Ratios of 10th-to-90th Percentile Transitions for G I/G I/1 Single-Server Models

Traffic intensity ρ = 0.975 ρ = 0.800 Approx.

Model E[T (p)], p = 0.1 CI halfwidth ω̄(0.1) ω̄(0.1)
c2
a+c2

s
2

E2/E2/1 True 7,010.2 425.4 0.51 0.63 0.5

E2/E2/1 BD 3,546.3 140.9

E2/M/1 True 10,503.3 969.4 0.77 0.80 0.75

E2/M/1 BD 8,113.6 399.3

M/E2/1 True 10,744.8 1,099.2 0.76 0.81 0.75

M/E2/1 BD 8,181.2 645.5

M/M/1 True 14,048.0 544.9 1.02 1.00 1.00

M/M/1 BD 14,276.8 658.9

E2/H2(2)/1 True 17,223.1 544.7 1.30 1.21 1.25

E2/H2(2)/1 BD 22,373.2 1,883.2

H2(2)/E2/1 True 18,449.3 1,320.7 1.17 1.07 1.25

H2(2)/E2/1 BD 21,481.1 1,573.7

H2(2)/M/1 True 21,846.4 550.3 1.43 1.29 1.50

H2(2)/M/1 BD 31,203.4 2,267.4

M/H2(2)/1 True 22,086.6 1,200.0 1.43 1.40 1.50

M/H2(2)/1 BD 31,613.4 749.6

H2(2)/H2(2)/1 True 30,197.6 2,279.0 1.85 1.74 2.00

H2(2)/H2(2)/1 BD 55,786.8 6,677.6
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process from going above the 99.5 percentile. The process is initialized in steady state
by choosing the initial state from the estimated steady-state distribution. The process
then ran for 16 million transitions. In process (i) and process (ii), the system observes
1 million and 8 million customers, respectively. The simulation concluded when all
customers had been served.

Table 2 shows that approximation (1.2) with (1.3) is well justified for single-server
queues. The estimated speed ratios should be compared to the reference case of 1.00
for the M/M/1 model, where the queue-length process is actually a BD process,
and the proposed approximation in (1.3) is exactly 1. In all cases, we see that the
estimated speed ratio ω̄(0.1) differs from 1 in the right direction. In all cases except
one (the E2/H2(2)/1 model for ρ = 0.975), the approximation in (1.3) slightly
overestimates the difference from 1; i.e., (c2

a + c2
s )/2 overestimates (underestimates)

ω when (c2
a + c2

s )/2 > 1 (< 1).
Of course, it is well known that extremely long simulation runs are required to obtain

accurate estimates of the steady-state performance in single-server queues when the
traffic intensity is close to 1; for example, see [48]. Thus, the example with ρ = 0.975
in Table 2 is problematic. Hence we also include another example with ρ = 0.9 in
Table 3, which still is challenging, but less so. We also more carefully examine the
statistical precision. To do so, we perform 5 independent replications of the previous
simulation experiment with ρ = 0.9 and report the speed ratios for each replication,
and then construct confidence intervals from the 5 independent replications using
the Student t distribution with 4 degrees of freedom. The halfwidth of the confidence
intervals is typically around 1 % with the largest one being less than 3 %. The halfwidth
would be approximately

√
5 ≈ 2.24 times greater for a single replication, as in Table 2.

Next, Table 4 shows corresponding results for G I/G I/s multi-server queues with
s = 40. Many-server queues are more complicated, admitting a greater variety of
behavior, including conventional heavy traffic for any s if the traffic intensity is high
enough (but still less than 1). We again let the mean service time be 1. For s = 40,

Table 3 Estimated speed ratios of transitions between the 10th and 90th percentile of the steady-state
distributions, i.e., ω(p) in (4.2) for p = 0.1, in nine G I/G I/1 single-server queues for ρ = 0.9

Single-server queue, ρ = 0.9

ω1(0.1) ω2(0.1) ω3(0.1) ω4(0.1) ω5(0.1) ω̄(0.1) CI halfwidth
c2
a+c2

s
2

E2/E2/1 0.548 0.555 0.550 0.551 0.551 0.551 0.003 0.500

E2/H2(2)/1 1.270 1.244 1.215 1.266 1.217 1.242 0.032 1.250

E2/M/1 0.770 0.776 0.770 0.766 0.771 0.771 0.005 0.750

H2(2)/E2/1 1.156 1.136 1.168 1.155 1.159 1.155 0.015 1.250

H2(2)/H2(2)/1 1.841 1.894 1.878 1.846 1.902 1.872 0.034 2.000

H2(2)/M/1 1.397 1.384 1.434 1.405 1.390 1.402 0.025 1.500

M/E2/1 0.781 0.773 0.777 0.761 0.773 0.773 0.009 0.750

M/H2(2)/1 1.437 1.495 1.486 1.470 1.484 1.474 0.029 1.500

M/M/1 0.998 1.003 1.013 0.990 0.988 0.998 0.013 1.000
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Table 4 Estimated speed ratios of transitions between the 10th and 90th percentile of the steady-state
distributions, i.e., ω(p) in (4.2) for p = 0.1, in nine G I/G I/40 queues with ρ = 0.975

Speed ratios of 10th-to-90th percentile transitions for G I/G I/40 models

Traffic intensity ρ = 0.975 Approx.

Model E[T (p)], p = 0.1 CI halfwidth ω̄(0.1)
c2
a+c2

s
2

E2/E2/40 True 164.7 6.2 0.53 0.50

E2/E2/40 BD 88.1 3.4

E2/M/40 True 266.9 11.5 0.76 0.75

E2/M/40 BD 201.7 6.9

M/E2/40 True 252.7 11.8 0.78 0.75

M/E2/40 BD 196.6 6.4

M/M/40 True 350.8 36.7 1.00 1.00

M/M/40 BD 351.7 24.9

E2/H2(2)/40 True 461.8 39.8 1.13 1.25

E2/H2(2)/40 BD 519.4 44.4

H2(2)/E2/40 True 427.4 31.0 1.21 1.25

H2(2)/E2/40 BD 515.7 33.6

H2(2)/M/40 True 522.2 34.2 1.47 1.50

H2(2)/M/40 BD 768.3 65.2

M/H2(2)/40 True 536.0 27.4 1.45 1.50

M/H2(2)/40 BD 775.4 82.7

H2(2)/H2(2)/40 True 753.8 56.8 1.81 2.00

H2(2)/H2(2)/40 BD 1, 363.5 104.2

we let the arrival rate be 39, so that the traffic intensity is again ρ = 0.975. As
discussed in [49], the typical traffic intensities in s-server queues tend to increase with
s. Formula (1) of [49] shows that ρ = 0.975 for s = 40 should be roughly equivalent to
ρ = 0.8 for s = 1. That high traffic intensity still supports a conventional heavy-traffic
approximation.

The results in Table 4 are very similar to the previous results in Table 2, once again
showing that approximation (1.2) with (1.3) is well justified. We see that the mean first
passage times are less with 40 servers in Table 4 than for s = 1 in Table 2. That is to
be expected because the arrival rate is approximately 40 times greater when s = 40;
this explains the difference we see.

From many experiments for G I/G I/s queues in the conventional heavy-traffic
regime, like above, we find that ω̄(p) tends to move away from 1 toward (1.3) as p
decreases below 0.5 toward 0. When ρ is suitably large (in the conventional heavy-
traffic regime) and p is suitably small, we find that the speed ratio can be approximated
by (1.3).

