
Stochastic Systems

arXiv: math.PR/0000000

DELAY-BASED SERVICE DIFFERENTIATION IN A
MANY-SERVER QUEUE WITH TIME-VARYING ARRIVAL RATES

By Xu Sun∗ and Ward Whitt∗

We study the problem of delay-based service differentiation in
a multi-class many-server queueing system with time-varying (TV)
arrival rates. Gurvich and Whitt (2010) showed that fixed-queue-
ratio (FQR) controls for scheduling (selecting customers from queue
to enter service) can achieve desired class-dependent delay targets
in a stationary setting. We show that this good property can break
down with with class-dependent TV arrival rates. By simulation and
many-server heavy-traffic (MSHT) limits, we show that FQR can fail
to stabilize delays ratios when the ratios of the arrival-rate functions
for different classes are not nearly constant. To remedy this deficiency,
we propose an alternative family of ratio controls that exploits head-
of-line delay information. The head-of-line-delay-ratio (HLDR) con-
trol is a blind scheduling rule that extends the accumulating-priority
control proposed by Kleinrock (1964), which has recently been recon-
sidered by Stanford et al. (2014) and Sharif et al. (2014). By simu-
lation and MSHT limits, we show that HLDR stabilizes delay ratios
at desired targets. We find that these TV results can be explained
by the sample-path version of the TV MSHT Little’s law that is a
consequence of the MSHT limit.

1. Introduction. In this paper, we study delay-based service differentiation in a
many-server queue via ratio controls in the presence of diverse customer needs (mul-
tiple customer classes) and time-varying (TV) arrival rates. Motivation for our study
is provided by hospital emergency departments, where the arrival rate is typically
strongly TV and the customer (patient) lengths-of-stay and delays are long enough to
interact with that time variation; e.g., see §3 of [2] and §3 of [40].

Gurvich and Whitt [15] showed that fixed-queue-ratio (FQR) controls that schedule
(select the next customer to enter service from queue when a server becomes free)
aiming to keep the queue lengths at fixed ratios also are effective for achieving delay-
based service-differentiation in stationary large-scale service systems modeled as many-
server queues, delicately balancing the service levels of the different classes. (Routing
new arrivals to alternative service pools was considered there too, but we consider only
scheduling for a single service pool.) Indeed, the goals are achieved asymptotically in
the many-server heavy-traffic (MSHT) limit ; also see [13, 14].

We wanted to see how the FQR control performs with time-varying arrival rates,

∗Department of Industrial Engineering and Operations Research, Columbia University
Keywords and phrases: service differentiation, many-server heavy-traffic limit, time-varying ar-

rivals, ratio control, scheduling of customers to enter service, sample-path Little’s law

1

http://www.i-journals.org/ssy/
http://arxiv.org/abs/math.PR/0000000


2 X. SUN AND W. WHITT

so we conducted simulation experiments to investigate. We found that FQR controls
remain quite effective for balancing the queue lengths over time, keeping them near
desired ratios, but that the FQR controls can be highly ineffective at the indirect goal
of stabilizing delays at fixed ratios; see Figure 2 in §2.

The property that causes difficulties for FQR is class-dependent arrival rates, i.e.,
where the ratios of the arrival rates of two different classes varies strongly over time. It
is thus significant that class-dependent arrival rates may indeed occur in applications.
For example, §3.5 of [40] shows that the proportion of arrivals to the Israeli emergency
department (ED) that are admitted to an internal ward of the hospital varied strongly
over time. Since the admitted patients tend to be among the more critical patients,
we infer that there is likely to be a difference in the arrival rates of patients classified
by acuity.

Thus, we investigated alternative ratio controls designed to stabilize delays at target
ratios. For that purpose, we propose the the head-of-line-delay-ratio (HLDR) control,
aiming to keep the head-of-line delays at fixed ratios. The HLDR rule is appealing
because it is a blind scheduling policy, i.e., it does not depend on any model parame-
ters. We establish many-server heavy-traffic limits and conduct simulation experiments
showing that the HLDR control is consistently effective at stabilizing the ratios of the
delays experienced by the different classes at desired targets, while the FQR rule is
not; see §2.

Our HLDR controls are generalizations of the dynamic-priority control proposed by
Kleinrock (1964), which has recently been proposed for delay-based service differentia-
tion in emergency departments based on acuity by Stanford et al. (2014) and Sharif et
al. (2014); they call their proposed scheduling rule the accumulating-priority control,
because they let the customers of different classes accumulate priority over the time
they spend waiting in queue at different (constant) rates. Our analysis provides new
results and insights for this accumulating-priority control.

In addition to the FQR and HLDR scheduling controls, we also consider a TV
variation of QR (TVQR) designed to stabilize delay ratios at desired targets and a TV
version of HLDR (TV-HLDR) designed to stabilize queue ratios at desired targets. We
find that these too are effective, being also asymptotically correct in the MSHT limit,
although the direct HLDR tends to outperform TVQR in simulation experiments.
These alternative controls are not blind, because they also require knowledge of the
arrival rates.

We find that our results can be explained to a large extent by a sample-path (SP)
MSHT Little’s law (LL) that is a consequence of the TV MSHT limit in Theorem 4.1,
which is a generalization of the the SP-MSHT-LL for the stationary model that is a
consequence of Theorem 4.3 in [13] and is discussed after equation (13) in §3 of [15].
In particular, the SP-MSHT-LL states, for large scale systems that are approximately
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in the quality-and-efficiency-diven (QED) MSHT regime, that

(1.1) Qi(t) ≈ λi(t)Vi(t) for all t,

where Qi(t) is the queue length, λi(t) is the arrival rate and Vi(t) is the potential delay
at time t for class i.

If we consider ratios QR(t) ≡ Q1(t)/Q2(t), AR(t) ≡ λ1(t)/λ2(t) and DR(t) ≡
V1(t)/V2(t), then as a consequence of (1.1) we have

(1.2) QR(t) ≈ AR(t) ∗DR(t) for all t.

Given (4.8), QR(t) and DR(t) can both be nearly constant over time only if AR(t)
is nearly constant over time. The new SP-MSHT-LL implies that it is impossible to
stabilize queue ratios and delay ratios simultaneously with these ratio controls in the
MSHT limit when the ratio of the asymptotic arrival rates is time-varying. Otherwise,
all four ratio controls stabilize both queue ratios and delay ratios; e.g., see Figure 3 in
§2.

1.1. Related Literature. There is a large literature on scheduling customers or jobs
in an optimal or near optimal way. A classical textbook on scheduling is [7]; a more
recent textbook with a strong scheduling focus is [17].

The problem of optimally scheduling a stationary many-server queueing system with
several classes of impatient customers was extensively studied in [5, 18]; see also [4] and
[1]. These papers assume class-dependent service and convert the original scheduling
problem into a a more tractable diffusion control problem. In contrast, our goal is
not to develop an optimal or asymptotically optimal scheduling policy, but rather to
achieve desired delay-based differentiated service in the presence of multiple customer
classes and time-varying arrivals. We do not study optimal control.

This paper is related to the literature on making delay announcements, because
delay-history-based announcements have been considered. Armony et al. [3] consid-
ered announcing the delay of the last customer to enter service (LES) and analyzed the
impact on system performance. Studies of announcements using the LES delay and the
closely related head-of-line (HoL) delay as candidates to use in delay announcements
were studied by [19, 20, 21, 22]. In contrast to our findings, for predicting the delay
to be experienced of a new arrival in a stationary model, they showed that queue-
length-based estimators tend to be more accurate than delay-history-based estimators
provided that they are unbiased, because the queue-length estimators better reflect
the state at the time of the new arrival, but delay-history-based estimators are robust
to model assumptions. For TV arrival rates, Figure 2 of [21] shows that HoL delay pre-
dictors can have a significant bias due to the different state seen by the HoL customer
upon arrival. In [22], fluid models are shown to be effective to improve the accuracy
of these delay predictors.
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The present work also relates to the literature on stabilizing performance of queueing
systems with a time-varying arrival-rate function. It has been shown that in face of
time-varying arrival rates, it is impossible to stabilize certain performance measures at
the same time in heavy-traffic limits. For example, [27] showed that it is not possible to
stabilize the abandonment probability and mean queue length at the same time in an
Mt/GI/st +GI many-server queueing model, while [39] showed for a Gt/Gt/1 queue
that it is not possible to stabilize the queue-length and waiting time simultaneously;
also see [28] for extensive simulation studies. These examples are single-class models.
We take a step further by exposing the impact of TV arrival rates on stabilizing delay
and queue ratios in multi-class models.

Our proofs draw on the martingale theory of weak convergence. An overview of
martingale proofs of heavy-traffic limits of the time-stationary many-server queue with
abandonment in critical loading can be found in [30]. Important precedents for TV
MSHT limits in the QED regime are [29] and [32].

1.2. Main Contributions.

1. We conduct what we think is the first study of scheduling rules for assigning
customers waiting in queue to newly available servers in the presence of TV
arrival rates.

2. We show that, with TV arrival rates, the FQR control may fail badly in sta-
bilizing delay ratios, even though it stabilizes queue ratios well. To provide a
remedy, we propose a new HLDR control, which can be regarded as a general-
ization of the accumulating-priority rule rule studied by [34] and [33], which in
turn is a variant of the dynamic-priority rule of [26]. Our HLDR control is more
general because, first, we consider TV arrival rates, and associate with each class
a TV control function rather than a single control parameter and, second, we
go beyond the steady-state analysis and examine the time-varying behavior via
many-server heavy-traffic analysis.

3. We establish the first MSHT limits for ratio controls for TV multi-class many-
server queues. In particular, we we analyze the proposed HLDR rule for a TV
multi-class queue with a single pool of exponential servers and multiple customer
classes. With class-dependent service, we show that the queueing system can be
uniquely characterized by a set of interacting diffusions in the MSHT limit. These
MSHT limits show that the HLDR control achieves the desired delay ratios in
every sample path.

4. We show that insight can be gained into the four candidate controls – FQR,
HLDR, TVQR and TV-HLDR – by focusing on the SP TV MSHT Little’s law.
It shows that the queue ratios and delay ratios for two classes can both be
stabilized together if and only if the ratio of the arrival rates for the classes is
not TV.
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1.3. Organization. In §2 we present results of initial simulation experiments to
show the deficiencies of FQR and the advantages of HLDR with TV arrival rates. We
define the model and the controls in §3. We state the main analytical results in §4
and provide the proof of our main theorem in §5. We present a short proof of the
MSHT limits for the TVQR control in the appendix. We provide background on the
simulation methodology and more numerical results in the supplement.

