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Abstract

In this paper we investigate operators that map one or more probability distributions on the

positive real line into another via their Laplace-Stieltjes transforms. Our goal is to make it easier

to construct new transforms by manipulating known transforms. We envision the results here

assisting modelling in conjunction with numerical transform inversion software. We primarily

focus on operators related to infinitely divisible distributions and Le ́ vy processes, drawing upon

Feller (1971). We give many concrete examples of infinitely divisible distributions. We consider

a cumulant-moment-transfer operator that allows us to relate the cumulants of one distribution to

the moments of another. We consider a power-mixture operator corresponding to an

independently stopped Le ́ vy process. The special case of exponential power mixtures is a

continuous analog of geometric random sums. We introduce a further special case which is

remarkably tractable, exponential mixtures of inverse Gaussian distributions (EMIGs). EMIGs

arise naturally as approximations for busy periods in queues. We show that the steady-state

waiting time in an M/G/1 queue is the difference of two EMIGs when the service-time

distribution is an EMIG. We consider several transforms related to first passage times, e.g., for

the M/M/1 queue, reflected Brownian motion and Le ́ vy processes. Some of the associated

probability density functions involve Bessel functions and theta functions. We describe

properties of the operators, including how they transform moments.

Key words: Laplace transforms, unimodal distributions, infinitely divisible distributions, Le ́ vy

processes, complete monotonicity, cumulants, moments, random sums, inverse Gaussian

distributions, renewal processes, subordination, first passage times, Bessel functions, theta

functions, M/M/1 queue, randomized random walk, Brownian motion, Pollaczek-Khintchine

formula.



1. Introduction and Summary

Our purpose in this paper is to aid and abet applications of Laplace transforms in applied

probability. Laplace transforms currently seem to be somewhat in disfavor, but they have proven

their worth in many studies, especially in queueing theory and related subjects such as risk theory

and inventory theory. Moreover, we have found that these transforms can often be effectively

inverted numerically; see Abate and Whitt (1992, 1994), Choudhury and Lucantoni (1994) and

Choudhury, Lucantoni and Whitt (1994).

Given that we are ready to embrace Laplace transforms, we want to be able to work with

them. For example, given that we can calculate performance measures for a large class of single-

server queues once we have transforms characterizing the arrival process and the service times,

we want to be able to find appropriate transforms to use for the arrival process and the service

times. (Algorithms for GI/G/1 and BMAP/G/1 queues based on numerical transform inversion

are discussed in Abate, Choudhury and Whitt (1993, 1994, 1995), Choudhury, Lucantoni and

Whitt (1994, 1995) and Lucantoni, Choudhury and Whitt (1994). Other algorithms for random

walks and the GI/G/1 queue appear in Ackroyd (1980), Gru
..

bel (1991), Gru
..

bel and Pitts (1992),

Keener (1994) and Konheim (1975).) Transforms for arrival processes and service times can be

found by fitting transforms to data, for which we would suggest working with empirical

transforms, as in Gaver and Jacobs (1988) and Abate et al. (1994), but that is not our focus here.

Here we develop an operational calculus for manipulating Laplace transforms (LTs) of

probability density functions (pdfs) and, more generally, Laplace Stieltjes transforms (LSTs) of

cumulative distribution functions (cdfs), i.e.,

f̂ (s) = ∫
0

∞
e − stf (t) dt = ∫

0

∞
e − stdF(t) . (1.1)

where F is a cdf and f is its pdf if well defined (if F is absolutely continuous), assumed to be

defined on the positive halfline. We consider various operators that map one or more LSTs into
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another and discuss their properties. For instance, we indicate how the moments of the

corresponding cdfs are transformed into new moments by the operator.

We hasten to say that others have already emphasized the importance of transforms. For

example, the textbook by Giffin (1975) is certainly much in this spirit. Indeed, as is so often the

case, much of what we do is in the classic, Feller (1971), but we approach the subject in a

different way. To see material only hinted at in Feller (1971), and to see how the different

operators can be applied, see Section 13 on theta distributions. Since we refer to Feller (1971) so

frequently, we refer to it simply by [F]. We also refer to Abramowitz and Stegun (1972) as [AS].

We envision the LSTs and operators discussed here being used in conjunction with software

to compute cdfs, pdfs, moments and asymptotic parameters via numerical inversion, as in Abate

and Whitt (1992, 1994) and Choudhury and Lucantoni (1994). Here we contribute toward

building an LST toolkit. Once many LSTs are readily available, it becomes possible to model

interactively on the computer. Given simple expressions for the LSTs, we can specify them

quickly and modify them easily. With the numerical inversion algorithms, the computer can

generate plots of pdfs and cdfs and tables of moments, possible together with data for fitting.

Thus, our goal is to obtain simple expressions for LSTs.

The most familiar operators are mixture, convolution and compound operators based on these

two, such as are obtained by considering random sums of i.i.d. nonnegative random variables.

The most important random sums are no doubt the geometric random sum and the Poisson

random sum (the compound Poisson distribution). These familiar operators are summarized in

Table 1. In Table 1, p and p k are probabilities, Ĝ(z) ≡
k = 0
Σ
∞

p k z k is a probability generating

function, m k ≡ m k ( f ) is the k th moment, c k ≡ c k ( f ) is the k th cumulant (semi-invariant or

reduced correlation function) and f k∗ (t) is the k-fold convolution of f. In Table 1 we display both

the operators and the inverse operators. The operators are always well defined, but the inverse
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operators are not. For example, the question of deconvolution is equivalent to factorizing the

transform; see Lukacs (1970). We will devote considerable attention to inverse operators, but we

will not focus on the elementary operators in Table 1.

_ ___________________________________________________________________________
probability k th moment

operator transform density function or cumulant_ ___________________________________________________________________________
simple mixture (} ) pf̂ (s) + ( 1 − p) ĥ(s) pf (t) + ( 1 − p) h(t) pm k ( f ) + ( 1 − p) m k (h)

unmixing (} − 1 )
p

ĝ(s) − ( 1 − p) ĥ(s)_ _______________

_ ___________________________________________________________________________

general mixture (} )
Ω
∫ f̂ x (s) dP(x)

Ω
∫ f x (t) dP(x)

Ω
∫ m k ( f x ) dP(x)

_ ___________________________________________________________________________
convolution (# ) f̂ (s) ĥ(s) ∫

0

t
f (t − x) dH(x) c k ( f ) + c k (h)

deconvolution (# − 1 )
ĥ(s)

ĝ(s)_ ____

_ ___________________________________________________________________________

random sum (5 6) Ĝ( f̂ (s) )
k = 0
Σ
∞

p k f ∗k (t)

(# + } )_ ___________________________________________________________________________

geometric sum (& 6)
1 − pf̂ (s)

1 − p_ _______ ( 1 − p)
k = 0
Σ
∞

p kf ∗k (t)

(special case of (5 6)_ ___________________________________________________________________________

Poisson sum (3 6) e − λ( 1 − f̂ (s) )

k = 0
Σ
∞

k!
e − λ λkf ∗k (t)_ __________

(special case of 5 6 )
_ ___________________________________________________________________________ 




































































































































































Table 1. The most familiar operators: mixtures, convolutions and compound operators based
on these.

Other basic operators that we will consider are displayed in Tables 2 and 3. In Table 2 we

display the exponential-damping (or attenuation) operator, which was used in Abate et al. (1994),

and several familiar operators associated with renewal processes. Exponential damping shifts the

dominant singularity. Exponential damping is important for relating long-tail distributions to

distributions without an exponential tail that are dominated by an exponential; see Section 9.

Again, the damping operator $ is always defined, but its inverse is not. The inverse is defined
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whenever f̂ ( − a) is finite.

_ ___________________________________________________________________________________
probability

operator transform density function k th moment_ ___________________________________________________________________________________

exponential damping ($ )
f̂ (a)

f̂ (s + a)_ ______

∫
0

∞
e − atf (t) dt

e − atf (t)_ ___________

$ − 1

f̂ ( − a)

f̂ (s − a)_ ______

∫
0

∞
e atf (t) dt

e atf (t)_ __________

_ ___________________________________________________________________________________

stationary-excess (%)
sm 1

1 − f̂ (s)_ ______
m 1

1_ ___ ∫
t

∞
f (x) dx

(k + 1 ) m 1

m k + 1_ ________

%− 1 1 −
g( 0 )
sĝ(s)_____ −

g( 0 )
g ′ (t)_ ____ (k − 1 ) m k − 1 , k ≥ 2

_ ___________________________________________________________________________________

stationary-lifetime (+ ) −
m 1

f̂ ′ (s)_ ____
m 1

tf (t)_ ____
m 1

m k + 1_ _____

+ − 1

m − 1

1_ ____ ∫
s

∞
ĝ(z) dz

t m − 1

g(t)_ _____
m − 1

m k − 1_ _____

_ ___________________________________________________________________________________

renewal-excess (5 %)


 m 2 − 2m1

2

2m1
2

_ ________






 1 − f (s)

f̂ (s)_ ______ −
m 1 s

1_ ____




_ ___________________________________________________________________________________ 











































































































































Table 2. More operators: exponential damping and familiar renewal-process operators.

The renewal-excess operator maps the interrenewal time cdf F into U(t) − t / m 1 (F) plus a

normalization to make the limit 1, where U(t) is the renewal function. The renewal-excess

operator does not always yield a bonafide cdf; it does whenever the cdf F has the increasing mean

residual life (IMRL) property, because then U(t) is monotone. The renewal-excess operator and

the stationary-excess operator play an important role in the M/M/1 queue; see Section 9 of Abate

and Whitt (1988a), Section 4 of Abate and Whitt (1988b) and Section 7 of Abate and Whitt

(1988d). The stationary-excess operator is discussed in Whitt (1985) and references therein.

To see how the operators combine, note that the steady-state waiting-time LST in the M/G/1

queue is obtained from the service-time LST f̂ (assumed to have mean 1) by the composition of

the stationary-excess operator and the geometric-sum operator with p = ρ, the traffic intensity:
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3 _( f̂ ) = (& 6+%) ( f̂ ) . (1.2)

We call 3 _ in (1.2) the Pollaczek-Khintchine operator. In this context, we provide a large

collection of candidate service-time LSTs, from which the steady-state waiting-time cdf can

easily be computed by numerical inversion using (1.2). As in Abate and Whitt (1992), we would

typically compute the complementary cdf G c (t) ≡ 1 − G(t) after eliminating the known atom at

the origin, i.e., G c (t)/ G c ( 0 ) with LT ( 1 − ĝ(s) )/ sG c ( 0 ). We consider generalizations of the

operator 3 _ in Section 12.