For given ρ, we find that the speed ratio approaches 1 as p approaches 0.5. For
given p, we find that the speed ratio approaches (1.3) as ρ increases. For example,
for the H2(2)/M/1 model with ρ = 0.8, the estimated speed ratios for p = 0.1, 0.2,
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0.35, and 0.45 were, respectively, 1.29, 1.25, 1.16, and 1.01. On the other hand, for
ρ = 0.975 all these estimated speed ratios fell in the interval [1.40, 1.50]. Similarly,
for the M/E2/1 model with ρ = 0.8, the estimated speed ratios for p = 0.1, 0.2,
0.35, and 0.45 were, respectively, 0.81, 0.84, 0.92, and 1.00. On the other hand, for
ρ = 0.975 all these estimated speed ratios fell in the interval [0.75, 0.78].

As should be anticipated, given this systematic behavior as ρ increases, we find that
insight can be gained from conventional heavy-traffic theory, which indicates that, if
ρ is sufficiently high, then the stochastic process {Q(t) : t ≥ 0} in the G/G/s model
can be approximated by reflected Brownian motion (a Markov process); we discuss
supporting heavy-traffic theory in Sect. 5.

4.2 Examples in the many-server heavy-traffic regime

To show the importance of the heavy-traffic regime, we illustrate with infinite-server
queues having the same arrival rate λ = 39 as in Table 4. Given that the mean ser-
vice time is fixed at 1/μ = 1, the arrival rate of λ = 39 is already quite large, so
we shift from the conventional heavy-traffic regime to the many-server heavy-traffic
regime as we increase the number of servers. The many-server heavy-traffic regime is
characterized by λ → ∞ and s → ∞ with fixed μ such that

√
s(1 − ρ) → β < ∞;

see [21,31,35,51]. The essential character is seen by considering s = ∞. (It can be
important to consider subcases, but we do not do so here.)

Table 5 shows the results of the simulation experiment in the infinite-server cases.
First, we see that the mean first passage times between the percentiles are less in
Table 5 than in Table 4, even though the arrival rate is λ = 39 in both cases. That can
be explained because the steady-state distribution is more concentrated (less variable)
with infinitely many servers. The extra servers prevent excursions to very large values.

As before, the estimated speed ratios ω̄(p) differ from 1 as p moves away from 0.5
toward 0. We find that the speed ratios in the infinite-server case do match the formulas
above for the G I/M/∞ models, but not for the other queues with non-exponential
service distributions. For example, for the H2(2)/M/s model with λ = 39 and μ = 1,
we have ω̄(0.1) = 1.49 when s = 40 and 1.39 when s = ∞. In striking contrast, for the
M/H2(2)/s model with λ = 39 and μ = 1, we have ω̄(0.1) = 1.42 when s = 40 and
0.87 when s = ∞. In both cases, approximation (1.3) yields ω = (c2

a + c2
s )/2 = 1.5.

For the M/H2(2)/∞ case, the estimated speed ratio is not close to 1.5, but less than
1, and thus in the wrong direction away from 1.

We do see impressive regularity in Table 5 beyond the G I/M/∞ model for which
approximation (1.3) remains good. More generally, we observe that the estimated
speed ratios ω̄(0.1) are consistently increasing in c2

a but decreasing in c2
s .

For infinite-server queues and associated many-server queues in the many-server
heavy-traffic regime, we again suggest the approximation in (1.2), but with (1.3) only
in the case of G/M/∞ and G/M/s queues. Insight into the good performance of (1.2)
with (1.3) for G/M/∞ and G/M/s queues can be gained from many-server heavy-
traffic limits, indicating that the stochastic process {Q(t) : t ≥ 0} can be approximated
by ρ + √

ρX (t), where ρ ≡ λ/μ and X (t) is an Ornstein-Uhlenbeck (OU) diffusion
process in the infinite-server case; see [45]; we discuss in Sect. 6. We also explain the
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Table 5 Estimated speed ratios of transitions between the 10th and 90th percentile of the steady-state
distributions, i.e., ω(p) in (4.2) for p = 0.1, in nine infinite-server queues with λ = 39 and μ = 1

Speed ratios of 10th-to-90th percentile transitions for G I/G I/∞ models

λ = 39 Approx.

Model E[T (p)], p = 0.1 CI halfwidth ω̄(0.1)
c2
a+c2

s
2

E2/E2/∞ True 7.3 0.02 0.87 0.50

E2/E2/∞ BD 6.4 0.03

E2/M/∞ True 8.5 0.06 0.78 0.75

E2/M/∞ BD 6.6 0.03

M/E2/∞ True 7.4 0.03 1.17 0.75

M/E2/∞ BD 8.7 0.02

M/M/∞ True 8.7 0.01 1.00 1.00

M/M/∞ BD 8.7 0.04

E2/H2(2)/∞ True 9.7 0.07 0.67 1.25

E2/H2(2)/∞ BD 6.5 0.04

H2(2)/E2/∞ True 7.9 0.02 1.74 1.25

H2(2)/E2/∞ BD 13.7 0.17

H2(2)/M/∞ True 9.8 0.02 1.39 1.50

H2(2)/M/∞ BD 13.6 0.06

M/H2(2)/∞ True 10.0 0.07 0.87 1.50

M/H2(2)/∞ BD 8.7 0.07

H2(2)/H2(2)/∞ True 9.6 0.08 1.25 2.00

H2(2)/H2(2)/∞ BD 12.0 0.10

anomalous behavior with non-exponential service times in Sect. 6, which is related to
previous observations, for example, [33,58], and can be explained by the more complex
heavy-traffic limit, which is only Markov when viewed in a higher dimension [32,35].

5 Conventional heavy-traffic approximations

In this section we show that the regularity observed in Sect. 4.1 can be explained by
conventional heavy-traffic (HT) limits for the G I/G I/s model, as in [2,11,24,25,50].
We create a family of rate-λ arrival processes by scaling time in a fixed rate-1 arrival
process A; i.e., we let

Aλ(t) ≡ A(λt), t ≥ 0. (5.1)

We leave the service process unchanged. We assume that the fixed interarrival-time and
service-time distributions have finite variance. We now assume that λ ↑ sμ, where μ

is the fixed individual service rate, so that ρ ≡ ρ(λ) ≡ λ/sμ ↑ 1. Hence, the systems
can be indexed by ρ, where ρ ↑ 1.
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As indicated in Sect. 2.1, it is important to note that the key parameters λ̄, μ̄, ρ̄,
and ω̄ estimated in Table 1, as well as the fitted birth rates λ̄k and the fitted death rates
μ̄k , depend on ρ. (This can be seen by comparing the cases ρ = 0.8 and ρ = 0.9 in
Tables 1 and 6.)

We now need to understand how ρ̄(ρ) ≡ λ̄(ρ)/μ̄(ρ) changes with ρ. For that
purpose, we assume that the geometric tail in (3.7) is valid for each ρ. We also assume
that the estimated rates have limits as k → ∞, i.e.,

λ̄k(ρ) → λ̄(ρ) and μ̄k(ρ) → μ̄(ρ) as k → ∞ for each ρ. (5.2)

The value of the asymptotic relation (3.7) is enhanced by heavy-traffic expansions
given in [2,11], which we assume are valid here as well. We state the one for the
G I/G I/s model from [2]. Let uk and vk be the kth moments of the mean-1 random
variables U/E[U ] = λU and V/E[V ] = μV , where U is a generic interarrival time
and V is a generic service time. Under quite general regularity conditions, as 1−ρ ↓ 0,

σ(ρ) = 1 − 2(1 − ρ)

c2
a + c2

s
+

(
8(ds − da)

(c2
a + c2

s )
3 − 2(c2

a − 1)

(c2
a + c2

s )
2

)

(1 − ρ)2 + O((1 − ρ)3),

(5.3)

where c2
a ≡ u2 − u2

1 = u2 − 1 and c2
s ≡ v2 − v2

1 = v2 − 1 are the squared coefficients
of variation (scv’s, variances divided by the square of the mean) of the interarrival
time λU and service time μV , respectively, while da and ds are parameters based on
the first three moments of λU and μV , namely,

da ≡ u3 − 3c2
a(c2

a + 1) − 1

6
and ds ≡ v3 − 3c2

s (c
2
s + 1) − 1

6
. (5.4)

We thus can combine previous results to obtain the asymptotic behavior of ρ̄(ρ) ≡
λ̄(ρ)/μ̄(ρ), which we regard as the traffic intensity of the fitted BD model.