2. Initial Simulation Experiments. We illustrate the FQR and HLDR schedul-
ing rules with a two-class Mt/M/st+M model having sinusoidal arrival-rate functions
and staffing chosen to stabilize the aggregate performance. Our analysis methods are
more general, not being limited to two classes or sinusoidal arrival rate functions.

2.1. The Experimental Setting. Let the arrival processes for the two classes be
independent nonhomogeneous Poisson processes (NHPP’s) with arrival-rate functions

(2.1) λi(t) = ai + bi sin(dit) for 0 ≤ t ≤ T, i = 1, 2.

Let the service times and patience times (before abandonment from queue) be mutually
independent exponential random variables (and independent of the arrival processes),
with constant class-dependent service rates µi and abandonment rates θi.

Let the time-staffing staffing level, the number s(t) of servers working at time t,
be based on the square-root-safety (SRS) staffing rule, which in turn is based on the
time-varying offered-load m(t), i.e., the time-varying mean number of busy servers in
the associated infinite-server model, which is the sum of the offered loads mi(t) for the
two classes: where

(2.2) mi(t) =

∫ t

−∞
Gci (t− u)λ(u)du = E

[∫ t

t−Si

λ(u)du

]
= E [λ(t− Si,e)]E[Si],

with Si representing a generic class-i service-time random variable with cumulative
distribution function (cdf) Gi(t), G

c
i (t) ≡ 1 − Gi(t) ≡ P(Si > t) and Si,e denotes a

random variable with the associated stationary-excess cdf, defined by

Gi,e(t) ≡ P(Si,e ≤ t) ≡
1

E[Si]

∫ t

0
Gci (u)du, for t ≥ 0;

see [9] . When Si has an exponential distribution with E[Si] = 1/µi, as we have
assumed, then mi satisfies the ordinary differential equation

(2.3) ṁi(t) = λi(t)− µimi(t).

Given the offered-load m(t) = m1(t) +m2(t), we can apply the SRS staffing formula

(2.4) s(t) = dm(t) + c
√
m(t)e, t ≥ 0,
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where c is the quality-of-service (QoS) parameter, which can be chosen to stabilize the
delay probability at a desired target. The SRS staffing in (2.4) was supported first by a
direct infinite-server (IS) approximation and then by associated modified-offered-load
(MOL) and MSHT limits in [24]; see [12, 10, 41] for reviews and elaborations.

With time-varying staffing s(t), we need to specify how we manage the system when
all servers are busy when the staffing is scheduled to decrease. For greater reality, we
may let the first server to complete their current service leave after that service is
complete, which assumes that service switching is allowed when designated servers
are scheduled to leave. In the model for our MSHT limits, we immediately push one
server back into a high-priority queue and let that customer receive a new service,
with rate depending on the class of that customer. We then show that the content of
this high-priority queue is asymptotically negligible in the MSHT scaling, and thus
does not affect the limit.

2.2. Stationary Arrivals. We start with the stationary case without customer aban-
donment from queue, letting (a1, b1) = (60, 0) and (a2, b2) = (90, 0) in (2.1) (so that
the time-scaling factors di play no role) with µ1 = µ2 = µ = 1 and θ1 = θ2 = 0.
Suppose that the objective is to achieve a delay ratio v = 1/2. From the SP MSHT
Little’s law in [13], we infer that the queue ratio should be approximately equal to
(1/2)(60/90) = 1/3. Hence one would want to use the FQR rule with target queue
ratio r = 1/3. With this value, we understand that the ratio Q1/Q2 is expected to
be around the target 1/3, while the delay ratio should be about 1/2. We set the fixed
staffing level using the SRS staffing rule QoS coefficient c = 0.25, yielding the con-
stant staffing level s = 170 to meet the constant offered load of 150. We obtain our
simulation estimates by performing 2000 independent replications; see the appendix
for further explanation.

Figure 1 shows the queue ratio and two delay ratios over the time interval [5, 70] for
the FQR rule (left) and the HLDR rule (right). We plot both the potential delay and
the head-of-line (HoL) delay. In general (with abandonments), the potential delay at
time t is the virtual delay, i.e., the delay that would be experienced by a hypothetical
arrival at time t that is infinitely patient. Here it is measured by the actual delay
experienced by arrivals. In contrast, the HoL delay at time t is the elapsed delay of
the customer in queue that is next to enter service. Because the HoL customer will
experience additional delay before entering service, we expect it to be somewhat less
than the HoL potential delay. All estimates were obtained by averaging over 2000
independent replications. Figure 1 shows that both FQR and HLDR stabilize the
queue ratio at the target r = 1/3 and the delay ratio at the associated level v = 1/2.
For FQR, this is as predicted by Theorem 4.3 of [13].

2.3. TV Arrivals without Abandonment. Now consider TV arrival-rate functions
by choosing (a1, b1, d1) = (60,−20, 1/2) and (a2, b2, d2) = (90, 30, 1/2) in (2.1), so that
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Fig 1: Queue and delay ratios for a two-class stationary M/M/s queue with arrival
rate functions λ1 = 60, λ2 = 90, common service rate µ = 1, without abandonment
(θ1 = θ2 = 0) and the QoS parameter c = 0.25.

the overall arrival-rate function is

λ(t) = λ1(t) + λ2(t) = 150 + 10 sin(t/2).

Again let µ1 = µ2 = µ = 1 and θ1 = θ2 = 0. With d1 = d2 = 1/2, the cycle length is
4π ≈ 12.57, which is about one half day if we measure time in hours. In the context of
a hospital ED, where a mean length of stay is about 4 hours, a cycle would be about
4 time longer, so that a day corresponds to about half a cycle. Thus, our parameter
choice can provide insight for ED’s.

Panels 2a and 2b of Figure 2 plot the same set of performance measures for FQR and
HLDR shown in Figure 1. Panel 2a shows that FQR is again effective at stabilizing the
queue lengths, but is now highly ineffective at indirectly stabilizing delays. Similarly,
Panel 2b shows that HLDR is remarkably effective at directly stabilizing the ratio of
the delays, but it does not indirectly stabilize the queue lengths. Panel 2c shows that
the specially designed TV modification of FQR performs much like HLDR.

What we see in Figure 2 can be explained by (1.1) and (4.8): the ratio of the arrival
rates AR(t) varies from (60 − 20)/(90 + 30) = 1/3 to (60 + 20)/(90 − 30) = 4/3, a
factor of 4. To see that, we encounter no such difficulty if the aggregate arrival rate is
highly TV, while the ratio AR(t) is constant. To illustrate, 3 shows the corresponding
results when we simply change the sign of b1 from − to +, which makes AR(t) = 2/3
for all t.

2.4. TV Arrivals with Abandonment. We now consider these same scheduling rules
in the two-class model when there is customers abandonment. For simplicity, assume
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Fig 2: Queue and delay ratios for a two-class Mt/M/st queue with arrival rate functions
λ1(t) = 60 − 20 sin(t/2), λ2 = 90 + 30 sin(t/2), common service rate µ = 1, without
abandonment (θ1 = θ2 = 0) and the QoS parameter c = 0.25.

that impatience times are class-invariant following an exponential distribution with
rate θ = 0.5. This implies that the impatience time is two times longer than the
service time on average. From our experiments, we see that abandonment affects our
ability to stabilize the ratios, but that it has less and less impact as the scale increases
(and has none at all in the MSHT limit). To demonstrate the impact of scale, we plot
the queue and delay ratios as a function of system size for the two-class example in
Figure 4. Here we use QoS parameter c = 0, which is consistent with the heuristic of
“simply staffing to the offered load,” as discussed in paragraph 3 of §6 of [10].

Figure 4 shows the queue and delay ratios as a function of system size for the same
two-class Mt/M/st+M queue but with abandonment rates θ1 = θ2 = 0.5 and the QoS
coefficient c = 0. Figure 4 shows that these scheduling controls become more effective
as the scale increases, consistent with out later MSHT limit.

Remark 2.1 (class-dependent service). The appendix shows the corresponding
results for the two-class Mt/M/st +M queue with class-dependent service times.

3. A Family of Time-Varying Multi-Class Queueing Models. We specify
our notation and conventions in §3.1 and lay out the preliminaries of the time-varying
multi-class queueing model in §3.2. We formalize the high-priority queue for customers
pushed out of service because of staffing decrease in §3.3. We then define the HLDR
and TVQR rules in §3.4 and §3.5, respectively.

3.1. Notation and Conventions. We denote by R, R+ and N, respectively, the sets
of all real numbers, non-negative reals and nonnegative integers. For real numbers a
and b, a ∧ b ≡ min(a, b), a ∨ b ≡ max(a, b) and [a]+ ≡ a ∨ 0. We use dae to denote the
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Fig 3: Queue and delay ratios for a two-classMt/M/st queue with arrival-rate functions
λ1(t) = 60 + 20 sin(t/2), λ2 = 90 + 30 sin(t/2), common service rate µ = 1, without
abandonment (θ1 = θ2 = 0) and the QoS parameter c = 0.25.

least integer that is greater than or equal to a. 1(A) denotes the indicator function of
event (set) A.

The space of right-continuous R-valued functions on R+ with lefthand limit is de-
noted by D ≡ D(R+,R) and is endowed with Skorokhod’s J1-topology and the Borel
σ-algebra. For a function {x(t); t ∈ R+} in D, let x(t−) represent the lefthand limit
at t with the convention that x(0−) = 0 and ∆x(t) ≡ x(t)−x(t−). All stochastic pro-
cesses are assumed to have trajectories from and are considered as random elements
of D. Convergence in distribution (weak convergence) in D has the standard meaning
and is denoted by ⇒. The quadratic variation process of a locally square integrable
martingale {M(t); t ∈ R+} is denoted by {〈M〉(t); t ∈ R+}. We refer the reader to
[23] for background in weak-convergence and martingale theory. All random entities
introduced in this paper are supported by a complete probability space (Ω,F ,P).