We call the operators in Table 3 probabilistic-structure operators. The operators arise when

_ ___________________________________________________________________________________________
probability

operator transform density function k th moment_ ___________________________________________________________________________________________

unimodal (8 )
s
1_ _ ∫

0

s
f̂ (z) dz = ∫

0

1
f̂ (ts) dt ∫

t

∞
x − 1 f (x) dx

k + 1

m k_ ____

8 − 1 ĝ(s) + sĝ ′ (s) − tg ′ (t) (k + 1 ) m k_ ___________________________________________________________________________________________

cumulant-moment
m 1 s

− log f̂ (s)_ ________ ( − tg ′ (t) ) ∗ f (t) =
m 1 ( f )
tf (t)_ ______

(k + 1 ) m 1

c k + 1_ ________

transfer (7 )

7 − 1 exp ( − asĝ(s) ) (3.5)_ ___________________________________________________________________________________________

infinitely f (t) ∗g(t) =
m 1 (g)
tg(t)_ _____ (4.10)

divisible (( ) exp ( − a∫
0

s
f̂ (z) dz)

(7 − 1 +8 )

( − 1

m 1 (g)
− 1_ _____

ds
d_ __ log ĝ(s) = −

ĝ(s) m 1 (g)

ĝ ′ (s)_ _________
m 1

c k + 1_ ____

_ ___________________________________________________________________________________________
power mixture (3 }) ĥ( − log f̂ (s) ) (6.3) and (6.4)

special case
(3 }+7 − 1 ) ĥ(sf̂ (s) )_ ___________________________________________________________________________________________

exponential
1 + sf̂ (s)

1_ _______ f (t) ∗g(t) =
m 1 (g)

1_ _____∫
t

∞
g(x) dx (7.4)

mixture (% })

% } − 1

s
1_ _



 ĝ(s)

1_ ____ − 1




_ ___________________________________________________________________________________________ 





























































































































































































Table 3. Probabilistic-structure operators.

we study probabilistic structure such as infinitely divisibility and subordination, but they are not

customarily considered as tools for constructing new LSTs the way the operators in Table 1 are.
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However, the operators in Table 3 are discussed in [F].

This paper has a fairly honest origin: In Abate et al. (1995) we studied exponential

approximations for tail probabilities of steady-state waiting times in queueing models based on

asymptotics. Afterwards in Abate et al. (1993, 1994) we investigated the different behavior that

occurs when the service-time distribution has a long tail. For this purpose, we used our numerical

inversion algorithms. However, these numerical inversion algorithms require that we be able to

compute the values of the transform of the service-time distribution. When we considered the

familiar long-tail (or subexponential) service-time distributions such as lognormal, Pareto or

Weibull with shape parameter smaller than 1, as in Johnson and Kotz (1970a,b), we found that

explicit expressions for the transforms are unavailable. Hence, we created a new family of long-

tail distributions, a Pareto mixture of exponentials (PMEs), for which we could readily compute

transform values. In particular, the PME density is

g r (x) = ∫
(r − 1 )/ r

∞
f r (y) y − 1 e − x / ydy , (1.3)

where f r (x) is the Pareto density, i.e.,

f r (x) = r


 r

r − 1_ ____




r

x − (r + 1 ) , x ≥ (r − 1 )/ r . (1.4)

For r = n or r = n + 1/2 for n integer, closed-form expressions for the LTs of the PME density

g r in (1.3) are given in (2.18)–(2.21) of Abate et al. (1994).

Upon reading our paper, Donald Gaver pointed out that there are other ways to construct

transforms. In particular, he pointed out that, for any LST f̂ (s), f̂ ( log ( 1 + s) ) is a new LST, as

can be seen by considering mixtures of gamma distributions with different shape parameters:

ĝ(s) = ∫
0

∞
( 1 + s) − xdF(x) = ∫

0

∞
e − log ( 1 + s) xdF(x) = f̂ ( log ( 1 + s) ) . (1.5)

Gaver’s comment made us try to think about this issue more systematically; the present paper is
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the result. The operation (1.5) is a special case of the power-mixture operator in Table 3, which

we discuss in Section 6.

Surprisingly, it does not seem that such a systematic operational calculus for LSTs has been

presented before; e.g., the material here is not discussed in Johnson and Kotz (1970a,b).

However, not only are a multitude of transform relations in [F], but the basic ideas are there as

well. In addition, there is important material in the substantial literature on infinitely divisible

distributions since [F], as can be seen from Bondesson (1988, 1992).

In particular, a key idea seems to be Bernstein’s (1928) theorem, [F], p. 439.

Proposition 1.1. (Bernstein) A function f̂ (s) is the Laplace-Stieltjes transform of a bonafide cdf

F if and only if it is infinitely differentiable for Re (s) > 0 with

( − 1 ) n f̂
(n)

(s) ≥ 0 for all positive real s and n ≥ 0 , (1.6)

and f̂ ( 0 ) = 1.

A real-valued function satisfying (1.6) is said to be completely monotone (CM). Two easily

verified criteria for a function to be CM are given on p. 441 of [F]:

The Product Criterion. If φ and ψ are CM, then so is the product φ ψ.

The Composition Criterion. If φ is CM and ψ is a positive function with a CM derivative, then

φ(ψ) is CM.

Examples of CM functions are: ae − bx for a ,b > 0, φ(a + bx) for a ≥ 0, b > 0 when φ is

CM, a /(b + cx) d for a ,b ,c,d > 0, and − φ′ when φ is CM. Examples of positive functions with

CM derivatives are: ∫
0

x
φ(u) du when φ is CM, a log (c + bx) for a ,b > 0 and c ≥ 1, (a + bx) p

for a ,b > 0 and 0 < p < 1, a − φ(bx) for b > 0, a ≥ φ( 0 ) when φ is CM. Most of Tables 1-3

can be deduced from the two criteria above with these examples. In the rest of this paper we

discuss some of the interesting cases in more detail.
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The CM property not only is important in characterizing an LST, but it also is important in

characterizing ID LSTs, as we will see in Section 4. Moreover, the CM property is also important

for pdfs; e.g., see p. 63 of Keilson (1979). A pdf is CM if and only if it is a mixture of

exponential pdfs. Thus the PME pdf is (1.3) is CM. It is significant that any CM pdf is infinitely

divisible, [F], p. 452.

We discuss quite a few classes of LSTs, but there are important classes that we do not discuss.

One obvious omission is phase-type distributions. We omit them, not because they are not

important, but because they are already well discussed in Chapter 2 of Neuts (1981). Much can

be done with only phase-type distributions, as is evident from their being dense in the set of all

probability distributions (in the standard topology of weak convergence). Physically, phase-type

distributions can be represented as first-passage-time distributions in finite-state continuous-time

Markov chains. However, all phase-type distributions have a pure exponential tail. It may be

attractive to have alternatives with different tail behavior and/or fewer parameters. This is

especially true for first-passage-time distributions, which have extensive application in risk theory

and, more generally, in insurance mathematics; e.g., see Embrechts and Villaseñor (1988) and

Embrechts and Klu
..

ppelberg (1993).

We also can obtain new LSTs from existing ones by using location and scale parameters;

i.e., given an LST f̂ for a random variable X, e − sa f̂ (bs) is the LST of the random variable a + bX

for each pair of nonnegative real numbers (a ,b). We focus on non-location-scale

transformations.

For the special case of discrete distributions, the LSTs become probability generating

functions upon making the change of variables z = e − s . Generating functions arise directly when

we consider the moment generating function constructed from the power series representation of

the LST, i.e.,
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f̂ (s) =
k = 0
Σ
∞

m k k!
( − s) k
_ _____ (1.7)

with m 0 = 1. In the literature generating functions have received more attention than Laplace

transforms, primarily because of their prominent role in combinatorics; see Graham, Knuth and

Patashnik (1989), Odlyzko (1994), Riordan (1958, 1968) and Wilf (1990).

2. The Unimodal Operator

Suppose that we seek the LT ĝ of a pdf g on [ 0 ,∞) that is nonincreasing or, more generally,

suppose that we seek the LTS ĝ of a cdf G on [ 0 ,∞) that is unimodal with mode at 0. (A cdf on

[ 0 ,∞) is unimodel with mode at 0 if it is concave on [ 0 ,∞).) One way that we may be able to

obtain such a transform ĝ is by applying Khintchine’s (1938) representation of a unimodal

distribution; see Chapter 1 of Dharmadhikari and Joag-Dev (1988) and [F], pp. 158, 527. The

general result is for cdfs on the entire real line; we consider the restriction to the positive half line.

The unimodal operator 8 maps any LST f̂ into an LST ĝ of a unimodal cdf G with mode at 0

by

8 ( f̂ ) ≡ ĝ(s) = s − 1 ∫
0

s
f̂ (z) dz = ∫

0

1
f̂ (st) dt . (2.1)

Note that in (2.1) t is a real variable, while z and s are complex variables with Re (s) > 0 and

Re (z) > 0.

From the last integral representation in (2.1), it is clear that indeed ĝ is an LST of a bonafide

cdf whenever f̂ is an LST of a bonafide cdf, by virtue of Bernstein’s theorem: the uncountable

mixture obviously inherit the CM property. Khintchine’s representation theorem states that a cdf

G on [ 0 ,∞) is unimodal with mode 0 if and only if it satisfies (2.1) and that there is a one-to-one

correspondence between the cdfs F in (2.1) and the unimodal cdfs G. hence, the inverse

operation of (2.1) is defined for unimodal cdfs and no others.
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Shepp (1962) developed a nice probabilistic representation for (2.1), showing that if X is a

random variable distributed as F, then the random variable UX, where U is a uniform random

variable on [ 0 , 1 ] independent of X, has the associated unimodal cdf G. Starting from the Shepp

representation, we can see that (2.1) can be obtained from the Parseval relation; see [F], pp. 463,

619.

Examples of pairs ( f̂ ,8 ( f̂ )) appear in Table 4 below. One 8 ( f̂ ) is the LST of the time-

dependent first-moment cdf H 1 of reflected Brownian motion (RBM) in (1.4) and (1.10) of Abate

and Whitt (1987). Another 8 ( f̂ ) is the LT of what we call the exponential-integral pdf

g(t) ≡ E 1 (t) = ∫
t

∞
x − 1 e − xdx = ∫

0

1
µ − 1 e − t /µ dµ ; (2.2)

see 5.1.1 of [AS] and Example 7.1 here.

Note that the unimodal operator 8 in (2.1) is linear for the LSTs, so that we can see what

happens by considering deterministic cdfs. As noted in Table 4, 8 maps the LST of a point mass

at b into the LT of the uniform pdf on [ 0 ,b]. By the linearity, any LST of a discrete cdf with

masses p k on points x k is mapped into the LT of the corresponding mixture of uniform cdfs on

_____________________________________________________________
initial transform f̂ transform 8 ( f̂ ) of unimodal G_____________________________________________________________

deterministic, D e − sb

sb
1 − e − sb
_______ , uniform, U

Erlang, E 2
( 1 + s)2

1_ ______
1 + s

1_ ____ , exponential, M

gamma ( 1/2 ) , Γ 1/2
√ 1 + 2s

1_______
1 + √ 1 + 2s

2_ _________ , RBM h 1

exponential, M
1 + s

1_ ____
s

log ( 1 + s)_________ , exponential-integral pdf
_____________________________________________________________ 















































Table 4. Examples of pairs ( f̂ ,8 ( f̂ ) ).

[ 0 ,x k ]. The Shepp representation is the generalization to arbitrary cdfs F. This description

provides a good physical interpretation of what the operator 8 is doing.
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The Shepp representation UX, allows us to easily make stochastic comparisons. Let ≤ st

denote stochastic order. First, we see that F > st G. Second, we see that if F 1 ≤ st F 2 and F i is

transformed into G i by the unimodality transformation, then G 1 ≤ st G 2 . Similar inheritance

holds for other orderings (but only one way).

We now define the inverse unimodal operator 8 − 1 as

8 − 1 ( ĝ) ≡ f̂ (s) = ĝ(s) + s ĝ ′ (s) . (2.3)

We can apply the Khintchine representation and Bernstein’s theorem to justify (2.3). A direct

derivation does not seem easy.

Proposition 2.1. The function ĝ(s) + s ĝ ′ (s) is CM, and thus the LST of a bonafide cdf, for an

LST ĝ if and only if the cdf G associated with ĝ is unimodal with a mode at 0.

