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Abstract

In this paper we consider a family of product-form loss models, including loss networks (or
circuit-switched communication networks) and a class of resource-sharing models. There can be
multiple classes of requests for multiple resources. Requests arrive according to independent
Poisson processes. The requests can be for multiple units in each resource (the multi-rate case,
e.g., several circuits on a trunk). There can be upper-limit and guaranteed-minimum sharing
policies as well as the standard complete-sharing policy. If all the requirements of a request
cannot be met upon arrival, then the request is blocked and lost. We develop an algorithm for
computing the (exact) steady-state blocking probability of each class and other steady state
descriptions in these loss models. The algorithm is based on numerically inverting generating
functions of the normalization constants. In a previous paper we introduced this approach to
product-form models and developed a full algorithm for a class of closed queueing networks. The
inversion algorithm promises to be even more useful for loss models than for closed queueing
networks because fewer alternative algorithms are available for loss models. Indeed, for many
loss models with sharing policies other than traditional complete sharing, our algorithm is the first
effective algorithm. Unlike some recursive algorithms, our algorithm has a low storage
requirement. To treat the loss models here, we derive the generating functions of the
normalization constants and develop a new scaling algorithm especially tailored to the loss
models. In general, the computational complexity grows exponentially in the number of
resources, but the computation can often be reduced dramatically by exploiting conditional
decomposition based on special structure and by appropriately truncating large finite sums. We
illustrate our numerical inversion algorithm by applying it to several examples. To validate our
algorithm on small models, we also develop a direct algorithm. The direct algorithm itself is of
interest, because it tends to be more efficient when the number of resources is large, but the
number of request classes is small. Furthermore, it too allows a form of conditional
decomposition based on special structure.

Key words: product-form models, loss networks, circuit-switched communication networks,
resource-sharing models, coordinate-convex resource-sharing policies, blocking probabilities,
generating functions, numerical transform inversion, normalization constants, partition functions
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1. Introduction

In this paper we develop an algorithm for calculating the (exact) blocking probabilities (and
other steady-state descriptions) in a family of loss models. These models are multi-dimensional
generalizations of the classical Erlang loss model. They all have product-form steady-state
distributions. The blocking probabilities have simple expressions in terms of normalization
constants (or partition functions). To calculate the blocking probabilities and other steady-state
descriptions, we calculate the normalization constants by numerically inverting their generating
functions (which we derive here).

Our family of models includes two familiar classes of models that have received considerable
attention because of their important application to communication networks and computer
systems: (1) loss networks (or circuit-switched communication networks) as reviewed by Kelly
(1991), and (2) resource-sharing models as considered by Kaufman (1981), Roberts (1981) and
others. However, our models are more general than are usually considered in these two classes,
as we explain next.

1.1 Loss Networks

A loss network has multiple nodes connected by trunks (or links), each of which contains a
number of circuits, as depicted in Figure 1. In this figure there are 5 nodes and 5 trunks, with
trunk j having K j circuits. (The nodes actually play no role in the model.) The loss network
carries multiple classes or types of calls, which are distinguished by the set of trunks (or route)
they require, by the number of circuits required on each trunk (which need not be the same on all
trunks) and by the average call holding time. (Each call holds all its circuits for the duration of
the call.)

K 5

K 4

K 3

K 2

K 1

Figure 1. An example of a loss network

For the example in Figure 1, the set of routes might be

5 = { { 1 } , { 2 } , { 1 , 2 } , { 3 , 5 } , { 4 , 5 } , { 1 , 3 , 5 } } .

In this example there might be 12 call types, two corresponding to each route (subset) with the
route indicating the trunks needed for each call. We also must specify the number of circuits
needed by each call type on each trunk. We may have more call types than routes, because
different call types with the same route may have different circuit requirements. The steady-state
distribution depends on only one more parameter for each call type: the offered load, which is the
call arrival rate multiplied by the mean call holding time.
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In the basic loss network model, calls of each type arrive according to a Poisson process.
Each call is accepted only if all the trunks on its route have enough circuits available to support
the call; otherwise, the call is blocked and lost (without generating retrials or otherwise affecting
future arrivals). Loss networks have many applications; e.g., a loss network may represent a
database, a wireless communication network or a circuit-switched computer network as well as a
circuit-switched telephone network. For additional background on loss networks and additional
references, see Kelly (1985, 1986, 1991).

We have not mentioned the call holding-time distributions, because the product-form models
have an insensitivity property implying that the steady-state distribution depends on the call
holding time distributions only through their means: e.g., see Lam (1977), Kaufman (1981),
Burman, Lehoczky and Lim (1984) and Whitt (1980, 1985).

The example in Figure 1 is taken from the introduction of Kelly (1986). We apply our
algorithm to solve this example in Section 9. There are alternative algorithms that could be
applied to this example: a direct algorithm which we introduce in Section 6 and recursive
algorithms developed by Dziong and Roberts (1987), Pinsky and Conway (1992) and Conway
and Pinsky (1992), but all these alternatives encounter numerical difficulties when the model gets
large. We try to address this difficulty with our inversion algorithm, as do Conway and Pinsky
(1992) with their recursive algorithm. Effective algorithms for computing the exact blocking
probabilities in loss networks previously had been developed only for special cases. For a class
of two-hop tree networks, Mitra (1987) performed an asymptotic analysis and developed bounds,
while Kogan (1989) developed an algorithm for that model by relating it to a closed queueing
network. Other algorithms for tree networks have been developed by Tsang and Ross (1990) and
Ross and Tsang (1990). We apply our algorithm to these tree networks in Section 10, and show
that it may be applied to more general structures as well. Of course, simulation can also be
applied. A related approach is Monte Carlo integration; see Ross and Wang (1992).

We generalize the traditional loss network model in the direction of trunk sharing. The
traditional loss network model assumes complete sharing (CS) of the circuits on a trunk among
all competing traffic classes. However, it is often desirable to consider other sharing policies to
provide different grades of service (the so-called platinum, gold and vanilla services) or to protect
one traffic class from another. We show how to treat general sharing policies based on linear
constraints. In particular, each additional linear constraint is equivalent to having another trunk in
the model with the CS policy. This is because, with the CS policy, each trunk introduces a linear
constraint. Thus, a p-trunk problem with c extra linear constraints is equivalent to a (p + c)-trunk
problem with the CS policy.

Unfortunately, however, the computational complexity increases dramatically with the
number of trunks, because the dimension of the generating function of the normalization constant
equals the number of trunks. Thus we focus on two special forms of sharing for which we can
show the computational complexity does not grow much. In particular, we consider two other
candidate trunk sharing policies: The first is the upper limit (UL) policy, which provides upper
limits on the numbers of circuits that can be used by each class on each trunk. The second is the
guaranteed minimum (GM) policy, which reserves a specified number of circuits on each trunk
for each traffic class. Both of these sharing policies can be represented by the addition of linear
constraints, with one constraint for each class. However, we exploit the special structure to
reduce the effective dimension of the transform. We show that the effective dimension with the
UL and GM sharing policies is at most one greater than with the CS sharing policy.

In this paper we only consider the two non-CS sharing policies UL and GM, but our results
illustrate what can be done more generally. The various sharing policies can be thought of as
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restrictions of the state space corresponding to the CS policy. From the general theory of
reversible Markov processes, it is known that all the models with such restrictions inherit the
product-form distribution. The new steady-state distribution is a truncation and renormalization
of the steady-state distribution associated with the CS policy; see Section 1.6 of Kelly (1979).
(Of course, the restriction must leave an irreducible Markov process.) Moreover, closed-form
generating functions of normalization constants can be derived more generally.

Some recent papers on loss networks have focused on extensions which do not have product-
form steady-state distributions, and thus are beyond the scope of our algorithm. A major goal of
these more general models is to represent schemes for providing alternative routes to blocked
calls; e.g., see Kelly (1991), Mitra, Gibbens and Huang (1993) and Ash and Huang (1993). Both
product-form and non-product-form loss networks have been analyzed primarily by approximate
methods, such as reduced-load or Erlang fixed-point approximations; see Whitt (1985), Dziong
and Roberts (1987) and Chung and Ross (1993) in addition to the references above. Simulation
has also been applied, see Greenberg, Nicol and Lubachevsky (1992) and Gaujal, Greenberg and
Nicol (1993). These alternative methods are often effective, but there remains a need for exact
algorithms such as we develop here. Moreover, our algorithm for product-form models can assist
in developing and evaluating approximations for more complicated non-product-form models.
New reduced-load approximations for large loss networks can be based on the exact solution for
single links or more general subnetworks with Poisson arrivals.

1.2 Resource-Sharing Models

The second class of models we consider are the resource-sharing models. These models are
closely related to the loss networks, but they have evolved in a somewhat separate literature. The
basic resource-sharing model has a single resource, such as a set of memory buffers, which is
shared by several classes of requests. A distinguishing feature of the resource-sharing model is
the use of resource-sharing policies, such as the UL and GM policies discussed above; see
Kamoun and Kleinrock (1980) and Kaufman (1981).

One version of the resource-sharing model can be regarded as a special case of the loss
network having only a single trunk; then the circuits on the trunk constitute the resource to be
shared. This first version of the resource-sharing model can be thought of as an infinite-server
variant, because each request enters service immediately upon arrival (unless it is blocked) and
has a sojourn time that does not depend on the other requests present. Another version is a
single-server variant, as in a memory buffer at a node in a packet-switching network in which
each class is served by one outgoing link. Then the packets occupy some buffers while waiting to
be transmitted, as in Kamoun and Kleinrock (1980). Even if a processor-sharing discipline is
used, so that requests enter service immediately upon arrival, the sojourn time depends strongly
on the other requests that are present. In this paper, we consider only the infinite-server variant of
the resource-sharing model. We intend to discuss the single-server variant and more general
many-server-variants in subsequent papers. Early work on the infinite-server variant was
motivated by sharing bandwidth on a satellite channel (e.g., Aein and Kosovych (1977) and Aein
(1978)). Mitra and Morrison (1993) discuss important new applications of resource-sharing
models to integrated multi-rate services on ATM and wireless networks.

The standard resource-sharing model has requests arriving according to independent Poisson
processes, one for each class of requests. However, it is also possible to consider variants of the
resource-sharing model with state-dependent arrival rates, as was done in the case of linear
arrived rates (the binomial-Poisson-Pascal model) by Delbrouck (1983), Dziong and Roberts
(1987), and Mitra and Morrison (1993). Here we confine attention to Poisson arrivals, but we
extend the inversion algorithm to state-dependent arrivals in Choudhury, Leung and Whitt
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(1994a).

Recursive algorithms for computing normalization constants in resource-sharing models were
first developed by Kaufman (1981) and Roberts (1981) for the case of complete sharing (CS) with
Poisson arrivals. A recursive algorithm for the CS case with state-dependent arrivals (the BPP
model) was then developed by Delbrouck (1983). Delbrouck’s algorithm was extended to
multiple resources by Dziong and Roberts (1987). A new recursion for the multi-resource BPP
model has recently been developed by van de Vlag and Awater (1994). Further recursions were
developed for the case of batch Poisson arrivals with CS by Kaufman and Rege (1993) and
van Doorn and Panken (1993). (Our methods also apply to batch arrivals; we discuss both batch
Poisson arrivals and state-dependent batch arrivals in Choudhury, Leung and Whitt (1994b).) A
recursive algorithm for the UL sharing policy has recently been developed by Chuah (1993).
These recursions are all similar in spirit to Buzen’s (1973) classical convolution algorithm for
closed queueing networks.

These recursive algorithms are effective when the model is not too large, but they tend to
become ineffective as the model grows, due to numerical underflow/overflow, slowness or
roundoff error. For large models, we can use asymptotic approximations, as in Evans (1991),
Reiman (1991), Labourdette and Hart (1992), and Mitra and Morrison (1993). The uniform
asymptotic approximation (UAA) of Mitra and Morrison seem especially effective for analyzing
large models, but even UAA can experience difficulties with large models if not all parameters
are suitably large, as we show in Choudhury, Leung and Whitt (1994a).

