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Motivated by non-Poisson stochastic variability found in service system arrival data,
we extend established service system staffing algorithms using the square-root staffing
formula to allow for non-Poisson arrival processes. We develop a general model of the non-
Poisson non-stationary arrival process that includes as a special case the non-stationary
Cox process (a modification of a Poisson process in which the rate itself is a non-stationary
stochastic process), which has been advocated in the literature. We characterize the impact
of the non-Poisson stochastic variability upon the staffing through the heavy-traffic limit
of the peakedness (ratio of the variance to the mean in an associated stationary infinite-
server queueing model), which depends on the arrival process through its central limit
theorem behavior. We provide simple formulas to quantify the performance impact of the
non-Poisson arrivals upon the staffing decisions, in order to achieve the desired service
level. We conduct simulation experiments with non-stationary Markov-modulated Pois-
son arrival processes with sinusoidal arrival rate functions to demonstrate that the staffing
algorithm is effective in stabilizing the time-varying probability of delay at designated
targets.

1. INTRODUCTION

From analysis of service system data, for example, [1,2,6,18,24,25], there is consensus that
(i) the arrival rate typically varies significantly over the day in almost all service systems
and (ii) the service-time distribution typically is not nearly exponential, usually fitting a
lognormal distribution far better than an exponential distribution. The situation is less clear
for the stochastic properties of the arrival processes.

1.1. Non-Poisson Properties of Arrival Data

Statistical analysis of arrival data from intervals within a single day in call centers and hospi-
tal emergency departments, where arrivals primarily occur exogenously based on individual
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choice, are mostly consistent with the commonly assumed non-homogeneous Poisson process
(NHPP) [6,24,25], but analysis of data from multiple days, even restricted to the same hour
and the same day of the week, show significant over-dispersion, inconsistent with the Pois-
son property with a deterministic arrival rate; see Sections 1.4 and 4–7 of [24]. Similarly,
in [23] appointment-generated arrivals to an endocrinology clinic were found to be consis-
tent with an NHPP within each day, but the daily totals over multiple days show significant
underdispersion, as expected because arrivals are controlled via appointment systems.

Indeed, several authors have found significant non-Poisson properties in service system
arrival processes; see [4,20,22,57]. In response, it has been suggested that the arrival process
ought to be a non-stationary Cox process (doubly stochastic Poisson process), which is a
Poisson process where the arrival rate itself is a non-stationary stochastic process; see [4,5,
20,57]. Hence, we develop an arrival process model that encompasses those suggestions and
develop a staffing algorithm to stabilize performance for that model. Of particular promise
for engineering applications, we also show how to apply the algorithm to set staffing levels
from arrival data, without creating a complete arrival process model, by estimating the
index of dispersion for counts (IDC) of the arrival process, as in [8,13].

1.2. Two Forms of Scale: Spatial and Temporal

Experience indicates that an effective staffing algorithm should depend on two forms of
scale: spatial and temporal; see [18]. By “spatial,” we mean size, that is, the typical number
of servers. The size of a queueing system has a significant influence on performance. For
example, the typical traffic intensity (server utilization) tends to be significantly greater in a
queueing system with many servers, under normal loading; see [49]. In addition, the average
waiting time before starting service in a queueing system tends to be significantly less
(greater) than the average service time in a queueing system with many (few) servers, under
normal loading. In this paper, we are primarily concerned with larger sizes. Accordingly,
most of our examples have about 100 servers, but we also consider a few examples with
4 − 20 servers.

By “temporal scale,” we mean the relevant time scale. For most service systems, the
relevant time scale from the perspective of the performance experienced by customers is
the expected response time, the expected time from arrival until completing service. The
response time can be complicated if the service delivery is divided into temporarily separated
pieces as in healthcare and web chat; then it may be useful to use a more general network
model, as in [32,33,55]. For the multi-server queueing models considered here, where there
is a single uninterrupted service time, the response time is the waiting time plus the service
time. For larger systems, the relevant time scale tends to be of order equal to the mean
service time, because the waiting time tends to be small compared to the mean service
time.

As the system scale increases by increasing the number of servers and the arrival rate,
but leaving the service-time and patience-time cumulative distribution functions (cdf’s)
fixed, individual customer experience of service remains unchanged, but the relevant scale
in the arrival process becomes many interarrival times instead of only one, because there
typically are many (of order equal to the expected number of busy servers) interarrival times
during one mean service time. Thus, in a many-server queue, we should expect the arrival
process to influence its performance primarily through its long-time behavior (as viewed
through its mean interarrival time), that is, through its central limit theorem (CLT). This
point of view is also advanced by [57]. Our staffing algorithm builds on this asymptotic
view.
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(a) (b)

(c) (d)

Figure 1. The QoS parameter βα ≡ βα(z) as a function of α, for three different arrival
variability parameters c2λ = 0.25, 1, 4 and four different service-time distributions: (a)
LN(1, 4), (b) H2(1, 4), (c) deterministic (D), and (d) exponential (M).

1.3. The Relevant Time Scale for Staffing: Short and Long Service Times

The relevant time scale (the mean service time) is important for interpreting the variation in
the deterministic time-varying arrival-rate function. Even if an arrival-rate function changes
dramatically over a day, it can be considered approximately constant at each time t if it
changes relatively little over an interval of several mean service times. For example, in some
telephone call centers, for example, as in [6], the average service time may be about 3 min.
Then, even if the arrival rate function varies significantly over the day, if the arrival rate
function does not change too much over each half hour, it may be roughly appropriate to
staff by using a pointwise stationary approximation (PSA); that is, by using a stationary
model with the arrival rate prevailing at that time. (See Section 3 of [24] for an examination
of when it is appropriate to assume a constant rate over a subinterval.)

With this PSA view, at each time we have a steady-state view. With short service
times, if the arrival data are consistent within a day, but over-dispersed over many days,
then it may suffice to staff according to a mixture of Poisson distributions, as in [22], or
even a mixture of deterministic fluid approximations, as in [52], if the uncertainty is large.
The key to relatively simple analysis without these special approaches (with short service
times) is forecasting that successfully eliminates most of the uncertainty about the rate, as
in [4,20,44] and references there.

In contrast, in this paper we are primarily interested in the more difficult case of longer
service times, where the arrival rate can change significantly over a single service time,
so that the PSA view is no longer appropriate; Figure 1 of [21] dramatically shows the
performance degradation of PSA with longer service times.

Even in this setting with longer service times, forecasting is important. A direct sta-
tistical data analysis of arrival data, analyzing all days, is likely to be highly misleading if
it ignores systematic effects like the day of the week. In good practice, the uncertainty is
typically addressed by becoming familiar with special features of the system and applying
forecasting methods. With proper understanding of the system and forecasting, the model
introduced here or even an NHPP may be found to be appropriate.
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We emphasize that it is far from automatic that arrival processes in practice will be
NHPP except possibly for uncertainty about the rate. For example, it is well known that
the network structure can directly cause non-Poisson properties in arrival processes. When
an arrival process arises as an overflow process or departure process from another system,
that structure often induces non-Poisson variability. The early literature on overflow traffic
can be traced from [26], which was aimed at creating a relatively simple approximation;
see [27,28] for recent work on loss models.

1.4. An Example: Many-Server Queues in Series

Suppose that arrivals to a high-demand service system must go through two or more stages
of service, where each stage is staffed by a large number of servers working in parallel.
Suppose that the arrival process to the system is an NHPP, but with significant time
variability, and that the service times in each stage can be regarded as independent and
identically distributed (i.i.d.) random variables. However, as is usually the case, suppose that
the service times in the first stage of service are not exponentially distributed. A natural
model is the Mt/GI/s1,t → ·/GI/s2,t system, possibly with abandonment of some waiting
customers.This model has an NHPP arrival process, time-varying staffing levels that need to
be determined (the sj,t) and general service-time distributions (the two GI). The first stage
can be analyzed with established methods, but analysis of the second stage is complicated
by the non-exponential service times at the first stage.

A delayed-infinite-server modified-offered-load (DIS-MOL) staffing algorithm for this
system was developed in [32]. That staffing algorithm was found to be remarkably effective,
except when the second service stage requires a high quality of service (QoS), while the
first stage is staffed to meet a low QoS; see Section 8.1 for a performance summary of the
DIS-MOL algorithm and see Section 4 for a study of the arrival process to the second stage,
that is, the departure process from the first stage.

There turns out to be a relatively simple explanation for the performance degradation
of DIS-MOL in this one case: When the first stage operates with a high QoS, the departure
process from the first stage tends to be approximately an NHPP, but when the first stage
operates with a low QoS, the departure process from the first stage tends not to be approx-
imately an NHPP. Instead, the departure process from the first stage tends to behave like
the Gt arrival process model introduced here, with complex stochastic variability generated
from the non-exponential service times in the first stage plus the time-varying arrival rate.
Given that the service times come from an i.i.d. sequence with a fixed distribution, it seems
reasonable to expect that the level of stochastic variability in the departure process should
be approximately constant over time.