Proof. If G is unimodal with a mode at 0, then sĝ(s) = ∫
0

s
f̂ (z) dz for some LST f̂ by (2.1). By

this representation, sĝ(s) is differentiable with derivative sĝ ′ (s) + ĝ(s) = f̂ (s). By

Bernstein’s theorem, f̂ (s) must thus be CM. Moreover, since ĝ is an LST, f̂ ( 0 ) = 1. On the

other hand if sĝ ′ (s) + ĝ(s) is CM, then its integral is sĝ(s) = ∫
0

s
f (z) dz, where f̂ (s) is CM with

f̂ ( 0 ) = ĝ( 0 ) = 1, so that by (2.1), ĝ must be the LST of a cdf G which is unimodal with mode

at 0.

The cdf analog of (2.1) is G(t) = ∫
0

1
F(t / x) dx. In general, G is absolutely continuous with

pdf

g(t) = ∫
t

∞
x − 1 dF(x) ; (2.4)

see Lemma 4.5.2 of Lukacs (1970).

From (2.4), we see that g( 0 ) < ∞ if and only if m − 1 (F) < ∞, where m − k (F) is the k th

negative moment, i.e.,
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m − k (F) = ∫
0

∞
x − kdF(x) . (2.5)

Moreover, from (2.4), we see that if F is absolutely continuous with pdf f, then g itself is

absolutely continuous with density g ′ , and

t
f (t)_ ___ = − g ′ (t) , t ≥ 0 , (2.6)

F c (t) = G c (t) + tg(t) , t ≥ 0 , (2.7)

From (2.7), we also see that F ≥ st G. From (2.6), we can read off the impact on asymptotics.

For example, if f (t) ∼ αt β e − ηt as t → ∞, then g ′ (t) ∼ αt β − 1 e − ηt and g(t) ∼ α ηt β − 1 e − ηt as

t → ∞.

From above (e.g., the Shepp representation), we can easily determine the impact on moments.

Let m k (F) be the k th moment of cdf F and let c 2 (F) be its squared coefficient of variation. Then

m k (G) = m k (F)/(k + 1 ) and c 2 (G) = c 2 (F) +
3

c 2 (F) + 1_ ________ . (2.8)

We can easily scale G so that it has the same mean as F. Letting X have cdf F, we can let G ∗

have the cdf of 2UX. This new cdf G ∗ has the same mean as F but is more variable than F, i.e.,

is larger than F in convex stochastic order: Eφ(X) ≤ Eφ( 2UX) for all real-valued convex

functions φ for which the expectations are finite. (Apply Jensen’s inequality after conditioning on

X.) As a consequence, we see that 8 does not have a nontrivial fixed point, whether or not we

rescale to keep the mean fixed.

We conclude by mentioning that by no means is the operator 8 the only operator yielding

unimodal distributions. For example, the stationary-excess operator % does as well. Note that 8

is related to % via

8 ( f̂ ) = (%++ − 1 ) ( f̂ ) , (2.9)

where + − 1 is the inverse-stationary-lifetime operator, provided that the first negative moment
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m − 1 (F) is finite; see Section 5.

3. The Cumulant-Moment-Transfer Operator

In many applied probability settings we are interested in moments and cumulants (semi-

invariants or reduced correlation functions). The moments m k and the cumulants c k can be

identified as the coefficients in the Taylor series expansions (1.7) and

log f̂ (s) =
k = 1
Σ
∞

c k k!
( − s) k
_ _____ . (3.1)

The ordinary moments are related to the cumulants via

m n + 1 =
k = 0
Σ
n 

k
n
c k + 1 m n − k , n ≥ 0 ; (3.2)

see p. 113 of Kendall and Stuart (1987). One reason the cumulants are useful is that the k th

cumulant of a convolution (sum of independent random variables) is the sum of the k th

cumulants; this property for convolution appears in Table 1.

To help identify moments and cumulants, it is useful to have a way to relate the cumulants of

one cdf to the moments of another. From (3.1), we that if the cumulants are all nonnegative and

we divide log f (s) by − sm 1 , then it will look like the power series of an LST. This suggests the

cumulant-moment-transfer operator

7 ( f̂ ) ≡ ĝ(s) = −
m 1 s

log f̂ (s)_ _______ . (3.3)

Combining (3.1) and (3.3), we see that

m k (G) =
(k + 1 ) m 1 (F)

c k + 1 (F)_ ___________ (3.4)

as indicated in Table 3 and
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m 1 (F)

m n + 1 (F)_ ________ =
k = 0
Σ
n

(k + 1 ) 
k
n
m k (G) m n − k (F) . (3.5)

From (3.3), it is immediate that the inverse of 7 is

7 a
− 1 ( ĝ) ≡ 7 − 1 ( ĝ) = exp ( − asĝ(s) ) for a > 0 . (3.6)

It remains to determine when the operators 7 and 7 − 1 in (3.3) and (3.6) are well defined.

Note that the cumulants c k (F) are finite whenever the moments m k ( f ) are finite. Obviously, for

(3.4) to be valid we need the cumulants of F to be nonnegative, which is not always the case (e.g.,

c 4 < 0 for the two-point distribution with probability 1/2 given to 0 and 2). Moreover, the

numbers m k (G) in (3.4) must satisfy growth conditions to be bonafide moments of a cdf, [F],

224-228. (For example, the odd cumulants of a uniform distribution on [ 0 ,x] are 0, p. 59 of

Johnson and Kotz (1970b), so that 7 ( f̂ ) is not the LST of a bonafide cdf when f̂ is the uniform

LST.)

We characterize the domain of 7 in terms of infinitely divisible distributions. By [F], pp.

176, 449, a cdf G with LST ĝ is infinitely divisible (ID) if ĝ
1/ n

is an LST of a bonafide cdf for all

positive integers n. We establish the following result at the end of the next section, where we

consider ID distributions in more detail.

Proposition 3.1. The operator 7 is well defined if and only if f̂ is the LST of an ID distribution

with finite mean, in which case 7 ( f̂ ) is the LST of a unimodal cdf with mode at 0. The inverse

operator 7 − 1 in (3.6) is well defined for all a > 0 if and only if G is unimodal with a mode at 0,

in which case 7 − 1 ( ĝ) is the LST of an ID cdf with finite mean.

Now note that 7 ( f̂ a,b (s) ) = 7 ( f̂ 1 , 1 ) (bs) for positive real numbers a and b when

f̂ a,b (s) = f̂ (bs) a . Hence, even for specified scale parameter b, the operator 7 is not one-to-one.

However, the operator 7 can be regarded as one-to-one on infinitely divisible equivalence

classes: We say that two LSTs f̂ and ĝ are ID equivalent if ĝ(s) = f (s) a for some a > 0, and we
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write f̂ ∼ ID ĝ. Note that 7 ( f̂ ) = 7 ( ĝ) whenever f̂ ∼ ID ĝ. Since 7 a
− 1 +7 ( f̂ ) (s) = f̂ (s) a / m 1 ,

we see that 7 is one-to-one on ID equivalence classes.

The operator 7 is continuous in the sense that 7 ( f̂ n ) → 7 ( f̂ ) provided that F n (t) → F(t)

at all continuity points t of a bonafide (proper) cdf F and m 1 (F n ) → m 1 (F) < ∞, by virtue of

the continuity theorem for LSTs, [F], p. 431. Moreover, if 7 ( f̂ n ) is an LST of a bonafide cdf for

all n, then so is 7 ( f̂ ), again by the continuity theorem for LSTs.

Now suppose that we start with a proper pdf f, so that F has no atom at 0. We can rewrite

(3.3) as

s ĝ(s) =
m 1 ( f )

1_ ______ log


 f̂ (s)

1_ ___




. (3.7)

Then f̂ (s) → 0 as s → ∞. From (3.7), we see that s ĝ(s) → ∞ as s → ∞, which implies that,

if G has a density, then g( 0 ) = ∞. On the other hand, if F has an atom F( 0 ) > 0 at 0, then

f̂ (s) → F( 0 ) as s → ∞, so that s ĝ(s) → − log (F( 0 ) )/ m 1 as s → ∞. Hence, F and G tend to

have opposite behavior at the origin.

By Proposition 3.1, 7 − 1 provides a way to construct ID distributions starting with unimodal

distributions. For example, if we apply the inverse operator 7 − 1 to a simple exponential

ĝ(s) = ( 1 + s) − 1 , then we get

f̂ (s) = 7 − 1 ( ĝ) (s) = e − s /( 1 + s) , (3.8)

which has an atom at 0. This cdf is known to chemical engineers as the percolation

concentration function. Note that f̂ in (3.8) has an essential singularity at s = − 1. If we

convolve F in (3.8) with a gamma cdf then we get a cdf discussed several times in [F], pp. 58,

349, 438. We return to this example in Section 11.

As another example, suppose that we apply 7 − 1 to the uniform cdf on [ 0 , 1 ]. Then we get
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f̂ (s) = exp (e − s − 1 ) . (3.9)

We call this the Bell distribution because the moments are the Bell numbers; see p. 23 of Wilf

(1990).

It is interesting to consider the fixed point of operators 7 and 7 − 1 .

Proposition 3.2. The operator 7 has a unique fixed point among ID equivalence classes with

mean 1, which is given by the solution to the equation.

f̂ (s) = e − sf̂ (s) . (3.10)

This distribution is characterized by its moments, which are

m n = (n + 1 ) n − 1 , n ≥ 1 . (3.11)

Proof. Differentiate (3.3) with ĝ = f̂ to obtain an expression for f̂ ′ in terms of f̂. Fixing f̂ (s) for

some s with Re (s) > 0, thus determines the derivatives f̂
(k)

(s) for all k. Since f̂ is analytic for

Re (s) > 0, f̂ is determined by the coefficients of its power series about s. The parameter a in

f̂ (s) a allows us to fix the initial value of f̂ (s) at any desired value.

From the moment relation (3.5), we see that the moments of the fixed point cdf in (3.10) are

m n + 1 =
k = 0
Σ
n

(k + 1 ) 
k
n
m k m n − k , (3.12)

where we have set m 1 = 1 to fix the free parameter. From (3.12), we can deduce (3.11). By the

Carleman moment growth criterion, [F], p. 228, the moments in (3.11) uniquely determine the

distribution.

It turns out that the moment generating function associated with (3.10) is classic, but the

analytic form of f̂ is evidently not known; e.g., see (45) on p. 128 of Riordan (1958), p. 202 of

Graham et al. (1989) and 5.1.4 on p. 139 of Wilf (1990). We thus call this fixed point the Caley-

Eisenstein-Po ́ lya (CEP) LST. From (3.11) we can readily deduce that the radius of convergence
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of the moment generating function is e − 1 . Moreover, by Theorem 2 of Choudhury and

Lucantoni (1994), assuming that f (t) ∼ αt β e − ηt as t → ∞ for some constants α ,β and η, we see

that

f (t) ∼
√ 2π t 3

e 3/2 e − t / e
_ ________ as t → ∞ , (3.13)

We now give a probabilistic interpretation for the operator 7 − 1 .

