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This note describes a simulation experiment involving nine exponential queues in series with a non-Poisson arrival process, 
which demonstrates that the heavy-traffic bottleneck phenomenon can occur in practice (at reasonable traffic intensities) as 
well as in theory (in the limit). The results reveal limitations in customary two-moment approximations for open queueing 
networks. 
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1. Introduction 

The purpose of this note is to describe a simu- 
lation experiment that provides insight into the 
steady-state performance of non-product-form 
open queueing networks. In particular, we show 
that the heavy-traffic bottleneck phenomenon in 
an open queueing network can occur approxi- 
mately at reasonable traffic intensities. 

By the heavy-traffic bottleneck phenomenon, 
we mean the state-space collapse that occurs if the 
traffic intensity of one queue approaches 1, while 
the traffic intensities at all other queues remain 
below 1 - e  for some e > 0. Heavy-traffic limit 
theorems by Iglehart and Whitt [5], Reiman [7,8] 
and Chen and Mandelbaum [4] indicate that if the 
traffic intensity at one queue is sufficiently high, 
while the traffic intensities of all the other queues 
are substantially lower, then the standard steady- 
state random variables such as the waiting time at 
each queue and the number  of customers in the 
network are distributed nearly the same (relatively 
to the level of congestion at the bottleneck queue) 
as if all the service times in the non-bottleneck 
queues were set equal to 0. 

Since the number  of customers in the bot- 
tleneck queue should go to infinity as its traffic 
intensity approaches 1, while the number  of 

customers at other queues should stay finite, it is 
intuitively obvious that the propor t ion  of 
customers in the network that are at the bot- 
tleneck queue should approach 1 in this limit. 
However, it is less obvious that the normalized 
steady-state waiting time at the bottleneck queue 
should be nearly the same as if the service times at 
all the other queues were set equal to 0, i.e., as if 
the other queues acted as instantaneous switches. 
This is the feature that we wish to identify in 
typical networks. 

To exhibit the heavy-traffic bottleneck phe- 
nomenon in this form, we choose a relatively 
simple network. (It will be evident that the phe- 
nomenon will hold more generally.) In particular, 
we consider several single-server queue in series. 
Customers arrive at the first queue according to a 
renewal process with interarrival times having a 
general distribution with mean 1 and squared 
coefficient of variation (variance divided by the 
square of the mean) Ca21 . Each queue has unlimited 
waiting space, the first-in first-out discipline, and 
I ID  (independent and identically distributed) 
service times that are independent of the arrival 
process and the other service times. The service- 
time distribution at queue i has a general distribu- 
tion with mean Pi, where p, < 1, and squared 
coefficient of variation c~. In this context, the 
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heavy-traffic bottleneck phenomenon occurs if the 
traffic intensity of one queue is allowed to ap- 
proach 1; then, by [5], the waiting-time distribu- 
tion at this bottleneck queue is asymptotically the 
same as if the immediate arrival process (i.e., the 
departure process from the previous queue) were 
replaced by the external arrival process to the first 
queue with squared coefficient of variation 2 Cal. 

Our purpose is to show that this can be approxi- 
mately true at reasonable traffic intensities. 

Unfortunately, due to the non-exponential dis- 
tributions, this model is very difficult to analyze 
exactly. A useful practical approach to this model 
and more general open queueing networks is the 
parametric-decomposition approximation method, as 
in Whitt [14], Segal and Whitt [10], Bitran and 
Tirupati [3] and references cited there. For our 
model of queues in series, the standard implemen- 
tation of this approach is to approximate the 
arrival process to queue i by a renewal process 
with arrival rate 1 and squared coefficient of vari- 
ation Ca~,2 where c~2 is defined recursively by 

2 22 ( 1 - p i ) G i ,  i>~l ,  (1) Ca, i+l  m. PiCs i -4- 2 2 

see (38) of [14] and (23) of [15]. We then can 
approximate the mean steady-state waiting time 
(before beginning service) at queue i by 

e[w,] "y(ca ' + 4 )  
2(1 - p,) (2) 

or some refinement such as provided by Kraemer 
and Langenbach-Belz [6]; see (2) and (44) of [14]. 