3.2. Preliminaries. There is a set I ≡ {1, . . . ,K} of customer classes. In the n-th
model, the arrivals of class i follow a non-homogeneous Poisson process (NHPP) Ani (t)
with rate nλi(t). These NHPPs are mutually independently. For i ∈ I, let

(3.1) Λi(t) ≡
∫ t

0
λi(u)du, Âni (t) ≡ n−1/2 (Ani (t)− nΛi(t))

The sequence of processes {Âni } satisfies a functional central limit theorem (FCLT);
i.e.,

(3.2) Âni (·)⇒Wi ◦ Λi(·) ≡ A(d)
i (·) in D as n→∞

where Wi represents a standard Brownian motion for each i ∈ I. Denote by An ≡∑
i∈I A

n
i the aggregate arrival process. By the assumed independence, An is a NHPP
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(a) FQR (η = 1)
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(b) HLDR (η = 1)
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(c) TVQR (η = 1)
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(d) FQR (η = 8)
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(e) HLDR (η = 8)
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Fig 4: Queue and delay ratios as a function of system size for a two-class Mt/M/st+M
queue with arrival rate functions λ1(t) = η ·(60−20 sin(t/2)), λ2 = η ·(90+30 sin(t/2)),
service rate µ = 1, abandonment rates θ1 = θ2 = 0.5 and the QoS coefficient c = 0.0:
the cases η = 1 and η = 8.

satisfying a FCLT; that is

Ân(·) ≡ n−1/2

(
An − n

∫ ·
0
λΣ(u)du

)
⇒W ◦ Λ(·) in D as n→∞

where λΣ(t) ≡
∑

i∈I λi(t) and Λ(t) ≡
∫ t

0 λΣ(u)du.
As in §2, the service times and patience times are mutually independent exponen-

tially distributed, but these can be class-dependent. Let µi and θi denote the service
rate and abandonment rate of class-i customers, respectively.

Remark 3.1. (more general arrival processes) We could generalize the arrival
processes from Mt to Gt and the analysis would still go through, provided that we
follow the composition construction as by (2.2) in [39] and assume a FCLT for the
base process; see §7.3 of [30].
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We allow the staffing level (number of servers) to be time-varying as well, but we go
beyond the the TV SRS staffing function in (2.4) as a function of n. First, the offered
load as a function of n is mn(t) = nm(t), where m(t) ≡

∑
i∈Imi(t) and mi satisfies

the ODE for the offered load in (2.3). Now we let

(3.3) sn(t) = n m(t) + n1/2c(t), t ≥ 0,

where c(t) is a general function to be specified. Thus, we obtain the n-dependent
version of (2.4) if we let c(t) = c

√
m(t), with m(t) ≡

∑
i∈Imi(t) and mi satisfying

the ODE for the offered load in (2.3), but we allow other possibilities.
Equation (2.3) stipulates that the inflow and outflow have to be matched on the fluid

scale. This is in line with numerous studies of stochastic processing networks which
follow a hierarchy where one first considers a static planning problem given demand
information and then invokes the standard Brownian motion machinery (second order
refinement). From a technical point of view, such special type of growth behavior for
sn(·) forces the system to reside in the Quality-and-Efficiency-Driven (QED) MSHT
limiting regime. The hypothesis (3.3) follows the early papers [16, 11, 29]. That scaling
also is used in Theorem 5.1 in the electronic companion of [10], Theorem 2 in [32] and
Section 2.6 in [41].

If the staffing is scheduled to decrease when the servers are all busy, we immediately
enforce that staffing change, so that we need to force a customer out of service. In the
single-class case it is possible to let one customer to return to the head of the queue, as
in [32]. In the multiple-class case the identity of the class that is moved out of service
has an effect on the system state. Our remedy is to create a high-priority queue (HPQ)
and let any customer that was forced out of service join the back of the HPQ. To be
specific, we assume that the most recent customer to enter service is forced back into
the HPQ, so that entering service in order of arrival is maintained. We stipulate that
customers in HPQ have the highest service priority; i.e., the next available server
always chooses to serve the HoL customer in the HPQ first. In addition, we require
that no customers abandon the HPQ. Henceforth we use Qn0,i(t) denote the number
of class-i customers in the HPQ. We will show that the high-priority queue has no
impact on the asymptotic behavior, regardless of the class identities of pushed-back
customers.

We assume a work-conserving policy, i.e., no customers wait in queue if there are
servers available. Let Qni (t) represent the number of customers in the ith queue, let
Ψn
i (t) represent the number of customers that have entered service (including any

pushed back into the high-priority queue, if any), and let Rni (t) represent the number of
abandonments of class-i customers, respectively, all up to time t. By flow conservation

Qni (t) = Qni (0) +Ani (t)−Ψn
i (t)−Rni (t)

= Qni (0) + Πa
i (nΛi(t))−Ψi(t)−Πab

i

(
θi

∫ t

0
Qni (u)du

)
,(3.4)
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where Πa
i and Πab

i are independent unit-rate Poisson processes. Let Bn
i (t) be the

number of busy servers serving a class-i customer at time t and Dn
i (t) the cumulative

number of class-i customer that have departed due to service completion up to time
t. Again by flow conservation, we get

Qn0,i(t) +Bn
i (t) = Qn0,i(0) +Bn

i (0) + Ψn
i (t)−Dn

i (t)

= Bn
i (0) + Ψn

i (t)−Πd
i

(
µi

∫ t

0
Bn
i (u)du

)
,(3.5)

where Πd
i are unit-rate Poisson processes independent of Πa

i and Πab
i given in (3.4).

Let Xn
i (t) denote the total number of class-i customers in system at time t. Adding

up (3.4) and (3.5) yields

(3.6) Xn
i (t) = Qni (t) +Qn0,i(t) +Bn

i (t) = Xn
i (0) +Ani (t)−Dn

i (t)−Rni (t).

Alternatively, one can derive (3.6) directly from flow conservation.
Finally, let Qn0 (t) ≡

∑
i∈I Q

n
0,i(t), Q

n(t) ≡
∑

i∈I Q
n
i (t) and Xn(t) ≡

∑
i∈I X

n
i (t) be

the total number of high- and low- priority customers in queue(s) and the aggregate
number of customers in system respectively. Adding up (3.6) over i ∈ I yields

(3.7) Xn(t) = Qn(t) +Qn0 (t) +Bn(t) = Xn(0) +An(t)−Dn(t)−
∑
i∈I

Rni (t)

where we have defined Bn(t) ≡
∑

i∈I B
n
i (t) and Dn(t) ≡

∑
i∈I D

n
i (t).

3.3. The High-Priority Queue. To formally describe the dynamics of the HPQ,
we use Sna (t) ≡ {u ∈ [0, t] : ∆sn(u) = −1} (Snd (t) ≡ {u ∈ [0, t] : ∆sn(u) = 1}) to
represent the collection of time instances at which the staffing decreases (increases).
Then customers enter the HPQ according the process

(3.8) An0 (t) ≡
∑

u∈Sna (t)

1(Bn(u−) = sn(u−)).

Let Dn
0 (t) denote the number of departures from the HPQ (number of customers that

reenter the service facility from the HPQ) up to time t. Then it holds that

(3.9) Dn
0 (t) ≡

∑
u∈Snd (t)

1(Qn0 (u−) > 0) +

∫ t

0
1(Qn0 (u−) > 0)dDn(u).

From (3.8) and (3.9), it follows that

Qn0 (t) = An0 (t)−Dn
0 (t)

=
∑

u∈Sna (t)

1(Bn(u−) = sn(u−))−
∑

u∈Snd (t)

1(Qn0 (u−) > 0)

−
∫ t

0
1(Qn0 (u−) > 0)dDn(u).(3.10)
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We now develop a more tractable upper-bound process for the contents of the HPQ.
For that purpose, we consider a net-input process that allows additional arrivals, but
has the same departure rules. For that purpose, let the new net-input process be
defined by

(3.11) Zn(t) ≡ sn(0)− sn(t)−Dn(t), t ≥ 0.

and apply the one-dimensional reflection mapping ψ to Zn to get

(3.12) Υn
0 (t) ≡ ψ(Zn)(t) ≡ Zn(t)− inf

0≤u≤t
{Zn(u)} ;

e.g., see §13.5 in [37]. The following lemma shows that Υn
0 serves as an upper bound

for Qn0 .

Lemma 3.1. Let Qn0 and Υn
0 be as given in (3.10) and (3.12) respectively. Then

Qn0 (t) ≤ Υn
0 (t) for all t ≥ 0 w.p.1.

Proof of Lemma 3.1. By (3.12) and (3.11), it is not hard to see that

(3.13) Υn
0 (t) =

∑
u∈Sna (t)

1−
∑

u∈Snd (t)

1(Υn
0 (u−) > 0)−

∫ t

0
1(Υn

0 (u−) > 0)dDn(u).

Combining (3.10) and (3.13) gives the desired result. We can apply mathematical
induction over successive event times. We see that the upper bound system can have
extra arrivals, but must have the same departures whenever the two processes are
equal.

In §5.2 we will show that Υn
0 (t) is asymptotically negligible in the MSHT scaling,

and so Qn0 (t) has no impact on the MSHT limit.

3.4. The HLDR Control. We now formalize the HLDR scheduling rule that uniquely
determines the assignment processes Ψi(·). Let wni (t) be the head-of-line (HoL) delay
of customer i. Then the HoL customer in queue i arrived at time Tni (t) ≡ t − wni (t).
Now introduce a set of weight/control functions v(·) ≡ (v1(·), . . . , vK(·)) and define a
weighted HoL delay

(3.14) w̃ni (t) ≡ wni (t)/vi(t) for each i ∈ I.

In addition, use w̃n(t) to represent the maximum of those weighted HoL delays, i.e.,

w̃n(t) ≡ max
i∈I
{w̃n1 (t), . . . , w̃nK(t)}

= max
i∈I
{wn1 (t)/vi(t), . . . , w

n
K(t)/vK(t)} for t ≥ 0.(3.15)
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Let τ(t) denote the customer class that has the maximum weighted HoL delay. That
is

(3.16) τ(t) ≡ {i ∈ I : w̃ni (t) = w̃n(t)} .

We can then spell out the assignment processes Ψn
i (·):

(3.17) Ψn
i (t) =

∑
u∈T n(t)

1(τ(u) = i),

where

(3.18)
T n(t) ≡ {u ∈ [0, t] : ∆An(u) = 1, Bn(u−) < sn(u−)}

∪ {u ∈ [0, t] : ∆Dn(u) = 1, Qn(u−) > 0}
is the collection of time instances at which an assignment decision is to be made and
τ(·) is given by (3.16). Here ties are broken arbitrarily. For instance, if w̃ni (t) = w̃ni′(t) =
w̃n(t) for i 6= i′, then the next-available server chooses to serve either queue i or queue
i′ with equal probabilities.

Remark 3.2 (reduction to AP). The HLDR rule reduces to the accumulating-
priority (AP) rule if all vi(t) = vi; i.e., if the weight functions vi(·) are constant
functions. In that case, we can think that waiting customers accumulate priority ar a
constant rate while in the queue, with customer from class i accumulating priority at
a rate 1/vi. When a server becomes free, HDLR selects the waiting customer with the
highest accumulating priority for service.

Remark 3.3 (reduction to the global FCFS). If vi(t) = 1 for all i ∈ I and t; i.e.,
all classes accumulate priority at an equal constant rate, then the HLDR reduces to
global first-come-first-serve (FCFS), as in [35].

