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 Letters to the Editor

 A GUIDE TO THE APPLICATION OF LIMIT THEOREMS

 FOR SEQUENCES OF STOCHASTIC PROCESSES

 Ward Whitt

 Yale University, New Haven, Connecticut

 (Received February 10, 1970)

 This is a bibliography for applications in operations research of the theory
 of weak convergence for sequences of probability measures on function
 spaces. The reasons for using this theory are mentioned, the major issues
 are outlined, and appropriate sources of information are provided.

 R ECENTLY, several stochastic models in operations research have been
 analyzed by considering limit theorems for sequences of stochastic processes

 in the context of the weak convergence theory for sequences of probability measures

 on function spaces. Examples in queuing theory, risk theory, and quality control
 appear in the papers by BOROVKOV (1967), IGLEHART (1965, 1969a,b), IGLEHART
 AND KENNEDY (1969), IGLEHART AND TAYLOR (1968), IGLEHART AND WHIrr

 (1969a,c), and WHITT (1968, 1969b, 1970a). IGLEHART (1967) has also written
 a survey paper that discusses the basic method and its many possible applications.

 The central idea is to use limit theorems for sequences of stochastic processes

 in applications. There are two ways in which this can be done. In the context
 of a sequence of random walks converging to a diffusion process, we can either

 use the limiting diffusion process as an approximation for a random walk, or we
 can use a random walk as an approximation for the limiting diffusion process.

 This example is typical in that a sequence of discrete-state, discrete-time processes

 are converging to a continuous-state, continuous-time process, but other possi-
 bilities can occur. Furthermore, both approaches may be useful. In a control
 problem, we may use stochastic control theory associated with a (continuous)

 diffusion process to approximate the control of a discrete process, or we may use

 dynamic programming associated with a discrete process to approximate the
 control of a continuous process. Recent surveys of the optimal stochastic control

 theory for continuous processes have been written by CHERNOFF (1968) and
 FLEMING (1969).

 Given that we are considering limit theorems for sequences of stochastic
 processes, the central idea is to consider weak convergence for sequences of prob-
 ability measures on function spaces; that is, we look at the stochastic processes as
 measures on function spaces and we consider modes of convergence appropriate

 to measures. Limit theorems for sequences of stochastic processes can be proved
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 1208 Letters to the Editor

 in other ways, but the weak convergence theory is particularly relevant because
 of the continuous mapping theorem [cf. reference 1, Theorems 5.1 and 5.5]. Weak
 convergence of a sequence of stochastic processes implies weak convergence of
 every sequence of stochastic processes or random variables that is obtained by a
 continuous mapping on the function space supporting the original stochastic proc-

 esses. As a by-product, it is usually possible to obtain convergence of all the

 finite-dimensional distributions as well as limits for many related quantities.
 From the point of view of applications, weak convergence is useful, because it is

 thus often possible to obtain convergence for various cost or control features,
 as well as for the underlying probabilistic structure. An example is contained
 in the paper by IGLEHART AND TAYLOR (1968).

 Until recently, it was necessary to refer to rather abstruse papers in order to
 gain access to the weak-convergence theory, but now an excellent account is
 available in the book by BILLINGSLEY (1968); also see PARTHASARATHY (1967),
 and GIKHMAN AND SKOROHOD (1969). However, even these sources are not
 entirely suitable for the more applied researcher, because the path to the applica-
 tions is not as direct as it might be. The purpose of this letter is to provide a
 map leading directly through the main ideas to a position where applications
 of the weak convergence theory can be understood and carried out. We shall not
 provide an exhaustive survey of the weak-convergence theory, but, instead, we shall
 indicate the main points that should be visited on the way to the applications. A
 comprehensive bibliography of the theory has been provided by BILLINGSLEY
 (1968). We shall, however, try to give a comprehensive bibliography of the ap-
 plications of the weak-convergence theory to stochastic models in operations
 research.

 A MAP THROUGH THE WEAK-CONVERGENCE THEORY

 TO THE APPLICATIONS

 (a) Sometimes we refer to random variables and stochastic processes and
 sometimes we refer to the measures they induce. In the case of stochastic processes,
 the measures are induced on a function space. The relation between random
 elements and the measures they induce is discussed in reference 1, pp. 22-24.

 (b) As background to the study of general weak convergence, it is desirable
 to have in mind the possible modes of convergence for a sequence of random varia-
 bles, in particular, convergence in law or in distribution. Useful sources are CHUNG
 (1968, Chapter 4, especially Section 4.4), GNEDENKO AND KOLMOGOROV (1968,
 Section 9), FELLER (1966, Chapter 8), LOEvE (1963, pp. 178, 201), and LAMPERTI
 (1966, Section 12).