As indicated in [15], approximation (1) can be 
viewed as the result of the pure stationary-interval 

2 for i > 1 to method, i.e., an attempt to match Cag 
the actual squared coefficient of variation of a 
stationary interval in the i-th arrival process (but 
ignoring the dependence among successive inter- 
arrival times). It is significant that (2) does not 
reflect the heavy-traffic phenomenon, because the 
approximating arrival variability parameter c~g at 
queue i is totally independent of Pi. 

2 It may seem appropriate that ca~ not depend on 
pi, because the arrival process to queue i is exoge- 
nous to queue i. However, experience has shown 
that it may be desirable to let c2i depend on p~, 
because the way the variability in the arrival proc- 
ess affects the queue depends on the traffic inten- 
sity in the queue. 

An alternate approach described in [13,15] is 
the asymptotic method, which attempts to choose a 

2 variability parameter cai to match the central limit 
theorem behavior of the i th arrival process. For 
queues in series, this leads to the approximation 

2 _ 2 for all i>~ 1. (3) Cai - -  Cal 

Intuitively, (3) may not look too promising, but it 
is just what is predicted by the heavy-traffic the- 
ory when & --, 1. (This was the original motivation 
for the asymptotic method.) We thus regard actual 
system performance consistent with (3) and (2), 
instead of (1) and (2), when Pi is relatively high as 
strong evidence of the heavy-traffic bottleneck 
phenomenon. 

Based on success approximating queues with 
superposition arrival processes in Albin [1] and 
Whitt [13,14], Whitt [15] sought a hybrid ap- 
proximation for the arrival variability parameters 
for queues in series, which appropriately combines 
the stationary-interval method and the asymptotic 
method. However, in the simulations considered 
in [15], (3) did not help. Until the present experi- 
ment, we have had no clear evidence indicating 
that (3) is relevant at typical traffic intensities. 
However, benefits from modifying (1) in open 
queueing networks were noted by Albin and Kai 
[2]. Moreover, a modification of (1) that reflects 
(3) for two queues in series is presented in Suresh 
and Whitt [11]. However, the modification in [11] 
does not help significantly with the examples here. 

In Section 2 we describe a specific experiment 
showing that (3) can be relevant at a bottleneck 
queue at typical traffic intensities. In Section 3 we 
consider a modification of that experiment to see 
the effect of inserting a low-variability (high-varia- 
bility) queue in front of the first queue when the 
external arrival process has high (low) variability. 
Finally, we make a few concluding remarks in 
Section 4. 

2. Nine exponential queues in series 

We now specify the model to demonstrate the 
relevance of (3). The traffic intensities were chosen 
to reflect the heavy-traffic bottleneck phenome- 
non, but not to be too extreme. For this purpose, 
the network was given 9 queues with P9 ~ - - -  0.9 and 
Pi = 0.6 for 1 ~< i ~< 8. Similarly, the service-time 
and external interarrival-time distributions were 
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chosen to be relatively standard. In particular, all 
the service-time distributions are exponential (so 

2 = 1 for all i). Two cases were considered that Csi 
for the interarrival times: high variability and low 
variability. (Nothing would be learned from a 
Poisson arrival process, for which the exact solu- 
tion is known and consistent with both (1) and 
(3).) The distribution for high variability is the 
hyperexponential (H2) distribution with balanced 

2 = 8. The distri- means, as in (3.7) of [13], with Ca1 
bution for low variability is deterministic (D) with 