3.5. The TVQR Control. As indicated earlier, our HLDR control is intimately
related to the more general QR controls studied in [13]. We briefly review the FQR
control, which is a special case of the more general QR control introduced by [13], in
the context of multi-class queue with a single pool of i.i.d. servers. Again, let Qni (t) be
the queue length of class i and Qn be the corresponding aggregate quantity. The FQR
control uses a vector function v ≡ (v1, . . . , vK). Upon service completion, the available
server admits to service the customer from the head of the queue i∗ where

i∗ ≡ i∗(t) ∈ arg max
i∈I
{Qni (t)− viQn(t)};

i.e., the next-available-server always chooses to serve the queue with the greatest queue
imbalance.

Here instead of using fixed ratios we introduce a time-varying vector function v(·) ≡
(v1(·), . . . , vK(·)) and the next-available-server choose serve a class i customer where

i∗ ≡ i∗(t) ∈ arg max
i∈I
{Qni (t)− vi(t)Qn(t)}.
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3.6. Potential Delays. Without customer abandonment, the potential delay in queue
i at time t can be represented as the following first-passage time:

V n
i (t) ≡ inf{s ≥ 0 : Ψn

i (t+ s) ≥ Qni (0) +Ani (t)}.

One may attempt to incorporate the abandonment process Rni into the expression and
write

(3.19) V n
i (t) ≡ inf{s ≥ 0 : Ψn

i (t+ s) +Rni (t+ s) ≥ Qni (0) +Ani (t)},

but the representation (3.19) is incorrect, because the term Rni (t + s) may include
class-i customers that arrived after time t and then abandoned; see §1 in [36].

To formally define the potential delay of class i at some time t ≥ 0, we exclude
the abandonment of customers who arrived after time t; see §4 of [36]. Following the
notation of that paper, we add another superscript t to the abandonment process,
which indicates that only the abandonment of customers arriving before time t are
included. Then the potential delay in queue i at time t can be represented as the
following first-passage time

(3.20) V n
i (t) ≡ inf{s ≥ 0 : Ψn

i (t+ s) +Rn,ti (t+ s) > Qni (0) +Ani (t)}.

Finally, note that the potential delay and the HoL delay have a simple relation:

(3.21) wni (tni,k) = V n
i

(
tni,k − wni (tni,k)

)
,

where {tni,k; k ∈ N} are time instances at which a customer enters service from queue
i.

4. Main Results. In §4.1 we state our main result and then discuss important
insights that it provides in §4.2. We establish corollaries for important special cases
in §4.3. In §4.4 we establish the associated result for the TVQR rule and in §4.5 we
discuss the asymptotic equivalence. Finally, in §4.6 we observe that the results in [13]
themselves can be extended to a large class of TV arrival-rate functions.

4.1. The MSHT FCLT for HLDR in the QED Regime. We first introduce the
diffusion-scaled processes

(4.1) X̂n
i (·) ≡ n−1/2 (Xn

i (·)− n ·mi(·)) and X̂n(·) ≡ n−1/2 (Xn(·)− n ·m(·)) ,

where Xn
i (t) represents the number of class-i customers in system at time t. Let

(4.2) Q̂ni (·) ≡ n−1/2Qni (·) and Q̂n0,i(·) ≡ n−1/2Qn0,i(·)
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be the diffusion-scaled queue-length processes and Q̂n ≡ n−1/2Qn and Q̂n0 ≡ n−1/2Qn0
be the aggregate quantities. The same scaling was used by [10, 32, 41]. As usual, we
scale the delay processes by multiplying by

√
n instead of dividing by

√
n as in (4.2):

(4.3) V̂ n
i (t) ≡ n1/2V n

i (t) and ŵni (t) ≡ n1/2wni (t) for i ∈ I.

We impose the following regularity conditions:

(A1) For each i ∈ I, the arrival-rate function λi(·) is differentiable with bounded first
derivative; i.e., there exists a constant M1 > 0 such that |λ′i(t)| < M1 for all
i ∈ I and t ≥ 0. The function λ(·) is bounded away from zero; i.e., there exists
λ∗ > 0 such that λ(t) ≥ λ∗ for all t.

(A2) The safety-staffing function c(·) is continuous and hence integrable.
(A3) All control functions vi(·) are elements of D that are bounded from above and

away from zero; i.e., v∗ ≡ mini∈I inft≥0 vi(t) > 0 and v∗ ≡ maxi∈I supt≥0 vi(t) <
∞.

Our main results establishes a MSHT FCLT for HLDR in the QED regime. The
limit process is a diffusion process.

Theorem 4.1 (QED MSHT FCLT for HLDR). Suppose that the system is staffed
according to (3.3), operates under the HLDR scheduling rule and Conditions A1 - A3
hold. If, in addition, there is convergence of the initial distribution at time 0, i.e., if

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X
(d)
1 (0), . . . , X

(d)
K (0), Q

(d)
1 (0), . . . , Q

(d)
K (0))

in R2K as n→∞, then we have the joint convergence
(4.4)(

X̂n
1 (·), . . . , X̂n

K(·), Q̂n1 (·), . . . , Q̂nK(·), V̂ n
1 (·), . . . , V̂ n

K(·), ŵn1 (·), . . . , ŵnK(·)
)

⇒
(
X

(d)
1 (·), . . . , X(d)

K (·), Q(d)
1 (·), . . . , Q(d)

K (·), V (d)
1 (·), . . . , V (d)

K (·), w(d)
1 (·), . . . , w(d)

K (·)
)

in D4K as n→∞, where the diffusion limits X
(d)
i (·) satisfy

(4.5)

X
(d)
i (t) = X

(d)
i (0)− µi

∫ t

0
X

(d)
i (u)du− (θi − µi)

∫ t

0
γ(u)−1vi(u)λi(u)

×
[
X(d)(u)− c(u)

]+
du+

∫ t

0

√
λi(u) + µimi(u)dWi(u)

with γ(·) ≡
∑

i∈I vi(·)λi(·), X(d) ≡
∑

i∈I X
(d)
i and Wi(·) i.i.d. standard Brownian

motions. For each i ∈ I

(4.6)
Q

(d)
i (·) ≡ γ(·)−1vi(·)λi(·)

[
X(d)(·)− c(·)

]+

V
(d)
i (·) = w

(d)
i (·) ≡ vi(·) · γ(·)−1

[
X(d)(·)− c(·)

]+
.
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4.2. Important Insights. We can draw several important insights from Theorem
4.1.

4.2.1. the role of the SRS safety functions c(·). Given that the staffing is done
by (3.3), the behavior on the fluid scale is determined by the offered load m(t) ≡
m1(t) + · · ·+mK(t), where the individual per-class offered loads mi(·) depend on the
specified λi(·) and µi for i ∈ I. (The functions λi(·) and mi(·) are scaled up by n in the
limit.) The remaining component of the staffing in (3.3) is specified by the SRS safety
function c, which appears explicitly in the diffusion limit. Hence, in the limit, the
remaining flexibility in the staffing depends entirely on the single function c(·), which
remains to be specified. The limiting performance impact of the staffing function c(·)
can be seen directly in the limit.

4.2.2. state-space collapse. While the stochastic limit process (X
(d)
1 (·), . . . , X(d)

K (·))
for the K-dimensional scaled number-in-system process (X̂n

1 (·), . . . , X̂n
K(·)) is a K-

dimensional diffusion, depending on the K i.i.d. standard Brownian motions Wi, the
limits for the other processes are all a functional of the one-dimensional limit process

X(d)(·) ≡ X
(d)
1 (·) + · · · + X

(d)
K (·), in particular of

[
X(d)(u)− c(u)

]+
, so that there is

great state-space collapse. In particular, the limit processes Q
(d)
i (·), V (d)

i (·) and w
(d)
i (·)

are deterministic functionals of each other, as shown by (4.6). While the potential and
HoL delays are not the same, their limits are the same.

4.2.3. the sample-path MSHT Little’s law. We obtain the SP MSHT LL directly
from the conclusion of Theorem 4.1. In particular, for each i, we see that, almost
surely,

(4.7) Q
(d)
i (t) = λi(t)V

(d)
i (t) for all t ≥ 0.

For the n-th system, we have

(4.8) Q̂ni (t) = λi(t)V̂
n
i (t) + o(1) as n→∞

or

(4.9) Qni (t) = nλi(t)V
n
i (t) + o(

√
n) as n→∞.

That is, the limit tells us that Qn1 (t) is O(
√
n), while the error in the SPLL is of a

smaller order.
Figure 5 depicts the individual sample paths of Qi(·) and λi(·)wi(·) on the same

plot for i = 1, 2 with the HLDR policy for the base case. Panel (a) and Panel (b) show
that, with the HLDR rule, the sample paths change over time but the two curves agree
closely with error of small order, which strongly supports the SP-MSHT-LL.
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Fig 5: Sample paths of the queue-length process Qi(·) and the scaled delay process
vi(·)wi(·) for i = 1, 2 with the HLDR scheduling policy.

4.2.4. the limiting ratios are deterministic. While the limit in Theorem 4.1 is of
course random, the limits for all the ratios of interest are deterministic. That is, as
n → ∞, the ratios converge in probability to deterministic limits uniformly in t over
bounded intervals:

V n
i (t)/V n

j (t) ⇒ vi(t)/vj(t),

wni (t)/wnj (t) ⇒ vi(t)/vj(t) and

Qni (t)/Qnj (t) ⇒ vi(t)λi(t)/vj(t)λj(t).(4.10)

4.2.5. the role of customer abandonment. While customer abandonment does in-
fluence the queue-length and waiting-time limit processes of interest through the one-
dimensional limit process X(d)(u), customer abandonment plays no roles in determin-
ing these limiting ratios in (4.10). it is wiped out in the heavy-traffic diffusion limit.
For the n-th model, both arrivals and departures occur at a time scale of n−1. But
because the queue-lengths live on the order of n1/2 in the QED, abandonments occur
at a time scale of n−1/2 indicating a much slower rate. This observation is consistent
with [38] for the basic M/M/s+M Erlang-A model.

4.2.6. impact of the arrival-rate and the weight functions. Given the limit for the
queue ratios in (4.10), we see that the proportion of class k queue length of the total
queue length is increasing in its instantaneous arrival rate λk(t) but decreasing in the
instantaneous rate 1/vk(t).
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4.3. Important Special Cases. Theorem 4.1 applies to the stationary model as an
important special case.