Theorem 5.1 (HT limit for the fitted traffic intensity of the fitted BD model) If a
family of G/G/s models is created using (5.1), where (5.2), (3.7), and (5.3) are valid,
then

ρ̄(ρ) ≡ λ̄(ρ)

μ̄(ρ)
= σ(ρ) for each ρ, (5.5)

where σ(ρ) is determined by (3.7) and

ω̄(ρ) ≡ 1 − ρ

1 − ρ̄(ρ)
= ω + O(1 − ρ) as ρ ↑ 1. (5.6)

for ω ≡ (c2
a + c2

s )/2 in (1.3).

Proof Combine (1.1) with (3.7) to get (5.5). Then apply (5.3) to get (5.6). ��
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We anticipate that, under regularity conditions, the entire fitted BD process should
have the same HT limit as the queue-length process in an M/M/1 queue with constant
arrival rate λ̄(ρ), constant service rate μ̄(ρ), and traffic intensity ρ̄ ≡ ρ̄(ρ), when we
let ρ̄(ρ) ↑ 1 as ρ ↑ 1 as in (5.6). In addition to (5.2), we now also need an additional
condition, which we formulate in the following conjecture. It is a generalization of
(2.1), which holds for all G I/M/s models by Theorem 3.1.

Conjecture 5.1 (conventional HT limit for fitted birth and death rates) If the con-
ditions of Theorem 5.1 hold, then there exist finite constants λ̇(1−), μ̇(1−) and k0,
depending on the arrival and service processes, such that λ̇(1−) > μ̇(1−),

sup
k:k≥k0

{|λ̄ρ,k − [μs − λ̇(1−)(1 − ρ)]|} = o(1 − ρ) as ρ ↑ 1, and

sup
k:k≥k0

{|μ̄ρ,k − [μs − μ̇(1−)(1 − ρ)]|} = o(1 − ρ) as ρ ↑ 1. (5.7)

The leading term sμ of both functions λ̄ρ,k and μ̄ρ,k in (5.7) is the overall maximum
possible service rate. The notation in (5.7) suggests that the functions λ̄(ρ) and μ̄(ρ)

in (5.2) are differentiable functions of ρ for 0 < ρ < 1, with the derivatives having
finite left limits λ̇(1−) and μ̇(1−) as ρ ↑ 1, which we also conjecture is the case, but
that structure is not required.

We now establish a heavy-traffic limit under the conditions of Conjecture 5.1.
Let D be the standard function space of right-continuous functions on [0,∞) with
left limits everywhere and with the Skorohod topology and let ⇒ denote conver-
gence in distribution in the function space D, as in [50]. Let R ≡ {R(t; a, b) :
t ≥ 0} be a reflected Brownian motion (R B M) with drift coefficient a and diffusion
coefficient b.

Theorem 5.2 (HT limit for fitted BD process) If the conditions and the conclusion of
Conjecture 5.1 hold, then

{(1 − ρ)Q f,ρ((1 − ρ)−2t) : t ≥ 0}
⇒ {R(t;−μs/ω, 2μs) : t ≥ 0} in D as ρ ↑ 1. (5.8)

Proof We do the proof in three steps. First, we do the proof for the case in which

λ̄ρ,k = μs − λ̇(1−)(1 − ρ) and μ̄ρ,k = μs − μ̇(1−)(1 − ρ) for all k

(5.9)

and then in the remaining two steps we show that the limit has to be the same as
under condition (5.9). The condition (5.9) corresponds to a family of M/M/1 models
with the specified arrival and service rates, for which established heavy-traffic limits
in [24,25,50] imply convergence to RBM with drift coefficient −(λ̇(1−) − μ̇(1−))

and variance coefficient 2μs. However, Theorem 5.1 and simple algebra imply that
λ̇(1−) − μ̇(1−) = μs/ω. Hence, we get the limit in (5.8).
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For the second step, we assume that the relation in (5.7) holds for all k, not just
for k ≥ k0. Under this strengthened version of condition (5.7), we can bound the
fitted birth rates and death rates above and below arbitrarily closely, in the sense that,
for any ε > 0, we can find ρ(ε), λ̇L(1−), λ̇U (1−), μ̇L(1−), and μ̇U (1−) such that
0 ≤ ρ(ε) < 1, λ̇U (1−) − λ̇L(1−) < ε, μ̇U (1−) − μ̇L(1−) < ε,

sμ − λ̇U (1−)(1 − ρ) ≤ λ̄ρ,k ≤ sμ − λ̇L(1−)(1 − ρ) and

sμ − μ̇U (1−)(1 − ρ) ≤ μ̄ρ,k ≤ sμ − μ̇L(1−)(1 − ρ)

for all k ≥ 1 and ρ > ρ(ε). (5.10)

We can then construct upper and lower bounds for the family of BD processes
Q f,ρ(t) in sample path stochastic order; i.e., we can construct three processes Q̃ f,ρ(t),
Q̃ f,ρ,L(t), and Q̃ f,ρ,U (t) such that

Q̃ f,ρ,L(t) ≤ Q̃ f,ρ(t) ≤ Q̃ f,ρ,U (t) for all t w. p. 1,

where all three processes have the proper distributions as BD processes, with {Q̃ f,ρ(t) :
t ≥ 0} distributed the same as {Q f,ρ(t) : t ≥ 0}. This is done by generating all transi-
tions from common Poisson processes. We let higher processes have births whenever
lower ones do; we let lower processes have deaths whenever higher processes do;
in this way the sample paths stay ordered. By choosing ε suitably small, the three
processes can be made to have identical sample paths over any finite interval [0, t]
with probability arbitrarily close to 1. As in [43], the upper-bound BD process has
the upper-bound birth rates sμ − λ̇L(1−)(1 − ρ) and the lower-bound death rates
sμ − μ̇U (1−)(1 − ρ), while the lower-bound BD process has the lower-bound birth
rates sμ − λ̇U (1−)(1 − ρ) and the upper-bound death rates sμ − μ̇L(1−)(1 − ρ).
These bounding BD processes satisfy the assumptions of the first part, but with dif-
ferent parameters, and so have heavy-traffic limits. By letting ε ↓ 0, we can sandwich
the process Q̃ f,ρ(t) between these bounding processes and obtain the limit in the first
step.

For the third step, we observe that the limit under condition (5.7) must be the
same as in the first two steps because the processes Q(t) and Qf(t) spend asymp-
totically negligible time in the states with k ≤ k0. The space scaling thus makes
the difference asymptotically negligible; i.e., we can apply the “convergence-together
theorem,” Theorem 11.4.7 of [50]. ��

Recall from [25] that the heavy-traffic limit of the scaled queue-length process in
the G/G/s model is

{(1−ρ)Q((1−ρ)−2t) : t ≥0} ⇒ {ωR(t;−sμ, 2sμω) : t ≥ 0} in D, (5.11)

which differs from (5.8) by having the variability parameter ω as part of the diffusion
coefficient instead of part of the drift.