2 = 0 .  Cal 
The simulation estimates of the expected wait- 

ing times at each queue were obtained from ten 
replications of 30 000 arrivals, discarding the first 
2 000 in each case to allow the system to approach 
steady state. These run lengths are not long enough 
to obtain high accuracy at the bottleneck queue 
(see [18]), but they are adequate to clearly demon- 
strate the heavy-traffic bottleneck phenomenon. 
(Other experiments have subsequently been con- 
ducted with millions of arrivals that also support 
the results here.) The estimated mean steady-state 
waiting times at the last two queues in both cases 
are displayed in Table 1, together with estimates 
of 90% confidence intervals, which are based on 

Table 1 
Simulation estimates of the mean steady-state waiting times at 
queues 9 and 8 in the network of nine queues in series in 
Section 2, plus associated approximations 

High Low 
variability variability 
¢a21 = 8 .0  ¢21 = 0 .0  

Queue 9 Simulation 30.1 _+5.1 5.03 _+0.22 
09 = 0.9 estimate 

Approximation 8.9 8.0 
(1) and (2) 

M / M / 1  8.1 8.1 
approximation 

Approximation 36.5 4.05 
(3) and (2) 

Queue 8 Simulation 1.42 _+ 0.07 0.775 + 0.013 
P8 = 0.6 estimate 

Approximation 1.04 0.88 
(1) and (2) 

M / M / 1  0.90 0.90 
approximation 

Approximation 4.05 0.45 
(3) and (2) 

the t-statistic applied to the ten independent repli- 
cations. (As usual, since the estimates are not 
actually normally distributed, the t-statistic is an 
approximation.) Also shown in Table 1 are the 
values of three approximations. 

The idea behind this experiment is that, if we 
did not have the heavy-traffic phenomenon, we 
would expect that the arrival process to each 
successive queue would become more like a Pois- 
son process, so that the last queues would behave 
like M / M / 1  queues. (See Remark 4.2 for further 
discussion.) Consistent with (1), we might expect 
that the non-Poisson variability in the external 
arrival process has been dissipated by the time we 
reach queue 9. However, from Table 1 it is clear 
that the observed mean waiting time at the bot- 
tleneck queue (queue 9) is much higher (lower) 
than in the M / M / 1  model with the same traffic 

2 __ 8.0 (Ca21 = 0.0). The standard intensity when ca1 
2 = 1.20 and 0.97 in approximation (1) yields Ca9 

these cases, so that from (1) and (2) we would 
expect the mean waiting time to be about 10% 
higher and 2% lower than for the M / M / 1  models 
in these two cases. In fact, the actual estimates are 
272% higher and 38% lower, respectively. 

In contrast, the pure asymptotic-method ap- 
proximation combining (2) and (34) is much bet- 
ter at the bottleneck queue, providing very strong 
evidence of the heavy-traffic bottleneck phenome- 
non. However, 09 could be even higher, so that we 
should not expect to see the full heavy-traffic 
effect. Indeed, the approximation combining (2) 
and (3) does not perform exceptionally well, yield- 
ing about a 20% error in each case. 

As should be expected, the asymptotic method 
performs very poorly at the preceding non-bot- 
tleneck queue. Note that queue 8 would have the 
highest traffic intensity among the first 8 queues, 
and thus be the bottleneck queue in some sense, if 
we just increased its traffic intensity by a very 
small amount, say by 0.01. However, for practical 
purposes, for a queue to be a bottleneck, it is not 
enough for it to have the highest traffic intensity; 
its traffic intensity should be substantially greater 
than the traffic intensities at the other queues. 

These examples show limitations in the para- 
metric-decomposition approximations as currently 
developed. We still believe that improved paramet- 
ric-decomposition approximations can be devel- 
oped to cover these examples. These results sug- 
gest that, just as in [1,13,14], it should be ap- 
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propriate to consider hybrid approximations of 
the stationary-interval and asymptotic methods. 
In general, it appears that an appropriate ap- 
proximating arrival process variability parameter 
at queue i, say c~r, should be a function of c21, 
C2sl, " " • ,  Cs, i - - 1 2  and Px . . . . .  Or We are fairly confi- 

2 should satisfy the requirement that dent that cai 

• 2 1}  r l l l n  ( Ca1, 2 . c 2 Cs l ,  • • , s , t -  

. . .  C 2 2 max( 2 2 , s,i-1}, (4) Cai ~ C a l ,  Cs l ,  

but we have just shown that neither (1) nor (3) is 
always good. However, we expect (1) to work 
reasonably well when the bounds in (4) are not 
too far apart. 