Indeed, Section 8.3 of [32] suggested that a fruitful next research step would be what
we do in this paper. We here find that a variant of the approach proposed there can indeed
be carried out and that it performs well. Thus, we are solving the open problem there. At
the same time, we are providing means to solve a larger class of problems.

1.5. Our Contributions

For the Mt/GI/st queueing model, which has arrivals according to an NHPP (Mt)
with time-varying arrival rate function λ ≡ λ(t) and i.i.d. service times with a general
(non-exponential) service-time cdf G, successful approaches to the staffing problem were
developed in [21]; see reviews in [10,18]. Since then, further advances have been made
in [9,12,28,30,32,46,55]. For the more general Gt/GI/st queueing model, an offered-load
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STAFFING A SERVICE SYSTEM WITH NON-POISSON NON-STATIONARY ARRIVALS 597

(OL) normal approximation was proposed in Sections 5 and 6 of [21], but that has never
been tested. Here are our contributions, and the place they appear in the paper:

(i) In Sections 2, we develop a general non-Poisson Gt arrival process model that
encompasses the non-stationary Cox process, based on methods of composition.
In particular, we represent the arrival counting process as the composition of a
stationary counting process and a deterministic cumulative arrival rate function,
separately treating the stochastic variability and the deterministic variability of
the arrival rate over time.
We propose a parsimonious partial characterization of the component stationary
stochastic counting process in terms of the asymptotic variability parameter c2A
arising in its CLT. In Section 2.2, we elaborate on that general model by giving
the stationary stochastic counting process the structure of a stationary Cox process
and showing how to compute its asymptotic variability parameter. In Section 5, we
indicate how the key asymptotic variability parameter c2A can be computed in more
specific stochastic models and estimated from system data without constructing
any model by estimating the IDC.

(ii) In Section 3, we develop a new staffing algorithm for this Gt/GI/st model, which
extends the MOL algorithm for the Mt/M/st model developed in Section 4
of [21] by exploiting the many-server heavy-traffic (MSHT) approximations for
the stationary G/GI/s model in [51]. We represent this new MOL algorithm as a
square-root-staffing formula. In doing so, we exploit the peakedness (the ratio of
the variance to the mean of an associated infinite-server (IS) model), as in [27] and
references therein. The use of peakedness was also suggested in Section 6 of [21]
as part of a more elementary OL approach to staffing, but that was never tested.
Because the MOL algorithm has proven to be superior to the OL algorithm for Mt

arrivals, it is evident that the MOL approach here should be preferred.
In Section 4, we combine the contributions above to provide simple formulas to
quantify the performance impact of the non-Poisson arrivals upon the staffing
decisions (here the number of servers), in order to achieve the same service level. We
estimate how many more (or possibly fewer) servers are needed because the arrival
process is Gt instead of Mt with the same arrival rate function; that difference can
be significant.

(iii) Next, in Section 6 we develop an extension of our staffing algorithm to the
Gt/GI/st +GI model having customer abandonment according to a general (non-
exponential) patience-time cdf F (the +GI), drawing upon [15,56]. As emphasized
in [15], including abandonment in the model is often important in service sys-
tems, because it often occurs and significantly affects performance. Moreover, the
patience distribution is often non-exponential [6].

(iv) Finally, we have conducted extensive simulation experiments verifying that the new
algorithm is effective and robust ; our numerical experiments cover cases with vari-
ous performance targets, large and small system sizes, and various arrival processes,
service-time and patience-time distributions. In Sections 7 and 8, we report our
simulation results for the Gt/GI/st and Gt/GI/st +GI models.

We draw conclusions in Section 9. We present additional simulation results in an
Appendix.
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2. THE NON-POISSON NON-STATIONARY ARRIVAL PROCESS MODEL

Our arrival process model has two key features: (i) a time-varying deterministic arrival-rate
function λ ≡ {λ(t) : t ≥ 0}, and (ii) non-Poisson stochastic variability characterized parsi-
moniously by the single parameter c2A. As usual, the arrival-rate function λ characterizes the
predictable deterministic variability over time, whereas the parameter c2A characterizes the
additional stochastic variability. The reference cases are c2A = 0 for a deterministic process,
without any stochastic variability at all, and c2A = 1 for a Poisson process. Thus, an NHPP
will be covered as a special case of the general model with c2A = 1.

2.1. A General Model Based on Composition

We construct the various stochastic processes considered here exploiting composition, as in
Section 7 of [37] and [16,29,34,38,53]. Let A(t) count the number of arrivals in the interval
[0, t] for t ≥ 0. We represent our general non-stationary arrival counting process A as the
composition of a stochastic counting process N and a deterministic cumulative arrival rate
function Λ, using the composition function ◦, with (x ◦ y)(t) ≡ x(y(t)), t ≥ 0. In particular,
we represent our arrival process as

A ≡ N ◦ Λ or, equivalently, A(t) ≡ N(Λ(t)), t ≥ 0, (2.1)

where N is a stochastic counting process with non-decreasing non-negative integer-valued
sample paths, while the deterministic function Λ is the cumulative arrival rate function
satisfying

Λ(t) =
∫ t

0

λ(s) ds, t ≥ 0, (2.2)

with 0 < λLB ≤ λ(t) ≤ λUB <∞ for positive numbers λLB and λUB . As a consequence, Λ
is continuous and strictly increasing, so that it has a well-defined continuous and strictly
increasing inverse Λ−1. Given Λ and a general non-stationary arrival process A, the counting
process N could be recovered by letting N = A ◦ Λ−1.

Since we think of Λ as specifying the deterministic rate of arrivals, it is natural to
assume that our stochastic process N is a rate-1 stationary counting process, but we only
make the asymptotic assumption that N(t)/t→ 1 with probability 1 (w.p.1). Thus, N could
be a renewal process with mean interarrival time 1 as well as its stationary (or equilibrium)
version, as in Section V.3 of [3]. Our key stochastic assumption is that N obeys a CLT:

t−1/2[N(t) − t] ⇒ N(0, c2N ) as t→ ∞, (2.3)

where ⇒ denotes convergence in distribution and N(m,σ2) denotes a random variable
with the normal (Gaussian) distribution having mean m and variance σ2. As an immediate
consequence, we obtain an associated CLT for A,

Λ(t)−1/2[A(t) − Λ(t)] ⇒ N(0, c2N ) as t→ ∞, (2.4)

so that c2A ≡ c2N is the asymptotic variability parameter of A, based on its CLT. (We remark
that, at some places in this section, the technical development is facilitated by applying
functional limit theorems as in [50], but for simplicity and brevity we omit that.)

For general stationary point processes, the asymptotic variability parameter c2A can
be characterized and estimated from data via its representation as the limit of the IDC
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I ≡ {I(t) : t > 0}, that is,

c2A = lim
t→∞ IA(t) = lim

t→∞ IN (t) = c2N , where IA(t) ≡ V ar(A(t))
E[A(t)]

= IN (Λ(t)). (2.5)

see [8,13,32,45]. We are assuming that I(t) is well defined and finite, and that a finite limit
in (2.5) exists. For an NHPP, I(t) = 1 for all t.

Remark 2.1 (MSHT Limits for Queues): Strong theoretical support for characterizing the
arrival process by its CLT behavior is provided by MSHT limit theorems, because
established MSHT limits depend on the arrival process only through its CLT.

In particular, established MSHT limits for the stationary MarkovianM/M/∞, M/M/s,
M/M/s/r and M/M/s+M models extend to the associated G/M/∞, G/M/s, G/M/s/r
and G/M/s+M models, where the G arrival process can be N in Section 2.1, as reviewed
in Section 7.3 of [40], which affects the limit only through the parameter c2A. Moreover, the
same is true for non-stationary arrival process in MSHT limits established for the Gt/G/∞
IS model in [41,43] and the Gt/M/st +GI model in [31].