We now show that these approximating RBM’s can be related as in (1.2). To see this
directly, it is convenient to rescale these limiting RBM’s to canonical RBM’s (with
drift coefficient −1 and diffusion coefficient 1), for example, using (25) of [48].
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Corollary 5.1 (simple time transformation) The two approximating RBM’s in (5.8)
and (5.11) correspond to the following scaled canonical RBM’s:

{R(t;−μs/ω, 2μs) : t ≥ 0} d= {2ωR(μst/(2ω2);−1, 1) : t ≥ 0} and

{ωR(t;−sμ, 2sμω) : t ≥ 0} d= {2ωR(μst/(2ω);−1, 1)) : t ≥ 0}. (5.12)

The representation (5.12) implies that the two RBM’s have a common exponential
steady-state distribution with mean ω and that, under the conditions of Theorem 5.2,
the simple time transformation in (1.2) is asymptotically correct (in distribution) in
the heavy-traffic limit.

Proof Since R B M(t;−a, b) with a, b > 0 has an exponential steady-state distribu-
tion with mean b/2a, the RBM’s in (5.8), (5.11), and (5.12) all have an exponential
steady-state distribution with mean ω, consistent with the fact the the fitted BD process
must have the same steady-state distribution as the original queue-length process. For
the transient behavior, we see that the two RBM’s in (5.12) are identical except that
the RBM limit for the fitted BD process has an extra ω in the denominator of the time
scaling. ��

We have numerically studied this effect via the speed ratios. Let Tρ(p) be the first
passage time from percentile p of the stationary distribution to percentile 1 − p of
the stationary distribution and then back in the original model, and let T f,ρ(p) be the
corresponding round-trip first passage time in the fitted BD process. We can apply the
limits in (5.8) and (5.11) with (5.12) to obtain corresponding limits for the first passage
times and then the speed ratios. The results above immediately imply the following
corollary.

Corollary 5.2 (HT limit for the speed ratios) If the limits in (5.8) and (5.11) hold,
then

T f,ρ(p)

Tρ(p)
⇒ c2

a + c2
s

2
≡ ω as ρ ↑ 1 (5.13)

and, assuming associated uniform integrability,

E[T f,ρ(p)]
E[Tρ(p)] → c2

a + c2
s

2
≡ ω as ρ ↑ 1 (5.14)

for all p with 0 < p < 1/2 as ρ ↑ 1.

Proof We can establish limits for the first passage times of each process separately
using the standard continuous mapping theorem argument, provided that the state
space is scaled consistently with the HT scaling; see Sect. 5.7.5 of [50]. We achieve
that scaling of the state space by looking at the first passage times between percentiles
of the stationary distribution, which is the same for both processes. ��

We conclude this section by giving two numerical examples.
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Example 5.1 (the case of M/H2/1) We now illustrate by considering the M/H2/1
model with λ = 0.8, μ = 1, and an H2 service-time cdf Fs(x) with scv c2

s = 2 and
balanced means. For this model, the steady-state distribution is given by the Pollaczek-
Khintchine generating function; see Sect. 5.8 of [13]. The mean has the well-known
explicit form E[Q(∞)] = ρ + (ρ2(c2

s + 1)/2(1 − ρ)). For M/M/1 the mean is 4.8;
for M/H2/1 with c2

s = 2, the mean is 5.6. For M/H2/1, αk decays somewhat more
slowly.

We simulated this M/H2/1 model. The estimated birth rates are essentially exact,
fitting a constant function well, while the estimated death rates were μ̄1 = 1.181, μ̄2 =
1.072, μ̄3 = 0.999, μ̄4 = 0.965 and μ̄k approaching the constant value of about 0.925.
Thus, the estimated value of σ in Theorem 3.5 is λ̄k/μ̄k+1 ≈ 0.8/0.925 ≈ 0.865,
which is consistent with the first term in the heavy-traffic approximation, 0.867.

Example 5.2 (the case of M/H2/40) We also illustrate an example with s > 1 by
considering the M/H2/40 model with λ = 39, μ = 1, and the same H2 service-
time cdf as in Example 5.1. Here ρ = 39/40 = 0.975. we simulated this M/H2/40
model, as described in the next section. Our simulation experiment confirms that the
fitted birth rates are exact. Over the region most frequently visited, i.e., [20, 100],
the death rates μ̄k(∞) were first slightly greater than the corresponding M/M/s
death rates but then eventually lower, with the crossover point being k = 52. For
example, μ̄30(∞) = 30.31 > 30, μ̄35(∞) = 35.59 > 35, μ̄40(∞) = 40.318 > 40
with a peak at μ̄42(∞) = 40.758 and then steadily but gradually declining with
μ̄52(∞) ≈ 40.000 and approaching μ̄k(∞) = 39.67 for large k. Thus, the estimated
value of σ in Theorem 3.5 is λ̄k(∞)/μ̄k+1(∞) ≈ 39.0/39.67 ≈ 0.9831, which is
consistent with the first term in the heavy-traffic approximation, 0.9833.

6 Heavy-traffic approximations for infinite-server models

We now discuss the results for infinite-server queues in Table 5.

6.1 Heavy-traffic limit for the fitted BD process

We have seen that the fitted birth and death rates in a G I/G I/∞ infinite-server model
tend to have, at least approximately, the structure in equations (2.3) and (2.5). To
gain insight, we establish many-server heavy-traffic limits for such BD processes. Let
{Qn(t) : t ≥ 0} be the BD stochastic process as a function of n, n ≥ 1, and consider
the scaled stochastic processes defined by

Q̂n(t) ≡ n−1/2(Qn(t) − n), t ≥ 0, n ≥ 1. (6.1)

Theorem 6.1 (HT limit for BD processes with asymptotically linear birth rate) Con-
sider a sequence of fitted BD processes associated with a G I/G I/∞ model indexed
by the arrival rate n, satisfying Conjectures 2.1 and 2.2, which includes the special
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case in (2.3) and (2.5). If

Q̂n(0) ⇒ L in R as n → ∞, (6.2)

where P(L < ∞) =1, then

{Q̂n(t) : t ≥ 0} ⇒ {OU (t; 1 − b, 2) : t ≥ 0} in D, (6.3)

where OU (0)
d= L and {OU (t; 1 − b, 2) : t ≥ 0} is an Ornstein-Uhlenbeck (OU)

diffusion process evolving independently conditional on OU (0), with drift function
μ(x) = −(1 − b)x and diffusion function σ 2(x) = σ 2 = 2, which has a Gaussian
steady-state distribution with mean 0 and variance 1/(1 − b).

Proof We follow the approach used by Iglehart [23] for the M/M/∞ model and
apply the limit theorem for BD processes developed by Stone [40]. To apply that
theorem here, it suffices to show that the infinitesimal means and variances of the BD
processes converge to the drift and diffusion functions of the OU diffusion process.
For the infinitesimal mean, let xn be a possible value of Q̂n(t) such that xn → x as
n → ∞. Then

mn(xn) ≡ lim
h→0

E[(Q̂n(t + h) − Q̂n(t))/h|Q̂n(t) = xn]
= lim

h→0
E[(Qn(t + h) − Qn(t))/h

√
n|Qn(t) = n + √

nxn]

= λn,n+√
nxn

− μn+√
nxn√

n

= n + b(n + √
nxn − n) − (n + √

nxn) + o(
√

n)√
n

= (b − 1)xn + o(1) → (b − 1)x as n → ∞. (6.4)

For the infinitesimal variance,

σ 2
n (xn) ≡ lim

h→0
E[(Q̂n(t + h) − Q̂n(t))2/h|Q̂n(t) = xn]

= lim
h→0

E[(Qn(t + h) − Qn(t))2/hn|Qn(t) = n + √
nxn]

= λn,n+√
nxn

+ μn+√
nxn

n

= n + b(n + √
nxn − n) + (n + √

nxn) + o(
√

n)

n
→ 2 as n → ∞.

(6.5)

It is well known that the steady-state distribution of the OU process is Gaussian with
mean 0 and variance σ 2/2|μ|, which here takes the value 1/(1 − b). ��
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Corollary 6.1 (identifying the constant b) To have the same steady-state distribution
as the G I/M/∞ model, the drift of the limiting OU process in Theorem 6.1 must be
μ(x) = −1/ω, where ω ≡ (c2

a + 1)/2 is the speed ratio.