 (c) Just as there are several possible modes of convergence for a sequence of
 random variables, so there are also several possible modes of convergence for a
 sequence of stochastic processes; in fact, there are more for stochastic processes.
 The most common modes of convergence are defined and compared in WHITT
 (1968, Section 3.1). It is worth noting that taking limits of sequences of stochastic
 processes is not the same as taking limits for single stochastic processes as time is
 allowed to go to infinity.

 (d) There are many possible applications of limit theorems for sequences
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 Ward Whitt 1209

 of stochastic processes. For further discussion, see IGLEHART (1967), KINGMAN
 (1965), and KARLIN AND MCGREGOR (1964).

 (e) In order to use the weak-convergence theory, a detailed knowledge of topo-
 logical and metric spaces is not necessary; the prospective user should not be in-
 timidated. However, an acquaintance with the basic notions of metric spaces
 and function spaces is necessary to get into BILLINGSLEY (1968). An excellent
 source is SIMMoNs (1963, Chapters 2-4). But again the potential user should not
 be intimidated. As BILLINGSLEY (1968, p. 6) says, nothing of functional analysis
 is assumed beyond an initial willingness to view a function as a point in a space.

 (f) It is of some value to compare the more familiar notion of weak convergence
 of distribution functions with weak convergence of probability measures on metric
 spaces. It turns out that these concepts coincide when the metric space is the real

 line or the Euclidean space Rk [cf. reference 1, pp. 2, 17-18]. Thus, the importance
 of weak convergence as a relatively new concept occurs when we are considering
 more general spaces, such as function spaces supporting stochastic processes.

 (g) It appears that the weak-convergence theory developed from an invariance
 principle due to ERD6S AND KAC (1946). The invariance principle was used to
 prove functional central limit theorems [cf. references 1, p. 72 and 37, p. 31]. DON-
 SKER (1950) then showed that it was possible to prove functional central limit
 theorems for a large class of functions all at once. Then PROHOROV, SKOROHOD,
 BILLINGSLEY, and others put these results in the context of measures on general
 spaces. For a brief historical survey, see references 37, pp. 31-34 and 1, p. 6.
 As a consequence of the development outlined above, papers on weak convergence
 often have titles involving 'an invariance principle for' or 'functional central limit
 theorems for.' Since the limits in weak convergence theorems often are diffusion
 processes, 'diffusion approximations for' also frequently appears in the title of a
 paper involving weak convergence. The name 'weak convergence' itself occurs
 because the convergence we have in mind corresponds to the weak topology on the
 space of all probability measures [cf. references 1, p. 16 or 37, pp. 37-38].

 (h) There are other, sometimes heuristic, procedures to help determine what
 the limit for a sequence of stochastic processes should be. In particular, it is often
 necessary to transform the time scale, translate, and normalize, but it is not gen-
 erally clear how to do so. In the context of random walks converging to Brownian
 motion, one approach is given in FELLER (1957, pp. 323-327). Another approach
 involves calculating infinitesimal means and variances, cf. IGLEHART (1967, p.
 238). Still another, more complicated, approach may be found in IT6 AND MC-
 KEAN (1965, pp. 10-12).

 (i) Before considering weak convergence of sequences of probability measures
 and different equivalent definitions of such convergence, it is desirable to consider
 different but equivalent representations for probability measures. This is the topic
 of BILLINGSLEY (1968, Section 1). Equivalent definitions for weak convergence
 are discussed in reference 1, Section 2 and Theorem 5.2.

 Classes of sets that determine a probability measure uniquely (if we know the
 probability of each set in the class) are called determining classes. Classes of sets
 that determine weak convergence of a sequence or probability measures are called
 convergence-determining classes. Similar definitions apply to classes of real-valued
 functions on the probability space if we consider the expectation (integral) of these
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 1210 Letters to the Editor

 functions with respect to the probability measures and whether or not these ex-

 pectations determine representation and convergence of the measures. Again,
 see reference 1, Section 2. For examples that show determining classes need not

 be convergence-determining classes, see reference 1, pp. 15, 20.
 (j) There are a few very useful theorems associated with weak convergence.

