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ABSTRACT

Motivated by extreme-value engineering in service systems, we develop and evaluate simple
approximations for the distributions of maximum values of queueing processes over large time
intervals. We provide approximations for several different processes, such as the waiting times of
successive customers, the remaining workload at an arbitrary time, and the queue length at an
arbitrary time, in a variety of models. All our approximations are based on extreme-value limit
theorems. Our first approach is to approximate the queueing process by one-dimensional
reflected Brownian motion (RBM). We then apply the extreme-value limit for RBM, which we
derive here. Our second approach starts from exponential asymptotics for the tail of the steady-
state distribution. We obtain an approximation by relating the given process to an associated
sequence of i.i.d. random variables with the same asymptotic exponential tail. We use estimates
of the asymptotic variance of the queueing process to determine an approximate number of
variables in this associated i.i.d. sequence. Our third approach is to simplify GI/G/1 extreme-
value limiting formulas in Iglehart (1972) by approximating the distribution of an idle period by
the stationary-excess distribution of an interarrival time. We use simulation to evaluate the
quality of these approximations for the maximum workload. From the simulations, we obtain a
rough estimate of the time when the extreme value limit theorems begin to yield good
approximations.
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1. Introduction and Summary

This paper is motivated by extreme-value engineering in the performance analysis of service

systems. Instead of considering the delay or queue-length distribution in a service system at a

particular time, we can consider the maximum delay or queue length over a time interval. In

order to use extreme-value engineering effectively in the performance analysis of service systems,

we need to be able to describe the distribution of maximum values over relevant time intervals in

queueing models of interest. This requirement is a major difficulty, because the exact

distributions are unavailable except in very special cases.

We were specifically motivated by a desire to compare two open-loop flow control

mechanism that might be used in emerging high-speed communication networks: the sliding

window and the leaky bucket. The leaky bucket can be represented as a G/D/1 queue; hence our

interest in the maximum queueing processes. In Berger and Whitt [13], we apply the results here

together with results about the sliding window in Berger and Whitt [12] to deduce that the sliding

window admits larger bursts than the leaky bucket for given peak rate and given sustainable rate,

and to quantify the difference. Here we only discuss queues.

To describe extreme-value distributions it is natural to apply extreme-value limit theorems as

in Leadbetter, Lindgren and Rootze ́ n [29]. Even though the extremes represent unusual behavior

for the system, the extreme-value limit theorems show that a certain statistical regularity emerges

from considering extremes of stochastic processes; e.g., see Castillo [16] as well as [29].

However, a queueing model is not an elementary setting for extreme-value limits, because the

successive variables in the queueing processes are quite strongly dependent. Nevertheless,

extreme-value limit theorems have been proved for queueing processes, e.g., see Cohen [20],

Iglehart [25], Pakes [32], Serfozo [36,37], McCormick and Park [30], Asmussen and Perry [9],

Sadowsky and Szpankowski [34,35], Sadowsky [33] and references therein. However, even for
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relatively simple models such as M/G/1, the exact formulas tend to be somewhat complicated.

Moreover, the standard extreme-value limits typically do not even exist for the queue-length

processes. (There are bounds and different kinds of limits for the queue length process, however;

see Serfozo [36].) Finally, even when an extreme value limit theorem applies, it remains to

evaluate the quality of the approximation. Most of the previous work on extreme value limits in

queues has not included an examination of the quality of the resulting approximations.

(Serfozo [36] is an exception, but he considers a different maximum, in particular, over n busy

cycles.)

Our first purpose in this paper is to investigate the quality of the approximations for

maximum values in queues provided by the limit theorems when they apply. We find that the

extreme-value limits provide excellent approximations for long time intervals (corresponding to

thousands or millions of arrivals, which is appropriate for our intended application to

communication networks). As part of this investigation, we seek to determine when the time

interval is sufficiently long for the limit to become a good approximation. We identify a

candidate approximate point where the extreme-value limits begin to kick in, as can be seen from

Figures 11-14 (discussed in Section 7). Relative to the remarkably small number of i.i.d.

summands needed to have the normal approximation provided by the central limit theorem

perform reasonably well, the length of the interval is quite long however.

Our second purpose is to develop and evaluate relatively simple approximations for the

parameters in the limiting extreme-value formulas. Our goal is to obtain simple approximate

formulas that are sufficiently accurate for engineering applications. The formulas should capture

the essential features of the queueing process and yet not be too complicated. We seek

approximations that perform as well for maximum values as previous approximations for steady-

state queueing distributions, e.g., see Whitt [40]. Overall, we regard our quest as a success. We
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hope that the simple approximations will help facilitate extreme-value engineering.