Remark 2.2 (The Composition Construction Is Restrictive): Even though the composi-
tion construction in (2.1) is useful and quite general, including several natural models as
special cases, (2.1) is restrictive. It is a special construction, treating only a subclass of all
non-Poisson non-stationary arrival processes. To understand the restriction on the Gt arrival
process more generally, it is helpful to consider the special case in which the process Na

is a rate-1 Markov-modulated Poisson process (MMPP) with a finite-state continuous-time
Markov environment process, yielding an arrival rate of γk in state k [14]. The composition
construction in (2.1) implies that the arrival rate of A at time t when the environment
process is in state k is simply the product λ(t)γk. More generally, a non-stationary MMPP
with a finite-state Markov environment process could have arrival rate γk(t), which is a
general function of the two variables k and t. Clearly, the construction here yields only a
subset of all possible cases, but nevertheless we believe that it usefully goes beyond the Mt

model. It allows some characterization of the stochastic variability of the arrival and service
processes instead of none at all. It remains to determine how useful is the “one-dimensional”
characterization of non-Poisson stochastic variability in the non-Mt Gt arrival process. Since
non-Mt properties often arise through structural features such as having arrivals be depar-
tures or overflows from another queue, as illustrated by Section 1.4, there is good reason to
expect that the present approach will prove useful. Moreover, the heavy-traffic limit iden-
tifies parsimonious characterizations of the stochastic variability in the arrival and service
processes, as discussed in Remark 2.1.

2.2. A More Detailed Model Based on Composition

We now explain how our general model encompasses the Cox process (or doubly-stochastic
Poisson process) mentioned in Section 1. For that purpose, we introduce a more detailed
model. We now represent the stochastic counting process N as the composition of two other
stochastic processes, writing

N ≡M ◦ C or, equivalently, N(t) = M(C(t)), t ≥ 0, (2.6)

where M is a stochastic counting process with non-decreasing non-negative integer-valued
sample paths and C is a stochastic cumulative process, expressed as

C(t) ≡
∫ t

0

Z(s) ds, t ≥ 0, (2.7)
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with {Z(t) : t ≥ 0} being a stochastic “rate” process (SRP) with non-negative sample paths.
We assume that the component stochastic processes M and C are mutually independent.
Combining representations (2.1) and (2.6) gives a three-fold composition representation for
the overall arrival process A: A = M ◦ C ◦ Λ.

This representation of N reduces to a stationary Cox process if we assume that M is a
Poisson process. The most familiar stationary Cox process is an MMPP, which arises when
the SRP Z is a function of a continuous-time Markov chain (CTMC); see [14]. A further
special case of an MMPP is an interrupted Poisson process (IPP), which is an MMPP with
a two-state environment process, where the rate of the Poisson process is 0 in one of the
two environment states. An IPP is equivalent to a renewal process with hyperexponetial
(H2) intervals between renewals; see [26] and Section 2.3.1 of [14].

Our key stochastic assumption in this new framework is the validity of CLTs for the
two stochastic processes M and C. Given that we want N to asymptotically have rate 1
and C to specify the cumulative rate, We assume that M(t)/t⇒ 1 and C(t)/t⇒ 1 w.p.1
as t→ ∞. Our key stochastic assumption in this new framework is the validity of CLTs for
the two independent stochastic processes M and C.

t−1/2[M(t) − t] ⇒ N(0, c2M ) and t−1/2[C(t) − t] ⇒ N(0, c2C). (2.8)

These together imply a CLT for N and A as in (2.3) and (2.4) with

c2A = c2N = c2M + c2C , (2.9)

as in Example 9.6.2 of [50]. For additional details on the derivation of (2.9), see Theorem
11.4.4 and Section 13.3 of [50].

3. THE NEW STAFFING ALGORITHM

We consider the general Gt/GI/st model, which has unlimited waiting space and i.i.d.
service times that are independent of the arrival process specified in Section 2. We let the
service times be distributed as a random variable S with mean E[S] = μ−1 and general
cdf G.

Our proposed staffing algorithm for the general Gt/GI/st model is designed to stabilize
the (virtual) delay probability, that is, the probability that a potential arrival at time t must
wait before starting service, P (W (t) > 0) = P (Q(t) ≥ s(t)), where Q(t) denotes the number
of customers in the system at time t. The algorithm is an extension of the OL approach
developed in [21] and reviewed in [18], which leads to the classical square-root staffing (SRS)
formula.

3.1. The SRS Formula

Our SRS formula stipulates that the staffing (number of servers) at time t be

s(t) = m(t) + βα

√
m(t), with βα ≡ βα(z) ≡ β

√
z and β ≡ βα(1), (3.1)

when the targeted delay probability is α, where m(t) is the OL, that is, the mean number
of busy servers in the associated Gt/GI/∞ IS model with the same arrival and service pro-
cesses, βα(1) is the previous QoS parameter for the MOL approximation for the Mt/M/st

(Erlang-C) Markovian model based on the MSHT limit in [19], and z is a one-parameter
characterization of all non-Markov variability in the associated stationary G/GI/∞ IS
model, with arrival process N , that is, acting as if Λ(t) = t. Since the number of servers is
necessarily an integer, we round to the next largest integer in all staffing formulas.

available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S026996481600019X
Downloaded from http:/www.cambridge.org/core. Columbia University - Law Library, on 10 Nov 2016 at 01:38:18, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S026996481600019X
http:/www.cambridge.org/core


STAFFING A SERVICE SYSTEM WITH NON-POISSON NON-STATIONARY ARRIVALS 601

3.2. Explicit Formulas

We now specify the key parameters m(t), βα(1) and z explicitly. First,

m(t) =
∫ t

−∞
λ(s)Ḡ(t− s) ds, t ≥ 0, (3.2)

where λ(t) is the deterministic arrival rate at time t (assumed to start in the indefinite past,
but we could have λ(s) = 0 for s ≤ t0) and Ḡ(s) ≡ 1 −G(s). Second,

βα(1) = H−1(α), (3.3)

where H−1 is the inverse of the strictly increasing continuous function

H(β) = [1 + βΦ(β)/φ(β)]−1, 0 < β <∞, (3.4)

and Φ (φ) is the cdf (probability density function (pdf)) of a standard (mean 0, variance 1)
normal random variable. Third,

z ≡ z(c2A, G) = 1 + (c2A − 1)μ
∫ ∞

0

Ḡ(x)2 dx, (3.5)

where μ−1 is the mean service time and c2A is an arrival process variability parameter
specified in Section 2.

3.3. Additional Justification

These choices can be further justified. First, as observed in Section 5 of [21], formula (3.2) is
(exactly) the same as for the much more elementary Mt/GI/∞ model, which has a Poisson
number of busy servers at each time t. Second, the particular way βα(1) and z are combined
in (3.1) draws on the MSHT approximation for the stationary G/GI/s model developed
in [51]. The refined MOL staffing formula proposed for the Markovian Mt/M/st model in
Section 4 of [21] is (3.1) with z = 1. The MSHT limit assumes that λ→ ∞ and s→ ∞ with
the SRS in (3.1) holding asymptotically. When there is customer abandonment (discussed
in Section 6), we use the related MSHT limits from [15,56].

The parameter z in (3.5) is the heavy-traffic limit (letting the arrival rate grow) of
the peakedness in the associated stationary G/GI/∞ IS model, with a stationary version
of the Gt arrival process (the process N in Section 2), where the peakedness is the ratio
of the variance to the mean of the steady-state number of busy servers. Formula (3.5) is
discussed further in [27,42] and references therein. Consistent with established theory for
the M/GI/∞ model, z = 1 for all service-time cdf’s if c2A = 1, which occurs if the arrival
process is Poisson. We have z ≥ (≤)1 if and only if c2A ≥ (≤)1.

In Section 7, we will show that the new staffing algorithm in Section 3 is effective for
the Gt/GI/st model and that it provides a significant improvement over the corresponding
staffing algorithm from [21], which is obtained by using z = 1 in (3.1); for example, see
Section 7.4.

4. PREDICTING THE IMPACT OF THE NON-MARKOV FEATURES

The SRS formula in (3.1) and the peakedness formula z in (3.5) allow us to predict the
staffing implications of the non-Markovian stochastic features in the model (having Gt
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instead of Mt), assuming that we want to maintain the same QoS: The (approximately
constant) difference in the staffing level is simply

sG(t) − sM (t) = βα(1)(
√
z − 1)

√
m(t) ≈ βα(1)(

√
z − 1)

√
s(t). (4.1)

(As m(t) grows, formula (3.1) implies that s(t)/m(t) → 1.) The QoS parameter βα(1) in
(3.1) should usually satisfy 0.5 ≤ βα(1) ≤ 2.0; see the Halfin–Whitt (HW) curve in Figure 2
of [18]. If we take βα(1) = 1 as a typical reference case, then we see that the non-Markovian
structure should lead to changing the number of servers by (

√
z − 1)

√
s(t). If s(t) = 100,

then the change would by 10(
√
z − 1) servers. This usually means additional servers, but it

could mean fewer servers, because we could have 0 ≤ z < 1 as well as z ≥ 1.
An important practical reference case is exponential M service, yielding z = (c2A + 1)/2.

For this case, we see right away that the approximate performance impact when βα(1) = 1 is

sG − sM = (
√
z − 1)

√
sM =

(√
(c2A + 1)/2 − 1

)√
sM servers. (4.2)

Hence, when βα(1) = 1, c2A = 4 and sM = 100, we need 10(
√

2.5 − 1)/2 = 5.8 additional
servers compared to the Markovian case. Very roughly, this is about 6% more servers.