Proposition 3.3. If G is unimodal with mode at 0, then

f̂ (s) 8 − 1 (7 − 1 ( ĝ) ) (s) = + ( f̂ ) (s) , (3.14)

where + is the stationary-lifetime operator in Table 2 and 8 − 1 is the inverse unimodal operator

in Section 2, which for pdfs becomes

( − t g ′ (t) ) ∗ f (t) =
m 1 ( f )
tf (t)_ ______ , t > 0 . (3.15)

Proof. Multiply both sides by s and then differentiate in (3.3) to get

sĝ ′ (s) + ĝ(s) =
m 1 ( f ) f̂ (s)

− f̂ ′ (s)__________ . (3.16)

Then multiply both sides of (3.16) by f̂ (s) to get (3.14). Finally, apply (2.5) to get (3.15).

Note that (3.14) and (3.15) say that F convolved with 8 − 1 (7 − 1 (G) ) coincides with + (F).

(We use transform operators applied to cdfs to mean the cdfs of the operators applied to the

associated transforms.)

4. The Infinite-Divisibility Operator

The topic receiving the greatest attention in [F] may be infinitely divisible (ID) distributions.

Classically, interest in ID distributions was due primarily to their role as all possible marginal

distributions for Le ́ vy stochastic processes (processes with stationary and independent increments
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that satisfy some additional conditions) and all possible limit distributions for row sums of

triangular arrays of i.i.d. random variables, [F], p. 303, but we believe that they can also be

important in direct probability modelling.

By the product criterion in Section 1, the family of ID distributions is closed under

convolution. Every mixture of exponential distributions and every mixture of geometric

distributions is ID, [F], p. 452. The Poisson distribution and Poisson random sums are ID;

indeed, every ID distribution is the limit of a sequence of Poisson random sums, [F], p. 303.

From Tables 1 and 2 and (3.6), we see that the Poisson sum operator can be expressed in terms of

the operators 7 − 1 and % via 3 6 = 7 − 1 +%. ID distributions are usually (but not always)

unimodal; see Chapter 5 of Dharmadhikari and Joag-Dev (1988). For characterizations of

discreteness, singularity and absolute continuity of ID cdfs, see pp. 124-126 of Lukacs (1970).

Nevertheless, despite all these results and more recent ones, ID distributions remain somewhat

elusive. We will be constructing many examples of ID distributions.

By Theorem 1, p. 450 of [F], a cdf G on [ 0 ,∞) is ID if and only if ĝ(s) = e − ψ(s) where

ψ( 0 ) = 0 and ψ′ is CM. The exponent function ψ can be represented as

ψ(s) = ∫
0

∞

x
1 − e − sx
_ ______dP(x) (4.1)

for a measure P satisfying ∫
1

∞
x − 1 dP(x) < ∞.

Formula (4.1) provides a general way to construct LSTs, but it is not directly an operator on

LSTs. An interesting special case arises when the derivative ψ′ is actually a constant multiple of

an LST. Then we can write

ĝ(s) ≡ ( a ( f̂ ) ≡ = ( ( f̂ ) = exp ( − a∫
0

s
f̂ (z) dz) , (4.2)

where f̂ is an LST of a bonafide cdf F and a > 0. We call ( in (4.2) the infinitely divisible (ID)

operator. From (4.2) we see that m 1 (G) = a.
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Note that ( can be related to operator 8 by

( ( f̂ ) = exp ( − as8 ( f̂ ) (s) ) , (4.3)

i.e., ( = 7 − 1 +8 . Since
ds
d_ __ (sĝ) = ĝ + sĝ ′ , we could apply Proposition 2.1 to deduce that

s8 ( f̂ ) (s) has a CM derivative.

We remark that ID distributions are often represented in other forms; see [F]. For example,

the LST of a compound Poisson distribution where a is the mean of the Poisson distribution and

ĥ is the LST of the summands is

ĝ(s) = exp ( − a( 1 − ĥ(s) ) ) , (4.4)

but we can rewrite the exponent in (4.4) as

a( 1 − hˆ (s) ) = − a ∫
0

s
ĥ ′ (z) dz = a m 1 (h)∫

0

s
−

m 1 (h)
ĥ ′ (z)______ dz , (4.5)

where − hˆ ′ (s)/ m 1 (h) is an LST of a bonafide cdf, indeed, + ( ĥ); see Table 2. Hence, (4.4) is a

special case of (4.2).

However, not all ID distributions can be represented in the form (4.2). For example, the

stable laws on [ 0 ,∞) with exponent α , 0 < α < 1 have LSTs

g(s) = e − sα
; (4.6)

see [F], p. 448. Thus, ψ(s) = s α and ψ′ (s) = αs − ( 1 − α) . Note that ψ′ is CM, but

ψ′ ( 0 ) = ∞, so that ψ′ cannot be an LST of a bonafide cdf. Indeed, we see that (4.2) is the

general representation for the LST of an ID cdf with finite mean m 1 (G) = ψ′ ( 0 ). When

− ψ′ ( 0 ) < ∞, ψ′ (s)/ψ′ ( 0 ) is the LST of a bonafide cdf.

From (4.2), it is immediate that the inverse ID operator is
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( − 1 ( ĝ) =
m 1 (g)

− 1______
ds
d_ __ log ĝ(s) =

m 1 (g) ĝ(s)

− ĝ ′ (s)_ _________ =
ĝ(s)

+ ( ĝ) (s)_ _______ , (4.7)

where + is the stationary-lifetime operator in Table 2. From the discussion above, the domain of

the inverse operator ( − 1 is precisely the set of ID cdfs with finite mean. Since ( = 7 − 1 +8 ,

( − 1 = 8 − 1 +7 .

From the last expression in (4.7), we see that the inverse operator ( − 1 has a relatively simple

direct probabilistic interpretation: ( − 1 ( ĝ) is obtained by deconvolving G from the lifetime

distribution of G. We thus can write

( − 1 ( ĝ) = C − 1 (+ ( ĝ) , ĝ) . (4.8)

As indicated in the next section, + ( ĝ) is stochastically greater than ĝ, so that the deconvolution

might make sense for any g with finite mean. As indicated above, ĝ is a factor of + ( ĝ) if and

only if ĝ is ID with finite mean. The pdf characterization of ( − 1 is

(g∗ f ) (t) ≡ ∫
0

t
g(t − x) dF(x) =

m 1 (g)
tg(t)______ , t ≥ 0 . (4.9)

The characterization (4.9) was given earlier by Steutel (1973, Corollary 5.4).

Note that ( − 1 +( a ( f̂ ) = f̂, while ( a +( − 1 ( ĝ) = ĝ
a / m 1 , so that ( − 1 is not one-to-one, but as

with 7 in Section 3, ( − 1 is one-to-one on ID equivalence classes.

From (4.2), (4.7) or (4.8), it is easy to see that ( and ( − 1 have the exponential distribution

(with mean 1) as a fixed point. By essentially the same argument as for Proposition 3.2, we

obtain the following result.

Proposition 4.1. The operator ( − 1 has the exponential distribution with mean 1 as the unique

fixed point among ID equivalence classes with mean 1.

Note that the operator I applied to an exponential with mean b yields a gamma with mean 1

and shape parameter b − 1; i.e., ( ( ( 1 + bs) − 1 ) = ( 1 + bs) − 1/ b .
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Using (4.7) and the cumulant generating function (3.1), we see that the moments of F are

related to the cumulants of G by

m k (F) =
c 1 (G)

c k + 1 (G)_ _______ (4.10)

or, using (3.2),

m 1 (G)

m k + 1 (G)_ ________ =
k = 0
Σ
n 

k
n
m k (F) m n − k (G) . (4.11)

For more on ID distributions, see Steutel (1973), Bondesson (1988, 1992) and references cited

therein. Bondesson focuses on various subclasses of ID distributions, the main one being

generalized gamma convolutions (GGC), which were first introduced by Thorin (1977a,b).

Another is generalized convolutions of mixtures of exponential distributions (GCMED).

Generalized convolutions of a class contain the class and are closed under convolutions and

convergence in distribution. The class GGC is a proper subclass of GCMED. In general, the

class of all ID LSTs ( ( f̂ ) is not contained in GCMED, since the cdf F associated with the LST f̂

need not be absolutely continuous and, even when F is absolutely continuous with density f,

f (t)/ t need not be CM; see Chapter 9 of Bondesson (1992). However, when F is absolutely

continuous and ĝ = ( ( f̂ ), g is GGC if and only if f is CM; see pp. 29-30 of Bondesson (1992).

Since mixtures of exponentials constitute CM, both CM and GGC are contained in GCMED, but

neither contains the other.

We give examples of pairs ( f̂ ,( ( f̂ ) ) in Section 10. Our constructive approach to obtaining

ID transforms is similar to Bondesson’s approach. We conclude this section by proving

Proposition 3.1.

Proof of Proposition 3.1. By (4.2), if f̂ is ID with finite mean, then 7 ( f̂ ) (s) = as − 1 ∫
0

s
ĥ(z) dz

for an LST ĥ, which is the LST of a unimodal cdf with mode at 0 by Section 2. By Proposition
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2.1 and the composition criterion, 7 − 1 (g) in (3.6) is the LST of a bonafide cdf for all a > 0

when ĝ is an LST of a unimodal cdf with mode at 0. Considering 7 − 1 (7 ( f̂ ) ), we see that

f̂ (s) a / m 1 ( f ) ) is a bonafide cdf for all a > 0, which implies that f̂ must be an LST of an ID cdf.

5. The Stationary-Lifetime Operator

For any cdf F with finite mean, the associated stationary-lifetime cdf is

G(t) =
m 1 (F)

1_ ______∫
0

t
xdF(x) , t ≥ 0 . (5.1)

If F is absolutely continuous with pdf f, then G is absolutely continuous with pdf

g(t) =
m 1 ( f )
t f (t)_ ______ , t ≥ 0 . (5.2)

It is well known that for a renewal process with interrenewal times distributed according to F, the

distance between the next point and the last point at time t in equilibrium has the cdf G in (5.1).

The cdf G is stochastically larger than F. This is easy to see with pdfs as in (5.2). With pdfs we

have the stronger likelihood ratio ordering since g(t)/ f (t) = t / m 1 ( f ).

Using transforms, (5.1) becomes

ĝ(s) = −
m 1 ( f )
f̂ ′ (s)_ ______ . (5.3)

Again, even if we did not have the time-domain formula (5.1), we could deduce that ĝ in (5.3) is

an LST of a bonafide cdf whenever f̂ is by applying Bernstein’s theorem: − f̂ ′ is CM whenever f̂

is CM.

Even though the stationary-lifetime operator is quite well known, its inverse does not seem to

be. With pdfs, the inverse-stationary-lifetime operator is defined simply by setting

f (t) =
t m − 1 (g)

g(t)_ ________ , t ≥ 0 , (5.4)
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where m − k (g) is the k th negative moment of g as in (2.5). The inverse operator is well defined

whenever m − 1 (g) < ∞. In transforms, (5.4) becomes

f̂ (s) =
m − 1 (g)

1_______∫
s

∞
ĝ(z) dz = 1 −

m − 1 (g)
1_______∫

0

s
ĝ(z) dz . (5.5)

We remark that, from Parseval’s relation, [F], pp. 463, 619, we can also write

m − 1 (g) = ∫
0

∞
ĝ(s) ds . (5.6)

To get (5.6), write

∫
0

∞
f̂ (θy) g(y) dy = ∫

0

∞
ĝ(θy) f (y) dy (5.7)

and let θ = 1 and f (y) = y n . Then f̂ (s) = n!s − (n + 1 ) and

∫
0

∞
g(y) y − (n + 1 ) dy =

n!
1_ __∫

0

∞
y n ĝ(y) dy . (5.8)

For n = 1, (5.8) becomes (5.6).