To be more concrete, let W n be the waiting time of the n th customer and let Q(t) be the queue

length at time t in a stable queueing model starting with a proper initial distribution, such as

empty or in steady state. We are interested in approximate distributions for the associated

maximum random variables

Wn
∗ = max {W k : 0 ≤ k ≤ n} , n ≥ 0 , (1.1)

and

Q ∗ (t) = max {Q(s) : 0 ≤ s ≤ t} , t ≥ 0 , (1.2)

for suitably large values of n and t, respectively.

For the following discussion, let Q(t) be a generic queueing process with associated

maximum process Q ∗ (t). The extreme-value limit theorems suggest that the approximations

should be of the form

Q ∗ (t) ∼∼ γ( log t + log β + Z) , (1.3)

where t is understood to be relatively large, log is the natural logarithm (base e), Z has the

Gumbel cdf (classical type-I extreme-value cdf)

P(Z ≤ x) ≡ Λ(x) = exp ( − e − x ) , − ∞ < x < ∞ , (1.4)

and γ and β are positive constants. For a discrete-time process such as W n , we would replace t in

(1.3) by n. The specific parameters β and γ in general should depend on the process.

Properties of the Gumbel cdf Λ in (1.4) are given in Leadbetter et al. [29], Castillo [16] and

Chapter 21 of Johnson and Kotz [26]; e.g., EZ = 0. 5772 (Euler’s constant),

VarZ = π2 /6 ∼∼ 1. 645, median (Z) ∼∼ 0. 3667 and mode (Z) ∼∼ 0. 9624. As a consequence of

(1.3), we obtain the following approximations for the mean and standard deviation:
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EQ ∗ (t) ∼∼ γ log t + γ( log β + 0. 577 ) (1.5)

and

SD(Q ∗ (t) ) ∼∼ 1. 28 γ , (1.6)

again for t suitably large. Particularly significant is the form of (1.5) and (1.6): The mean should

be linear in log t, while the standard deviation should be independent of t.

Note that log β + 0. 577 can be negative, so that the approximation for EQ ∗ (t) in (1.5) can

easily be negative for t ≤ 1, underscoring the fact that the approximation is only intended for

suitably large t. Note that γ is typically the dominant parameter. A candidate approximation for γ

is the steady-state mean EQ(∞). Roughly speaking, (1.5) and (1.6) say that Q ∗ (t) has

approximately a mean of ( log t) EQ(∞) and a standard deviation of EQ(∞).

We aim to investigate the quality of (1.3), (1.5) and (1.6) and develop approximations for the

constants γ, β and ξ ≡ ( log β + 0. 577 ) γ. (We use ξ in addition to β, because (1.5) can then be

rewritten as ξ + γ log t; i.e., γ is the slope and ξ is the y intercept for the linear relation in log t.)

We now provide a quick overview of our proposed approximations. (The simulation

experiments are described in Section 7.) We present three different approaches. Our first

approach, yielding the quickest and crudest approximations, follows Whitt [38] where simple

heuristic formulas are developed to determine the approximate simulation run lengths required to

achieve desired statistical precision in simulations of queueing processes. As in that paper, with

our first approach we specify the class of models and processes we consider by directly assuming

that the queueing process can be approximated by one-dimensional reflected (or regulated)

Brownian motion (RBM). (RBM is ordinary Brownian motion with a negative drift and a

reflecting barrier at the origin.) See [38] for additional motivating discussion. For other recent

work on Brownian motion approximations for queueing processes, see Asmussen [8], Berger and
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Whitt [11] and Harrison and Nguyen [24].

To carry out this first approach, we need an extreme-value limit theorem for RBM.

Surprisingly, we could not find this result in the literature; hence we prove it here. Let

{R(t) : t ≥ 0 } be canonical RBM, i.e., RBM with drift coefficient − 1 and diffusion coefficient

+ 1. Let the associated maximum process be

R ∗ (t) = sup {R(s) : 0 ≤ s ≤ t} , t ≥ 0 . (1.7)

Let = = > denote convergence in distribution.

Theorem 1. Let R(t) be canonical RBM, where R( 0 ) has a proper initial distribution, and let Z

have the distribution in (1.4). Then

2R ∗ (t) − log 2t = = > Z as t → ∞ .

It is easy to see what the statement of Theorem 1 should be by introducing the appropriate

scaling of space and time in the known extreme-value limit theorem for the M/M/1 workload

process, as we show below in §3, but it seems difficult to develop a rigorous proof by this

method, because there is an interchange of the limits t → ∞ and ρ → 1, where ρ is the traffic

intensity. Hence, we prove Theorem 1 a different way in §3.

We mention that the exact distribution for R ∗ (t) when R( 0 ) = 0 is available in the form of a

Laplace transform from an early result of Darling and Siegert [21]. A corresponding result for the

M/M/1 queue length process is due to Bailey [10]; see Theorem 3.4 and Corollary 3.4.1 of Abate

and Whitt [7].