Corollary 4.1 (the stationary case). Let λi(t) = λi, vi(t) = vi and c(t) = c for
t ≥ 0. If, in addition,

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X
(d)
1 (0), . . . , X

(d)
K (0), Q

(d)
1 (0), . . . , Q

(d)
K (0))

in R2K as n→∞, then we have the joint convergence(
X̂n

1 (·), . . . , X̂n
K(·), Q̂n1 (·), . . . , Q̂nK(·), V̂ n

1 (·), . . . , V̂ n
K(·), ŵn1 (·), . . . , ŵnK(·)

)
⇒
(
X

(d)
1 (·), . . . , X(d)

K (·), Q(d)
1 (·), . . . , Q(d)

K (·), V (d)
1 (·), . . . , V (d)

K (·), w(d)
1 (·), . . . , w(d)

K (·)
)

in D4K where the diffusion limits X
(d)
i satisfy

X
(d)
i (t) = X

(d)
i (0)− µi

∫ t

0
X

(d)
i (u)du

− (θi − µi)
∫ t

0
γ−1viλi

[
X(d)(u)− c

]+
du+

√
2λiWi(t).

in which γ =
∑

i∈I viλi and X(d) ≡
∑

i∈I X
(d)
i ; for each i ∈ I

(4.11)

Q
(d)
i (·) ≡ viλiγ−1

[
X(d)(·)− c

]+
and V

(d)
i (·) = w

(d)
i (·) ≡ vi · γ−1

[
X(d)(·)− c

]+
.

Corollary 4.1 is in agreement with Theorem 4.3 in [13] if one replaces the (state-
dependent) ratio function p̃i there by a fixed ratio parameter γ−1viλi. This suggests
some form of asymptotic equivalence between the HLDR control and the TVQR con-
trol. In fact, we will show in §4.5 that an asymptotic equivalence exists not only for
time-stationary models but also in time-varying settings. Theorem 4.3 in [13] has [X̂]+

and [X̂]− in the equation (6) whereas (4.5) in the present paper uses [X(d) − c]+ and
[X(d)− c]−. The discrepancies are due to different centering component being used. In
[13] the number of customers in system is centered by the number of servers whereas
we use nm(t) to be the centering term.

Remark 4.1 (consistent with previous AP results). The result in (4.11) is in
alignment with previous work on AP by [26] and [34], where the objective is to achieve
desired ratios of stationary mean waiting times experienced by customers from the
different classes. By focusing on the QED MSHT regime, we are able to obtain a much
stronger sample-path result.

For K = 1, Theorem 4.1 reduces to Theorem 2.5 of [41], which in turn draws upon
[32].
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Corollary 4.2 (the single-class case). Suppose that the conditions in Theorem
4.1 are satisfied and K = 1. Let λ1 = λ, θ1 = θ and µ1 = 1. Then

X̂n(·)⇒ X(d)(·) in D as n→∞

where

(4.12)

X(d)(t) = X(d)(0)−
∫ t

0

(
X(d)(u) ∧ c(u)

)
du

− θ
∫ t

0

[
X(d)(u)− c(u)

]+
du+

∫ t

0

√
λ(u) +m(u)dW (u).

For the special case θ = µ, it is well known that the resulting Mt/M/st +M model
is equivalent to an Mt/M/∞ model. Let θ = µ = 1 in (4.12). Then it holds that

X(d)(t) = X(d)(0)−
∫ t

0
X(d)(u)du+

∫ t

0

√
λ(u) +m(u)dW (u).

Here the diffusion limit X(d) is an Ornstein-Uhlenbeck (OU) process with time-varying
volatility.

4.4. The MSHT FCLT for TVQR in the QED Regime. We now turn to the TVQR
control as described by §3.5. Mimicking the analysis of [13], one can establish the
MSHT limits, regarding the TVQR rule, via hydrodynamic limits. However, the proof
in [13] is quite involved and in turn relies on additional general state space collapse
(SSC) results from [8]. Owing to the simpler structure of the V-system, we are able to
avoid using the hydrodynamic functions and develop a much shorter and elementary
proof. The proof, which is deferred to the appendix, adopts a similar stopping-time
argument as used by [6] in the analysis of an inverted-V system under the Longest-
Idle-Pool-First routing rule.

Theorem 4.2 (Diffusion Limit with the TVQR Rule). Suppose that the system
operates under the TVQR rule. If, in addition,

(X̂n
1 (0), . . . , X̂n

K(0), Q̂n1 (0), . . . , Q̂nK(0))⇒ (X
(d)
1 (0), . . . , X

(d)
K (0), Q

(d)
1 (0), . . . , Q

(d)
K (0))

in R2K as n→∞, then we have the joint convergence
(4.13)(

X̂n
1 (·), . . . , X̂n

K(·), Q̂n1 (·), . . . , Q̂nK(·), V̂ n
1 (·), . . . , V̂ n

K(·), ŵn1 (·), . . . , ŵnK(·)
)

⇒
(
X

(d)
1 (·), . . . , X(d)

K (·), Q(d)
1 (·), . . . , Q(d)

K (·), V (d)
1 (·), . . . , V (d)

K (·), w(d)
1 (·), . . . , w(d)

K (·)
)
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in D4K where the diffusion limits X
(d)
i (·) satisfy

(4.14)

X
(d)
i (t) = X

(d)
i (0)− µi

∫ t

0
X

(d)
i (u)du

− (θi − µi)
∫ t

0
ri(u)

[
X(d)(u)− c(u)

]+
du+

∫ t

0

√
λi(u) + µimi(u)dWi(u)

where Wi(·) are standard Brownian motions. For each i ∈ I
(4.15)

Q
(d)
i (·) ≡ ri(·)

[
X(d)(·)− c(·)

]+
, and V

(d)
i (·) = w

(d)
i (·) ≡ ri(·)

λi(·)
·
[
X(d)(·)− c(·)

]+
.

We gain several insights from the theorem above: (i) with the TVQR, the desired
queue-ratio is achieved in the limit despite the fact that arrival rates are changing;
(ii) from (4.15) it follows that both the potential and the HoL delays are inversely
proportional to the arrival rate and proportional to the time-varying queue-ratio.

4.5. Asymptotic Equivalence of HLDR and TVQR. We first observe that for a spe-
cific set of control functions v(·) ≡ (v1(·), . . . , vK(·)) used in the HLDR rule, one can
always construct a set of time-varying queue-ratio functions r(·) ≡ (r1(·), . . . , rK(·))
such that the resulting TVQR control and the HLDR control are asymptotically equiv-
alent.

Fix the set of control functions v(·) ≡ (v1(·), . . . , vK(·)). Let

rk(·) =
vk(·)λk(·)∑
i∈I vi(·)λi(·)

for each k ∈ I.

One can easily verify that the stochastic equation (4.5) becomes the equation (4.14).
We then observe that for a specific set of queue-ratio functions r(·) ≡ (r1(·), . . . , rK(·)),

one can always find a set of control functions v(·) ≡ (v1(·), . . . , vK(·)) used in the HLDR
rule such that the resulting HLDR control and the TVQR control are asymptotically
equivalent. In fact, the construction is also straightforward. Let

vk(·) =
rk(·)
λk(·)

for each k ∈ I.

Direct calculation allows us to translate equation (4.14) into (4.5).

4.6. Extending the QIR Limits to TV Arrivals. Even though [13] establishes MSHT
results for stationary models, we now observe that these results extend immediately
to a large class of models with TV arrival rates. In particular, we now observe that the
Theorems 3.1, 4.1 and 4.3 in [13] directly extend to TV arrival-rate functions that are
piecewise-constant, with all changes in the arrival rates occurring on a finite subset
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of the given bounded interval [0, T ]. The given proof then applies recursively over the
successive subintervals, using the convergence of the terminal values on each interval
as the convergence of the initial values required for the next interval. Since any func-
tion in D([0, t],R) on a bounded interval can be approximated by a piecewise-constant
function over [0, T ], this result is quite general. However, to treat the case of smooth
arrival rate functions, as considered here, a further limit-interchange argument is re-
quired. While the remaining argument may be complex, there should be little doubt
that the extension holds.

5. Proof of Theorem 4.1. For any x ∈ D, let x[t1, t2] ≡ (t2−) − x(t1−). With
the HLDR control, the queue-length processes satisfy

(5.1)
Qni (t−) = Ani [Ti(t), t]−Rn,Ti(t)i [Ti(t), t]

= Ani [t− vi(t)w̃n(t), t]−Rn,t−vi(t)w̃
n(t)

i [t− vi(t)w̃n(t), t].

The first equality trivially holds due to the definition of Ti(t). For the second equality,
note that t−vi(t)w̃n(t) ≤ t−wni (t) = Tt(t). If t−vi(t)w̃n(t) = Ti(t), the second equality
trivially holds. If t − vi(t)w̃n(t) 6= Ti(t), it suffices to argue that all customers that
arrive over the period

(
t−vi(t)w̃n(t), Ti(t)

)
abandon the queue before time t. Suppose

for the sake of contradiction that a class-i customer arrived during this period but
never abandoned before time t. Then it must be the case that the customer hasn’t yet
been assigned at time t and hence is still in the queue at time t. This contradicts the
definition of Ti(t) because a customer who arrived before time Ti(t) can no longer be
in the queue.

Let

(5.2) R̂ni (·) ≡ n−1/2Rni (·) and R̂n,ti (t+ ·) ≡ n−1/2Rn,ti (t+ ·).

It follows from (3.2), (4.2), (5.1) and (5.2) that

(5.3)

Q̂ni (t−) = Âni [vi(t)w̃
n(t)), t] + n1/2

∫ t

t−vi(t)w̃n(t)
λi(u)du

− R̂n,t−vi(t)w̃
n(t)

i [t− vi(t)w̃n(t), t]

= Âni [vi(t)w̃
n(t)), t] + n1/2vi(t)λi(t)w̃

n(t)

− R̂n,t−vi(t)w̃
n(t)

i [t− vi(t)w̃n(t), t] + eni (t)

with

(5.4) eni (t) ≡ n1/2

∫ t

t−vi(t)w̃n(t)
λi(u)du− n1/2vi(t)λi(t)w̃

n(t).
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Adding up (5.3) over i ∈ I and rearranging, we obtain

n1/2γ(t)w̃n(t) = Q̂n(t−)−
∑
i∈I

Âni [t− vi(t)w̃n(t), t]

+
∑
i∈I

R̂
n,t−vi(t)w̃n(t)
i [t− vi(t)w̃n(t), t]−

∑
i∈I

eni (t).