For resource sharing models, our main contributions are to consider multiple resources and
develop an effective algorithm for non-CS policies as well as the CS policy. Previous algorithms
have primarily been for a single resource with the CS policy. However, even in the relatively
familiar setting of a single resource with the CS policy, our algorithm can treat cases not covered
by any previous algorithm, as we show in Section 7.

1.3 The Numerical Inversion Algorithm

Our algorithm follows the approach in our previous paper, Choudhury, Leung and Whitt
(1993). In that paper we developed an algorithm for calculating normalization constants and
moments in product-form models by numerically inverting their generating functions. For that
purpose, we use the numerical inversion algorithm developed by Abate and Whitt (1992a,b) and
enhanced by Choudhury, Lucantoni and Whitt (1994), which is based on the Fourier-series
method. That algorithm (reviewed in Section 3) requires that we can indeed obtain values of the
generating function and that we can perform a suitable scaling to control the errors.

In Choudhury, Leung and Whitt (1993) we developed a full algorithm for a class of closed
queueing networks. This was a convenient first class of product-form models to consider,
because it was known that the generating function of the normalization constant can be expressed
in a closed, compact form; see Reiser and Kobayashi (1975) and Bertozzi and McKenna (1993).
Here we develop a full version of the numerical inversion algorithm for the multi-rate multi-class
multi-resource loss models described above. Our first contribution here is to derive the generating
functions of the normalization constants for these models (Section 2). We do this for all three
sharing policies; CS, UL and GM. It is significant that these generating functions also can be
expressed in a remarkably simple closed, compact form. There has been less previous work with
generating functions of normalization constants for loss models than for closed queueing
networks. Generating functions of normalization constants in some loss models were previously
derived by Delbrouck (1983), Mitra (1987), Mitra and Morrison (1993) and Morrison (1993).
Their derivations are less general since they involve only the CS policy, and they have simpler
network structures. (However, Morrison (1993) consider the more general batch-Poisson
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arrivals.)

Our second contribution here is to develop an effective static scaling algorithm to control the
discretization error (Section 4). As with the closed queueing networks, the scaling is an essential
step since the normalization constant can be very large or very small. The general principles for
developing effective scaling apply as before, but we cannot just apply the old scaling algorithm.
Here we develop a new scaling algorithm especially tailored to the loss models.

While the numerical inversion algorithm is very effective for treating certain kinds of
largeness, e.g., large capacity in a resource and many request classes, the computational
complexity grows exponentially with the number of resources. (See Section 5.) Hence, we are
not nearly able to analyze a complex product-form loss model of the size of the AT&T long-
distance network. Nevertheless, just as with the closed queueing networks, fortunately the
computation can often be reduced dramatically by exploiting conditional decomposition based on
special structure (Section 3.1). For example, the dimension can be reduced to 2 for the two-hop
tree networks considered by Mitra (1987), Kogan (1989) and Tsang and Ross (1990) even though
the number of trunks can be arbitrarily large. Other structured models exhibit similar dramatic
dimension reduction by conditional decomposition.

For the loss models, we find that the computation can often be further reduced by judicious
truncation of large finite sums (Section 5). For example, we show that for a single resource
model with 100,000 resource units the computational savings can be by a factor of 200 with
essentially no loss of accuracy. For multiple resources, similar savings can be obtained in each
dimension, so that the overall savings grows geometrically with the number of resources.

1.4 Validation of the Inversion Algorithm

In this paper we also develop an alternative direct algorithm in order to validate our numerical
inversion algorithm on small models (Section 6). Interestingly, the direct algorithm has regions
where it is more effective than the inversion algorithm. Hard problems for the direct algorithm
tend to be duals of the hard problems for the inversion algorithm, with duality meaning that we
switch the role of classes and resources. The inversion (direct) algorithm thus tends to perform
well when there are only relatively few resources (classes), but there can be many classes
(resources). Furthermore, we can also exploit conditional decomposition based on special
structure for the direct algorithm, so that it can perform well with very large numbers of classes.

Finally, we consider four classes of numerical examples (Sections 7-10). We start by
considering the classical single-resource resource-sharing model with the CS policy (Section 7).
Since there is only one resource, the inversion is only one dimensional. Thus this example is very
easy for our algorithm. In addition to making comparisons with the direct algorithm for problems
that have few classes, for this model we also implemented the Kaufman (1981) – Roberts (1981)
recursion and the Mitra and Morrison (1993) uniform asymptotic approximation (UAA). We
verify the validity and effectiveness of our algorithm by showing that our algorithm agrees with
the recursion for small models and agrees with Mitra and Morrison’s UAA for large models. Our
algorithm also has a self-contained accuracy check. We verify accuracy by performing
calculations with different inversion parameters (corresponding to different contours on the
inversion integrals). Since the computations are indeed different, the accuracy is indicated by the
extent of the agreement.

We also consider variations of the resource-sharing model with the UL and GM sharing
policies as well as CS. We show that our algorithm is able to treat these other sharing policies
just as effectively as CS (Section 8). For a single resource, the dimension of the inversion always
can be reduced to at most two. Hence, these variations are not difficult for our algorithm.
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To illustrate our algorithm for loss networks, we consider the multi-rate extension of the 5-
resource example in Figure 1, taken from the introduction of Kelly (1986) (Section 9) and
networks with special structure, such as tree networks (Section 10). Even though the Kelly
example with only five trunks is relatively small by communication network standards, it is
already a challenging model to analyze. Analysis by our algorithm is facilitated by reducing the
dimension from five to three by exploiting conditional decomposition. For tree networks, we
consider both UL and CS sharing policies, thus going beyond previous algorithms. When no
alternative algorithm is available, we rely on our self-contained accuracy check. Readers could
go next to the numerical examples in Sections 7-10.

2. The Generating Functions

In this section we derive the generating functions of the normalization constants. In
Subsection 2.1 we review the general product-form solution for the loss model with Poisson
arrivals. In Subsection 2.2 we indicate how to treat other steady-state characteristics besides
blocking probabilities, in particular, factorial moments of marginal distributions. In Subsections
2.3, 2.4 and 2.5 we consider this loss model with the CS, UL and GM sharing policies,
respectively. In Subsection 2.6 we consider the same model with mixed sharing policies, where
the three sharing policies are each used by subsets of the requests (on all resources).

To emphasize the wide applicability of the models, we use the generic resource-sharing
terminology of resources, requests and capacity (or units) instead of trunks, calls and circuits,
respectively.

2.1 The General Product-Form Solution

Consider a loss model with p resources and r classes or types of requests. Let the resources
be indexed by i and the type of request by j. Let resource i have capacity K i , 1 ≤ i ≤ p, and let
K ≡ (K 1 , . . . , K p ) be the capacity vector. (We let vectors be either row vectors or column
vectors; it will be clear from the context.) Each type j request requires a i j units of resource i,
where a i j is a (deterministic) nonnegative integer. Let A be the p × r requirements matrix with
elements a i j . Let the requests come from independent Poisson processes, with requests of type j
having arrival rate λ j . Let the holding times be mutually independent and independent of the
arrival processes. Let the mean holding time of a type j request be t j . Thus the offered load of
type j is ρ j ≡ λ j t j . Each request is accepted if all desired resources can be provided; otherwise,
the request is blocked and lost. All resources used by a request are released at the end of the
holding time.

Let the system state vector be n ≡ (n 1 , . . . , n r ), where n j is the number of type j requests
currently being satisfied. Let S P (K) be the set of allowable states, which depends on the capacity
vector K and the sharing policy P. With non-CS policies, the set of allowable states will
typically depend on other parameters besides K.

If the holding times are exponentially distributed, then the stochastic process {N(t) :t ≥ 0 },
where N(t) gives the system state at time t, is a finite-state continuous-time Markov chain
(CTMC). We will only consider cases in which this CTMC is irreducible, and we will be
interested in its unique steady-state probability mass function π. Through insensitivity, this
steady-state distribution also holds for non-exponential holding times.

The steady-state probability mass function has the simple product form

π(n) = g(K) − 1

j = 1
Π

r

n j !

ρj
n j

_ ___ , (2.1)
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with the normalization constant

g(K) ≡ g P (K) =
n∈SP (K)

Σ
j = 1
Π

r

n j !

ρj
n j

_ ___ . (2.2)

Formulas (2.1) and (2.2) are consequences of the product-form model theory; e.g., see Kelly
(1979). Formula (2.1) is easily derived by initially considering the infinite-server model without
any capacity constraints. In the case of exponential holding times, the Markov process N(t) is
easily seen to be irreducible positive recurrent and reversible (corresponding to independent
M / M /∞ queues) with a stationary distribution that is the product of independent Poisson
distributions, i.e.,

π(n) =
j = 1
Π

r
e − ρ j

n j !

ρj
n j

_ ___ . (2.3)

By Section 1.6 of Kelly (1979), the steady-state distribution with capacity constraints is just the
truncation of (2.3) to a smaller state space with a renormalization to yield total mass 1; obviously
this truncation and renormalization of (2.3) is just (2.1). Alternatively we can just check that
(2.1) satisfies the global balance conditions for π to be the steady-state distribution of the CTMC
N(t). Since Poisson arrivals see time averages, e.g., Melamed and Whitt (1990), the steady-state
distribution seen by an arrival is also given by (2.1).

Basic properties of the Poisson distribution help us see that the probability mass function
π(n) in (2.1) is well behaved. For example, ρn / n! is unimodal in n with a maximum at either
ρ or ρ + 1, where x is the greatest integer less than or equal to x. This structure helps us
develop effective scaling in Section 4.

We calculate the normalization constants by numerically inverting the generating function

G(z) ≡
K 1 = 0
Σ
∞

K 2 = 0
Σ
∞

. . .
K p = 0
Σ
∞

g(K) z1
K 1 z2

K 2 . . . zp
K p , (2.4)

where z≡(z 1 ,z 2 , ... ,z p ) is a vector of complex variables. (For the UL and GM sharing policies,
there will be extra variables in g and thus G.)

From (2.2) it is evident that g(K) is increasing in K,

g(K) ≤ e ρ 1 + . . . + ρ r for all K

and g(K) approaches this upper bound as K j → ∞ for all j. Hence, the generating function G(z)
is absolutely convergent, and thus analytic, in the open polydisc {z:z j < 1 , 1 ≤ j ≤ p}. For
numerical inversion, the key point is that the generating function G(z) can be expressed
conveniently in a closed, compact form.

A generic expression for the blocking probability for class j is
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B j = 1 −

n∈S p (K)
Σ

j = 1
Π

r

n j !

ρj
n j

_ ___

n∈Sp′ (K)
Σ

j = 1
Π

r

n j !

ρj
n j

_ ___

_ ______________ , (2.5)

where S p (K) is defined in (2.2) and Sp′ (K) is the subset of states in S p (K) in which another class
j request can be accepted. The denominator of the second term in (2.5) is the standard
normalization constant, while the numerator can be expressed as another normalization constant.

2.2 Steady-State Quantities Other than Blocking Probabilities

In this paper we only consider blocking probabilities, but other steady-state quantities such as
marginal distributions and moments can also be expressed in terms of normalization constants,
usually involving only two normalization constant values. For example, let N j be the steady-state
number of class j in service with the CS policy. It is easy to see that the marginal distribution is
given by

P(N j = n j ) =
n j !

ρj
n j

_ ___
g(K)

g ( j) (K − Ae j n j )______________ , (2.6)

where g ( j) (K) represents the normalization constant of the system with class j removed.

We can treat moments as indicated in Section 6 of Choudhury, Leung and Whitt (1993).
Since it is convenient to treat factorial moments, let

M j k =
n j = k
Σ
∞

n j (n j − 1 ) . . .(n j − k + 1 ) P(N j = n j ) . (2.7)

By (2.6),

M j k =
n j = k
Σ
∞

n j (n j − 1 ) . . .(n j − k + 1 )
n j !

ρj
n j

_ ___
g(K)

g ( j) (K − Ae j n j )______________ .