From (5.5), (5.6) and Bernstein’s theorem, we see that f̂ is the LST of a bonafide cdf whenever

ĝ is and m − 1 (g) < ∞. (Note that f̂ ′ (s) = − ĝ(s)/ m − 1 (g).)

From (5.1) and (5.5), we see that the moments are related by

m k (g) =
m 1 ( f )

m k + 1 ( f )_ ________ and m k + 1 ( f ) =
m − 1 (g)

m k (g)_______ . (5.9)

Example 5.1. If g(t) = 2 (e − t − e − 2t ), t ≥ 0, then f̂ (s) = log ( ( 2 + s)/( 1 + s) )/ log 2 and

f (t) = (e − t − e − 2t )/ t log 2, t ≥ 0.

6. The Power-Mixture Operator

Suppose that f̂ is an LST of an ID cdf, so that f̂ (s) t is an LST of a bonafide cdf for each

nonnegative real number t. Then, analogous to random sums, we can construct an LST of a new
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cdf by mixing with respect to an arbitrary cdf H, i.e.,

3 }( f̂ ,H) ≡ ĝ(s) ≡ ∫
0

∞
f̂ (s) tdH(t) = ĥ( − log f̂ (s) ) . (6.1)

We call the operator 3 } mapping the pair ( f̂ ,H) into ĝ the power-mixture operator. We can

think of the power-mixture operator applying to LSTs of arbitrary cdfs F if we consider the

composition using (4.2); i.e., 2 ( f̂ ,H) = 3 }(( ( f ) , H).

Note that the power-mixture operator 3 } in (6.1) is the special case of the general mixture

operator } in Table 1 in which f̂ x (s) = f̂ (s) x and the mixing P is done by the cdf H on [ 0 ,∞).

A mixture has a natural direct interpretation in the time domain, as indicated in Table 1. Roughly

speaking, the power f̂ (s) x may be thought of as an x-fold convolution. Indeed, if H has support

on the integers, then the power mixture is equivalent to a random sum, and (6.1) is defined for all

f̂. Note that Gaver’s example in Section 1 is the special case of (6.1) in which f̂ is exponential,

i.e., f̂ (s) = ( 1 + s) − 1 .

We remark that the power-mixture operator arises naturally with Le ́ vy processes; see [F],

pp. 345, 451 and Prabhu (1980). The exponent t in f̂ (s) t arises natural in the stochastic process

context as time; i.e., when f̂ is an LST of an ID cdf, f̂ (s) t is the marginal distribution at time t of a

Le ´ vy process {X(t) :t ≥ 0 }. Then ĥ( − log f̂ ) is the LST of the stopped Le ́ vy process X(T)

where T is a random time independent of {X(t) : t ≥ 0 } that has cdf H.

If the random time T is replaced by a Le ́ vy stochastic process {T(t) :t ≥ 0 }, then

{X(T(t) ) :t ≥ 0 } is a new Le ́ vy process. We then say {X(T(t) ) } is subordinate to {X(t) } and

{T(t) } is the directing process or random time change, [F], pp. 345-349. However, in this paper

we are more interested in constructing LSTs than in constructing stochastic processes. Hence, we

are more interested in X(T) for an arbitrary nonnegative random variable T independent of

{X(t) }.
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From (6.1), we see that

m 1 (G) = m 1 (F) m 1 (H) . (6.2)

More generally, we see that

m k (G) = ∫
0

∞
m k ( f̂ (s) t ) dH(t) , k ≥ 1 , (6.3)

and

c k ( f (s) t ) = t c k ( f ) , k ≥ 1 , (6.4)

which can be computed using (3.2). For instance,

m 2 (G) = ∫
0

∞
[c 2 ( f̂ (s) t ) + c 1 ( f̂ (s) t )2 ] dH(t)

= c 2 ( f̂ ) m 1 (H) + c1
2 ( f̂ ) m 2 (H)

= m 2 ( f̂ ) m 1 (H) − m 1 ( f̂ )2 m 1 (H) + m1
2 ( f̂ ) m 2 (H) . (6.5)

We can establish stochastic comparisons using the Laplace transform ordering, defined by

f̂ 1 ≤ LT f̂ 2 if f̂ 1 (s) ≥ f̂ 2 (s) for all positive real s; e.g., see p. 22 of Stoyan (1983). From (6.1), it

is immediate that if f̂ 1 ≤ LT f̂ 2 and H 1 ≤ st H 2 , then ĝ 1 ≤ LT ĝ 2 . Hence, 3 } can be regarded as

a monotone operator in this sense.

7. Exponential Mixtures

If we compose the power-mixture operator with the inverse-moment-cumulant-transfer

operator, then we get an operator that is an analog of the random-sum operator

5 6( f̂ ) (s) = Ĝ( f̂ (s) ) in Table 1, namely,

(3 }+7 − 1 ) ( f̂ ) ≡ ĥ(sf̂ (s) ) , (7.1)

which is defined for all LSTs of cdfs that are unimodal with mode at 0.

As a further special case, we obtain the exponential mixture operator (% }) if we make H
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exponential with mean 1, i.e.,

% }( f̂ ) ≡
1 + sf̂ (s)

1_ _______ . (7.2)

The exponential mixture operator is an analog of the geometric-random-sum operator in Table 1.

From (7.2), we see that the inverse-exponential-mixture operator is

f̂ ≡ % } − 1 ( ĝ) =
s
1_ _



 ĝ(s)

1_ ____ − 1




=
ĝ(s)

%( ĝ) (s)_ _______ . (7.3)

In other words

# ( f , % }( f̂ ) ) = %( f̂ ) (7.4)

or, with pdfs,

f (t) ∗g(t) =
m 1 (G)
1 − G(t)_ _______ . (7.5)

By Corollary 1.5.2 of Abate and Whitt (1987), the RBM first moment LST ĥ 1 in Table 4 is the

unique fixed point of the operators % } and % } − 1 .

From (7.5), we get a recursive expression for the moments, namely,

n + 1

m n + 1 (G)_ ________ =
k = 0
Σ
n 

k
n
m k (F) m n − k (G) . (7.6)

For the geometric random sum we have the analog of (7.6),

m n (G) =
( 1 − p)

p______
k = 1
Σ
n 

k
n
m k (F) m n − k (G) . (7.7)

It remains to determine the domain of % } − 1 or, equivalently, the range of % }. By (7.4) or

(7.5), we see that a necessary condition is to have G ≤ st %(G), which means that G must be new

worst than used in expectation (NWUE); see Theorem 3.1 (iii) of Whitt (1985).

Example 7.1. Let
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f̂ (s) =
µs

log ( 1 + µs)_ _________ , (7.8)

be the exponential-integral LST as in (2.2), which has moments

m k (F) =
(k + 1 )
k!µk

_ ______ . (7.9)

Then

% }( f̂ ) ≡ ĝ(s) =
µ + log ( 1 + µs)

µ_ ____________ (7.10)

and

m n + 1 (G) =
k = 0
Σ
n

(k + 1 ) (n − k) !
(n + 1 ) !_ ____________ µkm n − k (G) ; (7.11)

e.g., m 1 = 1, m 2 = µ + 2, m 3 = 2µ2 + 6µ + 6 and m 4 = 6µ3 + 22µ2 + 36µ + 24.

8. Exponential Mixtures of Inverse Gaussian Distributions

The inverse Gaussian (IG) distribution arises as the first-passage-time distribution for RBM;

see p. 565 of Abate and Whitt (1987) and Section 6 of Abate and Whitt (1988c). We shall refer

to the IG transform as

f̂ (s ; a ,ν) = exp ( − r 2 (s)/ν) , (8.1)

where

r 2 (s) = √ 2νas + 1 − 1 . (8.2)

Note that r 2 (s) in (8.2) is a positive function with a completely monotone derivative for real s, so

that f̂ (s ; a ,ν) is an LST of an ID distribution. For more on ID properties of first passage times,

see p. 129 of Steutel (1973) and p. 145 of Bondesson (1992).

In (8.1), the parameter a is a location (mean) parameter and ν is a shape parameter. Thus

f̂ (s ; 1 ,ν) has moments m 1 = 1, m 2 = ν + 1, m 3 = 3ν2 + 3ν + 1 and
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m 4 = 15ν3 + 15ν2 + 6ν + 1. In general

m n + 1 =
k = 0
Σ
n

k! (r − k) !
(r + k) !_ ________



 2

ν_ _




k

. (8.3)

The associated IG pdf is

f (t ; 1 ,ν) =
√ 2π νt 3

1_ _______ exp ( − (t − 1 )2 /2νt) , t ≥ 0 . (8.4)

We can generate the IG LST from other LSTs using the operators we have considered. First,

f̂ (s ; 1 ,ν) = 7 − 1 ( ĥ 1 (s ; ν/2 ) ) = exp ( − sĥ 1 (s ;ν/2 ) ) , (8.5)

where ĥ 1 (s ; ν/2 ) is the RBM first-moment LST with ν as a scale parameter, i.e.,

ĥ 1 (s ; ν/2 ) =
1 + √ 2νs + 1

2_ ___________ . (8.6)

We can also generate the IG by exponentially damping the stable law with exponent 1/2; i.e.,

we damp the transform exp ( − √ 2νas ) by replacing s by s + ( 2νa) − 1 , then multiply the entire

transform by the constant exp (ν − 1 ) to obtain (8.1).

Since the IG distribution has all its inverse moments, the inverse-stationary-lifetime operator

+ − 1 can be applied repeatedly to yield the generalized inverse Gaussian (GIG) distribution in

Jorgensen (1982) and Embrechts (1983). For instance, + − 1 ( f̂ (s ; ν + 1 ,ν) ) yields the pdf

g(t) =
t

f (t ; ν + 1 , ν)_ ___________ , t ≥ 0 , (8.7)

which has moments m 1 = 1, m 2 = 1 + ν, m 3 = ( 1 + ν)3 and m 4 = ( 1 + ν)3 ( 1 + 3ν + 3ν2 ).

The LT of g(t) is

ĝ(s) =
ρ̂(s ;ν ,ν + 1 )

f̂ (s ;ν + 1 ,ν)_ __________ (8.8)

for f̂ in (8.1) and ρ̂ in (8.9) below. The last entry of Table 5 in Section 10 is the GIG transform
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for the case ν = 1. The GIG distribution is GGC; see p. 59 of Bondesson (1992).

Now we consider exponential mixtures of inverse Gaussian distributions (EMIGs), which can

be obtained by applying the power mixture operator 3 } in Section 6 to the IG LST f̂ (s ; 1 ,µ) in

(8.1) or the exponential mixture operator % } from Section 7 to the RBM LST ĥ 1 (s ; µ /2 ) in

(8.6), i.e.

ρ̂(s ; 1 , µ) = % }( ĥ 1 (s ; µ /2 ) ) =
1 + sĥ 1 (s ; µ /2 )

1_ _____________

= 3 }( f̂ (s ; 1 , µ) ) =
1 − log ( f̂ (s ; 1 ,µ)

1_ ______________

=
µ − 1 + √2µs + 1

µ_ ______________ . (8.9)

We originally became interested in EMIGs in our study of approximations of busy-period

distribution; see Abate and Whitt (1988c). In a GI/G/1 queue, the busy period can be identified

with the first passage to 0 of the workload process starting at an arrival epoch with a random

initial level distributed according to a service time. Heyman (1974) suggested approximating the

busy-period distribution by approximating the first passage time to 0 from any level in this

representation by an IG. When the service-time distribution is exponential, the overall

approximation for the busy-period distribution is thus an EMIG.