Inserting the above the expression into (5.3) yields

(5.5)
Q̂ni (t−) = γ(t)−1vi(t)λi(t)Q̂

n(t−) + Âni [t− vi(t)w̃n(t), t]

− R̂n,t−vi(t)w̃
n(t)

i [t− vi(t)w̃n(t), t] + eni (t)− γ(t)−1Kn(t),

with

Kn(t) ≡
∑
i∈I

Âni [t− vi(t)w̃n(t), t]−
∑
i∈I

R̂
n,t−vi(t)w̃n(t)
i [t− vi(t)w̃n(t), t] +

∑
i∈I

eni (t).

We will show that, with the exception of term γ(t)−1vi(t)λi(t)Q̂
n, all components on

the right hand side vanish as n grows to infinity.

We lay out the path ahead. (i) We start off by showing that both {X̂n
i (·);n ∈ N}

and {Q̂n(·);n ∈ N} are stochastically bounded. We then argue that the sequence of
HoL delay processes {n1/2w̃n(·);n ∈ N} are stochastically bounded, which shows that
w̃n(·) (defined by (3.15) ) lives on the order of O(n−1/2). (ii) The result of (i) allows
us to prove that the queue-length processes are asymptotically proportional to the
weights; i.e.,

(Q̂n1 (t), . . . , Q̂nK(t)) ≈ (v1(t)λ1(t), . . . , vK(t)λK(t)) for all t ≤ T.

This is essentially a state-space-collapse (SSC) result in the many-server diffusion limit.
(iii) By a similar argument as in [13] (first SSC and then diffusion limits), we obtain
the diffusion limits for X̂n

i (·). (iv) The limits for the queue-length processes and delay
processes follow immediately.

5.1. Stochastic Boundedness of {X̂n
i (·);n ∈ N} and {Q̂n(·);n ∈ N}. Here we ex-

ploit a martingale decomposition, as in [30] and [32]. Specifically the processes

(5.6)

D̂n
i (t) ≡ n−1/2

[
Dn
i (t)− µi

∫ t

0
Bn
i (u)du

]
= n−1/2

[
Πd
i

(
µi

∫ t

0
Bn(u)du

)
− µi

∫ t

0
Bn
i (u)du

]
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and

(5.7)

Ŷ n
i (t) ≡ n−1/2

[
Rni (t)− θi

∫ t

0
Qni (u)du

]
= n−1/2

[
Πab
i

(
θi

∫ t

0
Qni (u)du

)
− θi

∫ t

0
Qni (u)du

]
are square-integrable martingales with respect to a proper filtration. The associated
quadratic variation processes are

(5.8) 〈D̂n
i 〉(t) =

µi
n

∫ t

0
Bn
i (u)du and 〈Ŷ n

i 〉(t) =
θi
n

∫ t

0
Qni (u)du.

Both {D̂n
i (·);n ∈ N} and {Ŷ n

i (·);n ∈ N} are stochastic bounded due to Lemma 5.8 of
[30], which is based on the Lenglart-Rebolledo inequality, stated as Lemma 5.7 there.

Now use (3.7) to write

(5.9) Xn
i (t) = Xn

i (0) +Ani (t)−Dn
i (t)−Rni (t).

From (2.3), it follows

(5.10) mi(t) = mi(0) +

∫ t

0
λi(u)du− µi

∫ t

0
mi(u)du.

Scaling both sides of (5.10) by n and subtracting it from (5.9) gives us

Xn
i (t)− n mi(t) = Xn

i (0)− n mi(0) +Ani (t)− n
∫ t

0
λi(u)du

−Dn(t) + nµi

∫ t

0
mi(u)du−Rni (t).

Dividing both sides by n1/2 yields

(5.11)

X̂n
i (t) = X̂n

i (0)− µi
∫ t

0
X̂n
i (u)du− (θi − µi)

∫ t

0
Q̂ni (u)du

+ µi

∫ t

0
Q̂n0,i(u)du+ Âni (t)− D̂n

i (t)− Ŷ n
i (t).

Let ā ≡ maxi µi ∨maxi θi and

(5.12) Mn
i (t) ≡ Âni (t)− D̂n

i (t)− Ŷ n
i (t).

Clearly {Mn
i ;n ∈ N} is stochastically bounded for i ∈ I. From (5.11) - (5.12), it

follows

(5.13)
∣∣∣X̂n

i (t)
∣∣∣ ≤ ∣∣∣X̂n

i (0)
∣∣∣+ ā

∫ t

0

∣∣∣X̂n
i (u)

∣∣∣du+ ā

∫ t

0

(
Q̂ni (u) + Q̂n0,i(u)

)
du+ |Mn

i (t)| .
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Adding up (5.13) over i ∈ I, we obtain

(5.14)

∑
i∈I

∣∣∣X̂n
i (t)

∣∣∣ ≤∑
i∈I

∣∣∣X̂n
i (0)

∣∣∣+ ā

∫ t

0

∑
i∈I

∣∣∣X̂n
i (u)

∣∣∣du
+ ā

∫ t

0

(
Q̂n(u) + Q̂n0 (u)

)
du+

∑
i∈I
|Mn

i (t)| .

Also note that
(5.15)

Q̂n(·) + Q̂n0 (·) = n−1/2 [Xn(·)− sn(·)]+ = [X̂n(·)− c(·)]+ ≤
∑
i∈I

∣∣∣X̂n
i

∣∣∣+
∣∣∣c(·)∣∣∣

where the last inequality is owing to the basic inequality
∣∣∣X̂n

∣∣∣ ≤∑i∈I

∣∣∣X̂n
i

∣∣∣. Plugging

(5.15) into (5.14) yields
(5.16)∑

i∈I

∣∣∣X̂n
i (t)

∣∣∣ ≤∑
i∈I

∣∣∣X̂n
i (0)

∣∣∣+ ā

∫ t

0
|c(u)|du+ 2ā

∫ t

0

∑
i∈I

∣∣∣X̂n
i (u)

∣∣∣du+
∑
i∈I
|Mn

i (t)| .

An application of the Gronwall’s inequality with (5.16) establishes the stochastic

boundedness of
{∑

i∈I

∣∣∣X̂n
i

∣∣∣ ;n ∈ N
}

. Thus for i ∈ I the sequence {X̂n
i (·);n ∈ N}

is stochastically bounded. Then the stochastic boundedness of {Q̂n(·);n ∈ N} and
{Q̂n0 (·);n ∈ N} follows easily by (5.15).

We next use the established stochastic boundedness to derive the fluid limit for the
number of customers in system and the number of busy servers, as in [30]. Indeed, by
(4.1) and (4.2), we must have

(5.17) X
n
i (·) ≡ Xn

i (·)
n
⇒ mi(·) in D as n→∞

and

(5.18) B
n
i (·) ≡ Bn

i (·)
n

=
Xn
i (·)−Qni (·)−Qn0,i(·)

n
− ⇒ mi(·) in D as n→∞.

Applying the continuous mapping theorem (CMT) with integration in (5.18), we have

(5.19) D
n
i (·) ≡ µi

∫ ·
0
B
n
i (u)du⇒ µi

∫ ·
0
mi(u)du in D as n→∞.

Then apply the CMT with composition in (5.19) to obtain

(5.20)

D̂n
i (·) = n−1/2

[
Πd
i

(
nµi

∫ ·
0
B
n
i (u)du

)
− nµi

∫ ·
0
B
n
i (u)du

]
= n−1/2

(
Πd
i ◦ nD

n
i (·)− nDn

i (·)
)
⇒Wi

(
µi

∫ ·
0
mi(u)du

)
in D
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as n → ∞ where we have used Wi to denote a standard Brownian motion. It is a
simple exercise to show via (5.20) that
(5.21)

D̂n(·) ≡ n−1/2

[
Dn(·)− n

∑
i∈I

µi

∫ ·
0
B
n
i (u)du

]
⇒W

(∑
i∈I

µi

∫ ·
0
mi(u)

)
in D

as n→∞ where W represents a reference Brownian motion.

5.2. Asymptotic Negligibility of {Q̂n0 (·);n ∈ N}. The argument required here is a
variant of Theorem 13.5.2 (b) in [37], but the extra term needed to get convergence
is nonlinear instead of cne there and we exploit stochastic boundedness rather than
convergence, so we give the direct argument

To establish the uniform asymptotic negligibility of {Q̂n0 (·);n ∈ N}, we first ar-

gue that Υ̂n
0 (·) ≡ n−1/2Υn

0 (·) vanishes as n → ∞. For that purpose, define Ẑn(·) ≡
n−1/2Zn(·). By (3.10),

(5.22) Υ̂n
0 (t) = Ẑn(t)− sup

u≤t

{
−Ẑn(u)

}
.

Combining (3.3), (3.11), (5.10) and (5.21) and some algebraic manipulation leads easily
to

(5.23) Ẑn(t) = −n1/2

∫ t

0
λ(u)du−X n(t)

where

X n(t) ≡ D̂n(t) +
∑

µi

∫ t

0
X̂n
i (u)du−

∑
µi

∫ t

0
Q̂ni (u)du−

∑
µi

∫ t

0
Q̂n0,i(u)du+ c(t).

In view of condition A2, the C-tightness of D̂n, and the stochastic boundedness of
X̂n
i (u), Q̂ni and Q̂n0,i, we deduce that the sequence of {X n(·);n ∈ N} is stochastically

bounded and C-tight. Define

un(t) ≡ arg max
u≤t

{
−Ẑn(u)

}
= arg max

u≤t

{
n1/2

∫ t

0
λ(u)du+ X n(t)

}
.

From (5.22) - (5.23), it follows

(5.24) Υ̂n
0 (t) = −n1/2

∫ t

un(t)
λ(u)du−X n(t) + X n(un(t)) ≥ 0

Combining the inequality in (5.24) and the stochastic boundedness of X n(·) allows us
to conclude

(5.25) sup
t≤T
{t− un(t)} = Op(n

−1/2).
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For a cadlag (right continuous with left limits) function x(·), define |x|∗T ≡ supt≤T |x(t)|.
Using (5.24), we can easily deduce

P
(∣∣∣Υ̂n

0

∣∣∣∗
T
> ε
)
≤ P

(
sup
t≤T
{−X n(t) + X n(un(t))} ≥ ε

)
.

In virtue of the established C-tightness of X n,

P

(
sup
t≤T
{−X n(t) + X n(un(t))} ≥ ε

)
→ 0 as n→∞.

Since ε is arbitrarily chosen, we have proven

(5.26) Υ̂n
0 (·) ≡ n−1/2Υn

0 (·)⇒ 0 in D as n→∞.

It is immediate by Lemma 3.1 and the definition of Q̂n0 and Υ̂n
0 that Q̂n0 (t) ≤ Υ̂n

0 (t)
for all t ≤ T . Hence, we must have

(5.27)
(
Q̂n0 (·), Q̂n0,1(·), . . . , Q̂n0,K(·)

)
⇒ 0 in DK+1 as n→∞.