Proof Theorem 1 of [45] implies that the HT limit for the G I/M/∞ model is also an
OU process with mean 0 but variance equal to ω ≡ (c2

a + 1)/2. Since the steady-state
distribution of the fitted BD process coincides with the steady-state distribution of the
G I/M/∞ model as the sample size increases, if the birth rates are as in (2.5), then
we must have

1

1 − b
= ω or b − 1 = 1

ω
= 2

c2
a + 1

. (6.6)

��

Since the speed ratio is defined in terms of the first passage times, we need to
exploit associated HT limits for the first passage times. We first need to establish a
corresponding limit for the steady-state distributions.

Theorem 6.2 (HT limit for steady-state distributions) Under the conditions of Theo-
rem 6.1,

Q̂n(t) ⇒ Q̂n(∞) in R as t → ∞, (6.7)

where Q̂n(∞) is a proper random variable for each n and

Q̂n(∞) ⇒ OU (∞; 1 − b, 2)
d= N (0, 1/(1 − b)) in R as n → ∞. (6.8)

Proof We follow the argument used to prove Theorem 2 of [45]. We first prove that
(6.7) holds and show that the sequence {Q̂n(∞) : n ≥ 1} is tight. We give a detailed
derivation under the simplified structure in (2.3) and (2.5). The same conclusions can
be shown to hold under Conjectures 2.1 and 2.2. Toward that end, note that, from (2.5)
and (2.3), the stochastic process |Qn(t)−n| is directly a BD process on the nonnegative
integers for each n with birth rate bn,k ≡ n + bk and death rate dn,k ≡ n + k, where
−∞ < b < 1, so that we can directly calculate its steady-state distribution using the
familiar BD formulas

αn,k ≡ lim
t→∞ P(Qn(t) = k) = rn,k

∑∞
j=0 rn, j

, (6.9)

where rn,0 ≡ 1 and

rn,k = bn,0 × · · · × bn,k−1

dn,1 × · · · × dn,k
= n(n + b) × · · · × (n + k − 1)

(n + 1) × · · · × (n + k)
(6.10)
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for k ≥ 1. Hence,

loge rn,k =
k−1∑

j=0

loge (1 + ( jb/n)) −
k∑

j=1

loge (1 + ( j/n)), (6.11)

so that

loge rn, k ∼
k−1∑

j=0

( jb/n) −
k∑

j=1

( j/n) = b(k − 1)k

2n
− k(k + 1)

2n
as n → ∞

(6.12)

and

rn,c
√

n ∼ e−(1−b)c2/2 for b < 1. (6.13)

From (6.13), we can deduce that |Qn(t)−n| has a proper steady-state limit |Qn(∞)−n|
for all n sufficiently large, and that the sequence {n−1/2|Qn(∞) − n| : n ≥ 1} is tight
in R. That implies that the sequence {Q̂n(∞) : n ≥ 1} is tight. By symmetry, we see
that Qn(t)−n has a steady-state distribution for each n, which implies that Qn(t) does
as well. From the tightness of {Q̂n(∞) : n ≥ 1}, we know that there is a convergent
subsequence. We consider such a convergent subsequence and make those terms the
initial values Q̂n(0) in (6.2). Those initial values make the scaled BD processes strictly
stationary processes for each n. However, we can also invoke Theorem 6.1. That allows
us to identify the limit of the convergent subsequence of {Q̂n(∞) : n ≥ 1}. Since every
convergent subsequence must have that same limit, we actually have convergence, i.e.,
we have proved (6.8). ��

Again, let Tp be the round-trip first passage time from the pth percentile of the
steady-state distribution to the (1 − p)th percentile and back. Just as for Corollary 5.2
in the conventional heavy-traffic regime, the asymptotics for the speed ratio here in
the many-server heavy-traffic regime depend on key differences in the heavy-traffic
diffusion stochastic-process limits for the fitted BD process and the original queue-
ing process. We have already observed that both limit processes are OU diffusion
processes, but the parameters of those OU processes are different. For the fitted BD
process, the drift and diffusion parameters were −(1 − b) = −2/(1 + c2

a) and 2,
respectively. From Theorem 1 of [45], we see that for the original G I/M/∞ queue-
length process, both of these parameters are multiplied by ω ≡ (1 + c2

a)/2; the drift
and diffusion parameters G I/M/∞ queue-length process are −1 and (1 + c2

a). This
change makes the asymptotic value of the speed ratio ω, as we now show.

Corollary 6.2 Under the conditions of Theorem (6.1),

Tp(Qn) ⇒ Tp(OU ) in R as n → ∞, (6.14)
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where Qn is the BD process with the fitted rates in (2.5) and (2.3), OU ≡ {OU (t; 1−
b, 2) : t ≥ 0} and

E[Tp(OU (·, μ, σ 2)] = E[Tp(OU (·, 1, 2))]
1 − b

. (6.15)

As a consequence, the speed ratios in the G/M/∞ model satisfy

ωn → ω ≡ c2
a + 1

2
as n → ∞.

Proof By Theorem 6.2, the steady-state distributions converge. Hence, the percentiles
of the scaled process converge to the percentiles of the limit process. Thus, the limit in
(6.14) follows from the continuous mapping theorem, as on p. 447 of [50]. Equation
(6.15) follows from [10]; see also (2.3) of [41]. By focusing on the first passage
times from one percentile to another, we automatically achieve the space and time
transformation in (3.4)–(3.7) of [10]. ��

6.2 Supporting theory for M/G I/∞ models

We now discuss the anomalous behavior observed in Table 5 for the M/G I/∞ models.
First, Theorem 3.4 implies for M/G I/∞ models that the birth and death rates coincide
with those in the associated M/M/∞ BD model. In contrast, for the G I/G I/s model
in the conventional heavy-traffic regime, the mean steady-state number in the system
tends to be directly proportional to the speed ratio ω = (c2

a +c2
s )/2. Thus, the distance

between the percentiles of the steady-state distribution is radically different for the
M/G I/∞ model.

The transient behavior of the M/G I/∞ model with large arrival rate is also more
complicated than for the other models. For the G I/M/∞ model and for the G I/G I/s
model in the conventional heavy-traffic regime, the heavy-traffic approximations are
Markov processes. In contrast, the transient behavior of the M/G I/∞ model depends
strongly on the elapsed service times (ages) of the customers in service. Simple
approximations are less likely to be effective because the heavy-traffic approximating
processes are not Markov unless the dimension of the state is increased, as shown in
[32,35] and references therein. Our approach based on first passage times does not
keep track of that full expanded state.

Nevertheless, the transient behavior of the M/G I/∞ model can be understood
and approximated, as shown in [17,18], but it leads to a different story. It does not
support approximation (1.2) with (1.3). Suppose that S denotes a service time with
cdf G. First, we have just noted that the percentiles of the stationary distribution are
independent of the service-time distribution beyond its mean. However, as indicated
in Theorem 1 of [18] and Sect. 2 of [17], the transient behavior depends largely on
the service-time cdf G through the stationary-excess cdf associated with G, denoted
by Ge. Let Se denote a random variable with cdf Ge. Then
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Ge(t) ≡ P(Se ≤ t) = 1

E[S]
∫ t

0
P(S > u) du with E[Se] = E[S](1 + c2

s )

2
.

(6.16)

Thus, if c2
s > 1 as for the H2 cdf, E[Se] > E[S], while if c2

s < 1 as for the E2 cdf,
E[Se] < E[S].