Proposition 8.1. The EMIG is infinitely divisible.

Proof. See the second row of Table 5 in Section 10.

The associated EMIG pdf is an exponential mixture of IG pdfs as follows:

ρ(t ; 1 , µ) = ∫
0

∞
f (t ; x,µ / x) e − xdx . (8.10)

Its moments satisfy the recurrence

m n + 1 =
k = 0
Σ
n

k!
(n + 1 − k) (n + k) !_ _______________



 2

µ_ _




k

; (8.11)
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e.g., m 1 = 1, m 2 = µ + 2, m 3 = 3µ2 + 6µ + 6 and m 4 = 15µ3 + 30µ2 + 36µ + 24.

It is possible to derive many interesting relations for EMIGs. We give three below and

discuss more in Section 10. First, the stationary-excess operator is easily applied

%(ρ̂(s ; a ,µ) ) ≡ ρ̂ e (s ; a ,µ) = ĥ 1 (s ; aµ) ρ̂(s ; a ,µ) . (8.12)

The next two relations are for the pdfs, namely,

ρ(t ;a /µ ,µ) ∗ ρ(t ;a /ν ,ν) =
(ν − µ)

ν_ ______ ρ(t ;a /µ ,µ) −
(ν − µ)

µ_ ______ ρ(t ;a /ν ,v) (8.13)

and

ρ e (t ; a ,µ) =
(µ − 2 )

µ_ ______ h 1 (t ; aµ) −
(µ − 2 )

2_ ______ ρ(t ; a ,µ) . (8.14)

We conclude this section by giving an explicit expression for the steady-state waiting-time cdf

when the service-time pdf is an EMIG. The special case of a Γ 1/2 pdf (an EMIG with ν = 1)

was given in (9.21) of Abate and Whitt (1992) without explanation. We provide the explanation

here.

In terms of pdfs, we can write the Pollaczek-Khintchine operator in (1.2) as

3 _(g) (t) = ( 1 − ρ) δ(t) + ρw ρ (t) , (8.15)

where g is the service-time pdf and δ is a delta function; i.e., w ρ (t) is the pdf of the conditional

steady-state waiting time given that the server is busy upon arrival. (Here and below we use

operators applied to pdfs instead of LSTs with the obvious meaning.)

Proposition 8.2. Consider an M/G/1 queue with EMIG service-time pdf ρ(t ; 1 ,ν). Then the

conditional waiting-time pdf is

w ρ (t) = ρ(t ;ν/µ 1 ,µ 1 ) ∗ ρ(t ;ν/µ 2 ,µ 2 )

=
(µ 2 − µ 1 )

µ 2_ ________ ρ(t ;ν/µ 1 ,µ 1 ) −
µ 2 − µ 1

µ 1_ ______ ρ(t ;ν/µ 2 ,µ 2 ) ,
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where µ 1 (µ 2 ) = ( 1 + ν/2 ) ±√ ( 1 + ν/2 )2 − 2 ( 1 − ρ) ν .

Proof. Do a little algebra, using

ŵ ρ (s) =
1 − ρ ĝ e (s)

( 1 − ρ) ĝ e (s)_ ___________ =
ĝ e (s) − 1 − ρ

1 − ρ_ __________ =
ar 2 (s)2 + br 2 (s) + 1

1_ _________________

=
( 1 + cr 2 (s) ) ( 1 + dr 2 (s) )

1_ ____________________ ,

where r 2 (s) is as in (8.2) with a = 1, a = 1/2 ( 1 − ρ) ν and b = a( 2 + ν). Also use

ĝ e (s) = ρ̂ e (s) =
( 1 + r 2 (s)/2 )

1_ ___________
( 1 + r 2 (s)/ν)

1_ ___________ ,

which follows from (8.2) and (8.11).

We remark that Asmussen (1992) has recently obtained a new characterization of the waiting

time distribution when the service-time distribution is phase type in the GI/G/1 model.

9. Constructing Distributions With Non-Exponential Tails

We say that a pdf f has an exponential tail if f (t) ∼ αe − ηt as t → ∞, where α and η are

positive constants and f (t) ∼ g(t) as t → ∞ means that f (t)/ g(t) → 1 as t → ∞. As discussed

in Abate et al. (1994), a pdf may fail to have an exponential tail for two reasons: First, we may

have e ηtf (t) → 0 for all positive η, in which case we say that the pdf has a long tail (also called

subexponential); second, we may have e ηtf (t) → 0 for some positive η but still f does not have

an exponential tail. Of particular interest to us is the special case in which f (t) ∼ αt − β e − ηt as

t → ∞ for α ,β ,η > 0; in this case we say the density f has a semi-exponential tail.

As in Section 5 of Abate et al. (1994), we note that we can transform an LST of a pdf with an

exponential tail or with a tail asymptotic to αt β e − ηt for β > 0 into an LST of a pdf with a semi-

exponential tail by one or more applications of the inverse-stationary-lifetime operator + − 1

provided that the negative moments are finite: Given g(t) ∼ αt β e − ηt as t → ∞,
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+ − 1 (g) (t) ∼ αt − (β + 1 ) e − ηt / m − 1 (g) as t → ∞.

We could also use the unimodal operator 8 for the same purpose: Given f (t) ∼ αt − β e − ηt as

t → ∞, 8 ( f ) (t) ∼ α η − 1 t − (β + 1 ) e − ηt as t → ∞. It may be surprising though, that the operator

8 need not change the rate of decay of a long-tail density.

Example 9.1. Let f 2 (t) be the Pareto density in (1.4) with parameter r = 2, and let

u a (t) = 1/ a, 0 ≤ t ≤ a, i.e., the uniform density on [ 0 ,a]. Then, from (2.6), in terms of pdfs,

8 ( f 2 ) (t) =
3
1_ _ f 2 (t) +

3
2_ _ µ 1/2 (t) , t ≥ 0 . (9.1)

Example 9.2. Consider the Weibull density f (t) = ( 1/2√ t ) exp ( − √ t ), with parameter 1/2.

Then

8 ( f ) (t) = 2 f (t) − E 1 (√ t ) , t ≥ 0 , (9.2)

where E 1 (t) is the exponential integral pdf in (2.2), while

8 − 1 ( f ) (t) = ( f e (t) + f (t) )/2 , (9.3)

where f e ≡ %( f ) is the associated stationary-excess pdf in Table 2. From (9.2) and (9.3), we see

that

E 1 (√ t ) = 8 ( f e ) (t) , t ≥ 0 . (9.4)

Since m k ( f ) = ( 2k) !, we have m k (E 1 ) = ( 2k + 1 ) !/(k + 1 ).

Moreover, it is known that the Weibull pdf f here is a Γ 1/2-mixture of exponentials, i.e.,

1 − F(t) = e − √t = ∫
0

∞
γ(x; 1 ) e − t /2xdx , (9.5)

so that f is CM and thus ID. From Table 4,

8 (γ(t ; 1 ) ) = h 1 (t ; 1/2 ) = 2γ(t ; 1 ) − γ e (t ; 1 ) . (9.6)

Hence, from (9.2) and (9.4),
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E 1 (√ t ) = ∫
0

∞
γ e (x; 1 ) ( 2x) − 1 e − t /2xdx , (9.7)

where

γ e (t ; 1 ) = 2 ( 1 − Φ(√ t ) ) , (9.8)

with Φ(t) being the standard (mean 0, variance 1) normal cdf. These manipulations were done

with pdfs and cdfs, because f has the relatively complicated LST

f̂ (s) = √ π / s exp ( 1/4s) ( 1 − Φ( 1/√ 2s ) ) . (9.9)

We remark that it is possible to expand f̂ in (9.9) about s = 0 using 26.2.12 on p. 932 of [AS].

Example 9.3. Consider the PME density g 2 (t) in (1.3) with parameter r = 2. We find that

8 (g 2 ) (t) =
3
1_ _ g 2 (t) +

3
2_ _ ( 2E 1 ( 2t) ) , t ≥ 0 , (9.10)

and

8 − 1 (g 2 ) (t) = 3g 2 (t) − 2 ( 2e − 2t ) , t ≥ 0 . (9.11)

Hence, once again 8 (g 2 ) has the essentially same asymptotic tail behavior as g 2 itself.

Next, as discussed in Section 5 of Abate et al. (1994), we can convert pdfs with a long tail

into one with a semi-exponential tail by using the exponential damping operator $ : For example,

if f (t) ∼ αt − β as t → ∞, then $ η ( f ) (t) ∼ αt − β e − ηt / f̂ (η). Conversely, if g(t) ∼ αt − β e − ηt ,

then $ η
− 1 (g) (t) ∼ αt − β / ĝ( − η).

Example 9.4. Consider the EMIG LST ρ̂(s ; 1 ,ν) in (8.9). We know that

ρ(t ; 1 ,ν) ∼ αt − 3/2 e − ηt as t → ∞. If we want a density asymptotic to α′ t − 5/2 e − ηt as t → ∞ for

some constant α′ , then we can apply the unimodal operator 8 ;

8 (ρ(t ; 1 ,ν) ) = νh 1 (t ;ν/2 ) − (ν − 1 ) 7 (ρ(t ; 1 ,ν) ) , (9.12)

where
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7 (ρ̂(s ; 1 ,ν) ) =
s
1_ _ log ( 1 + r 2 (s)/ν) (9.13)

for r 2 (s) in (8.2). Thus,

8 (ρ(t ; 1 ,ν) ) ∼
t

2ν_ __ ρ(t ; 1 ,ν) as t → ∞ . (9.14)

In the special case ν = 2,

ρ̂(s ;a , 2 ) = ĥ 1 (s ;a) =
1 + √ 1 + 4as

2_ __________ (9.15)

and

8 (h 1 (t ; 1 ) ) = 2h 1 (t ; 1 ) − 7 (h 1 (t ; 1 ) ) . (9.16)

Then

8 ( ĥ 1 (s ; 1 ) ) = 2


 1 + √ 1 + 4s

2_ _________ −
s
1_ _ log ( (√ 1 + 4s + 1 )/2 )





, (9.17)

so that

8 (h 1 (t ; 1 ) ) ∼
√ π t 5

8e − t /4
_ _____




1 −

t
6_ _





as t → ∞ (9.18)

and 8 (h 1 (t ; 1 ) ) has moments

m k =
(k + 1 )2

k!_ _______ 
 k
2k

 ; (9.19)

e.g., m 1 = 1/2, m 2 = 4/3, m 3 = 30/4 and m 4 = 336/5.

10. Feller’s First Bessel Distributions

In this section we consider probability distributions associated with first passage times in

RBM and the M/M/1 queue, extending the discussion in Abate and Whitt (1987, 1988a,b,c,d) and

Abate, Kijima and Whitt (1991). In particular, the distributions here arise in the associated
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unrestricted process, see Section 7 of Abate and Whitt (1988a). Feller (1966, 1971) calls this

process a randomized random walk; see pp. 58, 65, 437, 482 of [F].

We will focus on the LST

ω̂(s) ≡ ω̂(s ; µ) =
µ − 1

1_ ____ 
√ µ2 + 2µs − √ 1 + 2µs


 (10.1)

for µ ≥ 1, which has pdf

ω(t) = √ 2π t 3

µ_ ____ exp ( − t /2µ)


 µ − 1

1 − exp ( − (µ2 − 1 ) t /2µ_ ___________________




. (10.2)

Feller (1966) proved that the LST ω̂ in (10.1) is ID. We call this distribution Feller’s first Bessel

function distribution, because ω̂(s)2r has pdf

ω 2r (t) =


 µ − 1

µ + 1_ ____




r

t
r_ _ exp ( − (µ2 + 1 ) t /4µ) I r ( (µ2 − 1 ) t /4µ) , (10.3)

where I r (t) is the Bessel function of order r, [F], p. 58. Feller focuses on the case without drift,

but as he remarks the general case considered here is treated in the same way. Moreover, Feller

(1966) gives a direct construction of ω 2r (t) as the marginal pdf of a Le ́ vy process.