Reiman [9] recently has proposed two paramet- 
ric-decomposition approximations for open queue- 
ing networks that are strongly based on the 
heavy-traffic bottleneck phenomenon. The object 
is to determine c~r to use with (2)• The first 
method is the individual bottleneck decomposition 
(IBD), which treats each queue as if it were the 
unique bottleneck queue. It is not difficult to see 
that IBD in fact coincides with the asymptotic 
method in [13,15]: this is justified by the heavy- 
traffic limit theorems in [4,5,7,8]• Reiman's second 
method, which seems more promising, is the 
sequential bottleneck decomposition (SBD), which 
starts by identifying the queue, say queue i, with 
the highest traffic intensity (assuming no ties) and 
applying the bottleneck approximation to it to 
determine Car.2 In a series network this amounts to 
using (3) at the queue with highest traffic inten- 
sity. The procedure continues by removing the 
bottleneck queue from the network and replacing 
it by an external source (with consistent routing) 
having its service times as interarrival times. Then 
the procedure is repeated by identifying the queue 
with the next highest traffic intensity, and so 
forth. For a series network, this means that the 
original procedure is repeated for the queues be- 
fore the first bottleneck queue, and separately for 
the queues after the first bottleneck queue, with 
the bottleneck queue being replaced by an exter- 

2 nal source with arrival variability parameter csi. 
For  the example in Section 2, this means using (3) 

2 = 8.0 for the case in and (2) at queue 9, i.e., ca9 
which c21 = 8.0. At queue 8 it also means using (3) 
and (2), i.e., c~8 = 8•0, if 08 is raised to 0.601• 

2 = 1 if instead 07 is However, it means using Ca8 
raised to 0.601. This example shows that SBD 

could benefit from refinement, but Reiman shows 
that it performs quite well in some cases. We 
regard SBD as another basic method along with 
the stationary-interval and asymptotic methods 
that can serve as a basis for refined hybrid meth- 
ods. 

While we do not intend to investigate specific 
2 here, we suggest some new approximations for Car 

properties that we think cZr should satisfy. First, 
2 could reasonably be a convex combination of Cai 
2 2 2 with weights that are continuous C a l ,  C s l , - - • ,  Cs, i-1 

2 functions of ta x . . . . .  0i. Moreover, the weight on Csj 
should be increasing in Oj and decreasing in Ok for 

2 should be in- k 4:j. Similarly, the weight on Ca1 
creasing in 0r but decreasing in pj for j v~ i. More- 
over, any approximation should be consistent with 
SBD for a single bottleneck queue, i.e., queue j as 

2 Oj ~ 1. As 0j ---' 1, the approximation of caj should 
approach the asymptotic method value and the 

2 for k 4 : j  should be con- approximation of Cak 
sistent with replacing queue j by an external 
arrival process with arrival variability parameter 

z It is not obvious what should happen when Csj. 
two traffic intensities get large; then we would 
want consistency with the more complicated two- 
dimensional diffusion limit resulting from [4,8]. 

3. Filtering through a queue 

If there is high variability in an external arrival 
2 = 8.0, process, as in the first case above with Cax 

then we might consider controlling the variability 
by filtering the arrival process through a low-vari- 
ability queue, i.e., we could insert a low variability 
queue in front of the other queues in series to 
absorb some of the fluctuations. Hence, in this 
section we consider a modification of the experi- 
ment above in which an extra queue with de- 
terministic service times is inserted before the 
same nine exponential queues. 

Before discussing our experiment in more de- 
tail, we note that a fairly obvious result holds, 
namely, that adding a queue can only increase the 
number of customers in the entire system at each 
time t and the time each customer spends in the 
system. 