Another important reference case for the peakedness z is a deterministic service cdf,
yielding z = c2A. Surprisingly, perhaps, if the service-time cdf were changed from M to
D in the numerical example above with βα(1) = 1, c2A = 4 and s(t) = 100, the number
of extra servers required to achieve the same QoS would increase from 5.8 servers to 10
servers. Clearly, the impact becomes much greater if c2A is larger. These formulas allow
quick back-of-the-envelope calculations.

Given the common case in which c2A > 1, z is decreasing as the variability of G increases.
(As the variability increases for fixed mean, μ

∫ ∞
0
Ḡ(x)2 dx→ 0. Think of a two-point dis-

tribution with mean 1 having a very small probability p of a very large 1/p and otherwise
being 0. Understanding this phenomenon is facilitated by the integral representation in (11)
of [42]. See [54] for an early discussion of this phenomenon.) For c2A > 1, the largest possible
value of z occurs with deterministic service times, yielding z = c2A. Overall, the possible
values of z as a function of c2A are

z ≡ z(c2A, G) in [c2A ∧ 1, c2A ∨ 1], (4.3)

where a ∧ b ≡ min {a, b}, a ∨ b ≡ max {a, b}. Moreover, all possible values of z can be
attained (possibly asymptotically). The range of possible z values as a function of c2A
increases as |c2A − 1| increases for either c2A ≥ 1 or c2A ≤ 1.

Table 1 shows peakedness values z ≡ z(c2A, G) as a function of the arrival variability
parameter c2A and common service-time cdf’s G: lognormal (LN(μ−1, c2s)), deterministic,
Erlang (of order 2, E2), hyperexponential (H2(μ−1, c2s)) and exponential. The mean service
times μ−1 are chosen to be 1, but z is independent of the mean. The second service-time
parameter c2s is the squared coefficient of variation (scv, variance divided by the square of
the mean). The third parameter of the H2 distribution is fixed by using balanced means, as
on p. 137 of [47]. Only modest levels of variability, as measured by c2A and z, are considered
in Table 1.

Analysis of service-time data by [6] and others has shown that service system service-
time cdf’s often fit the LN(1, 1) lognormal cdf quite well, but simulation experiments
show that the performance impact of that distribution is not very different from the
commonly assumed exponential distribution. Table 1 is consistent with that, showing
that z(c2A, LN(1, 1)) ≈ z(c2A,M). This suggests that assuming exponential service times is
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Table 1. Values of the peakedness z ≡ z(c2A, G) for six different arrival process variability
parameters c2A and nine different service distributions

c2A D E2 M LN(1, 0.25) LN(1, 1) LN(1, 4) H2(1, 1.5) H2(1, 2) H2(1, 4)

0.25 0.25 0.53 0.63 0.45 0.58 0.72 0.66 0.69 0.74
0.50 0.50 0.69 0.75 0.63 0.72 0.82 0.78 0.79 0.83
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 2.00 1.63 1.50 1.74 1.56 1.37 1.45 1.42 1.35
3.00 3.00 2.25 2.00 2.48 2.11 1.74 1.90 1.83 1.70
4.00 4.00 2.88 2.50 3.22 2.67 2.11 2.35 2.25 2.05

unlikely to seriously invalidate performance predictions. However, the non-Poisson arrival
process is an important feature. Note that the peakedness z for LN(1, 1) is relatively large
in Table 1 for c2A > 1, for example, for c2A = 4. In particular, note that the peakedness
z ≡ z(c2A, LN(1, σ2)) for c2A > 1 and LN(1, σ2) service is decreasing in σ2, so that the rel-
atively small variance seen in estimated lognormal service times does not help when the
arrival process is more bursty than Poisson.

To summarize, for service-time cdf’s something like exponential (as measured by z), we
roughly need (

√
(c2A − 1)/2 − 1)

√
s(t) additional servers at time t compared to the same

model with Poisson arrivals.
To illustrate the consequence of the non-Markov variability on the approximation, we

display the QoS parameter βα ≡ βα(z) as a function of α for three arrival process variabil-
ity parameters c2A (0.25, 1.00, 4.00) and four service-time distributions: (a) LN(1, 4), (b)
H2(1, 4), (c) deterministic (D), and (d) exponential (M) in Figure 1.

5. PARAMETER SPECIFICATION

The processes N and M introduced in Sections 2.1 and 2.2 above are understood to
be conventional rate-1 stationary counting processes, so interest centers on the variability
parameters, which we already have discussed in general terms. We now elaborate for the
more structured model in Section 2.2.

5.1. Calculating Variability Parameters for Stochastic Models

As indicated in (2.7), the process C in (2.6) is an integral of the SRP Z. In most applica-
tions, the SRP is a regenerative process, which makes C a cumulative process as in [17] or
Section VI.3 of [3]. That commonly occurring structure provides general sufficient conditions
for the FCLT for Cn to hold, but the parameters are expressed in terms of relatively compli-
cated variables associated with the underlying regenerative cycles. However, these usually
can be numerically calculated or estimated in simulations. In general, the rate λC is just the
steady-state mean E[Z(∞)], assuming that Z(t) ⇒ Z(∞) as t→ ∞ and E[Z(∞)] <∞.

A relatively convenient model for N is an MMPP, because it is not difficult to sim-
ulate and analyze. One natural construction is to let M be a rate-1 Poisson process and
let Z(t) = f(Γ(t)), t ≥ 0, where Γ ≡ {Γ(t) : t ≥ 0} is a CTMC taking values in the finite
set {1, 2, . . . ,m}. Then f(i) = λi, where λi is the deterministic arrival rate that prevails
whenever Γ(t) = i.

With this convention, not only is M a rate-1 Poisson process, but C is a special cumula-
tive process, with successive visits of the underlying CTMC Γ to any fixed state constituting
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regenerative cycles. In this setting,

E[Z(∞)] = lim
t→∞ t−1E[C(t)] = 1, (5.1)

Cumulative processes associated with functions of DTMCs and CTMCs are discussed,
respectively, in Section I.7 of [3] and [48] (and many references therein). Formulas and
algorithms to compute c2C are given in (12) and Corollary 3 of [48]. More elementary for-
mulas and algorithms for birth-and-death processes are given in (6) (Proposition 1) and
Remarks 1–3 of [48].

The key parameters of an MMPP can also be obtained from [14], but it is important
to recognize that it is a different representation. They directly represent N and do not
separately exploit the rate-1 Poisson process M . Nevertheless, expressions for a general rate
λN and c2N can be obtained from [14]. We can obtain λN from expressions for the mean
E[N(t)]. In particular, in [14] we see that λN = πλ =

∑m
j=1 πjλj from the first term on

the right of (23). Here πj is the steady-state probability that the CTMC is in state j and
λj is the rate of the MMPP when the CTMC is in state j. Similarly, we can obtain the
variability parameter c2N from the related expressions for E[N(t)2] in (25) and (26) of [14].
We close this section by noting that the MMPP is a special case of the batch Markovian
arrival process (also known as the versatile Markovian process or Neuts process), for which
asymptotic variability parameters can be found in Section 5.4 of [7,39].

5.2. Estimating the Arrival Process Variability Parameter Directly from Data

Since the arrival process beyond its deterministic rate λ(t) affects the staffing algorithm
in (3.1) only through the asymptotic variability parameter c2A = c2N in the peakedness z in
(3.5), in many applications it may be convenient to directly estimate c2A from arrival process
data. That can be done using the IDC characterization in (2.5). Since the limits of IA(t) and
IN (t) as t→ ∞ are identical, we can directly work with the non-stationary arrival process
A and estimate IA(t), estimating c2A by the estimated limit of IA(t) as t→ ∞.

Unfortunately, this estimation is not entirely straightforward, tending to require large
samples. Large samples present relatively little problem with simulation, but they may
not be possible with arrival data. See [13] and Section 4 of [32] for examples involving
single-server and many-server queues, respectively.

Remark 5.1: (detecting model violations) Model violations from excessive variability some-
times can be identified from divergence of I(t) as t→ ∞. For example, if N(t) = Π(Xt),
where Π is a unit-rate Poisson process and X is a non-negative random variable with
E[X] = 1 and 0 < Var(X) <∞, then E[N(t)] = t for all t, but

Var(N(t)) = Var(E[N(t)|X]) + E[Var(N(t)|X)] = Var(X)t2 + t,

so that I(t) = 1 + Var(X)t→ ∞ → ∞ as t→ ∞. Our model requires that both the variance
and the mean of N(t) grow linearly in t.