Understanding of the transient behavior of these G/G I/∞ infinite-server models is
enhanced by recognizing that new arrivals can be treated separately from old content.
First, suppose that we consider the evolution of the customers in the system, given
that we consider the system in steady state under the condition that we start at a high
percentile of the stationary distribution (for example, the 90th percentile). Theorem 1
[17] implies that the remaining service times of the customers in service are distributed
as i.i.d. random variables distributed according to Se. This implies that if the service-
time distribution is H2 with c2

s > 1, then the time for the excess number of customers
to depart will tend to be longer than if the service time were exponential. If we start
with n busy servers, then the mean number of these servers still busy with the same
customers at time t is nGe(t). These results indicate that, from this perspective, the
transient behavior of the M/G I/∞ model with H2 service will be slower than if the
service time were exponential, consistent with our simulation results.

Now consider the new arrivals, starting empty. That is unambiguously defined with
a Poisson arrival process. The mean number of busy servers (which coincides with the
number of customers in the system) increases toward its steady-state limit λE[S]. As
shown in (20) of [18], the expected proportion of this mean achieved by time t turns
out be equal to Ge(t). Since this cdf has mean E[Se] = E[S](c2

s + 1)/2, we see that
the mean increases more slowly than would be the case if c2

s = 1.
This analysis of the M/G I/∞ model does not apply directly to the first passage

times, which tend to depend on the ages of the customers in service. Nevertheless, this
analysis leads to the conclusion that, roughly, the process Q(t) with H2 service moves
more slowly than the corresponding process with M service by a factor of (c2

s + 1)/2,
which is exactly the speed ratio in (1.3). That supports approximation (1.2) but with a
speed ratio equal to the reciprocal of the formula in (1.3), which is roughly consistent
with the simulation results in Table 5.

It remains to consider more general G/G I/∞ models. Given research on those
models in [32–34], we anticipate the story will be more complicated.

7 Estimation methods

We now discuss two estimation issues: (i) estimating the speed ratios and (ii) estimating
the birth and death rates of the fitted model.

7.1 Estimating the speed ratios

We clearly can estimate the mean round-trip first passage times E[T (p)] and E[Tf(p)]
in Sect. 4 by the sample averages of successive observed passage times, just as we
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did in the simulation experiments. That leads directly to estimates of the speed ratios
ω(p) in (4.2). However, there is an alternative approach via the arrival and service
counting processes A(t) and S(t) ≡ D(t)/B(t) defined in Sect. 2.1 that allows for
dependence among interarrival times and service times. The key is the observation that
the heavy-traffic limit theorems characterizing the asymptotic speed ratio ω actually
depend on the arrival process through the FCLT for A(t), and similarly for the service
process S(t) when s < ∞; see [25,32].

To account for the dependence, it is natural to work with indices of dispersion, as
in [14,20,39] and Sect. 9.6 of [50]. Given a stationary sequence of interarrival times,
the index of dispersion for intervals (IDI) is defined as

Ii (n) ≡ V ar(U1 + · · · + Un)

nE[Un]2 , n ≥ 1, (7.1)

while the associated index of dispersion for counts (IDC) is defined as

Ic(t) ≡ Var(A(t))

E[A(t)] , t ≥ 0, (7.2)

The heavy-traffic limits correspond to the limiting values, i.e.,

c2
a = lim

n→∞ Ii (n) = lim
t→∞ Ic(t). (7.3)

Similar results hold for c2
s . Hence, we should want to estimate the IDI for relatively

large n and the IDC for relatively large t .

7.2 Rate estimation methods

In this section we discuss ways to enhance the rate estimation.

7.2.1 Piecewise-linear fits

If we are confident that we have a G I/G I/s model, or if we perform a rate estimation
and obtain results as in Sect. 2, we can obtain more reliable estimates for individual
rates if we fit piecewise-linear functions. In particular, for the single-server models
with ρ = 0.8 in Sect. 2.1, we can exploit (2.1) and fit linear or constant functions for
k ≥ s. For s-server models with relatively large s, like 40, we can exploit (2.3) and
(2.5) and fit functions of that piecewise-linear form. For system data, we presumably
do not want to do this initially, because a major goal may be to detect deviations from
the G/G/s model, as discussed in Sect. 2.3.

7.2.2 Smoothing: binomial averaging

More generally, more reliable estimates for individual rates can be obtained using
smoothing techniques. The state-dependent birth and death rates in each state are
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likely to be similar to those in neighboring states. Thus, smoothing can be utilized
to refine the rate estimation and to reduce the amount of data needed to accurately
estimate the birth and death rates. In our simulation experiments, we used very large
sample sizes, but in applications that may not be possible, because the model may
change over different time intervals of each day and over different days; for example,
see [27].

In our simulation experiments we investigated various smoothing methods. We
remark that we found binomial averaging to be an effective smoothing method. Let
r̄k be the directly estimated rate at state k (birth or death). The binomial average r̄∗

k is
obtained as a binomial average of the rates r̄ j in an interval of states centered at k. In
particular, for k ≥ m, we used binomial probability weights b(k; 2m, p) for p = 1/2;
i.e.,

r̄∗
k =

2m∑

j=0

(2m!/j !(2m − j)!)(1/2)2mr̄k−m+ j . (7.4)

We found that binomial averaging with m = 5 reduced the amount of data needed for
good rate estimates by as much as a factor of three.

8 Conclusions

In this paper we studied the birth-and-death (BD) process obtained by directly fitting
it to data from a queue-length process over a finite interval [0, t], in the usual manner
as if the process were a BD process, but without performing any statistical tests. The
intended application is to data obtained from a complex queueing system, such as a
hospital ward, as in Sect. 3 of [3], or a computer system, as was done with operational
analysis in [8,9,15].

We started in Sect. 2 by reporting results from extensive simulation experiments
fitting BD processes to data from G I/G I/s queueing systems. Figures 1, 2 and 3 show
that the rates have consistent structure, as summarized in (2.1), (2.3), and (2.5). In Sect.
2.3 we observed that this consistency should help detect departures from the standard
s-server model, for example, due to customer balking, customer abandonment from
the queue and a variable number of servers. In Sect. 3 we also established theoretical
results about the fitted birth and death rates for G I/G I/s models.

The main focus of the paper was on the transient behavior of the BD process. In
particular, we focused on the round-trip first passage times from percentile p of the
stationary distribution to percentile 1 − p and back. In Sect. 4 we reported simu-
lation results showing that, even though the steady-state behavior of the fitted BD
process is the same as for the original process, the transient behavior of the fitted BD
process can be quite different, amplifying the point made in [46]. Extensive simulation
experiments showed that the ratio of the long-run average first passage times exhibits
remarkably regularity as the traffic intensity ρ increases and p decreases. That led to
the definition of the p-speed ratio defined in (4.2) and the associated one-dimensional
process approximation in (1.2) and (1.3).
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In Sects. 5 and 6 we provided strong mathematical support for the speed ratio
approximation in (1.2) and (1.3). The connection was established in both conventional
and many-server (for M service) heavy-traffic limits, as in Corollaries 5.1, 5.2, and
6.2. It is significant that the stochastic-process limits for the fitted BD process and
the underlying queueing process differ in a systematic way, as exposed in Sects. 5
and 6, and as summarized in (1.2) and (1.3). The theory shows that the non-Markov
variability in the original queue-length process captured by the diffusion coefficient in
its limiting diffusion process is transformed to the drift of the diffusion process limit
of the fitted BD process. This transformation is constrained by the requirement that it
must leave the steady-state distribution unchanged. It is also significant that the speed
ratio in (1.3) coincides with the variability parameter in these conventional heavy-
traffic limits, and so can be estimated in settings for which the common independence
assumptions are in doubt using indices of dispersion, as suggested much earlier by
[14,20,39]; see Sect. 9.6 of [50] and Sect. 7.1 here.