Proposition. I f  a new queue is added to a series of 
queues, then the number of customers in the system 
at each time and the time each customer spends in 
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the system are greater than or equal to what they 
were before. 

Proof. Note  that the performance measures of 
interest are the same as if the inserted queue were 
always there but with zero service times. Then 
observe that the departure times from the inserted 
queue and all subsequent queues are nondecreas- 
ing in the service times; see Theorem 12 of [12]. Of 
course, the ex:ernal arrival times are unchanged as 
are the arrival times at the queue where the service 
times are being changed. Finally, note that the 
time in system is the departure time minus the 
exogenous arrival time and the number  in system 
at time t is the number  of arrivals by t minus the 
number  of departures by t. [] 

Of  course, this comparison result does not im- 
ply that it is never desirable to insert an additional 
queue, because we might prefer to have customers 
waiting at the inserted queue than at later queues. 
(In manufacturing, it is often desirable to delay 
starts to avoid having excessive partially com- 
pleted work in process.) 

Our new experiment consists of a new first 
e = 0. The remaining 9 queues do not queue with Csl 

change; they get relabeled, so that now Pl0 = 0.9 
2 = 1 for and Pi=  0.6 for 2 ~< i ~< 9. As before, cs, 

2 ~< i ~< 10. We consider three different traffic in- 
tensities for the first queue Pl --- 0.4, 0.6 and 0.9. 

The simulation experiment was conducted in 
the same way as the previous one. The results are 
given in Table 2, along with the case Pl = 0.0, 
which reduces to the previous case. The estimated 
halfwidth of the 90% confidence interval is given 
below each simulation estimate. The four cases 
based on the four values of Pl were generated 
from the same random variables, so that compari-  
sons between the cases are relatively reliable (but 
not independent). 

From Table 2, we see that the smoothing effect 
increases as we increase Pl. However, for Pt = 0.6 
= p~, 2 ~< i ~ 9, the smoothing effect helps very 
little beyond the very next queue. In contrast, the 
smoothing effect for pl = 0.9 is great, but at the 
expense of substantial delay at the filter queue. 
Also given in Table 2 are the approximations 
using (1) and (2). Again, the approximations do 

Table 2 
Simulation estimates and approximations of the mean steady-state waiting times at each queue for the ten queues in series in Section 

2 = 8.0 and c21 = 0.0. The halfwidths of 90% confidence interval estimates appear below the simulation estimates 3 with ca1 

Pl Simulations Approximations (1) and (2) 

0.0 0.4 0.6 0.9 0.0 0.4 0.6 0.9 

Queue 1 0.000 0.422 2.441 32.780 0.00 1.06 3.60 32.40 
__. 0.000 + 0.007 ___ 0.090 ___ 5.116 

Queue 2 3.284 2.970 1.796 0.418 4.05 3.47 2.75 1.13 
+0.115 +0.116 +0.070 +0.011 

Queue 3 2.321 2.296 2.008 0.674 2.92 2.55 2.09 1.05 
4- 0.097 + 0.098 + 0.088 _+ 0.013 

Queue 4 1.914 1.907 1.804 0.800 2.19 1.95 1.66 1.00 
+ 0.065 + 0.065 + 0.060 __+ 0.014 

Queue 5 1.719 1.714 1.663 0.860 1.73 1.58 1.39 0.96 
+ 0.070 + 0.070 + 0.069 _4- 0.017 

Queue 6 1.598 1.595 1.562 0.908 1.43 1.33 1.21 0.94 
+ 0.059 + 0.059 + 0.057 + 0.016 

Queue 7 1.478 1.475 1.449 0.906 1.24 1.18 1.10 0.93 
+ 0.061 + 0.061 + 0,055 ± 0.017 

Queue 8 1.423 1.421 1.405 0.921 1.12 1.08 1.03 0.92 
+ 0.046 + 0.046 + 0.046 + 0.018 