Our second approach builds on exact and approximate asymptotic exponential tail behavior

for steady-state distributions of queueing processes; see Abate, Choudhury and Whitt [2,3,4],

Asmussen and Perry [9], Choudhury and Lucantoni [17], Choudhury, Lucantoni and Whitt [18],

and references therein. For example, suppose that W has the steady-state waiting time
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distribution. In considerable generality,

P(W > x) ∼ αe − ηx as x → ∞ , (1.8)

where η and α are positive constants called the asymptotic decay rate and asymptotic constant,

respectively, and f (x) ∼g(x) means that f (x)/ g(x) → 1 as x → ∞. The asymptotics in (1.8) is

the starting point for our second approach; i.e., we assume that (1.8) holds. (It is important to

note that this need not always be the case, e.g., see Abate, Choudhury and Whitt [5] and

references therein.)

The key idea in this second approach is that Wn
∗ should have the same extreme-value limit as

Xθn
∗ = max {X k : 0 ≤ k ≤ θn} , n ≥ 0 , (1.9)

where {X k } is an i.i.d. sequence with X k distributed the same as W. The parameter θ in (1.9) is

introduced to account for the dependence in the original sequence {W k }. The idea is that n

dependent random variables should be regarded as approximately equivalent to θn independent

random variables. Since the queueing variables tend to be strongly positive correlated except at

low traffic intensities, we anticipate that θ << 1.

We hasten to point out that the idea of an associated i.i.d. sequence is not new. Indeed, this

associated independent sequence is a fundamental notion in extreme-value theory; see Chapter 3

of Leadbetter et al. [29]. In nice situations (without much dependence), the extreme-value limit

for a dependent sequence will be identical to the extreme-value limit for the independent

sequence (with θ = 1). However, that is not to be expected with queueing processes, because the

dependence is quite strong. In particular, condition D ′ (u n ) on p. 58 of Leadbetter et al. [29]

typically does not hold.

Under general conditions, which seem hard to verify, (see Corollary 3.7.3 of Leadbetter et al.

[29]), this second approach is correct for some θ. Indeed, it is consistent with the extreme-value
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limits for queues, e.g., in Iglehart [25] and Asmussen and Perry [9]. Hence, this approach seems

to be a natural heuristic more generally. It leads to tractable formulas, because given (1.8) the

extreme-value limit for the associated independent sequence is easily determined. It depends on

the distribution of W only via the parameters α and η in (1.8). In particular, the resulting limit is

ηWn
∗ − log (α θn) = = > Z as n → ∞ , (1.10)

where η and α are the asymptotic parameters in (1.8), θ is the parameter in (1.9) and Z has the

Gumbel cdf in (1.4). Deducing (1.10) from (1.8) and (1.9) is a standard extreme-value argument.

We note that the asymptotic parameters α and η in (1.8) and (1.10) are readily computed from

transforms by numerical inversion in many cases; see Choudhury and Lucantoni [17].

Since queue length processes are integer-valued, we do not quite have (1.8). Then we have

the analog of (1.8) only as x runs through the integers, which leads to the bounds

α ≤
x → ∞
lim_ __ e ηxP(Q > x) ≤

x→ ∞
lim
_ __

e ηxP(Q > x) ≤ αe η . (1.11)

The lower bound leads to the analog of (1.10) and (1.3) with γ = η − 1 and β = α θ. For the

upper bound we replace β by αe η θ, which simply increases Q ∗ (t) by 1. For integer-valued

processes we allow for this error of 1.

To make the second approach work, we need to estimate the parameter θ in (1.9) and (1.10).

For this purpose, we use the asymptotic variance

σW
2 ≡

n→ ∞
lim n − 1 Var (

k = 1
Σ
n

W k ) . (1.12)

In particular, we estimate θ by

θ ∼∼ VarW /σW
2 . (1.13)

We partly justify (1.13) by a cloning heuristic. We consider the i.i.d. {X k :k ≥ 1 } and let each

variable be repeated (cloned) m times; i.e., we consider the sequence {Y k :k ≥ 1 } where
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Y (k − 1 ) m + j = X k for j = 1 , . . . , m. For such sequences, obviously θ = 1/ m and

σY
2 /Var Y 1 = m. This is a basis for (1.13).

Given (1.13), we need to estimate VarW and σW
2 . For some models, these can be computed;

e.g., see Neuts [30], Whitt [39] and references therein. However, as in Whitt [36], we also

suggest using RBM approximations to approximate VarW, σW
2 and thus θ. With RBM used to

approximate θ, this second approach can be related to the first approach. We find that they

support each other, because the resulting formulas are not too different.

Our third approach is based on exact extreme value results for the GI/G/1 queue. We

simplify exact formulas for the GI/G/1 queue derived by Iglehart [25]. Under conditions

equivalent to (1.8), Iglehart derived the limit (1.10) and obtained explicit expressions for the

parameters. Here η and α are just as in (1.8), but θ is the exact value (not based on the heuristic

(1.14)). We develop simple approximations for these parameters. We also consider the GI/G/1

approximation applied to non-GI/G/1 queues.