6. EXTENSION TO MODELS WITH CUSTOMER ABANDONMENT

We next extend our MSHT MOL SRS algorithm based on (3.1) to the corresponding
Gt/GI/st +GI model with customer abandonment. We first consider cases in which the
service and patience distributions are exponential (M). We next extend to the framework
non-exponential service and patience times.
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6.1. Extension of the Algorithm for the Model with Exponential Patience Times

In particular, it is natural to use (3.1) with the same peakedness z in (3.5), but with
the MSHT QoS parameter βα(1) ≡ H−1(α) in (3.3) replaced by G−1(α), where G is the
Garnett MSHT PoD function from pp. 217–218 of [15], which is based on the QED MSHT
limit for the stationary M/M/s+M model. As noted previously, the MSHT limit for the
M/M/s+M model extends to the associated G/M/s+M model by Section 7.3 of [40].
Just as for the Gt/GI/st that we have considered, the extensions to GI service and GI
abandonment are heuristic.

From (3.9) of [18], the Garnett PoD function can be written as

G(β) ≡ G(β, θrat) ≡
[
1 +

√
θrath(β/

√
θrat)

h(−β)

]−1

, −∞ < β <∞, (6.1)

where θrat ≡ θ/μ and h(x) ≡ φ(x)/Φ̄(x)) = φ(x)/(1 − Φ(x)) is the hazard rate of the
standard normal distribution.

Unfortunately, there are typographical errors in other representation of the Garnett
function. First, an alternative expression is given for the Garnett function G in (11) on p.
331 of [12], but there is a typo in the definition of β̂ below (11). It should be β̂ ≡ β

√
μ/θ

or β̂ ≡ β/
√
θ/μ instead of β̂ ≡ β

√
θ/μ. Yet another alternative expression of G is given

in (4) on p. 1553 of [30], but it too has a problem. The intended formula for h there
is h(x) ≡ φ(x)/Φ̄(x), where Φ̄(x) ≡ 1 − Φ(x), consistent with established notation in that
paper, but the bar cannot be seen.

6.2. Extension for Non-Exponential Service and Patience Times

We also conducted simulation experiments for several Gt/GI/st +GI models with non-
exponential service times and patience times. We have found that our approach for the
Gt/M/st +M model in Section 8 of the main paper continues to work well in many cases,
but needs refinement in some cases. We see stable performance in all cases, but not always
at the desired target. The major difficulty encountered was for non-exponential patience
times. A basis for extension to the Gt/M/st +GI model is provided by results in Theorem
4.1 of [56] (see also p. 1196 of [36]), which suggests a refined Garnett function

G∗(β) ≡ G∗(β, θ∗rat) ≡
[
1 +

√
θ∗rath(β/

√
θ∗rat)

h(−β)

]−1

, −∞ < β <∞, (6.2)

where θ∗rat ≡ f(0)/μ, f(0) is the patience-time pdf at x = 0 and h(x) ≡ φ(x)/Φ̄(x) =
φ(x)/(1 − Φ(x)) is the hazard rate of the standard normal distribution. This generaliza-
tion from M abandonment to GI abandonment is quite intuitive: because the system
is in the QED regime where waiting times are asymptotically negligible, the patience-
time distribution plays an role only through the patience hazard rate at 0, that is,
hF (0) = f(0)/F̄ (0) = f(0). Even though there are not yet any supporting MSHT limits
for the more general stationary G/GI/s+GI model with non-M service, we propose the
same approximation based on (6.2) for the Gt/GI/st +GI model too. In particular, to
capture non-M abandonment we use (6.2) instead of (6.1); to cope with non-M service, we
again rely on the peakedness z in (3.5), which depends on the non-M service.
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7. SIMULATION EXPERIMENTS

We now report results of simulation experiments to evaluate the new MOL staffing algorithm
for the Gt/GI/st model given in Sections 2 and 3.

7.1. The Simulation Models

For all the examples, the system starts empty, the service time has mean 1 and the Gt

arrival process has deterministic sinusoidal arrival rate

λ(t) = λ̄(1 + ψλ sin(γλt+ φλ)), t ∈ [0, 96], (7.1)

with average arrival rate λ̄, relative amplitude ψλ, 0 ≤ ψλ ≤ 1, period (cycle length) 2π/γλ

and phase shift φλ. Our base case has λ̄ = 100, ψλ = 0.2, γλ = 1 and φλ = 0. Explicit
formulas for the associated OL m(t) for this sinusoidal arrival rate are given in [11] and
(19) of [30].

We construct the arrival process as indicated in Section 2. In each case, we let the
stochastic counting process N be a rate-1 stationary counting process. Our base case is
an H2(1, 4) renewal process, which is also an IPP, the special MMPP with two states
in the underlying CTMC with the rate in one state being 0. The H2 distribution was
characterized for Table 1. For H2(1, 4), the probabilities on the two exponential components
are p1 ≡ p = (5 +

√
15)/10 = 0.8873 and 1 − p ≡ 0.1127, while the rates (reciprocals of the

two means) are μ1 = 2p = 1.7745 and μ2 = 2(1 − p) = 0.2254. From Section 2.3.11 of [14],
the associated IPP parameters are: rate in the on state λon = 4p2 + 4(1 − p)2 = 1.60, the
mean time in the on state is 1/μon = 1/0.15 = 6.667 and the mean time in the off state is
1/μoff = 1/0.40 = 2.500. Our overall base case is the Ht

2(1, 4)/LN(1, 4)/st model.
We also consider variations on our base case. For the arrival processN , we consider other

rate-1 renewal processes with non-H2 inter-renewal times and other non-renewal MMPPs.
For the service-time cdf, we also consider the other service-time cdf’s in Table 1. We make
the renewal arrival process stationary by letting the first interval have the equilibrium
stationary-excess cdf, as in Section V.3 of [3].

7.2. Simulation implementation

The simulation experiments were performed with MATLAB. Since we are interested in the
virtual waiting time, that is, the delay of a potential arrival at each time t, we generate
virtual customers at each fixed time �t, 2�t, 3�t, . . ., with �t = 0.05. Those virtual cus-
tomers are different from real customers, because once they enter the service, they leave the
service immediately, so that they do not occupy any service resource. They are not counted
in queue length. If the number of servers needs to decrease while all servers are busy, we
wait until the next customer to finish service then remove that server.

System performance measures are measured at the fixed time points �t, 2�t, . . . . We
record the queue length Q̂(t) then take the average over all replications. We also calculate
potential waiting time Ŵ (t) which is defined as the waiting time of a virtual costumer that
arrives at time t, then take the average of all replications. The estimated probability of
delay (PoD) P̂D(t) is calculated as the average of the indicator variable 1{Ŵ (t)>0} over all
replications.

We ran 1000 independent replications to obtain the estimates of all the performance
measures. To understand why this yields adequate statistical precision, note that for a
delay probability of about 0.1 at a single time t, our approach corresponds to looking at the
average of 1000 i.i.d. Bernoulli random variables with approximate mean 0.1 and variance
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Figure 2. Estimated time-varying PoD for the Ht
2(1, 4)/LN(1, 4)/st model (z = 2.11)

with the MOL SRS staffing (3.1) s(t) (left) and one less server s(t) − 1 (right), for five
delay probability targets α.

Table 2. Time average ρ̄ of the instantaneous traffic intensity ρ(t)
for the Ht

2(1, 4)/LN(1, 4)/st model using the MOL SRS staffing

α 0.1 0.2 0.3 0.4 0.5
ρ̄ 0.828 0.865 0.891 0.912 0.930

0.09 ≈ 0.1, making the sample mean have mean 0.1 and sample variance of about s̄2n ≈ 10−4

with associated sample standard deviation of about s̄n ≈ 10−2. Thus the half-width of a
95% confidence interval would be approximately 0.00067, which is about 0.7% of the mean
0.10. As in [21], the larger oscillations we see in simulation estimates are primarily due
to the significant impact of changing a single agent. (Recall that the staffing is in integer
values.)

7.3. Performance Estimates in the Base Case

We now report results for the Ht
2(1, 4)/LN(1, 4)/st base case, with the distributions of

the i.i.d. interarrival times of N and the service times as specified in Section 4. First,
Figure 2 shows the estimated time-varying PoD for the Ht

2(1, 4)/LN(1, 4)/st base case with
z = 2.11, for five PoD targets α using the MOL SRS formula (3.1) (left) and using one
server less (right). All plots here show an initial transient associated with starting empty,
but stabile performance is seen after a short time. (The mean service time is 1.) We only
show targets α ≤ 0.5, because higher targets tend to be inconsistent with practical staffing
levels without customer abandonment (which will be discussed in Section 6). Higher targets
α tends to move the system out of the quality-and-efficiency-driven (QED) regime into
the more heavily loaded efficiency-driven (ED) regime. To provide evidence, we show the
average traffic intensity for each of the five cases of Figure 2 in Table 2.