Let n
_

j = n j − k. Then,

M j k = ρj
k

n
_

j = 0
Σ
∞

n
_

j !

ρj
n
_

j

_ ___
g(K)

g ( j) (K − Ae j k − Ae j n
_

j )_ ____________________ = ρj
k

g(K)

g(K − Ae j k)_ __________ . (2.8)

So all the factorial moments may be computed just as easily as the blocking probability, namely,
by computing the normalization constant at two values. The mean is obtained as

M j1 = ρ j g(K)

g(K − Ae j )_ _________ . (2.9)

Using (2.9) and (2.11) below, we get M j1 = λ j ( 1 − B j ) µj
− 1 , which agrees with what we get by

applying Little’s law.
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2.3 Complete Sharing

With complete sharing (CS), the only capacity constraint is provided by the capacity vector

K. The allowable states are now the set of state vectors n such that
j = 1
Σ
r

a i j n j ≤ K i , 1 ≤ i ≤ p;

i.e.,

S CS (K) = {n∈Z+
r : An ≤ K} , (2.10)

where Z + is the set of nonnegative integers and Z+
r is its r-fold cartesian product. From (2.10)

we see that with the CS policy each resource produces a linear constraint; i.e., resource i produces

the constraint
j = 1
Σ
r

a i j n j ≤ K i where a i j , n j and K i are integers. Thus additional linear constraints

are equivalent to introducing additional resources. To obtain integer parameters, we assume that
the coefficients a i j are all rational; then there is an equivalent representation in which a i j and K i
are integers.

By (2.5), the stationary blocking probability of an arbitrary type j request is given by

B j = 1 −
g(K)

g(K − Ae j )_ _________ , (2.11)

where e j is the j th r-dimensional unit vector (with a 1 in the j th place and 0’s elsewhere), which
here we regard as a column vector. We calculate B j in (2.11) by calculating g(K − Ae j ) and
g(K).

The key to obtain a convenient closed-form expression for the generating function is changing
the order of summation from the given order in (2.2) and (2.4). Doing so for G(z), we obtain

G(z) =
n 1 = 0
Σ
∞

. . .
n r = 0
Σ
∞

K 1 =
j = 1
Σ

r

a 1 j n j

Σ
∞

. . .

K p =
j = 1
Σ

r

a p j n j

Σ
∞

j = 1
Π

r

n j !

ρj
n j

_ ___ z1
K 1 . . .zp

K p =

i = 1
Π

p
( 1 − z i )

exp


j = 1
Σ
r

ρ j
i = 1
Π

p
zi

a i j


_ _________________ .(2.12)

2.4 Sharing with Upper Limits

We have indicated above how to treat additional linear constraints on the state space by
adding additional resources. Now we consider two special sharing policies for which we can
reduce the dimension of the generating function. We now assume that, in addition to the overall
capacity constraint provided by K, an upper limit L i j is imposed on request j for resource i for
each (i , j) pair. At first glance, this appears to be rp new constraints, but it is easy to see that
there are at most r binding constraints, one for each type of request. We first identify the resource
that limits the maximum number of type j requests to be carried by the network simultaneously.
Resource i is the type-j limiting resource if


L i j / a i j


 ≤ 

L i ′ j / a i ′ j

 for all 1 ≤ i ′ ≤ p . (2.13)

If resource i is the type-j limiting resource, then we let M j = 
L i j / a i j


. Note that
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{n∈Z+
r : a i j n j ≤ L i j : 1 ≤ i ≤ p , 1 ≤ j ≤ r} = {n∈Z+

r : n j ≤ M j , 1 ≤ j ≤ r} .

Introduce the vector M ≡ (M 1 , . . . , M r ) and note that the set of feasible states with UL is

S UL (K ,M) = {n∈Z+
r : An ≤ K , n ≤ M} . ((2.14)

Let g(K ,M) be the normalization constant as a function of the pair (K ,M). Paralleling (2.11),
the blocking probability is now

B j = 1 −
g(K ,M)

g(K − Ae j ,M − e j )________________ . (2.15)

Since (K ,M) is of dimension p + r, so will be the generating function of g(K ,M) (but in
Section 3.1 we will show that the dimension always can be reduced to p + 1 or p for the numerical
inversion). Let y ≡ (y 1 , . . . , y r ) be a vector of complex variables which we will use for the last
r dimensions. Thus, we can define the generating function of g(K ,M) as

G(z,y) =
K 1 = 0
Σ
∞

K 2 = 0
Σ
∞

. . .
K p = 0
Σ
∞

M1 = 0
Σ
∞

M2 = 0
Σ
∞

. . .
M r = 0
Σ
∞

n∈SUL (K,M)
Σ

j = 1
Π

r

n j !

ρj
n j

_ ___ z1
K 1 z2

K 2 . . . zp
K p y1

M1 y2
M2 . . . yr

M r . (2.16)

We change the order of summation, just as we did for the CS policy, in order to obtain a
closed-form expression:

G(z,y) =
n 1 = 0
Σ
∞

. . .
n r = 0
Σ
∞

M1 = n 1

Σ
∞

. . .
M r = n r

Σ
∞

K 1 =
j = 1
Σ

r

a 1 j n j

Σ
∞

. . .

K p =
j = 1
Σ

r

a p j n j

Σ
∞

j = 1
Π

r

n j !

ρj
n j

_ ___ z1
K 1 . . . zp

K p y1
M1 . . . yr

M r

=

i = 1
Π

p
( 1 − z i )

j = 1
Π

r
( 1 − y j )

exp


j = 1
Σ
r

ρ j y j
i = 1
Π

p
zi

a i j


_ ____________________ . (2.17)

Looking at (2.17) and (2.12), we see that a loss model with p resources, r classes and the UL
policy is equivalent to a special case of a loss model having p + r resources, r classes and the CS
policy: just let z p + j = y j for 1 ≤ j ≤ r. The capacity limit on resource p + j is the upper limit
M j for class j and a class j request requires a i j resource units from resource i, 1 ≤ i ≤ p, 1
resource unit from resource p + j, and no resource units from resource p + k for k ≠ j and
1 ≤ k ≤ r.
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2.5 Sharing with Guaranteed Minima

With the GM policy, a certain number of units in each resource are reserved for each type of
request. It is easy to see that UL and GM policies are equivalent for two classes, but not for more
than two. For example, with three classes, GM puts upper limits on the total amounts of the
resource used by pairs of the classes. More generally, the GM policy is equivalent to introducing
constraints for each resource on the weighted sum of the numbers of requests from all but one
class. Thus, the GM policy also corresponds to a set of linear constraints, so that it could be
implemented by just adding resources. However, we will show how to exploit the special
structure to reduce the dimension.

To obtain a tractable expression in this case we assume that the requirements matrix A has a
special form. In particular, let there be a vector b ≡ (b 1 , . . . , b r ) such that a i j equals either b j
or 0 for all i and j. Moreover, we assume that the amount of capacity guaranteed for each type of
request is the same for all resources used by that type of request. Let M j be the capacity
guaranteed to type j request in each of its required resources and let M denote the vector
(M 1 , . . . , M r ). Note that M denotes different quantities for the UL and GM policies.

For the i th resource with capacity K i , M j δ i j resource units are reserved for type j requests,

j = 1 , 2 , . . . r where δ i j = 1 if a i j > 0 and δ i j = 0 otherwise. So K i −
j = 1
Σ
r

M j δ i j resource units are

commonly shared. If a i j > 0, then type j requests can use any of the M j resource units reserved
for them and any of the commonly shared resource units. A new type-j request is blocked if the
type-j requests already occupy more than the guaranteed minimum on some resource and if not
enough resource units are available at that resource. Given K and M, let S GM (K ,M) be the set of
all allowable system states under the GM policy. Then

S GM (K ,M) = {n∈Z+
r :

j = 1
Σ
r

max (a i j n j ,δ i j M j ) ≤ K i for i = 1 , . . . , p} . (2.18)

Let g(K ,M) be the normalization constant. Paralleling (2.11) and (2.15), the blocking
probability now, by (2.5), is

B j = 1 −
g(K ,M)

g(K − Ae j ,M − Ae j )_ _________________ . (2.19)

As for the CS and UL policies, the order of summation can be changed to obtain a close-form
expression for the generating function of g(K ,M). For a given system state n, observe that each
M j has no effect in causing n to be valid or not (for some sufficiently large capacity vector K).
Consequently, for the given n , M j can vary from zero to infinity. Next, consider the capacity K i .
For n j type j requests, the number of units in resource i occupied or reserved for type-j requests is
the maximum of a i j n j and δ i j M j . To account for all request types, K i must be at least

j = 1
Σ
r

max (a i j n j ,δ i j M j ). Thus we can write the generating function as

G(z,y) =
n 1 = 0
Σ
∞

. . .
n r = 0
Σ
∞

M1 = 0
Σ
∞

. . .
M r = 0
Σ
∞

K 1 = K 1 (n ,M)
Σ
∞

. . .
K p = K p (n ,M)

Σ
∞

j = 1
Π

r

n j !

ρj
n j

_ ___ y1
M1 . . . yr

M r z1
K 1 . . . zp

K p ,

where K i (n ,M) =
j = 1
Σ
r

max {a i j n j ,δ i j M j }. Carrying out the summation over all K i , then over
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all the M j (breaking the sum over M j into two parts, below and above b j n j), and finally over all
n j we obtain

G(z,y) =


 i = 1
Π

p

1 − z i

1_ ____




×

j = 1
Π

r









1 − y j

exp (ρ j
i = 1
Π

p
zi

a i j ) − y j exp (ρ j yj
b j

i = 1
Π

p
zi

a i j )
_ _______________________________ +

1 − y j
i = 1
Π

p
zi

δ i j

y j
i = 1
Π

p
zi

δ i j exp (ρ j yj
b j

i = 1
Π

p
zi

δ i j b j )
_ ________________________









.(2.20)

As with the UL policy, the dimension of the generating function with the GM policy is p + r,
but in Section 3.1 we will show for the numerical inversion that the dimension can always be
reduced to p + 1 or p.

2.6 Mixed Sharing Policies

We now consider a multi-resource loss model with r types of requests, where different
requests use different sharing policies. For a given class, we assume that the same sharing policy
is used on all requested resources. Thus there are integers r 1 and r 2 with 1 ≤ r 1 ≤ r 2 ≤ r such
that classes 1 , . . . , r 1 use the CS policy, classes r 1 + 1 , r 1 + 2 , . . . , r 2 use the UL policy and
classes r 2 + 1 , r 2 + 2 , . . . , r use the GM policy.

Just as in Section 2.5, we place restrictions on the requirements per request a i j for requests
using the GM policy. In particular, a i j is either b j or 0 for all i. Similarly, we require that the
capacity guarantee M j for class j is the same on all resources used by class j. We continue to use
M j to refer to both the upper limits for requests with the UL policy and guaranteed minimum
number of resource units for the GM policy.

To identify all request types appropriately, let n≡(n 1 , ... ,n r 1
,n r 1 + 1 , ... ,n r 2

,n r 2 + 1 , ... ,n r ),
M≡(M r 1 + 1 , ... ,M r 2

,M r 2 + 1 , ... ,M r ) and y≡(y r 1 + 1 , ... ,y r 2
,y r 2 + 1 , ... ,y r ). We use S MP (K ,M) to

denote all feasible system states under these mixed policies, which is

S MP (K ,M) = { n∈Z+
r : n j ≤M j for j = r 1 + 1 ,r 1 + 2 , ... ,r 2

and
j = 1
Σ
r 2

a i j n j +
j = r 2 + 1

Σ
r

max (a i j n j ,δ i j M j ) ≤ K i for i = 1 , ... ,p } .

The conditions for being feasible states simply reflect that the upper limits have to be met for the
UL policy, the guaranteed minima are satisfied for the GM policy, and that enough capacity is
available in each resource for requests using all three sharing policies. By the definition of the
generating function,
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G(z,y) =
M r 1 + 1 = 0

Σ
∞

M r 1 + 2 = 0
Σ
∞

. . .
M r = 0
Σ
∞

K 1 = 0
Σ
∞

K 2 = 0
Σ
∞

. . .
K p = 0
Σ
∞

n∈SMP (K,M)
Σ

j = 1
Π

r

n j !