It turns out that all three approaches lead to approximations of the form (1.3). This is to be

anticipated, because the steady-state distribution of RBM is exponential, consistent with (1.8). In

the first approach, the key parameter η in (1.10) is replaced by what turns out to be exactly the

first term in the asymptotic expansion for η in powers of ( 1 − ρ); see Abate, Choudhury and

Whitt [2] and Choudhury and Whitt [19]. In general, we would use the parameter η defined by

(1.8) if it is available, and its heavy-traffic approximation if not. The parameter η is often not too

difficult to obtain, so that the most difficult part is determining θ in (1.10). From (1.10) we see

that we actually need to be able to approximate log θ.

Here is how the rest of this paper is organized. In Section 2 we briefly review the extreme-

value limit for the M/M/1 workload process. In Section 3 we use the M/M/1 workload result to

develop a heuristic derivation of the RBM extreme value limit in Theorem 1, and then prove
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Theorem 1. In Section 4 we describe RBM approximations for generic queueing processes and

develop the associated approximations for the queueing maximum processes. In Section 5 we

discuss the second ‘‘associated i.i.d. sequence’’ approach further. There we develop the RBM

approximation for θ and describe the full approximation. In Section 6 we develop special

approximations for the GI/G/1 queue, drawing on the extreme-value limit theorems of Iglehart

[25]. A summary of the approximations is given in Table 1. In Section 7 we evaluate the

approximations for the special case of the workload by making comparisons with simulations.

Finally, in Section 8 we state our conclusions.

2. The M/M/1 Maximum Workload Process

Consider an M/M/1 queue with arrival rate ρ and service rate 1, where 0 < ρ < 1. Let

{W(t) : t ≥ 0 } be the stationary workload process, i.e., initialized by giving W( 0 ) a proper

initial distribution, such as the steady-state distribution

P(W(t) > x) = ρ exp ( − ( 1 − ρ) x) , (2.1)

for all t. Let the maximum workload process be defined by

W ∗ (t) = sup {W(s) : 0 ≤ s ≤ t} , t > 0 . (2.2)

Let Z be a random variable with the Gumbel cdf in (1.4). By Theorem 3 of Iglehart [25] or

Cohen [20],

( 1 − ρ) W ∗ (t) − log (ρ( 1 − ρ)2 t) = = > Z as t → ∞ . (2.3)

The approximation based on (2.3) is (1.3) with γ = ( 1 − ρ) − 1 and β = ρ( 1 − ρ)2 .

To obtain (2.3) from (9) in Iglehart [25], note that his (9) is equivalent to

t→ ∞
lim P(γW ∗ (t) − log (λb ∗ t / m) ≤ x) = Λ(x) , (2.4)

because
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Λ(x + logc) = Λ(x)1/ c (2.5)

Then note that γ = 1 − ρ , λ = ρ, m = 1/( 1 − ρ) and b ∗ = ( 1 − ρ), because

Ee γv0 = ( 1 − γ) − 1 = ρ − 1 , Ee γSα = ρ/(ρ + γ) = ρ, a( 0 ) = ρ and b( 0 ) = ρ( 1 − ρ).

3. The Maximum of Canonical RBM

The M/M/1 workload process reveals the basic form (1.3) and shows the effect of the traffic

intensity ρ. We now consider RBM in order to approximately describe the impact of the

variability (possible departure from i.i.d. exponential random variables) in the arrival process and

service times.

Hence, let R(t ;µ ,σ2 ) be stationary RBM on the positive real line with drift coefficient µ and

diffusion coefficient σ2 , where µ < 0. A stationary version is achieved by letting R( 0 ;µ ,σ2 )

have the steady-state exponential distribution with mean σ2 /2µ . Let R(t) ≡ R(t ; − 1 , 1 ) be

stationary canonical RBM. These processes are related by

aR(bt ; µ ,σ2 ) =
d

R(t ; − 1 , 1 ) (3.1)

where =
d

denotes equality in distribution, a = µ/σ2 and b = σ2 /µ2; e.g., see §2 of Abate and

Whitt [6].

Let the maximum of stationary canonical RBM be defined as in (1.7). From (2.3) and a

heavy-traffic limit for W ∗ (t), we obtain a heuristic derivation of Theorem 1. The supporting

heavy-traffic limit is

2
( 1 − ρ)_ ______ W ρ ( 2t /( 1 − ρ)2 ) = = > R(t) as ρ → 1 , (3.2)

where W ρ (t) indicates the dependence upon ρ; see §4 of Whitt [38] for informal discussion and

references. By the continuous mapping theorem (in a function space context, as in Billingsley

[15]) with the mapping f (x) = sup {x(s) : 0 ≤ s ≤ t}, we also have
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2
( 1 − ρ)_ ______ Wρ

∗ ( 2t /( 1 − ρ)2 ) = = > R ∗ (t) as ρ → 1 (3.3)

for each t.