To show that our extension of the MSHT MOL SRS algorithm in (3.1) performs just
as well for the non-Markov Ht

2(1, 4) arrival process as the previous MSHT MOL SRS
algorithm with z = 1 in [21] performs for the Mt/M/st model, Figure 1 of the EC shows
the estimated time-varying PoD for the Mt/M/st model with z = 1 on the left and for the
Ht

2(1, 4)/LN(1, 4)/st base case with z = 2.11 on the right.
To drill down deeper into the results in Figure 2, we display the average, maximum and

minimum of the PoD for t ∈ [36, 96] as a function of the target for the base model with the
specified staffing (s(t)) and for one less server (s(t) − 1) in Table 3, also see Figure 2 for plot
comparison. For all five targets, the average PoD falls below the target, while the average
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Table 3. Average, maximum and minimum of the PoD for t ∈ [36, 96] as a function of
the target for the base model Ht

2(1, 4)/LN(1, 4)/st with the specified staffing (s(t)) and for
one less server (s(t) − 1). The half-widths (HW) of 95% confidence intervals are shown

Average (±HW) (diff. to target) Max (diff. to target) Min (diff. to target)

Target s(t) s(t) − 1 s(t) s(t) − 1 s(t) s(t) − 1
0.5 0.468(±0.0219) 0.516(±0.0219) 0.503 0.550 0.437 0.478

(−0.032) (+0.016) (+0.003) (+0.050) (−0.063) (−0.022)
0.4 0.377(±0.0212) 0.418(±0.0216) 0.416 0.449 0.344 0.387

(−0.023) (+0.018) (+0.016) (+0.049) (−0.056) (−0.013)
0.3 0.282(±0.0197) 0.315(±0.0203) 0.316 0.352 0.251 0.282

(−0.018) (+0.015) (+0.016) (+0.052) (−0.049) (−0.018)
0.2 0.192(±0.0172) 0.217(±0.0181) 0.219 0.247 0.166 0.188

(−0.008) (+0.017) (+0.019) (+0.047) (−0.034) (−0.012)
0.1 0.0956(±0.0129) 0.111(±0.0137) 0.123 0.134 0.0755 0.0855

(−0.0044) (+0.011) (+0.023) (+0.034) (−0.0245) (−0.0145)

Figure 3. The instantaneous traffic intensities ρ(t) ≡ λ(t)/μs(t) for the Ht
2(1, 4)/

LN(1, 4)/st model with μ = 1 and MOL SRS staffing for α = 0.1, 0.3, 0.5 from bottom
to top.

PoD with one less server lies above the target. The fact that the maximum estimated PoD
for all time points is above the target, while the minimum with one less server is below
the target, indicates that: (i) the performance is indeed stabilized over time, after an initial
transient, and (ii) the performance and statistical precision are within the difference caused
by the change of a single server. In addition, the change of one server plays a bigger role for
higher α (smaller s(t)) and a smaller role for lower α (bigger s(t)). We later demonstrate
in Section 8.1 the effect of changing one server for a smaller system with λ̄ = 10.

We emphasize that this staffing algorithm is not simply choosing the staffing to make
the time-varying instantaneous traffic intensity ρ(t) ≡ λ(t)/μs(t) constant. Figure 3 shows
the instantaneous traffic intensity resulting from the MOL algorithm applied to the base
case for three PoD targets: α = 0.1, 0.3, 0.5. See Figures 1– 3 of [21] to see that other staffing
alternatives such as PSA and constant staffing at the average load perform very badly.

We now investigate the extent to which other performance measures are stabilized by
the MOL SRS staffing algorithm. Figure 4 shows the estimated time-varying mean queue
length E[Q(t)] (left) and mean waiting time E[W (t)] (right) for the base model. As in
all previous studies, we find that the mean waiting times are not always stabilized, but
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STAFFING A SERVICE SYSTEM WITH NON-POISSON NON-STATIONARY ARRIVALS 609

Figure 4. Estimated time-varying mean queue length E[Q(t)] (left) and mean waiting
time E[W (t)] (right) for the Ht

2(1, 4)/LN(1, 4)/st model with z = 2.14 using the MOL SRS
formula (3.1) for the five delay probability targets α = 0.1, 0.2, 0.3, 0.4, 0.5.

all performance measures tend to be stabilized with low PoD targets, where we aim to
provide high QoS; for example, see Table 4 of [21] and Section 3 of the e-companion to [12].
While [12] primarily focuses on an interative simulation algorithm (ISA) for staffing, it
also provides strong support for the OL approach using the SRS formula by showing that
the implied empirical QoS βISA(t) ≡ (sISA(t) −m(t))/

√
m(t) in (10) of [12] is stabilized

by ISA; see Figures 3 and 12 of the e-companion to [12]. Significant fluctuations were
observed in both the expected waiting times in the Mt/M/st model and in the abandonment
probabilities in the Mt/M/st +M model; see Figures 6 and 13 of the e-companion to [12].
These observations are confirmed by Figure 4.

7.4. The Consequence of Using the Old MOL SRS Algorithm

We now show the consequence of using the old MOL SRS staffing, that is, (3.1) with
z = 1. Figure 5 shows the performance of the MOL SRS staffing with z = 1 applied to the
Ht

2(1, 4)/LN(1, 4)/st model, with z = 2.11, for targets α = 0.1, 0.3, 0.5. Figure 5 shows that
the staffing algorithm with z = 1 still stabilizes performance; the refinements are needed
only to hit the PoD target α. Figure 5 also shows the significantly higher staffing levels
required with the higher value of z.

8. VARIATIONS OF THE BASE MODEL

In this section, we report results of the MSHT MOL SRS algorithm for variations of the
base model. We first consider higher QoS (lower α targets) and smaller scale. Then we con-
sider alternative arrival processes and service-time distributions. Finally, we report results
evaluating the performance of our MOL algorithm for models with customer abandonment.

8.1. Lower Targets and Lower Arrival Rates

In this section, we consider the performance of the SRS MOL staffing algorithm with lower
targets α (higher QoS) and for lower average arrival rate, and thus smaller scale (fewer
servers).

First, Figure 6 shows on the top the estimated PoD for the base Ht
2(1, 4)/LN(1, 4)/st

model with four low targets α less than 0.1, ranging from 0.02 to 0.08. On the bottom of
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Figure 5. Estimated PoD for the Ht
2(1, 4)/LN(1, 4)/st model with z = 2.11 using the

MOL staffing algorithm in (3.1) with z = 1 as would be done for the same model with an
Mt arrival process, for targets α = 0.1, 0.3, 0.5 (above) and comparison of the associated
staffing levels using the MOL staffing for Ht

2(1, 4) and Mt arrivals (below).

Figure 6. Estimated time-varying PoD for the Ht
2(1, 4)/LN(1, 4)/st model with four low

targets α < 0.1 (top) and associated staffing for the case α = 0.02 (bottom).

Figure 6 is shown the associated higher time-varying staffing levels required for the target
α = 0.02.

Next, Figure 7 displays the estimated PoDs for the base Ht
2(1, 4)/LN(1, 4)/st model

with the average arrival rate λ̄ reduced from 100 to 10, that is, for the arrival rate function
λ(t) = 10 + 2 sin(t). The reduced OL leads to reduced staffing accordingly; the old OL m(t)
in (3.2) is now simply divided by 10, while the peakedness z is unchanged. Hence, unlike the
case on the left, each single server matters much more. Figure 7 shows that the MSHT MOL
SRS algorithm in (3.1) still stabilizes the delay probability in these new cases. However,
the performance falls further below the target at the higher PoD targets (left-hand plot in
Figure 7). But note that a single server makes a much greater difference now (right-hand
plot in Figure 7). Despite the rather unconvincing left plot, from both plots, we can see
that the stabilization at the target α has been achieved as well as possible, because there is
a substantial gap for s(t), but understaffing with s(t) − 1. With fewer servers, each server
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Figure 7. Estimated time-varying PoD in the base Ht
2(1, 4)/LN(1, 4)/st model with the

same targets as before, but with the average arrival rate λ̄ reduced from 100 to 10, using
the MOL SRS formula (3.1) s(t) (left) and s(t) − 1 (right).

matters more; there is a limit to what is possible. Figure 14 in the e-companion shows
similar performance for the more challenging case λ̄ = 4.

8.2. Alternative Arrival Processes

We now consider the MOL SRS staffing algorithm to the base Ht
2(1, 4)/LN(1, 4)/st model

except that we change the arrival process. First, we considered the performance for a deter-
ministic Dt arrival process and an Et

2 Erlang renewal arrival process, which have the same
deterministic arrival rate function, but has N a stationary D and E2 renewal process. These
processes are less variable than a Poisson process, having asymptotic variability parameters
(equal to the interarrival times scv) of c2A = 0 and c2A = 0.5, respectively. Such low-variability
arrival processes commonly occur in service systems with arrivals by appointment. Figure 15
in the e-companion shows that the same excellent performance holds in these low-variability
examples.