ρj
n j

_ ___ z1
K 1 z2

K 2 . . . zp
K p yr 1 + 1

M r 1 + 1 yr 1 + 2
M r 1 + 2 . . . yr

M r .

Once again, after changing the order of summation, we obtain

G(z,y) =


 i = 1
Π

p

1 − z i

1_ ____




exp


j = 1
Σ
r 1

ρ j
i = 1
Π

p
zi

a i j




exp


j = r 1 + 1

Σ
r 2

ρ j y j
i = 1
Π

p
zi

a i j


 j = r 1 + 1

Π
r 2 


 1 − y j

1_ _____




j = r 2 + 1
Π

r









1 − y j

exp (ρ j
i = 1
Π

p
zi

a i j ) − y j exp (ρ j yj
b j

i = 1
Π

p
zi

a i j )
_ _______________________________ +

1 − y j
i = 1
Π

p
zi

δ i j

y j
i = 1
Π

p
zi

δ i j exp (ρ j yj
b j

i = 1
Π

p
zi

δ i j b j )
_ ________________________









.(2.21)

Clearly, the generating functions in (2.12), (2.17) and (2.20) are special cases of (2.21), in
which only one of the sharing policies is used for all request types throughout the model.
Dimension reduction applies to the mixed policies just as it does to the UL and GM policies; see
Section 3.1.

3. The Numerical Inversion Algorithm

In this section we briefly review the numerical inversion algorithm; for background and more
details see Abate and Whitt (1992a,b), Choudhury, Lucantoni and Whitt (1994) and Choudhury,
Leung and Whitt (1993). In Subsection 3.1 we discuss dimension reduction by conditional
decomposition, and in Subsection 3.2 we review the basic algorithm. We develop our scaling
algorithm for the loss models in Section 4 and discuss other algorithmic issues in Section 5.
Throughout the next three sections we use the notation in (2.4) and (2.12); thus our goal is to
calculate g(K) given G(z) where K and z are p-dimensional.

3.1 Dimension Reduction

Our approach to inverting p-dimensional generating functions is to recursively perform p
one-dimensional inversions. In general, the computational complexity is exponential in the
dimension p, but a dramatic reduction in computation often occurs due to special structure if we
perform the one-dimensional inversions in a good order.

We look for conditional decomposition. We select d variables which we are committed to
invert. We then look at the generating function with these d variables fixed, and we write the
function of the remaining p − d variables as a product of factors, where no two factors have any
variables in common. Since factors without any common variables can be treated separately, the
maximum dimension of the additional inversion required beyond the designated d variables is
equal to the maximum number of the p − d remaining variables appearing in one of the factors,
say m. The overall inversion can then be regarded as being of dimension d + m. The idea, then,
is to select an appropriate d variables, so that the resulting dimension d + m is as small as
possible. A systematic procedure is presented in Choudhury, Leung and Whitt (1993).
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We note that recursive algorithms exploiting forms of decomposition have been developed
previously. The first evidently was the tree convolution algorithm of Lam and Lien (1983); it
applies to closed queueing networks. A recursive algorithm for loss networks exploiting
decomposition has been developed by Conway and Pinsky (1992). Our algorithm is very
different from these recursive algorithms.

From (2.12), note that indeed G(z) can be written as a product of factors. In the denominator
a single variable z i appears in each factor. The exponential term can be written as a product of
factors with one factor for each class. The variable z i appears in the exponential factor for class j
if and only if class j requires resource i, i.e., if a i j > 0.

The generating function for the UL policy in (2.17) appears to require a (p + r)-dimensional
inversion, but exploiting special structure, the problem always can be reduced to a (p + 1 )-
dimensional or even an p-dimensional inversion. If we at first keep all the z i variables fixed, then
the inversions for the different y j variables clearly can be done separately. This reduces the
dimension to p + 1. Furthermore, it is possible to invert with respect to each y j variable
explicitly to get

G(z,M) =

i = 1
Π

p
( 1 − z i )

1_ _________
j = 1
Π

r

l = 0
Σ
M j

l!

(ρ j
i = 1
Π

p
zi

a i j ) l

_ __________ , (3.1)

which clearly requires a p-dimensional inversion. If M j is very large, we recommend using the
(p + 1 )-dimensional inversion to take advantage of truncation; otherwise use (3.1).

Similarly, from (2.20) the generating function for the GM policy appears to be (p + r)-
dimensional, but it too always can be reduced to (p + 1 )-dimensional or p-dimensional. As for
the UL policy, the inversion with respect to y j may be done explicitly for the GM policy as well,
yielding

G(z,M) =

i = 1
Π

p
( 1 − z i )

1_ _________
j = 1
Π

r





exp (ρ j

i = 1
Π

p
zi

a i j ) −
l = 0
Σ



 b j

M j − 1_ ______




l!

(ρ j
i = 1
Π

p
zi

a i j ) l

_ __________

+ (
i = 1
Π

p
zi

δ i j ) M j

l = 0
Σ



 b j

M j − 1_ ______




l!

ρj
l

_ __








. (3.2)

A similar reduction in dimension from p + r to p + 1 or p is possible for the mixed sharing
policy in Section 2.6 as well.

3.2 The Basic Algorithm

Given a p-dimensional generating function G(z), we first do the dimension reduction analysis
to determine the order of the variables to be inverted. Given that the order has been specified, we
perform (up to) p one-dimensional inversions recursively.
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To represent the recursive inversion, we define partial generating functions by

g ( j) (z j ,K j + 1 ) =
K 1 = 0
Σ
∞

. . .
K j = 0
Σ
∞

g(K)
i = 1
Π

j
z i

K i for 0≤ j≤p , (3.3)

where z j = (z 1 ,z 2 , . . . , z j ) and K j = (K j ,K j + 1 , . . . , K p ) for 1≤ j≤p. Let z 0 and K p + 1 be
null vectors. Clearly, K = K 1 ,z = z p , g (p) (z p , K p + 1 ) = G(z) and g ( 0 ) (z 0 ,K 1 ) = g(K).

Let I j represent inversion with respect to z j . Then the step-by-step nested inversion approach
is

g ( j − 1 ) (z j − 1 ,K j ) = I j [g ( j) (z j , K j + 1 ) ] , 1 ≤ j ≤ p , (3.4)

starting with j = p and decreasing j by 1 each step. In the actual program implementation, we
attempt the inversion shown in (3.4) for j = 1. In order to compute the righthand side we need
another inversion with j = 2. This process goes on until at step p the function on the righthand
side becomes the p-dimensional generating function and is explicitly computable.

In each step we use the LATTICE-POISSON inversion algorithm in Abate and Whitt
(1992a,b) with modifications to improve precision and allow for complex inverse functions as in
Choudhury, Lucantoni and Whitt (1994a). We show below the inversion formula at the j th step.
For simplicity, we suppress those arguments which remain constant during this inversion, letting
g j (K j ) = g ( j − 1 ) (z j − 1 ,K j ) and G j (z j ) = g ( j) (z j ,K j + 1 ). With this notation, the inversion
formula (3.4) is

g j (K j ) =
2l j K j rj

K j

1_ ________
k = − l j K j

Σ
l j K j − 1

G j (r j e πik / l j K j ) e − πik / l j − e j , (3.5)

where i = √ − 1 , l j is a positive integer r j is a positive real number and e j represents the aliasing
error, which is given by

e j =
n = 1
Σ
∞

g j (K j + 2nl j K j ) rj
2nl j K j . (3.6)

Note that (3.5) differs from (2.3) of Choudhury, Leung and Whitt (1993), because that inversion
formula was chosen to exploit Euler summation (involving nearly alternating series), whereas
here we use simple truncation instead of Euler summation, as we explain in Section 5.1.

Note that, for j = 1, g 1 (K 1 ) = g(K) is real, so that G 1 (z
_

1 ) = G 1 (z 1 )
_ ______

. This enables us to
cut the computation in (3.5) by about one half; see Choudhury, Leung and Whitt (1993).

To control the aliasing error in (3.6), we choose r j = 10 − a j for a j = γ j /( 2l j K j ). Then (3.6)
becomes

e j =
n = 1
Σ
∞

g j (K j + 2nl j K j ) 10 − γ j n . (3.7)

As is clear from (3.5), a bigger γ j decreases the aliasing error. Also, as explained in
Choudhury, Lucantoni and Whitt (1994a), the parameter l j controls roundoff error, with bigger
values causing less roundoff error. An inner sum of the inversion requires more accuracy than an
outer sum since the inverted values in an inner sum are used as transform values in an outer sum.
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With a goal of about eight significant digit accuracy, the following sets of l j and γ j typically are
adequate: i) l 1 = 1 , γ 1 = 11, ii) l 2 = l 3 = 2, γ 2 = γ 3 = 13, iii) l 4 = l 5 = l 6 = 3,
γ 4 = γ 5 = γ 6 = 15, assuming that computations are done using double-precision arithmetic. It
is usually not a good idea to use the same l j for all j, because then more computation is done to
achieve the same accuracy.

When the inverse function is a probability, the aliasing error e j in (3.7) can easily be bounded.
In contrast, here the normalization constants may be arbitrarily large and therefore the aliasing
error e j may also be arbitrarily large. Thus, we scale the generating function in each step by
defining a scaled generating function as

G
_ _

j (z j ) = α 0 j G j (α j z j ) , (3.8)

where α 0 j and α j are positive real numbers. We invert this scaled generating function after
choosing α 0 j and α j so that the errors are suitably controlled. The inversion of G

_ _
j (z j ) in (3.8)

yields the scaled normalization constant

g
_

j (K j ) = α 0 j αj
K j g j (K j ) . (3.9)

4. Scaling

The numerical inversion algorithm is completed by choosing the scaling parameters in (3.8).
A general scaling strategy is described in Section 2.2 of Choudhury, Leung and Whitt (1993) and
a detailed scaling algorithm for a class of closed queueing networks is developed in Section 5
there. Here we briefly describe the general scaling strategy in Section 4.1. In Section 4.2 we
derive an appropriate scaling for a single resource with a single request class arriving according to
a Poisson process. Then we develop a heuristic extension to multiple classes in Section 4.3. We
use similar heuristics for multiple resources and non-CS sharing policies.

Since the scaling involves heuristics, we validate its effectiveness in two ways: First, we
compare against alternative algorithms whenever available. Second, we perform calculations
with different inversion parameters (corresponding to different contours in the inversion integral).
Since the computations are indeed different, the accuracy is indicated by the extent of the
agreement. Several examples appear in Sections 7-10. They show that the accuracy is always
very high (8 or more decimal places).

4.1 General Scaling Strategy

We choose the parameters α 0 j and α j in (3.8) to control the aliasing error with scaling

e
_

j =
n = 1
Σ
∞

g
_

j (K j + 2nl j K j ) 10 − γ j n . (4.1)

Since we are interested in ratios of normalization constants, we focus on relative errors
ej′ = e

_
j / g

_
j (K j ), which can be bounded by

ej′ ≤
n = 1
Σ
∞


g
_

j (K j )

g
_

j (K j + 2nl j K j )_ _______________10 − γ j n . (4.2)

Let
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C j =
n

max












g
_

j (K j )

g
_

j (K j + 2nl j K j )_ _______________











1/ n

= αj
2l j K j

n
max









 g j (K j )

g j (K j + 2nl j K j )_ _____________










1/ n

. (4.3)

Then

ej′ ≤
n = 1
Σ
∞

Cj
n 10 − γ j n ≤

1 − C j 10 − γ j

C j 10 − γ j

_ __________ ∼∼ C j 10 − γ j . (4.4)

Note that C j in (4.3) is independent of α 0 j . We use the second parameter α 0 j mainly to keep
g
_

j (K j ) close to 1, so as to avoid numerical underflow or overflow. (This numerical problem also
can be avoided by working with logarithms.)