Combining (2.3) and (3.3), we have

R ∗ (t) ∼∼
2

( 1 − ρ)_ ______ Wρ
∗ ( 2t /( 1 − ρ)2 ) ∼∼

2
log ( 2ρ t) + Z_ ____________ ∼∼

2
log 2t + Z_ _________ , (3.4)

which corresponds to Theorem 1. However, this argument does not yield a proper derivation of

Theorem 1 because we have not justified the interchange of the limits ρ → 1 and t → ∞. Hence,

we give a direct proof for RBM.

Proof of Theorem 1. Just as Iglehart [25] treats the GI/G/1 queue, we break up RBM into

contiguous i.i.d. cycles and determine the asymptotic tail behavior within each cycle. We let

RBM start at 0 and let the cycles be determined by the first passage from 0 up to 1 and then back

down to 0. Let M be the maximum during such a cycle and let T be the length of a cycle.

Clearly, M > x if and only if RBM hits x before it hits 0 starting in 1. By using formula (5) on

p. 153 of Kemeny and Snell [27] for simple random walks and a heavy-traffic limit, we see that

P(M > x) =
1 − e − 2x

(e 2 − 1 ) e − 2x
_ ___________ , x ≥ 1 , (3.5)

so that

P(M > x) ∼ (e 2 − 1 ) e − 2x as x → ∞ . (3.6)

(With (3.5) there is no interchange of limits.) To do the limiting argument to get (3.5), let the

times between steps be 1/ n, the size of steps be ±1/√ n and the probability of a step up be

p n = ( 1 − ( 1/√ n ) )/2 in the n th random walk. This yields canonical RBM in the limit.

By the standard argument (e.g., Lemma 2 of Iglehart [25] or (1.8) – (1.11) above), the

maximum over n cycles has the limit (1.10) with η = 2 and α θ = (e 2 − 1 ). Next we apply (3.7)
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of Abate and Whitt [7] to conclude that the expected length of each cycle is

ET = (e 2 − 1 )/2 . (3.7)

From renewal theory, if N(t) is the number of cycles in [ 0 ,t], then N(t)/ t → 1/ ET as t → ∞.

Finally, we apply Theorem 3.2 of Berman [14] to treat a random number of cycles, just as in

Theorem 2 of Iglehart [25].

So far, we have assumed that RBM starts at 0, but the limit for any other proper initial

distribution is the same, because the probability that RBM hits 0 before it hits x + log 2t

approaches 1 as t → ∞. Just condition on whether or not the process hits 0 before x + log 2t.

The maximum during the first exceptional cycle is dominated by the maximum over [ 0 ,∞) of

ordinary BM (Brownian motion) with drift − 1 and this same initial condition. This last

maximum is distributed as the initial state plus the independent maximum of BM starting at 0.

The maximum of BM starting at 0 is known to have a proper (exponential) distribution.

4. The RBM Approximation

As in Whitt [38], we consider a generic stationary queueing process {Q ρ (t) : t ≥ 0 } indexed

by ρ. This might be a queue-length process, a waiting-time process or something else. We focus

on the associated maximum process

Qρ
∗ (t) = sup {Q ρ (s) : 0 ≤ s ≤ t} , t ≥ 0 . (4.1)

As our starting point, we assume that the RBM approximation

( 1 − ρ) Q ρ (t /( 1 − ρ)2 ) ∼∼ R(t ; a ,b) (4.2)

is appropriate for some parameters a and b.

The great virtue of (4.2) is that the complex structure of the queueing process Q ρ (t) is

characterized approximately by the two parameters a and b, together with the traffic intensity ρ.
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Such approximations tend to perform better when ρ is close to 1; indeed, they often are

asymptotically correct as ρ → 1. As discussed in [38], this RBM approximation is at least

roughly appropriate for a large class of single-server queues when ρ is not too small. It is also

appropriate for multi-server queues if the number of servers is not too large. For example, for the

standard GI/G/m model in which the service time has mean 1, heavy-traffic limit theorems (in

which ρ → 1) dictate that for the queue length process a = − m and b = m(ca
2 + cs

2 ), where ca
2

and cs
2 are the squared coefficients of variation (variance divided by the square of the mean) of an

interarrival time and service time, respectively; see §5.1 of [38]. If the sequence of interarrival

times or service times is not i.i.d., then we would replace ca
2 and cs

2 by the corresponding

asymptotic variability parameters cA
2 and cS

2; i.e., the asymptotic variance divided by the square of

the mean.

The same heavy-traffic approximation applies to the continuous-time workload process and

associated embedded sequences (the waiting times and queue lengths just before arrivals and just

after departures) when the mean service time is 1. The fact that these processes have identical

RBM approximations is an indication of the coarseness of the approximation. Of course, further

heuristic refinements can be added.