We remark that another approach to infinite divisibility of ω is via complete monotonicity. In

Abate and Whitt (1988b) it is shown that the busy period pdf and many related pdfs are

completely monotone (a mixture of exponentials). Since CM implies ID, the busy period pdf

b(t) must be ID. We can then identify the LST ω̂ via ω̂(s)2 = b̂(as) for appropriate scaling.

We return to this at the end of this section.

Note that (10.3) is actually consistent with (10.2), because the Bessel function of fractional

order simplifies, i.e.,



- 36 -

I 1/2 (z) = √ πz
2_ __ sinhz =

√ 2πz

e z
_ _____ ( 1 − e − 2z ) . (10.4)

Feller exhibited the pdf (10.3), but he did not consider the special case of r = 1/2 in (10.2). The

pdf ω in (10.2) was used in Example 5 of Abate et al. (1995) to give an example of a service-time

distribution with a finite moment generating function for which the M/G/1 steady-state waiting-

time distribution does not have an exponential tail.

We will approach Feller’s first Bessel pdf ω via the gamma density with shape parameter

1/2 (Γ 1/2 ), i.e.,

γ(t ;µ) =
√ 2π µt

1_ ______ e − t /2µ , t ≥ 0 , (10.5)

where µ ≥ 1, which has transform γ̂(s ;µ) = ( 1 + 2µs) − 1/2 and stationary-excess density

%(γ) ≡ γ e (t ;µ) =
µ
2_ _ ( 1 − Φ(√ t /µ ) , (10.6)

where Φ is the standard (mean 0, variance 1) normal cdf.

For this purpose, we define two new pdfs,

γ c (t ;µ) = γ(t ;µ) ∗ γ(t ; 1/µ) , t ≥ 0 ,

=
2
1_ _ exp ( − (µ2 + 1 ) t /4µ) I 0 ( (µ2 − 1 ) t /4µ) (10.7)

and

γ d (t ;µ) =
(µ − 1 )

µ_ ______ γ(t ;µ) −
1 − µ − 1

µ − 1
_ ______ γ(t ;µ − 1 ) , t ≥ 0 ,

=
(µ − 1 )

µ_ ______
√ 2π µt

1_ ______ (e − t /2µ − e − µt /2 ) , t ≥ 0 . (10.8)

The associated LSTs are

γ̂ c (s ;µ) =
√ µ2 + 2µs √ 1 + 2µs

µ_ __________________ (10.9)
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and

γ̂ d (s ;µ) =
µ − 1

µ_ ____


 √ 1 + 2µs

1_ ________ −
√ µ2 + 2µs

1_ _________




. (10.10)

From (10.1), (10.9) and (10.10), we immediately obtain the following.

Proposition 10.1. γ̂ d (s ;µ) = γ̂ c (s ;µ) ω̂(s).

Note that γ d has finite first negative moment. Hence we can also apply the inverse-

stationary-lifetime operator + − 1 to γ̂ d to get ω̂.

Proposition 10.2. ω̂ = + − 1 ( γ̂ d ), so that ω(t) = t − 1 γ d (t ;µ) and ω(t) is as given in (10.2).

Note that ω(t ;µ) → γ(t ; 1 ) as µ → 1. We will now determine the moments of ω.

Proposition 10.3. The moments of ω(t ;µ) are

m n + 1 =
2nn!

( 2n) !_ _____
k = − n
Σ
n

µk ; (10.11)

e.g., m 1 = 1, m 2 = (µ + 1 + µ − 1 ), c 2 = µ + µ − 1 , and m 3 = 3 (µ2 + µ + 1 + µ − 1 + µ − 2 ).

To prove Proposition 10.3, we use the following proposition, which relates ω to the RBM

first-moment pdf h 1 . It involves elementary algebra. From (4.4) of Abate and Whitt (1987),

h 1 (t ;µ) = 2γ(t ;µ) − γ e (t ;µ)

= 2γ(t ;µ) −
µ
2_ _ 

1 − Φ(√ t /µ 
 . (10.12)

Proposition 10.4. The stationary-excess distribution of ω is

%(ω) ≡ ω e (t) =
µ − 1

µ_ ____ h 1 (t ;µ) −
µ − 1

1_ ____ h 1 (t ;µ − 1 ) , (10.13)

where ĥ 1 is as in (8.6).

Proof of Proposition 10.3. We start with
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m k (γ) =
2kk!

( 2k) !_ _____ µk , (10.14)

from which we deduce that

m k (h 1 ) =
k + 1

k!_ ____ 
 k
2k




 2

µ_ _




k

, (10.15)

from which (10.13) follows.

We now give two more relations. Since convolution preserves infinite divisibility, the

following transform is ID:

ξ̂(s) ≡ γ̂(s ;µ) ω̂(s) =
γ̂(s ;µ − 1 )

γ d (s ;µ)_ ________ =
µ − 1

1_ ____



√ 1 + 2µs

µ2 + 2µs_ _______ − 1






. (10.16)

The LST ξ̂ has the pdf

ξ(t) =
4µ

(µ + 1 )_ ______ exp ( − (µ2 + 1 ) t /4µ) (I 0 ( (µ2 − 1 ) t /4µ) + I 1 ( (µ2 − 1 ) t /4µ) . (10.17)

Next, note that

η̂(s) ≡
ω̂(s)

ω̂ e (s)_ _____ =
(µ + 1 )

µ_ ______ ĥ 1 (s ;µ) +
(µ + 1 )

1_ ______ ĥ 1 (s ;µ − 1 ) . (10.18)

Since the associated pdf η is the mixture of two CM pdfs, η is CM and thus ID.

We now return to the busy-period LST. If we choose measuring units so that the busy period

has mean 1 and m 2 = c 2 + 1 = 2/( 1 − ρ), then

b̂(s) =
c 2 − 1

1_ _____ (c 2 + s − √ 1 + 2c 2 s + s 2 ) (10.19)

and
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b(t) =
√c 4 − 1

c 2 + 1_ _______
t

exp ( − c 2 t)_ _________ I 1 (√c 4 − 1 t) , t ≥ 0 . (10.20)

Proposition 10.5. With the scaling in (10.1) and (10.19), b̂(s) = ω̂(s /2 )2 or

b(t) = 4ω( 2t) ∗ ω( 2t) , t ≥ 0 .

Proof. Apply (10.1) and (10.10) with c 2 = (µ + µ − 1 )/2 or µ = c 2 + √c 4 − 1 .

We conclude this section by giving examples of distributions in this section related by the ID

operator ( in Section 4. They appear in Table 5.

_ _____________________________________________________________
original LST f̂ infinitely divisible LST ( ( f̂ )_ _____________________________________________________________

µ + 1
µ_ ____



 1 + 2µs

1_ ______




+
µ + 1

1_ ____ γ̂ c (s ; µ) γ̂(s ; µ) ω̂(s)

γ̂(s ; ν) ρ̂(s ; 1 ,ν) ρ̂(s ; 1 ,ν)

ρ̂(s ; 1 ,ν)
f̂ (s) ν − 1

e − r 2 (s)
_ _______

µ2 + 1

µ2
_ _____



 1 + 2µs

1_ ______




+
µ2 + 1

1_ _____


 1 + 2s /µ

1_ _______




γ̂ c (s ; µ)

γ̂ c (s /2 ;c 2 + √c 4 − 1 ) b̂(s)

( 1 + bs) − 1 ( 1 + bs) − 1/ b

( 1 + s) − 2 β̂(s) ≡ exp ( − s /( 1 + s) )

%( γ̂(s ; 2 ) ) = γ̂(s ; 2 ) ĥ 1 (s ; 2 ) ĥ 1 (s ; 2 )

γ̂(s ; 1 ) e − r 2 (s)

ĥ 1 (s ; 2 )
ĥ 1 (s ; 2 )

e − r 2 (s)
_ _______

_ _____________________________________________________________ 





































































































Table 5. Examples of LST pairs ( f̂ ,( ( f̂ ) ).

Here is where the quantities in Table 5 can be found: γ in (10.5), ρ in (8.9), r 2 in (8.2), γ c in
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(10.7), b in (10.19), % in Table 2, β in Section 11 below, and h 1 in (10.12). To save space, we

omit the supporting algebra. The third, fifth and seventh entries are also covered by

Examples 6.1.1, 3.2.3, and 9.2.2 of Bondesson (1992). All the entries ( ( f̂ ) in Table 5 except

entry 7 are GGC because the associated pdfs f are CM. (γ c (t ;µ) is CM because the Bessel pdf in

(10.7) is CM.) Since the Erlang E 2 density is not CM, the seventh transform exp ( − s /( 1 + s) ) is

not GGC, but it is GCMED.

11. Feller’s Second Bessel Distributions

The second family of Bessel distributions starts with the transform β̂(s) = exp ( − s /( 1 + s) )

in (3.8) obtained by applying the inverse cumulant-moment-transfer operator 7 − 1 to the

exponential LST ( 1 + s) − 1 . Equivalently, we can apply the Poisson-random-sum operator

3 6( f̂ ) ≡ exp ( − ( 1 − f̂ (s) ) to the exponential LST, [F], p. 438. Either by these means or

directly, we see that β̂ is ID.

More generally, Feller (1971) considers the convolution of β with a gamma pdf, i.e., the one-

parameter family of LSTs

β̂ r (s) = ( 1 + s) − (r + 1 ) exp ( − s /( 1 + s) ) , (11.1)

which has pdf

β r (t) = e − (t + 1 ) t r /2 I r ( 2√ t ) , t ≥ 0 , (11.2)

for r > − 1, where again I r is the Bessel function of order r. For r = − 1, β r reduces to β̂. For

r = − 1, the cdf has an atom of e − 1 at 0. The rest of the cdf has a density

β(t) ≡ β − 1 (t) = e − (t + 1 ) t 1/2 I 1 ( 2√ t ) , t ≥ 0 . (11.3)

To see that formula (11.3) is the analog of (11.2) for r = − 1, note that I k (t) = I − k (t) for k

integer. These Bessel distributions arise as Poisson sums of gamma distributions, [F], p. 58. The

distribution β arises when a gamma process is directed by the Poisson process, [F], p. 349.
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Gaver (1954), p. 147, considers β̂ as a possible service-time LST in the M/G/1 queue.

We now give the moments and cumulants of β r . For this purpose, let Ln
(r) (x) be the

generalized Laguerre polynomials in 22.9.15 on p. 784 of Abramowitz and Stegun (1972). Their

role is indicated on p. 194 of Riordan (1968) and (9.39) of Odlyzko (1994).

Proposition 11.1. The cumulants and moments of β r are

c k (β r ) = (r + 1 + k) (k − 1 ) ! (11.4)

and

m k (β r ) = k!Lk
(r) ( − 1 ) =

j = 0
Σ
k 

k − j
k + r

 j!
k!_ __ , (11.5)

where Ln
(r) (x) are the generalized Laguerre polynomials.