Hence, our main goal is to choose α j so that C j << 10γ j . Of course, in general we do not
know g j (K j ) and thus we do not know C j . However, we aim to achieve C j << 10γ j by roughly
controlling the growth rate of g

_
j (K j ), or its fastest growing term, exploiting the structure of the

generating function.

4.2 Scaling for a Single Resource

In this section we do a careful analysis of the simple case of a single resource with a single
class using the CS policy. By (2.12) and (3.8), the scaled generating function is

G
_ _

(z) = α 0 exp (ρ αaz a )/( 1 − αz) , (4.5)

where we have dropped subscripts. Through explicit inversion,

g
_

(K) = α 0 αK

k = 0
Σ

K / a
ρk / k! = α 0 αKe ρ F ρ ( K / a) , (4.6)

where x is the greatest integer less than or equal to x and F ρ (x) ≡ P(X ≤ x) is the cumulative
distribution function (cdf) of a Poisson random variable X with mean ρ (which is unimodal with
mode at an integer next to ρ).

Since 0. 5 ≤ F ρ (x) ≤ 1 for x > ρ, if ρ < K / a, then α 0 = e − ρ and α = 1 yields
0. 5 ≤ g

_
(l) ≤ 1 for all l ≥ K, so that C ≤ 2 in (4.3).

Next we treat the case ρ > K / a. Here our strategy is to control the growth rate of the largest
term of g

_
(K) with respect to K (which happens to be the last term). Using Stirling’s formula for

the factorial, the largest term of g
_

(K) is

α 0 αKe ρ 

 K / a!

e − ρ ρ K / a
_________





∼∼
(K / a) K / ae − K / a √ 2πK / a

α 0 (αa ρ) K / a
_ ____________________ . (4.7)

We use the term involving α in the numerator to cancel the dominant term (K / a) K / a in the
denominator and α 0 to cancel the next dominant term exp ( − K / a) in the denominator. This
yields the following scale factors:
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α = (K / aρ)1/ a and α 0 = e − K / a = e − ρ αa

. (4.8)

Alternatively, we could use α alone to cancel out the two most dominant terms in the
denominator of (4.7) and use α 0 to cancel the remaining term in the denominator to get the
scaling

α = (K / aρe)1/ a and α 0 = √ 2πKa . (4.9)

We choose (4.8) instead of (4.9) to ensure that the scale parameters change smoothly with K and
coincide with the scale parameters in the other case at ρ = K / a. The scaling in the two cases
may be combined as follows:

α is the largest number in ( 0 , 1 ] such that ρ αaa ≤ K and α 0 = exp ( − ρ αa ) . (4.10)

4.3 Heuristic Extensions

With multiple classes and a single resource, we extend (4.10) heuristically by stipulating that

α is the largest number in ( 0 , 1 ] such that
j = 1
Σ
r

ρ j αa j a j ≤ K (4.11)

and letting

α 0 = exp ( −
j = 1
Σ
r

ρ j αa j ) . (4.12)

In order to get α satisfying (4.11), we first compute
j = 1
Σ
r

ρ j a j . If this quantity is less than or equal

to K, then we immediately get α = 1. Otherwise α is obtained as the unique solution in the

interval ( 0 , 1 ) of the non-linear equation
j = 1
Σ
r

ρ j αa j a j = K. Any search procedure, such as

bisection, is adequate since we do not need to find α with high precision.

It is to be noted that the heuristic extension satisfies two consistency checks. First, for r = 1,
(4.11) and (4.12) reduce to (4.10). Second, if a j is independent of j, then (4.11) and (4.12) again

coincide with (4.10) with ρ =
j = 1
Σ
r

ρ j and a = a j . This is a nice check since in this case the

independent Poisson streams may be combined to a single one for the blocking probability
calculation.

Turning to multiple resources, from (2.12), (3.8) and (3.9), the scaled generating function is

G
_ _

(z 1 , . . . , z p ) =

i = 1
Π
p

( 1 − α i z i )

i = 1
Π
p

α 0i exp


j = 1
Σ
r

ρ j
i = 1
Π
p

(α i z i ) a i j


_ __________________________ (4.13)

and the scaled normalization constant is
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g
_

(K) =
i = 1
Π
p

(α 0i αi
K i ) g(K) . (4.14)

Using similar heuristics as above, we obtain the scaling parameters α i , 1 ≤ i ≤ p, so that
they satisfy the inequalities 0 < α i ≤ 1 and

j = 1
Σ
r

ρ j
k = 1
Π
p

αk
a k j

k = 1
Π

i − 1
rk

a k j a i j ≤ K i , 1 ≤ i ≤ p , (4.15)

where r k is as defined in Section 3.2. Once the scaling variables α i have been obtained, we
obtain α 0i recursively starting with i = p by

k = i
Π
p

α 0k = exp



−

j = 1
Σ
r

ρ j
k = 1
Π
p

αk
a k j

k = 1
Π

i − 1
rk

a k j




. (4.16)

To find a maximal vector (α 1 , . . . , α p ) satisfying (4.15), we start with i = p and
successively decrease i. We use the fact that the left side of (4.15) is monotone in α i . When
i = l, the values of α i for i ≥ l + 1 are known. We approximate by acting as if α i = 1 for
i ≤ l − 1 and find α l satisfying the constraint for i = l in (4.15). When we are done we obtain a
maximal vector; i.e., if any α i is less than 1, then at least one constraint in (4.15) is necessarily
satisfied as an equality. Hence, we cannot increase the vector without violating a constraint.
However, in general there may be many maximal vectors.

For the UL policy the generating function in (2.17) has a form identical to the CS generating
function in (2.12) if we treat the y j variables like the z i variables. Thus the scaling for UL is
straightforward extension of CS scaling.

The generating function for the GM policy in (2.20) is more complicated. Hence, for scaling
only, we treat GM by acting as if it were UL. For each class j on each resource i, we use the
upper limit obtained by subtracting the guaranteed minima of all other classes from the capacity.
We then use the UL scaling with these upper limit parameters. This procedure is exact for two
classes, but a heuristic approximation for more than two classes.

5. Other Algorithm Issues

In this section we consider other algorithm issues besides scaling. In Section 5.1 we discuss
truncation; in Section 5.2 we discuss speeding up the algorithm when there are many classes by
exploiting shared computation; and in Section 5.3 we discuss computational complexity.

5.1 Truncation

As can be seen from (3.5), the inversion formula in each dimension is a sum of 2l i K i terms.
If K i is large, then it is natural to look for ways to accelerate convergence of the finite sum. For
the closed queueing network models in Choudhury, Leung and Whitt (1993), we found that we
could usually exploit Euler summation for this purpose. Here we find that Euler summation is
usually not effective, but that truncation is. It is possible that other acceleration techniques will
be even more effective, but we leave that to future work. (See Wimp (1981) for candidates.)

The inversion formula in each dimension is a weighted sum of generating function values
evaluated over equidistant points along the circumference of a circle. The weights are complex
numbers, but they have constant amplitude. As the capacities K i grow, the amplitude of the
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generating function typically becomes unevenly distributed along the circumference of the circle.
There are several local maximum points and the amplitude drops sharply away from these points.
(Since the weights have constant amplitude, we only need to consider the relative amplitude of
the generating function values.) If we can identify all the relative maximum points, and then
consider only those points around them that have non-negligible relative amplitude, we can obtain
a significant reduction in computation.

We first develop the truncation procedure for a single resource and then consider the
extension to multiple resources. We start with the scaled generating function in (4.5), based on
(2.12) and (3.8). As noted after (3.6), in the outer dimension we can cut the computation in half;
we thus consider the sum over the upper semicircle with radius r 1 = 10 − γ 1 /2l 1 K 1 .

At a summation point, z 1 = r 1 e iθ where θ assumes the values πk /(l 1 K 1 ) for
0 ≤ k ≤ l 1 K 1 . Let G

_ _ ∗
(θ) be G

_ _
(z 1 ) expressed as a function of θ, i.e.,

G
_ _ ∗

(θ) =
1 − α 1 r 1 e iθ

α 01
j = 1
Π

r
exp (ρ j α1

a j r1
a j e ia j θ )

_ ______________________ . (5.1)

Note that the amplitude of G
_ _ ∗

(θ) in (5.1) is

G
_ _ ∗

(θ) =
√ 1 + α1

2 r1
2 − 2α 1 r 1 cosθ

α 01
j = 1
Π

r
exp (ρ j (α 1 r 1 ) a j cos (a j θ) )

_ _____________________________ . (5.2)

For j = 1 , 2 , . . . , r, the numerator has relative maxima at θ = 2l j π / a j for

l j = 0 , 1 , . . . , 
a j /2

. The denominator has a single minimum at θ = 0. Hence, G
_ _ ∗

(θ) has

a global maximum at θ = 0 and potential local maxima at θ = 2l j π / a j for

l j = 1 , 2 , . . . , 
a j /2

 and j = 1 , 2 , . . . , r. Note that usually many of these
j = 1
Σ
r 

a j /2
 local

maxima will coincide.

In summary, we start by computing G
_ _ ∗

( 0 )and then find the distinct local maximum points

θ = 2l j π / a j for l j = 1 , . . . , 
a j /2

 and j = 1 , . . . , r, and sort them in increasing order. Let

these points be θm
i for i = 1 , 2 , . . . , L. In general θm

i may not coincide with a summation point
in the inversion algorithm. In that case, move θm

i to the nearest summation point used in the
inversion algorithm. Next find all i such that G

_ _ ∗
(θm

i )/ G
_ _ ∗

( 0 ) ≥ ε, where ε is some allowable
error. Then

G
_ _ ∗

(θ)/ G
_ _ ∗

( 0 ) = exp ( −
j = 1
Σ
r

ρ j (α 1 r 1 ) a j ( 1 − cos a j θ) )
√ 1 + α1

2 r1
2 − 2α 1 r 1 cos θ

1 − α 1 r 1_ _____________________ . (5.3)

For all these i sum over all summation points in the inversion algorithm above and below θm
i until

G
_ _ ∗

(θ)/ G
_ _ ∗

( 0 ) ≥ ε. Do not sum over any summation point more than once.

Our experience is that for large ρ j and K 1 typically only the points around θ = 0 and a few
other local maxima will be significant. We can see how much computational savings will result
by computing for all values of θ in ( 0 ,π) and finding the proportion of the range for which



- 21 -

G
_ _ ∗

(θ)/ G
_ _ ∗

( 0 ) > ε. To illustrate, we do an example.

Example 5.1. Let r = 2, a 1 = 1, a 2 = 2, ρ 1 = K 1 /2, ρ 2 = K 1 /4 and let K 1 be variable. In
Table 1 below we show the proportion of the range [ 0 ,π] for which G

_ _ ∗
(θ)/ G

_ _ ∗
( 0 ) ≥ ε for

various values of K 1 and ε. Clearly, the smaller the proportion, the bigger the savings. In fact,
the computational saving is the inverse of the proportion.

_ ______________________________________________________
K 1 ε = 10 − 6 ε = 10 − 8 ε = 10 − 10 ε = 10 − 12

_ ______________________________________________________
20 1.000 1.00 1.00 1.00
50 0.24 0.29 0.34 0.39

100 0.15 0.17 0.20 0.22
1000 0.040 0.047 0.053 0.059

10,000 0.012 0.014 0.016 0.018
100,000 0.0035 0.0043 0.0050 0.0055_ ______________________________________________________ 


































































Table 1. Proportion of θ values for which G
_ _ ∗

(θ)/ G
_ _ ∗

( 0 ) ≥ ε as a function of ε and K 1 for
the two-class example.

From Table 1, we see that the savings increases rapidly as K increases, and decreases slowly
as ε decreases. There is no savings at K 1 = 20, but a savings by a factor of 182 even with a low
error tolerance of ε = 10 − 12 at K 1 = 105 . From Table 1, it appears that the savings is
approximately proportional to √ K 1 . Equivalently, this means that with truncation the required
summation is approximately proportional to √ K 1 instead of K 1 .