 We have already mentioned one, the continuous mapping theorem. The most

 important theorems seem to be Theorems 4.1, 4.4, and 5.1 in reference 1. Also

 important are Theorems 3.1, 3.2, 5.2, and 5.5 in reference 1, Theorem 3.10 in refer-

 ence 37, or Lemma 3.1 in reference 21, Theorem 1 in reference 22, and an approach
 using almost everywhere convergence, cf. SKOROHOD (1956), BREIMAN (1968,
 Section 13.9), and PYKE (1968).

 (k) Limit theorems for sequences of stochastic processes often involve weak

 convergence of sequences of probability measures on function spaces. The two

 most common function spaces in the weak-convergence literature are C[0, 1] and
 D[0, 1]. An investigation of these spaces makes up Chapters 2 and 3 of reference 1.

 The same theory applies to the spaces C[a, b] and D[a, b], where a and b are arbi-

 trary constants. Function spaces with semi-infinite time intervals have been

 investigated by STONE (1963) and WHITT (1969a, 1970b). Any function space
 would do, but the function space must be a complete separable metric space in

 order to apply the results available in reference 1. Weak convergence on more

 general spaces has also been studied, cf. DUDLEY (1966) and VARADARAJAN (1961).
 The general technique for obtaining weak convergence on function spaces is de-
 scribed in reference 1, p. 35.

 (1) There is a variety of functional central limit theorems that are perhaps the
 major results of the weak-convergence theory and that can be used to generate
 other results. The first functional central limit theorem is DONSKER'S theorem
 for partial sums of independent and identically distributed random variables [ref-
 erence 1, Theorems 10.1 and 16.1]. Similar theorems exist for dependent sequences
 [reference 1, Chapter 4], partial sums from triangular arrays [reference 30, p. 220],
 random sums [reference 1, Section 17, reference 19, Section 2, and reference 40,
 Section 2], renewal processes and other counting processes [reference 1, Theorem
 17.3 and reference 22, Theorem 1], and birth and death processes [reference 34].
 For a rather compact discussion of such theorems, see reference 37, Section 3.2.5.

 (m) The limit in the functional central limit theorems mentioned above is
 usually Brownian motion. There are many detailed and involved accounts
 of Brownian motion and general diffusion processes; a nice introduction that is

 sufficient for most purposes is KARLIN (1966, Chapter 10).
 (n) With even only a rudimentary understanding of the points above, applica-

 tions of the weak-convergence theory to stochastic models in operations research
 should be fairly easy to understand and not too difficult to construct. The most

 extensive work so far has been done with queues [cf. references 3, 15, 18, 19, 21,
 23, 37, 39, and 40]. Most of the weak-convergence theorems for queues have
 been obtained by using the general functional central limit theorems in (l) together
 with the weak convergence tools in (j).

 The weak-convergence theorems for queues have so far been mainly of two
 kinds. The first yields limit theorems for a single queue in heavy traffic, that
 is, when the queue is unstable and a steady-state is never achieved. The second
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 yields limit theorems for sequences of queuing systems, which may be stable,
 to an unstable limit. The first approach gives a description of unstable queues and
 the second approach gives; possible approximations for stable queues. Extensive
 surveys of earlier work on these two problems appear in KINGMAN (1965) and
 WHITT (1968, Chapter 2). We might add in closing that these approaches are
 not limited to heavy traffic, cf. IGLEHART (1965), IGLEHART AND KENNEDY (1969),
 and forthcoming work by IGLEHART AND KENNEDY.

 There have been some, but fewer, applications of the weak-convergence theory
 to stochastic models other than queues; more can be expected in the future. Work
 is currently in progress to determine rates of convergence [cf. reference 37, Section

 4.3], and computational evaluations of approximations [cf. GAVER (1968)], but
 much more needs to be done. Efforts are also being made to use the weak-con-
 vergence theory more for control problems in the manner of reference 20.
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 A NOTE ON A DISTRIBUTION PROBLEM

 A. Charges, Fred Glover, and D. Klingman

 The University of Texas, Austin, Texas

 (Received June 12, 1969)

 A certain class of distribution problems has been treated incorrectly and
 ambiguously, respectively, in two major and widely read texts on linear
 programming. This note traces the nature of this mistreatment to a para-
 doxical solution property of this class of problems, namely, even if all the
 shipping costs are nonnegative, an optimal solution may ship more than
 the minimum demand to a destination.

 A VARIANT of the distribution model of linear programming that often arises
 in practical situations has received an erroneous algorithmic treatment in

 HADLEY,13] and an ambiguous passage in SIMMONARD141 is susceptible to an inter-
 pretation that supports the same incorrect approach. The approach to which we
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