5.3. State Space Collapse. By Condition A3,

(5.28)

∫ t

t−v∗w̃n(t)
λi(u)du ≤

∫ t

t−vi(t)w̃n(t)
λi(u)du.

Inserting (5.28) into (5.3) yields
(5.29)

n1/2

∫ t

t−v∗w̃n(t)
λi(u)du ≤ Q̂ni (t−)− Âni [vi(t)w̃

n(t)), t] + R̂
n,t−vi(t)w̃n(t)
i [t− vi(t)w̃n(t), t].

Adding up (5.29) over i ∈ I, we obtain

n1/2

∫ t

t−v∗w̃n(t)
λ(u)du ≤ Q̂n(t−)−

∑
i∈I

Âni [vi(t)w̃
n(t)), t]

+
∑
i∈I

R̂
n,t−vi(t)w̃n(t)
i [t− vi(t)w̃n(t), t].

Note that the right hand side is stochastically bounded, due to the stochastic bound-
edness of Q̂n, Âni and R̂ni . In view of Condition A1, we have shown that {n1/2w̃n(·);n ∈
N} is stochastically bounded.

We now argue that Âni [t− viw̃n(t), t], R̂ni [t− viw̃n(t), t] and eni (t) vanish uniformly

over [0, T ] as n→∞. That Âni [t− viw̃n(t), t] converge to zero uniformly over [0, T ] is

straightforward since Âni (·) converges weakly to a Brownian motion (with a time shift)
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and the maximum time increment |w̃n|∗T converges to zero in R as n→∞. To see that

R̂ni [t− viw̃n(t), t] vanishes as n grows to infinity, note that the quadratic variation

(5.30) 〈Ŷ n
i 〉(·) =

θi
n

∫ ·
0
Qni (u)du⇒ 0 in D as n→∞

drawing upon Section 7.1 of [30]. The convergence in (5.30) implies

(5.31) R̂ni (·)− θi
∫ ·

0
Q̂ni (u)du⇒ 0 in D as n→∞

by applying the Lenglart-Rebolledo inequality; see p. 30 of [25]. In view of∫ t

t−viw̃n(t)
Q̂ni (u)du ≤ v∗

∣∣∣Q̂n∣∣∣∗
T
|w̃n|∗T

and that the random variable v∗
∣∣∣Q̂n∣∣∣∗

T
|w̃n|∗T is independent of t and converges to 0 in

R as n → ∞, we conclude that R̂ni [t − vi(t)w̃n(t), t] vanishes uniformly over [0, T ] as
desired.

Next consider the term eni given in (5.4). By Taylor expansion

(5.32)

|eni (t)| ≡

∣∣∣∣∣n1/2

∫ t

t−vi(t)w̃n(t)
λi(u)du− n1/2vi(t)λi(t)w̃

n(t)

∣∣∣∣∣
=

∣∣∣∣n1/2vi(t)w̃
n(t)λi(t) + n1/2

(
vi(t)w̃

n(t)
)2
λ′i(t)

+ op

((
vi(t)w̃

n(t)
)2)− n1/2vi(t)λi(t)w̃

n(t)

∣∣∣∣
=
∣∣∣n1/2

(
vi(t)w̃

n(t)
)2
λ′i(t) + op

((
vi(t)w̃

n(t)
)2)∣∣∣

= Op

(
n1/2(|w̃n|∗T )2

)
where the last equality is due to Conditions A1 and A3 which guarantee the bound-
edness of |λ′i(·)| and vi(·) over any compact intervals.

The random variable n1/2(|w̃n|∗T )2 is independent of time t and converges to zero
as n → ∞ because n1/2|w̃n|∗T is stochastically bounded and |w̃n|∗T goes to zero as n
approaches infinity.

Now we have shown that Âni [t− vi(t)w̃n(t), t], R̂ni [t− vi(t)w̃n(t), t] and eni (t) vanish
uniformly over [0, T ] as n grows to infinity. In view of (5.5), we conclude

(5.33) Θn
i (·) ≡ Q̂ni (·)−γ(·)−1vi(·)λi(·)Q̂n(·)⇒ 0 in D as n→∞, for i ∈ I,

By the convergence-together lemma,

(5.34) (Θn
1 (·), . . . ,Θn

K(·))⇒ (0, . . . , 0) in DK as n→∞.
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5.4. Diffusion Limits. Using the CMT with integration in (5.33), we obtain
(5.35)

Υn
i (·) ≡

∫ ·
0
Q̂ni (u)du−

∫ ·
0
γ(u)−1vi(u)λi(u)Q̂n(u)du⇒ 0 in D as n→∞.

Note that

(5.36) Q̂n(·) + Q̂n0 (·) =
[
X̂n(·)− c(·)

]+
.

Combining (5.11), (5.35) and (5.36) gives
(5.37)

X̂n
i (t) = X̂n

i (0)− µi
∫ t

0
X̂n
i (u)du− (θi − µi)Υn

i (t) + µi

∫ t

0
Q̂n0,i(u)du+ Âni (t)− D̂n

i (t)

− Ŷ n
i (t)− (θi − µi)

∫ t

0
γ(u)−1vi(u)λi(u)

([
X̂n(u)− c(u)

]+
− Q̂n0 (u)

)
du.

An application of Theorem 4.1 of [30] together with (3.2), (5.20), (5.27), (5.30) and
(5.35) allows us to establish the many-server heavy-traffic limit for {X̂n

i (·);n ∈ N}:(
X̂n

1 (·), . . . , X̂n
K(·)

)
⇒
(
X

(d)
1 (·), . . . , X(d)

K (·)
)

in DK as n→∞,

whereX
(d)
i satisfies the differential equation (4.5). Then apply the convergence-together

lemma with (5.34) we conclude

(5.38)

(
X̂n

1 (·), . . . , X̂n
K(·), Q̂n1 (·), . . . , Q̂nK(·)

)
⇒
(
X

(d)
1 (·), . . . , X(d)

K (·), Q(d)
1 (·), . . . , Q(d)

K (·)
)

in D2K

as n→∞ where the limiting processes Q
(d)
i are given in (4.6).

5.5. Potential Delay Asymptotics. To establish heavy-traffic stochastic-process lim-
its for potential delays, we follow the solution approach as in Section 3 of [36]. Paral-
leling the proof of Theorem 3.1 in that paper, we decompose the proof into two steps.
The first step is to show that all processes in (3.20) have proper fluid and diffusion
limits. For each i ∈ I, introduce the fluid-scaled processes

A
n
i (·) ≡ Ani (·)/n, Ψ

n
i (·) ≡ Ψn

i (·)/n, Q
n
i (·) ≡ Qni (·)/n and R

n
i (·) ≡ Rni (·)/n.

Clearly we have

(5.39)
(
A
n
i (·),Ψn

i (·), Rni (·), Qni (·)
)
⇒ (Λi(·),Λi(·), 0, 0) in D4 as n→∞.

Now define

(5.40) Ψ̂n
i (·) ≡ n−1/2 (Ψn

i (·)− nΛi(·))
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Then

(5.41)
(
Âni (·), Ψ̂n

i (·), R̂ni (·), Q̂ni (·)
)
⇒
(
A

(d)
i (·),Ψ(d)

i (·), R(d)
i (·), Q(d)

i (·)
)

in D4

as n→∞ where Âni , Ψ̂
n
i , Q̂

n
i and R̂ni are given in (3.2), (5.40), (4.2) and (5.2) respec-

tively, and

R
(d)
i (·) ≡ θi

∫ ·
0
Qdi (u)du, Ψ

(d)
i (·) ≡ Qdi (0) +A

(d)
i (·)−Q(d)

i (·)−R(d)
i (·)

where A
(d)
i and Q

(d)
i are given in (3.2) and (4.2) respectively.

The second step is to construct a lower and an upper bound for the process V n
i :

(5.42) V n,l
i (t) ≤ V n

i (t) ≤ V n,u
i (t)

where

(5.43)
V n,l
i (t) ≡ inf{s ≥ 0 : Ψn

i (t+ s) +Rni (t+ s) ≥ Qni (0) +Ani (t)}
= inf{s ≥ 0 : Ψ

n
i (t+ s) +R

n
i (t+ s) ≥ Qni (0) +A

n
i (t)}

and

(5.44)
V n,u
i (t) ≡ inf{s ≥ 0 : Ψn

i (t+ s) +Rni (t) ≥ Qni (0) +Ani (t)}
= inf{s ≥ 0 : Ψ

n
i (t+ s) ≥ Qni (0) +A

n
i (t)−Rni (t)}

For all n ≥ 1, define the first-passage-time processes U
n,l
i ≡ (U

n,l
i (t), t ≥ 0) and

U
n,u
i ≡ (U

n,u
i (t), t ≥ 0) where

U
n,l
i (t) ≡ inf{s ≥ 0 : Ψ

n
i (s) +R

n
i (s) ≥ Qni (0) +A

n
i (t)}(5.45)

U
n,u
i (t) ≡ inf{s ≥ 0 : Ψ

n
i (s) ≥ Qni (0) +A

n
i (t)−Rni (t)}(5.46)

One may attempt to apply the corollary of [31] together with (5.39), (5.41) to get

n1/2V n,l
i = n1/2(U

n,l
i − e)+ ⇒

Q
(d)
i

Λ′i
and n1/2V n,u

i = n1/2(U
n,l
i − e)+ ⇒

Q
(d)
i

Λ′i

in D as n→∞, and then use (5.42) - (5.44) to conclude the desired results. However
the right-hand side of the condition in (5.44) does not satisfy the conditions of the
corollary. In particular, Q

n
i (0) +A

n
i −R

n
i is not necessarily nondecreasing. To resolve

the problem, we use the same linear-interpolation technique as illustrated in Fig. 1 of
that paper. The key is to construct a process Ṽ n,u

i such that Ṽ n,u
i (t) ≥ V n,u

i (t) for all
t ≥ 0 and

(5.47) n1/2Ṽ n,u
i ⇒

Q
(d)
i

Λ′i
.
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A standard sandwiching argument allows us to conclude

V̂ n
i (·) ≡ n1/2V n

i (·)⇒
Q

(d)
i (·)

Λ′i(·)
= vk(t) · γ(·)−1

[
X(d)(·)− c(·)

]+
in D as n→∞

jointly with (5.38).
Condition (5.47) holds if the error caused by these linear interpolations is asymp-

totically negligible. The proof of Lemma 7.1 in [36] applies here if we replace the
departure process Dn there with our assignment process Ψn

i .
To sum up, we have shown that

(5.48)

(
X̂n

1 (·), . . . , X̂n
K(·), Q̂n1 (·), . . . , Q̂nK(·), V̂ n

1 (·), . . . , V̂ n
K(·)

)
⇒
(
X

(d)
1 (·), . . . , X(d)

K (·), Q(d)
1 (·), . . . , Q(d)

K (·), V (d)
1 (·), . . . , V (d)

K (·)
)

in D3K

as n→∞.