To see that the required summation should be O(√ K 1 ) more generally, focus on the
exponential term in (5.3) and note that it is approximately of the form

exp (C 1 K 1 ( 1 − cos (k / C 2 K 1 ) ) ) ∼∼exp (C 1 k 2 /2C2
2 K 1 )

for θ = πk / l 1 K 1 and C 1 and C 2 constants (using 1 − cos x∼∼x 2 /2 for x small). Thus, the
number of θ values satisfying G

_ _ ∗
(θ)/ G ∗ ( 0 ) > ε should be O(√ K 1 ) as K 1 gets large.

Truncation can also be exploited with multiple resources, but the situation is more
complicated. Now the scaled generating function is given by

G
_ _

(z 1 , . . . , z p ) =

i = 1
Π

p
( 1 − α i z i )

i = 1
Π

p
α 0i exp



j = 1
Σ
r

ρ j
i = 1
Π

p
(α i z i ) a i j



___________________________ (5.4)

and the scaled normalization constant is

g
_

(K) =
i = 1
Π

p
(α 0i αi

K i ) g(K) . (5.5)

For inversion with respect to z p , the same computational saving as for a single resource may be
achieved, but there are two differences: First, the inversion formula involves summation over the
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entire circle instead of just a semicircle, so that we have to consider more maximum points.

Second, the constant ρ j αa j in (4.12) has to be replaced by the constant ρ j
l = 1
Π

p
αl

a l j

l = 1
Π
p − 1

zl
a l j . Since

the latter constant is a complex number, it will introduce a constant phase change to θ and hence
to all maximum points.

For inversion with respect to z i for i < p, we have to cope with the partially inverted
generating function g ( j − 1 ) (z j − 1 ,K j ) in (3.4), for which we do not know the functional form.
Hence, we do not know the maximum points and we must resort to heuristics. We have observed
that by heuristically assuming the location of the maximum points to be the same as if the
partially inverted generating function has the same functional form as in (5.4) usually works and
gives good computational savings. Obviously, care should be taken with these truncations,
because we no longer have full control of the errors. This is a good direction for further research.
Perhaps asymptotic analysis can be used to develop more effective truncation.

5.2 Efficient Computation For Many Classes

In order to compute the blocking probability for each of the r classes, the computational
complexity is O(r 2 ), because r + 1 normalization constant values have to be calculated and the
computation required for each is O(r). However, we will show that for large capacity vectors K
it is possible to compute the r + 1 normalization constants simultaneously with the bulk of the
computations shared, so that the required computation for all normalization constants is only
slightly more than for one. This reduces the overall computational complexity from O(r 2 ) to
O(r).

To explain the method, we consider a single resource and the CS policy. From (2.11), we
know that the blocking probability for class j is B j = 1 − g(K 1 − a j )/ g(K 1 ). Then, letting
a 0 ≡ 0, we must compute g(K 1 − a j ) for 0 ≤ j ≤ r. Combining the scaling and inversion
procedure in Sections 3.2 and 4, we see that the standard formula for this computation is

g(K 1 − a j ) =
m 1 j r1 j

K 1 − a j

α01 j
− 1 α1 j

− (K 1 − a j )

_ ____________

k = −
2

m 1 j____

Σ
2

m 1 j____ − 1

α 01 j G(α 1 j r 1 j e m 1 j

2πik_ ____

) e
−

m 1 j

2πik(K 1 − a j )_ ____________

, (5.6)

where α 01 j and α 1 j are the scaling parameters (which may be obtained from (4.11) and (4.12)),

m 1 j = 2l 1 (K 1 − a j ) and r 1 j = 10 − γ 1 / m 1 j . (5.7)

The associated aliasing errors are

e 1 j =
n = 1
Σ
∞

α 01 j α1 j
K 1 − a j g(K 1 − a j + nm 1 j ) 10 − nγ 1 . (5.8)

Note that the computation (5.6) for different values of j cannot be shared because the quantities
α 01 j , α 1 j and m 1 j are different for different values of j.

In order to share computation for different values of j, we propose that for
K 1 >> a j ( 0 ≤ j ≤ r), the quantities α 01 j , α 1 j and m 1 j be replaced by their values at j = 0 for
all j. This should not cause any appreciable difference in the error expression (5.8) since for
K 1 >> a j the quantities α 01 j , α 1 j and m 1 j are pretty close to their values at j = 0 anyway.
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Dropping the subscript j for α 01 j , α 1 j and m 1 j , we can rewrite (5.6) as

g(K 1 − a j ) =
m 1 α 01 (α 1 r 1 ) K 1 − a j

1_ _________________

k = −
2

m 1_ ___

Σ
2

m 1_ ___

T k Cj
k , (5.9)

where

C j = e m 1

2πia j_ _____

and T k = α 01 G(α 1 r 1 e m 1

2πik_ ____

) e
−

m 1

2πikK 1_ _______

. (5.10)

Note that the bulk of the computation in (5.9) is computing T k which can be shared. The
quantities Cj

k may be computed quickly, since C j needs to be computed only once for each j. It is
also clear that by working with partial sums for all j simultaneously the overall computation may
be done with a storage requirement O(r). Moreover, if truncation applies (see Section 5.1), then
it applies uniformly for all j since Cj

k = 1. For multiple resources and other sharing policies,
the same approach works.

5.3 Computational Complexity

We now roughly analyze the computational complexity of the inversion algorithm. For
simplicity, assume that the capacity of each resource is K. Let C P represent the computational
complexity for sharing policy P, where P may be CS, UL or GM. The main computational
burden is carrying out the p-fold nested inversion in (3.5). Other work, such as finding the scale
parameters is insignificant compared to that. A straightforward application of our algorithm in
the CS case to compute one normalization constant would require O(K p ) evaluations of the
generating function, each of which would involve O(r) work. In order to compute the blocking
probability for each class, we need to compute r + 1 normalization constants, but in Section 5.2
we have shown that all this work can be done in time O( 1 ) by sharing the bulk of the
computation (requiring storage only of O(r)). Without further enhancements, this yields
C CS = O(rK p ).

However, in Section 5.1 we have shown that we can use truncation to reduce K to K
_ _

<< K
and, with special structure (see Section 3.1), we can reduce p to p

_
<< p. So, finally, we get

C CS = O(rK
_ _

p
_

) , (5.11)

where

K
_ _

≤ K and K
_ _

<< K for large K

p
_

≤ p and p
_

<< p with special structure . (5.12)

By contrast, the computational complexity of the algorithms in Dziong and Roberts (1987) (in
the Poisson case) and Pinsky and Conway (1992) are

C CS = O(rK p ) . (5.13)

So our algorithm would be faster if we can exploit special structure or if K is large, where we can
exploit truncation. Conway and Pinsky (1992) also reduces p by using special structure (although
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differently from ours) but they do not seem to reduce K.

For the upper limit and guaranteed minimum sharing policies (exploiting conditional
decomposition as described in Section 3.1), we get

C UL = C GM = O(rK
_ _

p
_

+ 1 ) (5.14)

for K
_ _

and p
_

in (5.12). For these policies there does not appear to be a general recursive algorithm
for multiple resources. For a single resource, Chuah (1993) has developed a recursion for the UL
policy with complexity O(r 2 K 2 ); this is slower than ours for large K.

The storage requirement for our inversion algorithm is O(r) for all cases. This is an attractive
feature of our algorithm since it is much smaller than the storage requirement of the recursive
algorithms.

6. An Alternative Direct Algorithm

In order to validate our inversion algorithm on small models, we also constructed a direct
algorithm. We directly calculate the normalization constant g(K) via the r-fold nested sum

g(K) =
n 1 = 0
Σ
n 1u

n 1 !

ρ1
n 1

_ ___
n 2 = 0
Σ
n 2u

n 2 !

ρ2
n 2

_ ___ . . .
n r = 0
Σ
n ru

n r !

ρr
n r

_ ___ , (6.1)

implemented as an r-level nested do loop. The upper limits of summation n j u depend on the
sharing policy and also on n k for 1 ≤ k ≤ j − 1. (This is why the sums cannot be separated, but
must be treated in a nested fashion.) In each case, when considering the j th sum, the values of n k
for 1 ≤ k ≤ j − 1 are already fixed. The maximum value n j can take occurs when n k = 0 for
k ≥ j + 1. Therefore we easily obtain the proper upper limits n j u . For CS,

n j u =
a i j ≠0
1≤i≤p
min










(K i −

k = 1
Σ
j − 1

n k a ik )/ a i j











. (6.2)

For UL, we apply (2.14) to obtain

n j u = min {M j ,

a i j ≠0
1≤i≤p
min










(K i −

k = 1
Σ
j − 1

n k a ik )/ a i j }










. (6.3)

For GM, we apply (2.18) to obtain

n j u =
a i j ≠0
1≤i≤p
min










(K i −

k = 1
Σ
j − 1

max {n k a ik ,δ ik M k } −
k = j + 1
Σ
r

δ ik M k )/ a i j











. (6.4)
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Let x j k = ρj
k / k! The quantities x j k can be calculated recursively by setting x j0 = 1 and

x j k = x j,k − 1 (ρ j / k) . (6.5)

To speed up the computation, all the x j k’s are precomputed, stored and used as needed for
0 ≤ k ≤ nj u

max, where nj u
max is the maximum possible value of n j u , which is obtained from

(6.2)–(6.4) by setting n k = 0 for 1 ≤ k ≤ j − 1. The total storage required for the CS policy is

j = 1
Σ
r






1≤i≤p
min






K i / a i j












and less for the other policies. Assuming for simplicity that K i = K for

all i and a i j = 1, and keeping in mind that g(K) has to be computed for (r + 1 ) sets of parameter
values, the overall complexity is O(rK r ).

For large capacity values there may be numerical underflow/overflow problems. Instead of
always starting the summation over n j at 0 as in (6.1), it may be more efficient to start it near ρ j
since x j k has a maximum near k = ρ j (and then use truncation when k is far from ρ j). (Special
care is needed, since in some cases n j u may be much smaller than ρ j .) We do not address these
issues in this paper.

Looking at the complexity and storage requirements of the direct algorithm, we see that it will
be effective only when r is small. However, with special model structure, many of the inner
summations in (6.1) become independent of each other, thereby allowing efficient computation
even when r is very large; i.e., once again we are able to apply conditional decomposition based
on special structure to reduce the effective dimension of the computation.

One such structure is the dual of the two-hop tree network: There are p resources and
r = p + 1 classes of requests. Class 1 requires one or more units from each resource, while class j
requires one or more units only from resource j − 1 for 2 ≤ j ≤ p + 1. Formula (6.2) simplifies
to

n j u = 
(K j − 1 − n 1 )/ a j − 1 , j


 , 2 ≤ j ≤ p + 1 . (6.6)

If we fix n 1 , then all the n j u’s are fixed and independent of each other, so that the sums in (6.1)
become independent of each other. Therefore, the overall problem requires only a two-level
nested summation, so that it can be solved even when r , p and K are all large.

Example 6.1. We now give an example illustrating how the direct algorithm can perform with
such special structure. (We give similar examples for the inversion algorithm in Section 10.) In
our example p = 10, r = 11, K i = 45 + 5i and a i1 = 1, 1 ≤ i ≤ p, a j − 1 , j = 1 for 2 ≤ j ≤ 6
and a j − 1 , j = 2 for 7 ≤ j ≤ 11, and the vector of offered loads is

ρ ρ = ( 25 , 30 , 35 , 40 , 45 , 50 , 27 , 30 , 33 , 36 , 39 ) .

We consider the CS and UL policies. For the UL policy, the upper limit vector is

M = ( 50 , 30 , 35 , 40 , 45 , 50 , 27 , 30 , 33 , 36 , 39 ) .

The blocking probabilities for classes 1 , 2 , 10 and 11 are given in Table 2.
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_ ____________________________
class CS UL_ ____________________________

1 0.4056451 0.2744358
2 0.0579203 0.1363239

10 0.1023460 0.1327021
11 0.1062107 0.1334783

_ ____________________________ 



































Table 2. Blocking probabilities computed by the direct algorithm, exploiting dimension
reduction.