Consistent with heavy-traffic theory, we found that the speed ratio is very different
for G I/G I/s queues having large (s, λ) and non-exponential service-time distribu-
tions. The difficulties can be understood because the established many-server heavy-
traffic limits for the queue-length process with non-exponential service-time distrib-
utions are non-Markov processes, which only can be related to Markov processes by
increasing the dimension, as in [32,35]. The very different behavior can be understood
by considering the M/G I/∞ model, as discussed in Sect. 6.2.

There are many remaining problems: First, it remains to establish stronger results
about the asymptotic behavior of the estimated rates λ̄k and μ̄k , both as k → ∞ and
as ρ increases. Specific conjectures have been stated in Conjectures 2.1, 2.2, and 5.1.
Second, it remains to extend the heavy-traffic limits established in Sects. 5 and 6 to
such more general estimated rates, as in the power-tail case in (3.8) and (3.10). All
the results in Sect. 5 depend on the asymptotic geometric tail assumed in (3.7) and its
associated heavy-traffic expansion in (5.3). It remains to explore what happens when
these conditions are not satisfied.

It remains to investigate fitted BD processes for other models. We ourselves have
started studying queueing models with periodic arrival rates that still have dynamic
steady-state distributions [16]; supporting work appears in [55,56]. It remains to study
the method applied to queueing system data.

Acknowledgments This research was begun while the first author was an undergraduate in the IEOR
Department at Columbia University. The second author acknowledges support from NSF Grants CMMI
1066372 and 1265070.

Appendix: Additional simulation results for the G I/G I/1 queue

We now supplement Fig. 1 and Table 1 in Sect. 2.1, which display estimated birth rates
λ̄k and estimated death rates μ̄k for several G I/G I/1 queues with traffic intensity
ρ = 0.8. Here Fig. 6 and Table 6 show the corresponding estimates of birth and death
rates for ρ = 0.9.

As in Sect. 2.1, we estimated the rates from 30 independent replications of 1 mil-
lion customers. This large sample size is sufficient for 95 % confidence intervals of the
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Fig. 6 Fitted birth rates λ̄k (left) and death rates μ̄k (right) for nine G I/G I/1 models with ρ = λ = 0.9
and μ = 1

Table 6 Estimates of the asymptotic fitted birth rate λ̄, death rate μ̄, traffic intensity ρ̄ and speed ratio ω̄

via (2.2) for the nine G I/G I/1 models with ρ = 0.9 in Fig. 6

Model λ̄ μ̄ ρ̄ ω̄ ω ≡ (c2
a

+c2
s )/2

E2/E2/1 0.8529 ± 0.0010 1.0530 ± 0.0015 0.8100 ± 0.0021 0.5266 ± 0.0058 0.500

E2/M/1 0.8688 ± 0.0004 0.9997 ± 0.0008 0.8690 ± 0.0010 0.7638 ± 0.0060 0.750

E2/H2/1 0.8812 ± 0.0006 0.9578 ± 0.0012 0.9205 ± 0.0010 1.2592 ± 0.0149 1.250

M/E2/1 0.8998 ± 0.0008 1.0348 ± 0.0009 0.8693 ± 0.0009 0.7654 ± 0.0053 0.750

M/M/1 0.8997 ± 0.0004 0.9998 ± 0.0006 0.8998 ± 0.0009 0.9983 ± 0.0085 1.000

M/H2/1 0.8999 ± 0.0007 0.9662 ± 0.0022 0.9323 ± 0.0014 1.4803 ± 0.0296 1.500

H2/E2/1 0.9373 ± 0.0004 1.0213 ± 0.0005 0.9177 ± 0.0007 1.2151 ± 0.0103 1.250

H2/M/1 0.9308 ± 0.0006 0.9997 ± 0.0005 0.9311 ± 0.0007 1.4517 ± 0.0146 1.500

H2/H2/1 0.9233 ± 0.0008 0.9757 ± 0.0028 0.9474 ± 0.0013 1.9068 ± 0.0444 2.000

Fig. 7 Estimated steady-state probabilities ᾱk (left) and their logarithms loge ᾱk (right) for nine G I/G I/1
models with ρ = λ = 0.9 and μ = 1

state-dependent rates to be within 1 % of the rates for states k with steady-state prob-
ability αk ≥ 0.01.

Paralleling Fig. 4 in Sect. 3.3, we also estimated the steady-state queue-length
probabilities αk and their logarithms. The statistical precision is less with the higher

123



424 Queueing Syst (2015) 79:391–426

traffic intensity ρ = 0.9 instead of ρ = 0.8, as expected from [48]. To illustrate,
the estimate of α10 in the H2/M/1 model with ρ = 0.9 was ᾱ10 = 0.03251. The
sample standard deviation from the 30 replications was 0.000351. Using the Student
t distribution with 29 degrees of freedom, the t value for a two-sided 95 % confidence
interval is 2.045. Thus, the halfwidth of the 95 % confidence interval is (2.045 ×
0.000351)/

√
30 = 0.37340 × 0.000351 = 0.000131, which is less than 0.5 % of the

estimated value (Fig. 7).
This is contrasted with the case with traffic intensity ρ = 0.8. The estimate of α10

in the H2(2)/M/1 model with ρ = 0.8 was ᾱ10 = 0.02839. The sample standard
deviation from the 30 replications was 0.000282. Using the procedure as above, the
halfwidth of the 95 % confidence interval was found to be 0.000105, which is less
than 0.4 % of the estimated value, about 0.37 %.

References

1. Abate, J., Choudhury, G.L., Whitt, W.: Waiting-time tail probabilities in queues with long-tail service-
time distributions. Queueing Syst. 16, 311–338 (1994)

2. Abate, J., Whitt, W.: A heavy-traffic expansion for the asymptotic decay rates of tail probabilities in
multi-channel queues. Op. Res. Lett. 15, 223–230 (1994)

3. Armony, M., Israelit, S., Mandelbaum, A., Marmor, Y., Tseytlin, Y., Yom-Tov, G.: Patient flow in
hospitals: a data-based queueing-science perspective. New York University. Available at http://ie.
technion.ac.il/serveng/References/ (2014). Accessed 19 Oct 2014

4. Bhat, U.N., Miller, G.K., Rao, S.S.: Statistical analysis of queueing systems. In: Dshalalow, J.H. (ed.)
Frontiers in Queueing Theory, pp. 351–394. CRC Press, Boca Raton, FL (1997)

5. Billingsley, P.: Statistical Inference for Markov Processes. University of Chicago Press, Chicago (1961)
6. Bohlin, T.: Practical Grey-Box Process Identification. Springer, London (2006)
7. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statistical analysis

of a telephone call center: a queueing-science perspective. J. Am. Stat. Assoc. 100, 36–50 (2005)
8. Buzen, J.: Fundamental operational laws of computer system performance. Acta Inform. 14, 167–182

(1976)
9. Buzen, J.: Operational analysis: an alternative to stochastic modeling. In: Ferarri, D. (ed.) Performance

of Computer Installations, pp. 175–194. North Holland, Amsterdam (1978)
10. Cerbone, G., Ricciardi, L.M., Sacerdote, L.: Mean, variance and the skewness of the first passage time

for the Ornstein–Uhlenbeck process. Cybern. Syst. 14(2), 395–429 (1981)
11. Choudhury, G.L., Whitt, W.: Heavy-traffic asymptotic expansions for the asymptotic decay rates in the

B M AP/G/1 queue. Stoch. Models 10(2), 453–498 (1994)
12. Cohen, J.W.: Some results on regular variation for distributions in queueing and fluctuation theory. J.