Given (4.2), (3.1) and Theorem 1, we obtain the associated approximations

Q ρ (t) ∼∼
a( 1 − ρ)

b_ _________R(a 2 ( 1 − ρ)2 t / b) (4.3)

and

Qρ
∗ (t) ∼∼



 a( 1 − ρ)

b_ _________



R ∗ (a 2 ( 1 − ρ)2 t / b)

∼∼


 2a( 1 − ρ)

b_ __________



( log ( 2a 2 ( 1 − ρ)2 t / b) + Z) , (4.4)

where a and b are the drift and diffusion parameters in the initial RBM approximation (4.2) and Z
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has the Gumbel cdf in (1.4). Note that (4.4) can be expressed in the same form as (1.3) by writing

the log term as a sum of two log terms. In particular, the parameters for the form (1.3) are

γ =
2a( 1 − ρ)

b_ __________ and β =
b

2a 2 ( 1 − ρ)2
_ __________ . (4.5)

We remark that γ in (4.5) coincides with the RBM approximation for EQ ρ (t) in (4.3) if we use

ER(a 2 ( 1 − ρ)2 t / b) ∼∼ ER(∞) = 1/2. This explains the simple approximation γ ∼∼ EQ ρ (t) in

Section 1.

From Choudhury and Whitt [19], we know that, in considerable generality, 2a( 1 − ρ)/ b is

the heavy-traffic approximation, i.e., the first term in an asymptotic expansion in powers of

( 1 − ρ), for the asymptotic decay rate η in the analog of (1.8). We would always use η in (1.8) if

it is available. We regard 2a( 1 − ρ)/ b as a convenient approximation.

It is also important to note that, mathematically, for (4.2) we rely only on the limit ρ → 1,

while for (4.4) we rely on the two limits ρ → 1 and t → ∞. The asymptotic correctness of

formula (4.4) requires not only that ρ be suitably close to 1, but that ρ approach 1 in proper

relation to t as t → ∞. As in Whitt [38] and Asmussen [8], we argue that the RBM time scaling

indicates that we should relate time t to ( 1 − ρ) − 2 .

Formally, we can do this by defining a family of models indexed by ρ. For the RBM

approximation to be meaningful t should be of order ( 1 − ρ) − 2 . Hence, we can proceed as

follows. First, we choose t ∗ suitably large for the RBM extreme-value limit provided by

Theorem 1 to yield a good approximation to R ∗ (t) for t ≥ t ∗ . Then, we let t in model ρ be

t̂(ρ) =
a 2 ( 1 − ρ)2

bt̂_ _________ , (4.6)

where t̂ ≥ t ∗ . Then, under regularity conditions, we will have
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( 1 − ρ) Qρ
∗ ( t̂(ρ) ) = = >

a
b_ __R ∗ ( t̂) as ρ → 1 , (4.7)

so that, for suitably high ρ and this t̂(ρ),

Qρ
∗ ( t̂(ρ) ) ∼∼

a( 1 − ρ)
b_ _________R ∗ ( t̂) (4.8)

and (4.4) should be good approximations.

If t(ρ) is much smaller than (4.6), then the RBM extreme-value limit may not yield a good

approximation. On the other hand, if t(ρ) is much larger than (4.6), then different extreme-value

behavior for the queueing process with fixed ρ may dominate. Whether t(ρ) growing faster than

(4.6) will cause a problem no doubt depends on the model. Choudhury and Whitt [19] show that

for the asymptotic decay rate η the limits t → ∞ and ρ → 1 can be interchanged when the

steady-state distribution has an exponential tail. Having t(ρ) as in (4.6) will produce the

exponential tail in the double limit even when it is not present as t → ∞ for fixed ρ. See Glynn

and Whitt [22] for additional discussion.

We now see how the RBM approximation (4.4) applies to the M/M/1 workload process

discussed in §2. By (3.1), (3.2) is equivalent to

( 1 − ρ) W ρ (t /( 1 − ρ)2 ) ∼∼ R(t ; − 1 , 2 ) . (4.9)

Hence, (4.9) satisfies (4.2) with a = − 1 and b = 2. We thus can apply (4.4) to get

Wρ
∗ (t) ∼∼



 1 − ρ

1_ ____




( log ( ( 1 − ρ)2 t) + Z) , (4.10)

which agrees with (2.3) asymptotically as ρ → 1. As in §4.4 of Whitt [38], we can use (2.3) and

(4.10) to develop an M/M/1 refinement to (4.4); i.e., we insert a ρ inside the logarithm in (4.4) to

obtain
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Qρ
∗ (t) ∼∼

2a( 1 − ρ)
b_ __________ ( log ( 2a 2 ρ( 1 − ρ)2 t / b) + Z) . (4.11)

We regard (4.11) as our refined RBM approximation for the maximum of the queueing

process Q ρ (t). For example, for the queue length, workload and waiting time processes in the

GI/G/1 queue (with mean service time 1), we would use (4.11) with a = − 1 and b = ca
2 + cs

2 .