Proof. The cumulants are easy. From (22.9.15) of Abramowitz and Stegun (1972),

β̂ r (s) =
n = 0
Σ
∞

Ln
(r) ( − 1 ) ( − s) n .

The explicit expression is (22.3.9) on p. 775 of Abramowitz and Stegun (1972).

12. The Generalized Pollaczek-Khintchine Operator

In Section 4 we noted that there is a one-to-one correspondence between ID LSTs f̂ (s) and

Le ´ vy stochastic processes {X(t) :t ≥ 0 } for which X(u + t) − X(u) has LST f̂ (s) t for all

positive u and t. Any such Le ́ vy process X with nondecreasing sample paths in turn can serve as

the input to a stochastic storage system with constant unit release rate; i.e., so that the net input

process is Y(t) = X(t) − t and the associated stochastic storage process (starting out empty) is

Z(t) = Y(t) − inf {Y(u) : 0 ≤ u ≤ t} , t ≥ 0 . (12.1)

Assuming that EX( 1 ) = ρ < 1, the storage content has a proper steady-state content Z with LST
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ẑ(s) ≡ Ee − sZ =
1 − s − 1 log f̂ (s)

1 − ρ_ _____________ ; (12.2)

see Theorem 4 on p. 78 of Prabhu (1980). We call the steady state LST in (12.2) the generalized

Pollaczek-Khintchine LST. An interesting special case is when the input is a gamma process, i.e.,

when X(t) has LST ( 1 + µs) − t; see p. 72 of Moran (1959) and p. 72 of Prabhu (1980).

The standard M/G/1 queue is the special case in which X is a compound Poisson process, so

that

log f̂ (s) = λ( 1 − ĥ(s) )

and

s
log f̂ (s)_ _______ = ρ

sm 1 (H)
( 1 − ĥ(s) )_ ________ = ρ6 %( ĥ) (s) . (12.3)

Consequently, as noted in Section 1, the standard Pollaczek-Khintchine operator can be

represented as 3 _ = & 6+%.

In general, using the representation of an ID LST with finite mean in (4.2), we can write

log f̂ (s) = ρ∫
0

s
ĥ(z) dz (12.4)

for a bonafide LST ĥ, so that

ẑ(s) =
1 − ρs − 1 ∫

0

s
h(z) dz

1 − ρ_ _______________ . (12.5)

From (12.5), we see that the generalized Pollaczek-Khintchine operator, say & 3 _, can be

written as

& 3 _ = & 6+8 , (12.6)

where 8 is the unimodal operator in Section 2.
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A simple formula like (12.2) still holds for storage models with more general net input

processes Y(t), provided only that Y has no negative jumps. Even though Y(t) can assume

negative values the transform can be represented as

Ee − sY(t) = e − ψ(s) t , t ≥ 0 , (12.7)

and, assuming that EY( 1 ) < 0, the steady-state storage content has LST

Ee − sZ = sψ′ ( 0 )/ψ(s) ; (12.8)

e.g., see Bingham (1975), Theorem 4.2 of Kella and Whitt (1991) and Example 4(a) of Kella and

Whitt (1992). As a special case of (12.7), we can have the exponent function

ψ(s) = cs +
2

σ2 s 2
_ ____ + a∫

0

s
h(z) dz , (12.9)

for an arbitrary LST ĥ. The first two components in (12.9) correspond to deterministic and

Brownian motion contributions to the net input process. The Brownian motion contribution

makes (12.8) more general than (12.5).

The exponent ψ in (12.7) has the property that ψ( 0 ) = 0, ψ′ (s) < 0 and ψ′ ′ (s) > 0 for all

real positive s. Hence we can define an inverse exponent ψ − 1 (s). It is significant that the first

passage time to level − t can be represented as a new Le ́ vy process {T(t) :t ≥ 0 } with LST

Ee − sT(t) = e − ψ− 1 (s) t , t ≥ 0 . (12.10)

In summary, any LST ĥ can be a component of the exponent of a Le ́ vy process without

negative jumps as in (12.9). Associated with this Le ́ vy process, is the steady-state storage LST in

(12.8) and the first-passage-time LSTs in (12.10).

13. Theta Distributions

Continuing our focus on first passage times in Sections 8, 10 and 12, we start here with the

first passage time for standard RBM (zero drift, unit variance) from a reflecting barrier to an
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absorbing barrier, [F], p. 343; we call its distribution our first theta distribution. If the distance

between the barriers in √ 2 /2, then the first passage time LST is simply θ̂ 1 (s) = 1/cosh√ s ; see

(132) on p. 233 of Cox and Miller (1965).

We shall consider four related distributions associated with the classical theta functions; see

Bellman (1961), Oberhettinger and Badii (1973) and Ch. 16 of [AS]. The distributions we

consider can all be represented as infinite series involving exponential pdfs. In particular, the

pdfs have the form

θ i (t) =
n = 1
Σ
∞

a n µ n e − µ n t , t ≥ 0 . (13.1)

The LSTs θ̂ i (s) and the parameters { (a n ,µ n ) } for these four theta distributions appear in

Table 6. Of course, for our purpose, the significant point is that these theta LSTs have relatively

simple expressions in terms of the hyperbolic functions, [AS], p. 83.

_ ______________________________________________________
LST a n µ n_ ______________________________________________________

θ̂ 1 (s) =
cosh√ s

1_ ______
π( 2n − 1 )
( − 1 ) n 4_ ________

4
π2 ( 2n − 1 )2
_ __________

_ ______________________________________________________

θ̂ 2 (s) =
√ s

tanh√ s_ ______
π2 ( 2n − 1 )2

8_ __________
4

π2 ( 2n − 1 )2
_ __________

_ ______________________________________________________

θ 3 (s) = √ 3/ s coth√ 3s − s − 1

π2 n 2

6_____
3

π2 n 2
_____

_ ______________________________________________________

θ 4 (s) =
sinh√ s

√ s_ ______ 2 ( − 1 ) n + 1 π2 n 2

_ ______________________________________________________ 































































Table 6. The LSTs and parameters in (13.1) of the four theta distributions.

The second and third theta functions are obviously bonafide mixtures of exponential pdfs and

are thus CM. We will establish operator relations showing that all four pdfs are ID, with θ 2 and

θ 3 being unimodal with a mode at 0. Moreover, the operator relations provide probabilistic

interpretations of the distributions. The following relations can be established. We omit the
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proof, which uses basic properties of hyperbolic functions, [AS], p. 83, and the operators here.

Proposition 13.1. The following relations hold for the four theta LSTs:

(a) θ̂ 1 (s) = ( (θ̂ 2 (s) ),

(b) θ̂ 4 ( 3s) = ( (θ̂ 3 (s) ),

(c) θ̂ 1 (s) = θ̂ 2 (s) θ̂ 4 (s),

(d) θ̂ 3 (s) =
s
1_ _



 θ̂ 2 ( 3s)

1_ ______ − 1




≡ % } − 1 (θ̂ 2 ( 3s) ),

(e) θ̂ 2 (s) = ( +%(θ̂ 1 (s) θ̂ 4 (s) ).

(f) 8 − 1 (θ̂ 2 (s) ) = (θ̂ 2 (s) + θ̂ 1 (s)2 )/2,

(g) 8 − 1 (θ̂ 3 (s) ) = (θ̂ 3 (s) + %(θ̂ 4 ( 3s)2 ) )/2,

(h) 8 (θ̂ 2 (s) ) = 7 (θ̂ 1 (s) ) = 2 log ( cosh√ s )/ s,

(i) 8 (θ̂ 3 (s) ) = 7 (θ̂ 4 ( 3s) ) = − 2 log (√ 3s /sinh√ 3s )/ s,

(j) θ̂ 3 (s) = ( +%(%(θ̂ 4 ( 3s)2 / θ̂ 3 (s) ),

(k) 7 − 1 (θ̂ 2 (s) ) = exp ( − √ s tanh√ s ),

(l) 7 − 1 (θ̂ 3 (s) ) = exp ( − √ 3s coth√ 3s − 1 ).

We now point out how our four theta distributions are related to the theta functions on p. 421

of Oberhettinger and Badii (1973). The theta functions are function of two variables, denoted by

θ i (zt). In terms of these theta functions, our theta pdfs are:
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θ 1 (t) =
2
1_ _

∂z
∂_ __ θ 1 (zt)z = 0

θ 2 (t) = θ 2 ( 0t) (13.2)

θ 3 (t) = θ 3 ( 0t /3 ) − 1

θ 4 (t) =
∂t
∂_ __ θ 4 ( 0t) , t > 0 .

We now give additional properties of our theta distributions. First, θ 2 ( 0 ) = θ 3 ( 0 ) = ∞,

while θ 1 ( 0 ) = θ 4 ( 0 ) = 0.

We now consider moments and cumulants: First,

m k (θ 1 ) =
( 2k) !

k!_ _____E 2k , (13.3)

where E m is the m th Euler number; see 4.5.66 on p. 85 and p. 804 of [AS]. For example,

E 2n = 1 , 5 , 61 and 1385, while m n = 1/2 , 5/12 , 61/120 and 277/366 (c 2 = 2/3 ) for

n = 1 , 2 , 3 , 4. From the Parseval relation (5.8), we see that the negative moments of the first

theta distribution are

m − n (θ 1 ) =
(n − 1 ) !

1_ _______∫
0

∞
z n − 1 θ̂ 1 (z) dz , (13.4)

which is finite for all n.

By Proposition 13.1(a) and (4.10), we can calculate the moments of θ 2 , they are

m k (θ 2 ) = 2c k + 1 (θ 1 ) . (13.5)

Directly, from 4.5.64 on p. 85 and p. 804 of [AS], we have

m k (θ 2 ) =
( 2 (k + 1 ) ) !

4k + 1 ( 4k + 1 − 1 ) k!_ _______________ B 2 (k + 1 ) , (13.6)

where B 2k are the Bernoulli numbers; e.g., the first four moments are 1/3, 4/15, 34/105 and

496/945 (c 2 = 7/5 ).
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Using Proposition 13.1 (c), we see that

c k (θ 1 ) = c k (θ 2 ) + c k (θ 4 ) (13.7)

From 4.5.67 on p. 85 of [AS], we get

m k (θ 3 ) =
( 2 (k + 1 ) ) !

12k + 1B 2 (k + 1 )k!_ _______________ , (13.8)

where again B 2k are the Bernoulli numbers; e.g., the first three moments are 1/5, 4/35 and 18/175

(c 2 = 13/7 ).

By 4.5.65 of p. 85 of [AS],

m k (θ 4 ) =
( 2k) !

( 4k − 2 ) k!_ _________ B 2k and c k (θ 4 ) =
2k( 2k) !

4kB 2kk!_ _________ (13.9)

where B k are the Bernoulli numbers; e.g., the first three moments are 1/6, 7/180 and 31/2520

(c 2 = 2/5 ).

14. Conclusions

In this paper we have introduced several classes of LSTs and operators mapping LSTs into

other LSTs. Most of the pdfs considered in this paper are monotone or unimodal, which is

usually what we want in applications. However, non-monotone pdfs can be constructed from

monotone ones by convolution and non-unimodal ones can be constructed from unimodal ones by

simple mixtures. New distributions can be created by choosing location and scale parameters in

addition to manipulating given parameters.

Most of the LSTs and operators considered here have been considered before in the literature,

but not from this perspective. Considering each operator alone seems to involve little more than a

restatement of known relations, but considering several different operators together reveals new

relations among them and a surprising overall unity. In retrospect, we are left in awe with the
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realization that much of this story was known to Feller (1971).
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