As noted in Section 2.2, our base Ht
2(1, 4) arrival process is constructed from an H2(1, 4)

renewal process, which also is an IPP (a special MMPP). We next consider non-renewal
MMPPs as the arrival process. In particular, we consider an MMPP with an underly-
ing CTMC {Γ(t), t ≥ 0} that is a birth-and-death process having three states 0, 1 and 2.
Let Z(t) = f(Γ(t)) with state-dependent rate f(i) = λi, where (λ0, λ1, λ2) = (3, 1, 1/3). The
long-run rate of the MMPP is

λC = lim
t→∞ t−1C(t) = lim

t→∞ t−1

∫ t

0

Z(s)ds = lim
t→∞ t−1

∫ t

0

f(γ(s))ds =
2∑

j=0

πjλj ≡ λ∗,

where π ≡ (π0, π1, π2) is the steady-state distribution for the CTMC. We consider two sets
of birth-and-death rates: (i) λ̂0 = 2, λ̂1 = 1.5, μ̂1 = μ̂2 = 1 and (ii) λ̂0 = 20/27, λ̂1 = 5/9,
μ̂1 = μ̂2 = 10/27, which yield the same steady state π = (1/6, 1/3, 1/2) and asymptotic
rate of MMPP λC = λ∗ = 1, but different variability parameter of C: (i) c2C = 10/9 and (ii)
c2C = 3, where c2C is given by

c2C =
σ̄2

C

λC
= σ̄2

C = 2
1∑

j=0

1

λ̂jπj

[
j∑

i=0

(λi − λ∗)πi

]2

.

See Proposition 1 of [48] for details, also see [14]. Because M is a rate-1 Poisson process, the
stochastic variability parameters for the Gt arrival are: (i) c2A = c2M + c2C = 1 + 10/9 = 19/9
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Figure 8. Estimated time-varying PoD for the MMPPt(1, c2A)/LN(1, 4)/st model with
c2A = 19/9 (left) and c2A = 4 (right), using the MOL SRS formula (3.1) for five delay
probability targets α.

Figure 9. Estimated time-varying PoD for the Ht
2(1, 4)/M/st model with exponential

service times yielding z = 2.5 (left) and for the Ht
2(1, 4)/LN(1, 0.25)/st model with the

low-variability lognormal LN(1, 0.25) service times yielding z = 3.25 (right) using the MOL
SRS formula (3.1) for five delay probability targets α.

and (ii) c2A = 1 + 3 = 4. Figure 8 shows the time-varying delay probability for different
targets α with the MMPPt/LN(1, 4)/st model having MMPP arrivals with c2A = 19/9 (left)
and c2A = 4 (right). Clearly the performance is again excellent.

8.3. Alternative Service-Time Distributions

We also conducted experiments for the base Ht
2(1, 4)/LN(1, 4)/st model with different ser-

vice distributions. Figure 9 shows that the same stable plots of the delay probability hold
for exponential (M) and lognormal LN(1, 0.25) service times.

8.4. Models with Customer Abandonment

Finally, we conducted simulation experiments evaluating the performance of our new MOL
SRS algorithm for the general Gt/GI/st +GI model. using the refined Garnett functions
in (6.1) and (6.2).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Estimated time-varying PoD with nine targets α = 0.1, . . . , 0.9, for the
Ht

2(1, 4)/M/st +M model with μ = 1 and different θ, ranging from 1/16 to 16.

8.4.1. Exponential service and patience times. Figure 10 reports simulation results of
this staffing algorithm applied to the Ht

2(1, 4)/M/st +M model, having our base arrival
process and exponential service times with mean 1/μ = 1, but now also with customer
abandonment for a range of abandonment rates θ from 1/16 to 16. Figure 10 shows that
the staffing algorithm is effective for all θ and all delay probability targets 0.1 ≤ α ≤ 0.9.

8.4.2. Non-exponential service and patience times. Figure 11 shows the results for the
Ht

2(1, 4)/H2(1, 4)/st +H2(1, 4) model and Ht
2(1, 4)/E2(1)/st +H2(1, 4) model. In the e-

companion we show corresponding results for models with low-variability, service times and
arrival processes, in particular, for the Et

2/LN(1, 4)/st +H2(1, 4) and Dt/LN(1, 4)/st +
H2(1, 4) models, having the process N be a renewal process with E2 and D times between
renewals. We find that the performance is stabilized at all targets in all these cases.

8.4.3. Smaller arrival rates. Figure 12 shows the results for λ̄ = 10 and λ̄ = 4 for our
main Ht

2(1, 4)/LN(1, 4)/st +H2(1, 4) example. We see that (i) our staffing method continue
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Figure 11. Estimated time-varying PoD for theHt
2(1, 4)/GI/st +H2(1, 4) model with (a)

H2(1, 4) service times yielding z = 2.05 (left) and (b) E2(1) service times yielding z = 2.88
(right), and i.i.d. H2(1, 4) patience times, yielding θ = μ = 1, using the MOL SRS formula
(3.1) and the Zeltyn–Mandelbaum refinement to the Garnett function in (6.2) for nine delay
probability targets α, ranging from 0.1 to 0.9.

Figure 12. Estimated time-varying PoD for the Ht
2(1, 4)/LN(1, 4)/st +H2(1, 4) model

with a wide range of targets, but with the average arrival rate λ̄ reduced from 100 to 10
(left) and to 4 (right).

to stabilize the performance for a wide range of targets; and (ii) a single agent matters more
with a smaller OL.

9. CONCLUSIONS

We have developed: (i) a new non-Poisson non-stationary arrival process model in Section 2
that includes the non-stationary Cox (doubly stochastic Poisson) process as a special case,
and (ii) a new MSHT MOL SRS algorithm in Sections 3 and 6 for the general Gt/GI/st

and Gt/GI/st +GI models with that arrival process. We have shown that the algorithm is
effective for stabilizing the PoD with this model by conducting simulation experiments in
Sections 7 and 8.

In Section 2, we have shown how to construct and usefully characterize general arrival
processes that combine non-standard stochastic variability with significant time variability.
First, in Section 2.1 we constructed a general model exploiting composition. In Section 2.2,
we exhibited a special case, which includes the non-stationary Cox process, that is, a non-
homogeneous Poisson process with a rate function that is itself a stochastic process. In
Section 5, we showed how to compute the asymptotic variability parameter of the arrival
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process, c2A, from stochastic models and estimate it from data without constructing a specific
stochastic model, by estimating the index of dispersion I(t) for large t.

The new MSHT MOL SRS algorithm in Section 3 exploits the approximation for the
steady-state delay probability in the stationary G/GI/s model in [51], which is based on the
MSHT limit for the GI/M/s model in [19], extended to the G/M/s model by Section 7.3
of [40]. The new algorithm extends the MSHT MOL approach to staffing introduced for
the Mt/M/s model in [21]. The extension exploits the MSHT limit of the peakedness z,
that is, the ratio of the variance to the mean of the steady-state number of busy servers in
the associated IS model, which is supported by the MSHT limits in [31,41,43]. The MSHT
limit of the peakedness in (3.5) succinctly captures the important non-trivial combined
impact of the service-time distribution and the variability in the arrival process on system
performance.

Broadly, this paper is useful for showing one way to model and staff for more complex
non-Poisson non-stationary arrival processes. Moreover, the analysis in this paper yields use-
ful insights about the impact of stochastic variability upon the performance of many-server
queues. First, our analysis supports the conclusion that the variability in the arrival process
primarily affects performance and staffing through the asymptotic variability parameter c2A
arising in the CLT. Second, there is a complicated interaction between the service-time
distribution and the arrival process in their impact upon performance, which tends to be
captured by the MSHT limit of the peakedness, as in MSHT limits for the G/G/∞ IS queue
in [41,43]. As discussed in Section 4, the peakedness representation shows the impact of the
service-time variance σ2 on performance and staffing with a lognormal LN(1, σ2) service
distribution. Counter to conventional wisdom, for an arrival process that is more variable
than Poisson, the congestion tends to be decreasing in σ2, so that the commonly found
σ2 ≈ 1 is not helpful compared to a higher variance such as σ2 ≈ 4 or more.

It is significant that the new staffing algorithm in (3.1) and Section 3 is relatively
simple, being a variant of the widely used square-root-staffing formula. Our results show
that even the basic algorithm with z = 1 stabilizes performance for our general models. The
refinement is important for hitting the delay probability target α. The robustness suggests
that variants of our proposed algorithm might be useful in other complex settings.