By the discussion above, our M/M/1 refinement makes this formula exact for the M/M/1

workload process for all ρ , 0 < ρ < 1. Even though the M/M/1 queue-length process does not

have an extreme-value limit of the form (2.3), we obtain approximations for it from (4.11) as

well. As in (1.5) and (1.6), (4.11) immediately yields associated approximations for the mean and

standard deviation of Qρ
∗ (t), based on properties of Z stated in §2, namely,

EQρ
∗ (t) ∼∼

2a( 1 − ρ)
b_ __________ ( log t + log ( 2a 2 ρ( 1 − ρ)2 / b) + 0. 577 ) (4.12)

and

SD Qρ
∗ (t) ∼∼

a( 1 − ρ)
0. 64b_ _________ . (4.13)

5. The Associated-IID-Sequence Approximation

In this section we complete the development of the approximation based on an associated

i.i.d. sequence begun in §1. As in §4, we start with a generic stationary queueing process Q ρ (t)

and consider the associated maximum process Qρ
∗ (t) in (4.1). Our key assumption, as in (1.8), is

that Q ρ ( 0 ) has an exponential tail, i.e.,

P(Q ρ ( 0 ) > x) ∼ αe − ηx as x → ∞ , (5.1)

where x runs through the integers if Q ρ ( 0 ) is integer valued. Now the different processes in the

same model need not have the same parameters. (However, quite a bit is known about the

relations among the asymptotic parameters of the standard queueing processes; e.g., see Abate,
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Choudhury and Whitt [3,4].)

Given (5.1), we reason as in §1 (thinking of continuous-valued processes) and let our

approximation be

Qρ
∗ (t) ∼∼

η
log (α θt) + Z_ ____________ , (5.2)

where α and η come from (5.1), Z has the Gumbel cdf in (1.4) and the parameter θ is

approximated by

θ ∼∼ Var Q /σQ
2 , (5.3)

where Var Q is the variance of the steady-state variable Q ρ ( 0 ) and σQ
2 is the asymptotic variance,

i.e., (1.13) for discrete-time processes and

σQ
2 =

t → ∞
lim t − 1 Var (

0
∫
t

Q ρ (s) ds) (5.4)

for continuous-time processes.

If we can calculate η , α , σQ
2 and Var Q, then we are done. If not then we resort to further

approximation, depending on what is still needed. If we do not know any of these four

parameters, then we would rely on the RBM approximation in (4.11). The RBM approximation

also yields approximations for the individual parameters. In particular, given the RBM

approximation (4.2), we let η coincide with γ in (4.5) and α = 1. Given (4.3) and the fact that

the steady-state distribution of RBM is exponential, we would approximate VarQ ρ ( 0 ) by

VarQ ρ ( 0 ) ∼∼ (EQ ρ ( 0 ) )2 ∼∼
4a 2 ( 1 − ρ)2

b 2
_ __________ . (5.5)

Finally, given (4.2), we would approximate the asymptotic variance by using the known

asymptotic variance of RBM, i.e., by
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σQ
2 ∼∼ b 3 /2a 4 ( 1 − ρ)4 , (5.6)

just as in (36) of Whitt [38]. From (5.3), (5.5) and (5.6) we obtain the approximation

θ ∼∼ a 2 ( 1 − ρ)2 /2b . (5.7)

Combining (5.2) with all these individual RBM approximations, we obtain the RBM

approximation in (4.11) except that the argument in the logarithm is α θ t ∼∼ a 2 ( 1 − ρ)2 t /2b

instead of 2a 2 ρ( 1 − ρ)2 t / b; i.e., the argument there is 4ρ /α times the argument here. Since

ρ = α for M/M/1, these approximations can be made consistent by modifying our approximation

for θ in (5.3), i.e., by replacing (5.3) with

θ ∼∼ 4 Var Q /σQ
2 , (5.8)

and we make this heuristic refinement. Note that this changes the numerator of (5.2) by

log 4 ∼∼ 1. 38. If t is suitably large, then this change will not be too great relatively. The fact that

the two approximation methods yield similar results lends support to both of them.