The computational complexity for computing all blocking probabilities is

O( (r + 1 ) K 1
j = 2
Σ
r

K j), with the leading r + 1 due to needing r + 1 normalization constant values.

Hence, it is O(r 2 K 2 ). Computing all blocking probability for this example took only a fraction
of a second. We could solve examples substantially bigger as well (e.g. larger capacities), but
then it is necessary to avoid numerical underflow/overflow problems by working with logarithms
or scaling (which we do not do here).

7. Examples of a Single Resource with Complete Sharing

We now give examples illustrating the numerical inversion algorithm. All computations were
done on a SUN SPARC-2 workstation.

Our first numerical example is the classical resource-sharing model with a single resource and
the CS sharing policy. The generating function is given in (2.12) with p = 1. This example is
relatively elementary since the generating function is one-dimensional. As a basis for
comparison, we also implemented the recursive algorithms of Kaufman (1981) and Roberts
(1981) and the uniform asymptotic approximation (UAA) of Mitra and Morrison (1993).

The specific model we consider has 2 classes of requests with requirements a 1 , 1 = 1 and
a 1 , 2 = 12. The capacity K ranges from 20 (relatively small) to 5,000,000 (very large). We
consider three regions: heavily loaded, critically loaded and lightly loaded. These regions occur

as the total offered load
j = 1
Σ
r

ρ j a 1 j is significantly greater than, approximately equal to and

significantly less than the capacity K, respectively. In the heavily loaded region the offered loads

are ρ 1 = 0. 15K and ρ 2 = 0. 10K for classes 1 and 2, so that
j = 1
Σ
2

ρ j a 1 j = 1. 35K in all heavily

loaded cases. For the critically loaded region, we let
j = 1
Σ
2

ρ j a 1 j ∼∼ K, but we avoid exact equality

to avoid degeneracy in the UAA algorithm. (Mitra and Morrison (1993) propose an alternate
formula for this degenerate case, but we do not use it.) For the lightly loaded region, we set
Σ ρ j a 1 j ∼∼ K − 4. 313√ K . (It is known that the total offered load should grow as K − c√ K for
some constant c for the blocking to be non-negligible.) The specific parameter values appear in
Table 3.

We give numerical results for the blocking probabilities of each class in Table 3. These are
based on formula (2.11). In the cases with K ≤ 500, the inversion and recursion algorithms
agreed well beyond the accuracy given (eight significant digits). For K ≥ 5000, the recursion
either had numerical underflows or overflows, or took too long to run. For K ≥ 5000, the
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inversion results agreed closely with UAA, and, as expected, the agreement improves as K
increases. However, in the heavily loaded region, for K ≥ 500 , 000 even the UAA had numerical
overflow problems. Also, in some cases of the critical region, the UAA was too close to its
degenerate region. In each case we also checked the accuracy of the inversion algorithm directly
by running it twice, with l 1 = 1 and l 1 = 2.

In all cases considered here the inversion algorithm took less than a second. For the larger
values of K, a critical factor in achieving this speed is truncation. It is significant that the
computational complexity in calculating all the blocking probabilities grows only linearly with
the number of classes. So the inversion algorithm can solve models with very large number of
classes (say, 100) and very large K (say, 5,000,000) in only tens of seconds.

For the example in Table 3 the exact blocking probability for class 2 (which requires 12 units
per request) is monotonically decreasing in K, but this is not so for class 1. Note that UAA does
not capture this non-monotonicity for class 1.

For the example in Table 3 it would suffice to use only the recursions and UAA, using UAA
after the recursions take too long. However, it is not difficult to construct examples that are
sufficiently large so that the recursion breaks down and yet UAA is not sufficiently accurate
(because size alone does not imply that the model is in the proper region for the UAA
asymptotics). One way is to significantly increase a 1 , 2 , e.g., from 12 to 100 or more. An
example with finite sources showing the limitations of UAA is given in Choudhury, Leung and
Whitt (1994a).
_ ______________________________________________________________________________________________________________

parameters blocking probability of class 1 blocking probability of class 2
_ ______________________________________________________________________________________________________________

K 


ρ 1 


ρ 2 





inversion 


recursion 


UAA 





inversion 


recursion 


UAA_ ______________________________________________________________________________________________________________
heavily loaded region_ ______________________________________________________________________________________________________________

20 3.0 2.0 5.4147360e-3 same 6.38e-2 0.6670903 same 0.6580
50 7.5 5.0 1.6157470e-2 same 4.92e-2 0.5259738 same 0.5080

500 75 50 3.2084709e-2 same 3.2151e-2 0.3317448 same 0.3317368
5,000 750 500 2.8456587e-2 — 2.84627e-2 0.2936775 — 0.2936770

50,000 7,500 5,000 2.7984241e-2 — 2.7984851e-2 0.2887462 — 0.2887461
500,000 75,000 50,000 2.7935032e-2 — — 0.2882328 — —

5,000,000 









750,000 









500,000 









2.7930089e-2 









— 









— 









0.2881812 









— 









—_ ______________________________________________________________________________________________________________
critically loaded region_ ______________________________________________________________________________________________________________

50 7.5 3.5 9.9887360e-3 same 3.18e-2 0.39930413 same 0.383
500 75 35 1.0194371e-2 same 1.0217e-2 0.1232678 same 0.1232615

5000 750 350 2.8928545e-3 – 2.89351e-3 3.4908258e-2 – 3.490795e-2
50,000 7,500 3,530 9.404766e-4 — 9.40488e-4 1.130281e-2 — 1.130269e-2

500,000 75,000 35,400 3.262452e-4 — — 3.915783e-3 — —
5,000,000 









750,000 








354,100 








1.012373e-4 








— 








— 








1.214952e-3 








— 








—_ ______________________________________________________________________________________________________________
lightly loaded region_ ______________________________________________________________________________________________________________

50 7.5 1 9.4989161e-4 same 2.71e-3 6.2853438e-2 same 6.14e-2
500 155.2 20.7 1.6906537e-3 same 1.6949e-3 2.3605271e-2 same 2.36040e-2

5000 1805.8 240.8 6.1636276e-4 – 6.1652e-4 7.7329048e-3 – 7.73287e-3
50,000 18,860 2,515 2.046621e-4 — 2.046674e-4 2.489884e-3 — 2.4898832e-3

500,000 191,137 25,488 6.713379e-5 — 6.713395e-5 8.090529e-4 — 8.090528e-4
5,000,000 1,919,390 255,947 2.284043e-5 — 2.284040e-5 2.744436e-4 — 2.744440e-4_ ______________________________________________________________________________________________________________ 




















































































































































Table 3. Numerical results for a single resource with two classes and the CS policy.
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8. Examples with Different Sharing Policies

In this section we again consider a single resource, but now we consider the UL and GM
sharing policies as well as the CS policy.

The generating functions for the UL and GM policies are given in (2.17) and (2.20) with
p = 1, and the blocking probabilities are given in (2.15) and (2.19). Since p = 1, we can use
either one-dimensional or two-dimensional inversion for the UL and GM policies, as explained in
Section 3.1. For all examples in this section we use the one-dimensional inversion, exploiting the
explicit inversions in (3.1) and (3.2).

We first consider a smaller example, for which we can apply the direct algorithm in Section 6
as well as the inversion algorithm. We let the capacity be K = 150 and consider 5 classes. The
5 classes require 1 , 2 , 3 , 4 and 5 resource units per request, respectively, and the corresponding
offered loads are 20 , 15 , 12 , 10 and 9. For UL, the class limits are 20 , 30 , 50 , 60 and 70. For GM,
the corresponding guaranteed minima are 5 , 18 , 25 , 36 and 40.

The blocking probability for each class and each sharing policy is shown in Table 4. The two
computational methods agreed to at least 12 digits in each case. This example thus serves to
validate the generating functions and both algorithms. For this smaller example, the inversion
algorithm runs in less than a second while the direct algorithm runs in minutes. Hence, the direct
algorithm is already beginning to reach its limits with this example.

_ _________________________________________________________________

sharing class_ ______________________________________________________
policy 1 2 3 4 5_ _________________________________________________________________
CS 0.0605131 0.1188490 0.1749724 0.2288574 0.2804872
UL 0.1760449 0.2145673 0.1621870 0.1957472 0.2391045
GM 0.1482263 0.2542774 0.2851976 0.2167977 0.2441586

_ _________________________________________________________________ 






















































Table 4. Blocking probabilities for the three sharing policies and K = 150.

Next we consider a larger example with capacity K = 600 and 10 classes, for which the
inversion algorithm runs in seconds, while the direct algorithm can no longer run in reasonable
time. Class j requires j units, 1 ≤ j ≤ 10. The vector of offered loads for the 10 classes is
( 30 , 25 , 20 , 18 , 16 , 14 , 13 , 12 , 11 , 10 ). The vector class limits with the UL policy is
( 30 , 50 , 60 , 80 , 90 , 100 , 110 , 120 , 130 , 140 ), while the associated vector of guaranteed minima for
the GM policy is ( 5 , 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 100 ).

The blocking probabilities for classes 1, 2 and 10 for each sharing policy are given in Table 5.
For the CS policy, the inversion algorithm was validated by applying the Kaufman (1981) and
Roberts (1981) recursion. For the UL and GM policies, the inversion was validated by
performing two separate inversions with the parameters l 1 = 1 and l 1 = 2. There was
agreement to at least 11 digits in each case.
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_ __________________________________________
sharing class_ _______________________________
policy 1 2 10_ __________________________________________

CS 0.0427417 0.0838918 0.3613882
UL 0.1455476 0.1706272 0.3199203
GM 0.0973615 0.1861317 0.1865667

_ __________________________________________ 








































Table 5. Blocking probabilities for the three sharing policies and K = 600.

9. The Kelly Example

We now consider the Kelly example in Figure 1 (in Section 1) with the 6 routes
{ 1 } , { 2 } , { 1 , 2 }, { 3 , 5 } , { 4 , 5 } , { 1 , 3 , 5 }. The standard example has the CS policy, Poisson
arrivals and single unit requirements. We keep the CS policy and Poisson arrivals, but consider
the multi-rate generalization. Furthermore, we allow multiple classes with different multi-rate
requirements.

The r traffic classes are divided among the six routes as follows: Define nonnegative integers
r i for i = 0 , 1 , . . . , 6 such that 1 ≡ r 0 < r 1 < r 2 . . . < r 6 ≡ r. Class j goes over route l if
r l − 1 + 1 ≤ j ≤ r l for 1 ≤ l ≤ 6. For this generalized Kelly example, the generating function is

G(z) =

i = 1
Π

6
( 1 − z i )

1_ _________ exp


j = 1
Σ
r 1

ρ j z1
a i j +

j = r 1 + 1
Σ
r 2

ρ j z2
a 2 j +

j = r 2 + 1
Σ
r 3

ρ j z1
a 1 j z2

a 2 j +
j = r 3 + 1

Σ
r 4

ρ j z3
a 3 j z5

a 5 j

+
j = r 4 + 1

Σ
r 5

ρ j z4
a 4 j z5

a 5 j +
j = r 5 + 1

Σ
r

ρ j z1
a 1 j z3

a 3 j z5
a 5 j







(9.1)

The possible dimension reduction for this example is somewhat less obvious, so that it is
helpful to use the systematic procedure in Section 3.1. That analysis shows that the dimension
can be reduced from 5 to 3 by designating z 1 and z 5 as variables to invert. For any given
(z 1 , z 5 ), the generating function G(z) can be written as the product of three factors, each
involving only one of the remaining variables; i.e., the optimal order of inversion is
z 1 , z 5 , z 2 , z 3 and z 4 . Thus, the inversion dimension is reduced from 5 to 3. Since the final
dimension is 3, this example requires more computation than the previous two examples. For the
optimal inversion order, we use the l j parameter vectors ( 1 , 2 , 3 , 3 , 3 ) and ( 1 , 3 , 3 , 3 , 3 ) in the
inversion.