Appl. Probab. 10(2), 343–353 (1973)
13. Cooper, R.B.: Introduction to Queueing Theory, 2nd edn. North Holland, Amsterdam (1982)
14. Cox, D.R., Lewis, P.A.W.: The Statistical Analysis of Series of Events. Methuen, London (1966)
15. Denning, P.J., Buzen, P.J.: The operational analysis of queueing network models. Comput. Surv. 10,

225–261 (1978)
16. Dong, J., Whitt, W.: Stationary birth-and-death processes fit to queues with periodic arrival rate func-

tions. In preparation (2014)
17. Duffield, N.G., Whitt, W.: Control and recovery from rare congestion events in a large multi-server

system. Queueing Syst. 26, 69–104 (1997)
18. Eick, S.G., Massey, W.A., Whitt, W.: The physics of the Mt /G/∞ queue. Oper. Res. 41, 731–742

(1993)
19. El-Taha, M., Stidham, S.: Sample-Path Analysis of Queueing Systems. Kluwer, Boston (1999)
20. Fendick, K.W., Whitt, W.: Measurements and approximations to describe the offered traffic and predict

the average workload in a single-server queue. Proc. IEEE 71(1), 171–194 (1989)
21. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Op. Res. 29(3),

567–588 (1981)

123

http://ie.technion.ac.il/serveng/References/
http://ie.technion.ac.il/serveng/References/


Queueing Syst (2015) 79:391–426 425

22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New
York (2009)

23. Iglehart, D.L.: Limit diffusion approximations for the many-server queue and the repairman problem.
J. Appl. Probab. 2, 429–441 (1965)

24. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic. I. Adv. Appl. Probab. 2(1), 150–177
(1970)

25. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic, II: sequences, networks and batches.
Adv. Appl. Probab. 2(2), 355–369 (1970)

26. Keiding, N.: Maximum likelihood estimation in the birth-and-death process. Ann. Stat. 3, 363–372
(1975)

27. Kim, S., Whitt, W.: Are call center and hospital arrivals well modeled by nonhomogeneous Poisson
processes? Manuf. Serv. Op. Manag. 16(3), 464–480 (2014)

28. Kim, S., Whitt, W.: Choosing arrival process models for service systems: tests of a nonhomogeneous
Poisson process. Nav. Res. Logist. 17, 307–318 (2014)

29. Kristensen, N.R., Madsen, H., Jorgensen, S.B.: Parameter estimation in stochastic grey-box models.
Automatica 40(2), 225–237 (2004)

30. Pakes, A.G.: On the tails of waiting-time distributions. J. Appl. Probab. 12, 555–564 (1975)
31. Pang, G., Talreja, R., Whitt, W.: Martingale proofs of many-server heavy-traffic limits for Markovian

queues. Probab. Surv. 4, 193–267 (2007)
32. Pang, G., Whitt, W.: Two-parameter heavy-traffic limits for infinite-server queues. Queueing Syst. 65,

325–364 (2010)
33. Pang, G., Whitt, W.: The impact of dependent service times on large-scale service systems. Manuf.

Serv. Op. Manag. 14(2), 262–278 (2012)
34. Pang, G., Whitt, W.: Two-parameter heavy-traffic limits for infinite-server queues with dependent

service times. Queueing Syst. 73(2), 119–146 (2013)
35. Puhalskii, A.A., Reiman, M.I.: The multiclass G I/P H/N queue in the Halfin–Whitt regime. Adv.

Appl. Probab. 32, 564–595 (2000)
36. Ross, J.V., Taimre, T., Pollett, P.K.: Estimation for queues from queue-length data. Queueing Syst. 55,

131–138 (2007)
37. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley, New York (1996)
38. Sigman, K.: Stationary Marked Point Processes: An Intuitive Approach. Chapman and Hall/CRC, New

York (1995)
39. Sriram, K., Whitt, W.: Characterizing superposition arrival processes in packet multiplexers for voice

and data. IEEE J. Sel. Areas Commun. SAC–4(6), 833–846 (1986)
40. Stone, C.J.: Limit theorems for random walks, birth and death processes and diffusion processes. Ill.

J. Math. 4, 638–660 (1963)
41. Thomas, M.U.: Some mean first-passage time approximations for the Ornstein–Uhlenbeck process. J.

Appl. Probab. 12(3), 600–604 (1975)
42. Vasilakis, C., Marshall, A.H.: Modelling nationwide hospital length of stay: opening the black box. J.

Op. Res. Soc. 56(3), 862–869 (2005)
43. Whitt, W.: Comparing counting processes and queues. Adv. Appl. Probab. 13, 207–220 (1981)
44. Whitt, W.: Approximating a point process by a renewal process: two basic methods. Op. Res. 30,

125–147 (1982)
45. Whitt, W.: On the heavy-traffic limit theorem for G I/G/∞ queue. Adv. Appl. Probab. 14(1), 171–190

(1982)
46. Whitt, W.: Untold horrors of the waiting room. What the equilibrium distribution will never tell about

the queue-length process. Manag. Sci. 29(4), 395–408 (1983)
47. Whitt, W.: Departures from a queue with many busy servers. Math. Op. Res. 9(4), 534–544 (1984)
48. Whitt, W.: Planning queueing simulations. Manag. Sci. 35(11), 1341–1366 (1989)
49. Whitt, W.: Understanding the efficiency of multi-server service systems. Manag. Sci. 38(5), 708–723

(1992)
50. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)
51. Whitt, W.: A diffusion approximation for the G/G I/n/m queue. Op. Res. 52(6), 922–941 (2004)
52. Whitt, W.: Engineering solution of a basic call-center model. Manag. Sci. 51, 221–235 (2005)
53. Whitt, W.: Staffing a call center with uncertain arrival rate and absenteeism. Prod. Op. Manag. 15(1),

88–102 (2006)
54. Whitt, W.: Fitting birth-and-death queueing models to data. Stat. Probab. Lett. 82, 998–1004 (2012)

123



426 Queueing Syst (2015) 79:391–426

55. Whitt, W.: Heavy-traffic limits for queues with periodic arrival rates. Op. Res. Lett. 42, 458–461 (2014)
56. Whitt, W.: The steady-state distribution of the Mt /M/∞ queue with a sinusoidal arrival rate function.

Op. Res. Lett. 42, 311–318 (2014)
57. Wolff, R.W.: Problems for statistical inference for birth and death queueing models. Op. Res. 13,

343–357 (1965)
58. Wolff, R.W.: The effect of service-time regularity on system performance. In: Chandy, K.M., Reiser,

M. (eds.) Comput. Perform., pp. 297–304. North-Holland, Amsterdam (1977)
59. Yin, L., Uttamchandani, S., Katz, R.: An empirical exploration of black-box performance models for

storage systems. In: Proceedings of the 14th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, MASCOTS 2006. IEEE, pp. 433–440
(2006)

123


	Stochastic grey-box modeling of queueing systems: fitting birth-and-death processes to data
	Abstract
	1 Introduction
	2 Fitted rates in simulation experiments
	2.1 Single-server queues
	2.2 Many-server models
	2.3 Detecting deviations from the GI/GI/s model

	3 Rate properties
	3.1 GI/M/s models
	3.2 M/GI/s models
	3.3 Tail-probability asymptotics: limits as k rightarrowinfty

	4 Transient behavior: the speed ratio
	4.1 Examples in the conventional heavy-traffic regime
	4.2 Examples in the many-server heavy-traffic regime

	5 Conventional heavy-traffic approximations
	6 Heavy-traffic approximations for infinite-server models
	6.1 Heavy-traffic limit for the fitted BD process
	6.2 Supporting theory for M/GI/infty models

	7 Estimation methods
	7.1 Estimating the speed ratios
	7.2 Rate estimation methods
	7.2.1 Piecewise-linear fits
	7.2.2 Smoothing: binomial averaging


	8 Conclusions
	Acknowledgments
	Appendix: Additional simulation results for the GI/GI/1 queue
	References