Nevertheless, it remains to investigate how this new staffing algorithm works in appli-
cations with non-Poisson non-stationary arrival processes. Moreover, it remains to develop
alternative approaches and compare them. For example, it may prove useful to consider
other variants of the SRS algorithm in (3.1), such as the alternative staffing formula
s(t) = m(t) + βm(t)c for c �= 2 investigated by Maman [35].
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APPENDIX

This is an appendix to the main paper. We display additional results from simulation experiments
that examine the performance of the proposed staffing algorithm.

After giving a brief review in Section A1, we consider the base model with very low arrival
rate in Section A2, in particular, the average arrival rate λ̄ reduced from 100 to 4. In Section A3,
we consider the performance of the base model modified to have different arrival processes, in
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Figure 13. Estimated time-varying PoD for the Mt/M/st model (z = 1, left) and the
Ht

2(1, 4)/LN(1, 4)/st model (z = 2.11, right) using the MOL SRS formula (3.1) for five
delay probability targets α.

particular, with variability less variable than Poisson, instead of more variable than Poisson. In
Section A4, we consider the performance for additional models with customer abandonment.

A1. BRIEF REVIEW

Recall that we applied the MOL SRS staffing algorithm to the Ht
2(1, 4)/LN(1, 4)/st base model

with the sinusoidal arrival rate function

λ(t) = λ̄(1 + ψλ sin(γλt+ φλ)), t ∈ [0, 96], (A.1)

with average arrival rate λ̄, relative amplitude ψλ, 0 ≤ ψλ ≤ 1, period (cycle length) 2π/γλ and
phase shift φλ. Our base case has λ̄ = 100, ψλ = 0.2, γλ = 1 and φλ = 0. The arrival process is
constructed from an H2 renewal process (having hyperexponential inter-renewal times), which
is a special MMPP. The service-time distribution is lognormal. These H2(1, 4) and LN(1, 4)
distributions are specified in Sections 4 and 6.1 of the main paper.

First, Figure 13 shows the estimated time-varying PoD for the Mt/M/st model with z = 1 on
the left and for the Ht

2(1, 4)/LN(1, 4)/st base case with z = 2.11 on the right, using the MOL SRS
formula (10) in the main paper for five PoD targets α. Of course, the plots on the left in Figure 13
just confirm the results of [21]. The plots on the right in Figure 13 show that our extension of the
MSHT MOL approximation performs just as well for the non-Markov Ht

2(1, 4) arrival process.

A2. LOW ARRIVAL RATES

We first consider the Ht
2(1, 4)/LN(1, 4)/st base model having the sinusoidal arrival rate in (A.1)

with λ̄ = 100 reduced to λ̄ = 4. Figure 14 shows the performance with the SRS staffing s(t) (left)
and s(t) − 1 (right). We observe that the change of a single server now makes an even greater
difference to the performance than the case λ̄ = 10, shown in Figure 8 of the main paper. Because
the overall staffing levels are low, the change of one server (as time evolves) account for the relatively
large fluctuations of the PoD.

A3. ALTERNATIVE ARRIVAL PROCESSES

Figure 15 shows the performance for the Ht
2(1, 4)/LN(1, 4)/st base model with λ̄ = 100 modified

to have deterministic Dt arrival process (left) and an Et
2 Erlang renewal arrival process, which has

the same deterministic arrival rate function but has N a stationary D and E2 renewal process.
These processes are less variable than a Poisson process, having asymptotic variability parameters
(equal to the interarrival times scv) of c2A = 0 and c2A = 0.5, respectively.

available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S026996481600019X
Downloaded from http:/www.cambridge.org/core. Columbia University - Law Library, on 10 Nov 2016 at 01:38:18, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S026996481600019X
http:/www.cambridge.org/core


STAFFING A SERVICE SYSTEM WITH NON-POISSON NON-STATIONARY ARRIVALS 619

Figure 14. Estimated time-varying PoD in the base Ht
2(1, 4)/LN(1, 4)/st model with the

same targets as before, but with the average arrival rate λ̄ reduced from 100 to 4, using the
MOL SRS formula s(t) (left) and s(t) − 1 (right).

Figure 15. Estimated time-varying PoD for the Dt/LN(1, 4)/st model with z = 0.64
(left) and the Et

2/LN(1, 4)/st model with z = 0.82 (right) using the MOL SRS formula
(3.1) for five delay probability targets α.

The associated peakedness in these two cases is z = 0.64 and z = 0.82, both less than 1. Just
as for the MOL algorithm from [21] for the Markovian Mt/LN(1, 4)/st on the left and for our new
MOL algorithm for the base case Ht

2(1, 4)/LN(1, 4)/st model on the right in Figure 2 of the main
paper, we see that the performance target is met perfectly at the lower PoD targets, but there is
some gap at the higher PoD targets, but we have seen that this is due to the impact of a single
server.

A4. CUSTOMER ABANDONMENT

In this final section, we show the results of additional simulation experiments for Gt/GI/st +GI
models with non-exponential service times and patience times.

A4.1. Different Service Variability and Abandonment Rates

Figure 16 shows the performance for theHt
2(1, 4)/LN(1, v)/st +M(m) for all combinations of three

variances v = 0.25, 1.0, 4 of the mean-1 lognormal service-time distribution and three mean values
for the exponential patience distributions: m = 0.25 and 4.0. The performance is consistently good,
except in the case of a low-variability LN(1, 0.25) service distribution and a high-abandonment-rate
M(0.25) patience distribution, with mean 0.25 and abandonment rate of 4, appearing in the top-left
plot of Figure 16. The performance remains good for the low targets, but we see understaffing at
the high targets.

available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S026996481600019X
Downloaded from http:/www.cambridge.org/core. Columbia University - Law Library, on 10 Nov 2016 at 01:38:18, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S026996481600019X
http:/www.cambridge.org/core


620 B. He, Y. Liu and W. Whitt

(a)

(b)

(c)

Figure 16. Estimated time-varying PoD for the Ht
2(1, 4)/LN(1, s)/st +M(m) model

with LN(1, v) lognormal service times for v = 0.25, 1.0 and 4.0 and exponential aban-
donment with mean m = 1/4 (left) and m = 4 (right) using the MOL SRS formula (3.1)
and the Garnett function in (6.1) for nine delay probability targets α, ranging from 0.1
to 0.9.

Figure 17. Estimated time-varying PoD for the Ht
2(1, 4)/M(1)/st +H2(1, 4) model with

M(1) exponential service times and i.i.d. H2(1, 4) patience times, yielding θ = μ = 1, using
the MOL SRS formula (3.1), and (a) the Garnett function (left) and (b) the Zeltyn-Mandel-
baum refinement to the Garnett function (right), in (6.2) for nine delay probability targets
α (left) and (ii), ranging from 0.1 to 0.9.

A4.2. Non-exponential Patience Distributions

The left-hand plots in Figures 17 and 18 show two cases with H2(1, 4) patience distribution, the first
forM(1) service and the second for LN(1, 4) service. Again we see stable performance, but both give
evidence of over-staffing, because the delay probabilities fall below the targets for the higher targets.
These cases do not yet benefit from the refined steady-state delay-probability approximation in [56].
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Figure 18. Estimated time-varying PoD for the Ht
2(1, 4)/LN(1, 4)/st +H2(1, 4) model

with LN(1, 4) lognormal service times as in the base case, yielding z = 2.11, and i.i.d.
H2(1, 4) patience times, yielding θ = μ = 1, using the MOL SRS formula (3.1), (a) the
Garnett function (left) and (b) the Zeltyn–Mandelbaum refinement to the Garnett function
(right), in (6.2) for nine delay probability targets α, ranging from 0.1 to 0.9.

Figure 19. Estimated time-varying PoD for the Gt/M(1)/st +H2(1, 4) model with low
arrival variabilities: (i) Et

2 arrivals (left) and (ii)Dt arrivals (right),M(1) exponential service
times and i.i.d. H2(1, 4) patience times, yielding θ = μ = 1, using the MOL SRS formula
(3.1) and the Zeltyn–Mandelbaum refinement to the Garnett function in (6.2) for nine delay
probability targets α, ranging from 0.1 to 0.9.

From [56], we know that the steady-state distribution for the non-M abandonment requires a
modification of the Garnett function. The right-hand plots in Figures 17 and 18 show the perfor-
mance in the left-hand plots after the refinement has been made. These new figures show significant
improvement, notably at the higher targets.

A4.3. Low Arrival Variability

We consider models with low arrival variabilities in Figure 19 for the Et
2/LN(1, 4)/st +H2(1, 4)

and Dt/LN(1, 4)/st +H2(1, 4) models, where the base process N is a renewal process with E2 and
D times between renewals, and show that the performance is stabilized at all targets in all these
cases.
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