5.6. HoL Delay Asymptotics. Scaling both sides of (3.21) by n1/2, we have

ŵni (tni,k) = V̂ n
i

(
tni,k − wni (tni,k)

)
for all tni,k. Note that the set {tni,k} becomes dense in [0, T ] as n→∞. From the proof
of Theorem 4.1, it follows that the process wni (·) converges to zero uniformly over any
compact interval. We thus obtain, by taking n→∞, that

(5.49) ŵni (·)− V̂ n
i (·)⇒ 0 in D as n→∞.

The convergence in (5.49) can be strengthened to joint convergence by the convergence-
together lemma, that is(

ŵn1 (·)− V̂ n
1 (·), . . . , ŵnK(·)− V̂ n

K(·)
)
⇒ (0, . . . , 0) in DK as n→∞.

Then use the convergence-together lemma to conclude that

(ŵn1 (·), . . . , ŵnK(·))⇒
(
w

(d)
1 (·), . . . , w(d)

K (·)
)

in DK as n→∞

jointly with (5.48) where w
(d)
i (·) is given by (4.6).
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APPENDIX A: A SHORT PROOF OF THEOREM 4.2

The key is to observe that, whenever the queue ratio moves away from the target,
it always takes the scheduler O(n−1/2) time to correct the digression. To give an idea
on why the system behaves asymptotically as stated in Theorem 4.2, consider a many-
server queue with two customer classes. Suppose that the system is to maintain a
fixed queue ratio r1/r2. Then, if ever Q1/Q2 < r1/r2, the next available server always
chooses to serve a class-2 customer until after the inequality changes direction; i.e.,
Q1/Q2 ≥ r1/r2. Notice that departures occur at the rate of order O(n) whereas the
queue lengths live on the scale of O(n1/2). Thus it always takes O(n−1/2) amount of
time before the inequality changes direction. The proof below formalizes this intuition.

We start by analyzing a scenario in which no customer of certain class enters service
over a time interval. More precisely, let η1 and η2 be [0, T ]-valued random variable
satisfying η1 ≤ η2. Fix k ∈ I and let H denote any event under which

(i) no server has ever been idle over the period [η1, η2];
(ii) no class-k customer enters service over [η1, η2].

Working with the same notation x[t1, t2] ≡ x(t2−) − x(t1−) for a function x(·) in t
and exploiting (3.7), one can easily derive
(A.1)∑
i∈I

Ani [η1, η2]−Dn[η1, η2]−
∑
i∈I

Rni [η1, η2] = Xn[η1, η2] = sn[η1, η2] +
∑
i∈I

Qni [η1, η2]

where the second equality follows from the non-idling condition (i). Moreover, by
condition (ii) we have

(A.2) Ank [η1, η2] = Qnk [η1, η2]

because there is no departure from the k-th queue. Combining (A.1) and (A.1) yields
(A.3)∑
i 6=k

Ani [η1, η2]−Dn[η1, η2]−
∑
i∈I

Rni [η1, η2] = Xn[η1, η2] = sn[η1, η2] +
∑
i 6=k

Qni [η1, η2].

From (5.10) it follows that

(A.4)

∫ η2

η1

λΣ(u)du−
∫ η2

η1

m(u)du = m(η2)−m(η1)
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Scaling both sides of (A.4) by n and subtracting it from (A.3) gives∑
i 6=k

(
Ani [η1, η2]− n

∫ η2

η1

λi(u)du

)
−
(
Dn[η1, η2]− n

∫ η2

η1

m(u)du

)
−
∑
i∈I

Rni [η1, η2]

= sn[η1, η2]− n ·m[η1, η2] +
∑
i 6=k

Qni [η1, η2] + n

∫ η2

η1

λk(u)du

which in turn yields (after scaling both sides by n−1/2 and rearranging terms)

(A.5)

∑
i 6=k

Âni [η1, η2]− D̂n[η1, η2]−
∫ η2

η1

c(u)du− c[η1, η2]−
∑
i 6=k

Q̂ni [η1, η2]

=
∑
i∈I

R̂ni [η1, η2] + n1/2

∫ η2

η1

λk(u)du.

Recall the set of ratio functions r(·) ≡ (r1(·), . . . , rK(·)) with the constraints: (a)
each component ri(·) is continuous in t; and (b)

∑
i∈I ri(·) = 1. Next define for each

i ∈ I the imbalance process

(A.6) ∆n
i (·) ≡ Q̂ni (·)− ri(·)Q̂n(·).

At each decision epoch, the QR rule chooses a class with maximum positive imbalance
and assign the head-of-line customer from that queue to the next available server.

Assume, without loss, that all queues start empty at time zero, i.e., Q̂ni (0) = 0 for

i ∈ I. Hence Q̂n(0) = 0 and ∆n
i (0) = 0 for all i ∈ I. We aim to show that, for each

i ∈ I, the process Q̂ni (·) is infinitely close to Q̂ni (·) as n grows. More precisely, We aim
to show that, for each i ∈ I and ε > 0,

(A.7) P (|∆n
i |∗T > ε)→ 0 as n→∞.

Define for i ∈ I a stopping time (depending on ε)

τ̃ni ≡ inf {t > 0 : |∆n
i (t)| > ε}

Then to establish (A.7), it suffices to show P (τ̃ni ≤ T )→ 0 as n→∞. Note that∑
i∈I

∆n
i (·) =

∑
i∈I

Q̂ni (·)−
∑
i∈I

ri(·)Q̂n(·) = 0.

The problem further boils down to showing, for each i ∈ I,

P (τni ≤ T )→ 0 as n→∞
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where τni ≡ inf {t > 0 : ∆n
i (t) < −ε}. On the event C ≡ {τi ≤ T}, let us define another

random time σni
σni ≡ sup {t ≥ 0|t < τni ,∆

n
i (t) ≥ −ε/2} .

With the initial condition ∆n
i (0) = 0, such a random time σni is guaranteed to exist

on the event C. Taking k = i, η1 = σni and η2 = τni and using the definition of τni
and σni allows us to conclude that ∆n

i (t) ≤ −ε/2 and Q̂n(t) > 0 for all t ∈ [σni , τ
n
i ].

Therefore both condition (i) and (ii) hold for η1 = σni and η2 = τni . From (A.5), it
follows immediately
(A.8)

n1/2

∫ τni

σn
i

λk(u)du ≤
∑
j 6=i

Ânj [σni , τ
n
i ]−D̂n[σni , τ

n
i ]−

∫ τni

σn
i

c(u)du−
∑
j 6=i

Q̂ni [σni , τ
n
i ]−c[σni , τni ]

That all terms on the right side are stochastically bounded implies the stochastic
boundedness of the sequence {n1/2(τni − σni );n ∈ R}.

Define Γni [t1, t2] ≡ ri(t2)Q̂n(t2)− ri(t1)Q̂n(t1) and let ε′ = ε/4, using union bound,
we obtain

(A.9)

P (τni ≤ T ) ≤ P
(
Q̂ni (τni )− Q̂ni (σni )− Γni [σni , τ

n
i ] < −ε/2

)
≤ P

(
Q̂ni (τni )− Q̂ni (σni )− Γni [σni , τ

n
i ] < −ε/2,Γni [σni , τ

n
i ] ≤ ε′

)
+ P

(
Q̂ni (τni )− Q̂ni (σni )− Γni [σni , τ

n
i ] < −ε/2,Γni [σni , τ

n
i ] > ε′

)
≤ P

(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
+ P (Γni [σni , τ

n
i ] > ε/4)

Recall that our goal is to show P (τni ≤ T ) goes to zero as n → ∞. To that end, it
suffices to show that both terms at the right end of (A.9) converge to zero as n grows
to infinity.

For the first term, notice that no customer entered service from queue i under the
TV-QR rule over the interval [σni , τ

n
i ]. Thus, if no customer abandoned the queue, then

we must have
P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
= 0

by the fact that Qni is nondecreasing over [σni , τ
n
i ]. With customer abandonments, we

have

(A.10) P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
≤ P

(
R̂ni (τni )− R̂ni (σni ) < −ε/4

)
,

because only abandonments can cause Qni to decrease over [σni , τ
n
i ]. The following

lemma plays a crucial role in the rest of proof. Its proof is deferred to the end of the
section.
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Lemma A.1. Both {Q̂n(·);n ∈ N} and {R̂ni (·);n ∈ N} are C-tight under the as-
sumption of Theorem 4.2.

Because {R̂ni (·);n ∈ N} is C-tight and τi − σi = Op(n
−1/2),

P
(
R̂ni (τni )− R̂ni (σni ) < −ε/4

)
→ 0 as n→∞.

Combining the above with (A.10) allows us to conclude that

(A.11) P
(
Q̂ni (τni )− Q̂ni (σni ) < −ε/4

)
→ 0 as n→∞.

Similarly, by the C-tightness of {Q̂n(·);n ∈ N} and that τni −σni = Op(n
−1/2), we have

(A.12) P (Γni [σni , τ
n
i ] > ε/4)→ 0 as n→∞.

Combining (A.9), (A.11) and (A.12) yields

P (τni ≤ T )→ 0 as n→∞

which in turn implies

∆n
i (·) ≡ Q̂ni (·)− ri(·)Q̂n(·)⇒ 0 in D as n→∞

for all i ∈ I. The convergence can be strengthened to joint convergence by the fact
that all the limits are deterministic process. This is again a SSC result. Repeating
step 4 - 6 in the proof the HLDR rule as in §5.4 - §5.6 leads us to the conclusion of
Theorem 4.2.

Proof of Lemma A.1. By (5.15), {Q̂n(·);n ∈ N} is C-tight if
{
X̂n
i ;n ∈ N

}
is C-tight

for i ∈ I. The latter holds true if the martingales Âni , D̂n
i and Ŷ n

i are C-tight, owing

to (5.11) and the established stochastic boundedness of X̂n
i and Q̂n. But Âni , D̂n

i and

Ŷ n
i are C-tight ,due to (3.2), (5.20) and (5.30). Hence {Q̂n(·);n ∈ N} is C-tight. The

C-tightness of {R̂ni (·);n ∈ N} follows from (5.31) and the stochastic boundedness of

{Q̂ni (·);n ∈ N} drawing upon the stochastic boundedness of {Q̂n(·);n ∈ N}.
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