Queue 9 1.413 1.412 1.398 0.940 1.04 1.01 0.98 0.91 
+ 0.066 + 0.066 + 0.066 ___ 0.023 

Queue 10 30.116 30.102 29.970 14.039 8.90 8.75 8.57 8.16 
+ 5.072 + 5.072 + 5.064 __. 1.904 

Totals 45.27 45.31 45.50 53.25 24.60 23.97 24.38 48.39 
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Table 3 
Simulation estimates and approximations of the mean steady-state waiting times at each queue for the ten queues in series in Section 

2 = 0.0 and c21 = 8.0. The halfwidths of 90% confidence interval estimates appear below the simulation estimates 3 with Cal 

#1 Simulations Approximations (1) and (2) 

0.0 0.4 0.6 0.9 0.0 0.4 0.6 0.9 

Queue I 0.000 0.927 3.521 29.548 0.00 1.07 3.60 32.40 
+ 0.000 + 0.049 + 0.135 _+ 1.556 

Queue 2 0.290 1.081 1.873 3.210 0.45 1.03 1.75 3.37 
+ 0.007 _ 0.036 + 0.063 + 0.140 

Queue 3 0.491 0.931 1.351 2.022 0.61 0.98 1.44 2.48 
+ 0.007 +_ 0.017 + 0.029 + 0.072 

Queue 4 0.607 0.912 1.227 1.787 0.72 0.95 1.25 1.91 
_+ 0,008 + 0.024 + 0.038 ___ 0.060 

Queue 5 0.666 0.900 1.185 1.582 0.78 0.93 1.12 1.55 
± 0.008 ± 0.020 ± 0.026 _+ 0.067 

Queue 6 0.706 0.895 1.148 1.496 0.83 0.92 1.04 1.31 
± 0.010 ± 0.014 ± 0.021 _ 0.034 

Queue 7 0.731 0.897 1.094 1.443 0.85 0.91 0.99 1.17 
_ 0.013 ± 0.013 ± 0.034 ± 0.047 

Queue 8 0.748 0.894 1.068 1.351 0.87 0.91 0.96 1.07 
__ 0.010 ± 0.009 + 0.032 ± 0.035 

Queue 9 0.775 0.907 1.041 1.318 0.88 0.91 0.94 1.01 
± 0.013 ± 0.019 ± 0.021 ± 0.033 

Queue 10 5.031 6.385 8.596 16.360 7.99 8.13 8.31 8.73 
± 0.217 ± 0.364 ± 0.315 ± 0.934 

Totals 10.05 14.73 22.10 60.12 13.97 16.74 21.40 54.98 

not perform very well, especially in predicting the 
large delay at queue 10 when P1 ~ 0.6. Even with 
101 = 0 . 9 ,  there remains a long-range variability 
effect on the final bottleneck queue not antic- 
ipated from (1); i.e., the estimated mean steady- 
state waiting time is 14.0, whereas the approxima- 
tion based on (1) and (2) is nearly the same as the 
M / M / 1  value of 8.1. 

From Table 2, we see that the approximation 
does not perform well at queue 1 when ta x = 0.4 
and 0.6 and at queue 2 when pl = 0. In part, this 

2 = 8.0 is relatively high variable, for is because Cal 
which good approximations are hard to achieve. 
However, these cases are also ones for which the 
Kraemer  and Langenbach-Belz refinements help 
significantly. Since these refinements always de- 
crease the approximate value, they do not move 
the values at queue 10 in the correct direction. 

In Table 3 we also report results for the dual 
example in which the external arrival process is 
deterministic (c~ 2 = 0) and the first queue has H 2 

2 = 8.0. From Table 3 we see service times with Cs~ 
that the approximations based on (1) and (2) 
perform significantly better in this case. From the 
case P1 = 0.9, we see that high variability in the 

service times can also cause a much greater wait- 
ing time in a subsequent bottleneck queue. 