The specific example we consider has 5 resources, as in Figure 1, with capacities K i = 15 for
all i. There are 12 classes, with two classes using each of the 6 routes. The specific offered loads
are given in Table 6. We let the requirements be either 1 or 2 for each request, with each request
having the same requirements on each resource (trunk). The specific requirements are also given
in Table 6.

The blocking probabilities for each class in these three cases are given in Table 6. The
computation of the blocking probabilities in Table 6 took about 20 seconds. For this specific
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example, we could allow some of the resource capacities to be much larger through the use of
truncation. However, the inversion algorithm will encounter difficulties for even larger networks
without special structure.

10. Examples of Networks with Special Structure

Many loss models have special structure allowing drastic dimension reduction. We show two
such structures in Figure 2 below, but clearly others are also possible. Figure 2 shows the
resources.

In structure A, commonly referred to as a tree network, class j requires a i j units from resource
i, where a i j is allowed to be non-zero only for at most two values of i, one of which has to be p.
If both the non-zero values of a i j are 1 then that corresponds to a single-rate tree network,
considered by Mitra (1987) and Kogan (1989). Tsang and Ross (1990) considered the multi-rate
case in which the two non-zero values of a i j are the same but may be bigger than 1. Ross and
Tsang (1990) allow the two possible non-zero values of a i j to be either the same or one of them
to be zero. We consider a further generalization by allowing the two values of a i j to be different,
without necessarily requiring one of them to be zero. Furthermore, all the earlier work was
restricted to the CS policy, whereas we allow the UL and GM sharing policies.

_ _______________________________________________________
class parameters blocking probabilities for each class_ _______________________________________________________

j ρ j route rqmts. Poisson arrivals_ _______________________________________________________
1 2 1 1 0.069930
2 1 1 2 0.155912
3 2 2 1 0.011306
4 1 2 2 0.030032
5 2 1,2 1 0.079276
6 1 1,2 2 0.176021
7 2 3,5 1 0.071961
8 1 3,5 2 0.159575
9 2 4,5 1 0.071961

10 1 4,5 2 0.15957
11 2 1,3,5 1 0.134236
12 1 1,3,5 2 0.280670_ _______________________________________________________ 


















































































































Table 6. Blocking probabilities in the Kelly example with the CS policy.



- 31 -

2q − 1 = pq − 1

q
q + 2

q + 1

1
1

B.A.

p − 1

p
22

Figure 2. Two Networks with Special Structure

In structure B, evidently not considered earlier, a i j is allowed to be non-zero for at most three
values of i, one of which has to be q and the other two have to be k and q + k, for 1 ≤ k ≤ q − 1.

In structure A, divide the traffic classes according to the resources they use by letting
0 ≡ r 0 < r 1 < r 2 < . . . < r p − 1 ≡ r. Then class j uses resources k and p if r k − 1 + 1 ≤ j ≤ r k .
Similarly, in structure B, let 0 ≡ r 0 < r 1 < r 2 . . . < r q − 1 ≡ r. Then traffic class j uses links k, q
and q + k if r k − 1 + 1 ≤ j ≤ r k . By (2.12), the generating functions for structures A and B
with the CS policy are, respectively,

G(z) =
1 − z p

1_ _____
k = 1
Π
p − 1

1 − z k

exp (
j = r k − 1 + 1

Σ
r k

ρ j zk
a k j zp

a p j )

_ ___________________ (10.1)

and

G(z) =
1 − z q

1_ _____
k = 1
Π
q − 1

( 1 − z k ) ( 1 − z q + k )

exp (
j = r k − 1 + 1

Σ
r k

ρ j zk
a k j zq

a q j zq + k
a q + k , j )

_ ________________________ . (10.2)

In (10.1), if we fix z p , then each term within the product becomes independent of others and
requires one-dimensional inversion. The overall inversion thereby is two-dimensional. In (10.2)
if we fix z q , then each term within the product is independent of the others and requires two-
dimensional inversion. The overall inversion thereby is three-dimensional. As mentioned in
Section 3.1, for the UL and GM sharing policies the inversion dimension would be either the
same or one more than for the CS policy.

In the rest of this section we provide numerical examples for the tree networks (structure A).
We start with the single-rate tree network example on p. 235 of Mitra (1987) using the CS policy.
Here a i j = 1 whenever it is non-zero, r k = k, r = 7 and p = 8. The capacity vector is
K = ( 30 , 30 , 20 , 20 , 15 , 15 , 15 , 134 ). Equation (10.1) becomes
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G(z) =
1 − z 8

1_ _____
k = 1
Π

7

1 − z k

exp (ρ k z k z 8 )_ ___________ . (10.3)

Here inversion with respect to z k for k = 1 , 2 ,... , 7 may be done explicitly to get

g(K 1 ,K 2 , . . . , K 7 ,z 8 ) =
1 − z 8

1_ _____
k = 1
Π

7

i = 0
Σ
K k

i!

(ρ k z 8 ) i
_ _______ . (10.4)

Starting from (10.4), we have a simple one-dimensional inversion with respect to z 8 , which is
readily done in a fraction of a second. The results are displayed in Table 7. We see that our
results are between the lower and upper bounds determined by Mitra (1987) in each case.
Interestingly, the results are very close to the mean of the two bounds, which Mitra suggested as
an estimate. Indeed, our results agree to within Mitra’s displayed accuracy of 10 − 4 in each case.

In Table 7 we also show a more challenging example where each capacity parameter K i and
each traffic load parameter p i are multiplied by 100; i.e.,

K = ( 3000 , 3000 , 2000 , 2000 , 1500 , 1500 , 1500 , 13400 )

and ρ j are as shown in Table 7. Using truncation we can solve even this larger example in a few
minutes. it is interesting to note that the normalization constants involved in this case are of the
order 106483 and much larger than the upper limit 10307 allowed by the computer used. However,
numerical overflow is avoided through scaling and by storing only the logarithms of the

normalization constants. Special care also was needed in computing the quantity
i = 0
Σ
K k

i!

(ρ k z 8 ) i
_ _______

appearing in (10.4) which causes numerical overflow in the large example for many values of k
and z 8 . Let,

s =
i = 0
Σ
K k

a i where a i =
i!

(ρ k z 8 ) i
_ _______ . (10.5)

Let j be such that a j ≥ a ifor i = 0 , 1 , . . . , K k . It can be seen that j ∼∼ min (K k ,ρ kz 8).
Now we can write

s = a j



i = 0
Σ
j

a j

a j − i_ ____ +
i = 1
Σ

K k − j

a j

a j + i_ ____




and

lnS = ln a j + ln



1 +

i = 1
Σ
j

a j

a j − i_ ____ +
i = 1
Σ

K k − j

a j

a j + i_ ____




. (10.6)

Computation using equation (10.6) avoids numerical overflow problems.

We now consider more general tree models with non-CS policies and multiple rates, for
which existing methods do not apply. We allow more than one class to use a non-common
resource and the requirements of each class for the two resources not to be identical.
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Our specific example has 6 resources, with the sixth resource being the common resource.
The capacity vector is K = ( 15 , 25 , 25 , 30 , 20 , 90 ). Our example has 15 classes, with class j
using resources j /3 and 6 (possibly at a 0 level), where x is the least integer greater than or
equal to x (i.e., classes 1,2 and 3 use resources 1 and 6, classes 4,5 and 6 use resources 2 and 6,
etc.).

_ _________________________________________________________________
class Mitra example larger example_ _________________________________________________________________

j ρ j lower bound inversion upper bound ρ j Inversion_ _________________________________________________________________
1 35 0.2201 0.2207492 0.2214 3500 0.14490125
2 30 0.1333 0.1340674 0.1347 3000 0.0297425
3 25 0.2801 0.2807294 0.2813 2500 0.2018138
4 17 0.0880 0.0888748 0.0896 1700 0.0287005
5 20 0.3302 0.3307832 0.3313 2000 0.2516581
6 15 0.1805 0.1822008 0.1828 1500 0.0339648
7 9 0.0257 0.0266322 0.0274 900 0.0287005_ _________________________________________________________________ 








































































































Table 7. Blocking probabilities in the single-rate tree network with the CS policy.

The specific offered loads and requirements for each class are given in Table 8. We consider
both the CS and UL sharing policies. The limits for the UL policy are also given in Table 8.
(These are not used with the CS policy.) The blocking probability for each class with each
sharing policy is given in Table 8.

_ ____________________________________________________________
model parameters blocking probabilities_ ____________________________________________________________

j ρ j a j /3, j L j /3, j a 6 , j L 6 , j CS UL_ ____________________________________________________________
1 10 1 10 0 0 0.328927 0.333529
2 10 0 0 1 15 0.004393 0.036827
3 10 1 10 1 15 0.331579 0.333777
4 5 1 10 1 10 0.109389 0.104160
5 5 2 15 2 15 0.219572 0.225724
6 5 2 15 1 10 0.216223 0.225384
7 4 1 8 1 8 0.112727 0.114086
8 4 3 16 3 16 0.326724 0.330792
9 4 3 16 1 10 0.320927 0.330258

10 3 1 7 1 7 0.061176 0.025887
11 3 4 15 4 15 0.236906 0.347366
12 3 4 15 1 8 0.226213 0.347187
13 2 1 6 1 6 0.075576 0.046674
14 2 5 13 5 13 0.433225 0.465534
15 2 5 13 1 5 0.422868 0.465049_ ____________________________________________________________ 



































































































































































































Table 8. Blocking probabilities in a multi-rate tree network with the CS and UL sharing
policies.
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We obtain the generating function for CS from (10.1). It is

G(z) = exp


j = 1
Σ
15

ρ j z j /3
a j /3 , j z6

a 6 j



/

i = 1
Π

6
( 1 − z i ) . (10.7)

We employ conditional decomposition to reduce the dimension from 6 to 2; i.e., for any fixed
value of z 6 , the generating function can be represented as a product of 5 factors with z i appearing
only in the i th factor. We obtain the generating function for the UL policy from (2.17):

G(z,y) =

i = 1
Π

6
( 1 − z i )

j = 1
Π
15

( 1 − y j )

exp (
j = 1
Σ
15

ρ j y j z j /3
a j /3 , j z6

a 6 , j )
_ ___________________ . (10.8)

Conditional decomposition reduces the dimension from 21 to 3. As with the CS policy, we first
invert z 6 , then we invert the other z i variable in each factor. For any fixed values of the two z
variables, the generating function can be represented as a product of 15 factors with y j appearing
only in the j th factor.

The computation of all blocking probabilities took several seconds. We can increase the
numbers of classes, resources and capacities each by factors of ten and still carry out the
computations in several minutes using truncation.

11. Conclusion

In this paper we have developed a new algorithm for a family of models that is the natural
generalization of both loss networks and infinite-server variants of the resource-sharing models.
We considered generalizations of loss networks allowing the UL and GM sharing policies as well
as the customary CS sharing policy. Equivalently, we considered the generalization of the
(infinite-server variant of the) resource-sharing model with multiple resources. In Choudhury,
Leung and Whitt (1994a,b) we also treat state-dependent arrivals and batch arrivals.

Of course, the idea of such general models is not new; e.g., Jordan and Varaiya (1991) discuss
multi-resource resource-sharing models, and Chuah (1993) develops a recursive algorithm for the
UL policy with Poisson sources and one or two resources. The principal contribution here is a
new effective algorithm for solving these models.

Our algorithm has been shown to be effective on several numerical examples. To validate our
algorithm on small models, we developed the direct algorithm in Section 6. In addition, we
implemented the recursive algorithm of Kaufman (1981) and Roberts (1981) the uniform
asymptotic approximation of Mitra and Morrison (1993). In all cases that these algorithms
applied, the inversion approach agreed to an accuracy of several digits. Our algorithm also has a
built-in accuracy check which can independently confirm accuracy.

A great appeal of the numerical inversion algorithm is that it is very general. It not only
applies to different kinds of product-form models through numerical inversion of the generating
functions of the normalization constants, but it also applies to many other models, where the
quantity of interest is represented via a transform. See Choudhury, Lucantoni and Whitt (1994b)
for a review of recent applications of numerical inversion to queueing models.
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