4. Concluding remarks 

4.1. Long-range variability effects 

The examples here illustrate how high or low 
variability in an external arrival process or the 
service times (the case 01 = 0.9 in Table 3) can 
have only limited impact  on immediately follow- 
ing queues, and yet have a dramatic effect on a 
later queue with a much higher traffic intensity. 
This phenomenon would have been more apparent  
if we considered deterministic service times at all 
queues (the pipelining effect in [16]), but perhaps 
less convincing. A different long-range variability 
effect for multi-class queueing networks is de- 
scribed in [17]. Upon  reflection, it appears that the 
two phenomena actually are rather similar. Due to 
the relevant time scales, it is possible for an arrival 
process to pass through a subnetwork where it has 
little effect and reappear later largely unchanged. 
Here the low variability queues before the bot- 
tleneck queue do not significantly reduce the high 
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variability in the larger time scale relevant for the 
bottleneck queue. 

4.2. The Reiman-Simon conjecture 

In a certain sense, these examples also test a 
long-standing conjecture, communicated by Rei- 
man and Simon among others, that the stationary 
departure process from n l iD  exponential single- 
server queues in series fed by an independent 
stationary arrival process converges to a Poisson 
process as n ~ o¢. Of course, we only test the 
quality of the approximation of the alleged limit 
for finite n. Assuming that the conjecture is true 
(which we strongly believe), we might expect that 
the arrival process to the last queue in our exam- 
ple would be sufficiently close to a Poisson proc- 
ess so that the mean steady-state waiting time is 
close to what it would be in an M / M / 1  queue 
with p = 0.9. However, we have seen that this is 
not the case. Evidently n has to be much larger 
for the departure process to be close to the Pois- 
son process, at least f rom the perspective of a 
following bottleneck queue. Evidently the required 
n for the mean steady-state queue length at a 
subsequent bottleneck queue with traffic intensity 
p. to behave as if the arrival process were Poisson 
(after passing through n - 1 queues with Pi = 0.6) 
goes to infinity as p~ -o 1. However, this does not 
contradict the conjecture, if the conjecture is un- 
derstood to mean convergence of the finite-dimen- 
sional distributions, because as p, increases the 
relevant time scale for the n-th arrival process 
increases with regard to its impact on the steady- 
state behavior of queue n. In other words, the 
conjectured convergence as n-- ,  oo is evidently 
not uniform in the length of the time intervals 
considered. 

4. 3. Simulation technique for many queues in series 

An effective way to simulate many queues in 
series if the joint distribution of characteristics at 
several queues is not required is to simulate the 
individual queues separately and recursively (the 
opposite of parallel processing). For any queue, 
given a sequence of arrival times (T~) and a 
sequence of service times (S~ }, we generate se- 
quences of departure times ( D n ) and waiting times 
(W~} by 

D. = max(  T~, Dn_ 1 ) + S~; (5) 

and 

W~ = max(  T~, Dn_~) - T n (6) 

for n >~ 1. Of  course, the departure times serve as 
the arrival times at the next queues. 

If  we want to reduce memory,  we can work 
with a file containing only the arrival sequence 
{Tn ). We generate S~ as needed by a random 
number  generator and collect cumulative statistics 
on D~ and Wn as we go along. To eliminate extra 
storage, we can replace T, by D~ after we have 
calculated D~ and W~, so that (T~) becomes the 
arrival process to the next queue when we are 
finished applying (5) and (6) to the given se- 
quence. In fact, we have used this approach to 
study variations of the model in Section 2 with up 
to 100 queues in series. (The heavy-traffic bot- 
tleneck phenomenon is still present.) 

4. 4. Improving system performance 

The heavy-traffic bottleneck phenomenon has 
important  implications for improving performance 
of queues in series (and more general open queue- 
ing networks). If there is a bottleneck queue, then 
obviously we should try to reduce its traffic inten- 
sity. Next we should try to reduce the variability 
of the bottleneck service times and the external 
arrival process. 
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