In summary, the associated i.i.d. sequence approximation plus additional RBM

approximations (5.5) and (5.6) and heuristic approximation (5.8) yield the simple approximation

θ = 2a 2 ( 1 − ρ)2 / b . (5.9)

In many cases it will be appropriate to approximate α in (5.1) and (5.2) by 1, but we note that

is not always so. In a queue with an arrival process that is the superposition of many independent

non-Poisson processes the asymptotic constant α can be far from 1; see Choudhury, Lucantoni

and Whitt [18]. Abate, Choudhury and Whitt [2] propose the approximation

α = η EQ ρ ( 0 ) , (5.10)

which is useful if approximations are already available for η and the mean.
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6. Approximations for the GI/G/1 Queue

Consider a GI/G/1 model with i.i.d. service times independent of i.i.d. interarrival times. Let

U be a generic interarrival time having Laplace-Stieltjes transform (LST) f̂ U (s) ≡ Ee − sU and

mean ρ − 1 , and let V be a generic service time having LST f̂ V (s) ≡ Ee − sV and mean 1. Let W

and L be the steady-state waiting time and workload, respectively. For a large class of GI/G/1

queues, Iglehart [25] proved that the limit (1.10) for the waiting times and the workload is correct,

where the parameters η and α are the asymptotic decay rate and asymptotic constant in the tail

asymptotics (1.8). The asymptotic decay rate η is the same for the waiting time and workload.

The asymptotic constants are related by

α L =
η

α W ρ(Ee ηV − 1 )_ _____________ , (6.1)

where the subscript W (L) indicates waiting time (workload); see Theorem 2 of Abate,

Choudhury and Whitt [3].

For the GI/G/1 queue, the asymptotic decay rate η is the root of the equation

Ee s(V − U) ≡ f̂ V ( − s) f̂ U (s) = 1 . (6.2)

The key condition is that such a root exists. We also require that the distribution of V − U be

nonlattice and that 0 < E[ (V − U) e η(V − U) ] < ∞. Algorithms for computing η, α W and α L in

GI/G/1 and BMAP/G/1 queues are described in Abate, Choudhury and Whitt [1,2,4] and

Choudhury and Lucantoni [17]; we use them.

From Theorems 2 and 3 of Iglehart [25], we see that the remaining parameter θ in (1.10) is

θ W = P(W = 0 ) ( 1 − Ee − ηI ) (6.3)

for the waiting times and
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θ L = ρP(W = 0 ) Ee ηV ( 1 − Ee − ηI ) (6.4)

for the workload, where in both cases P(W = 0 ) is the steady-state probability that an arrival

finds an idle server, which is the reciprocal of the mean busy cycle. In both cases I is an idle

period.

For M/G/1, the idle periods have the same distribution as the exponential interarrival times.

Hence, for M/G/1

1 − Ee − ηU =
ρ + η

η_ ______ . (6.5)

For the M/G/1 queue, we also have P(W = 0 ) = 1 − ρ. Hence, for M/G/1,

θ W = ( 1 − ρ)
ρ + η

η_ ____ (6.6)

for the waiting times and

θ L = ρ( 1 − ρ) Ee ηV

ρ + η
η_ ____ (6.7)

for the workload. As shown in §2, α L θ L = ρ( 1 − ρ)2 for M/M/1.

Following Halfin [23], we suggest approximating the distribution of I more generally (within

GI/G/1) by the stationary-excess (or equilibrium residual life) distribution associated with U, i.e.,

with LST ρ( 1 − f̂ U (s) )/ s. Thus, for GI/G/1 we obtain the approximation

( 1 − Ee − ηI ) ∼∼ 1 −
η

ρ( 1 − f̂ U (η) )_ ___________ . (6.8)

For the M/G/1 queue, f̂ U (s) = ρ/(ρ + s), so that ρ( 1 − f̂ U (s) )/ s = f̂ U (s), as it should.

Following Kraemer and Langenbach-Belz [28], we approximate the steady-state delay

probability P(W > 0 ) by
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P(W > 0 ) = ρ + (ca
2 − 1 ) ρ( 1 − ρ) h(ρ ,ca

2 ,cs
2 ) , (6.9)

where

h(ρ ,ca
2 ,cs

2 ) =









ca
2 + ρ2 ( 4ca

2 + cs
2 )

4ρ_ ______________ ,

1 + ρ(cs
2 − 1 ) + ρ2 ( 4ca

2 + cs
2 )

1 + ca
2 + ρcs

2
_ ________________________ ,

ca
2 > 1 ,

ca
2 ≤ 1

(6.10)

and as before ca
2 and cs

2 are the squared coefficients of variation of an interarrival time and a

service time. (An algorithm for the exact value of P(W > 0 ) is also given in Abate, Choudhury

and Whitt [1].) Using (6.9) and (6.10), we obtain concrete approximation formulas for the GI/G/1

waiting times and workload in terms of the transform values f̂ U (η) , f̂ V ( − η), the asymptotic

parameters η and α N and α L , and the basic parameters ρ , ca
2 and cs

2 .

Following Abate, Choudhury and Whitt [2], we can develop further approximations for the

transform values f̂ V (η) and f̂ V ( − η) by expanding in Taylor series, i.e.,

f̂ V ( − η) = 1 + η + η2

2

(cs
2 + 1 )_ ________ + o(η2 ) as η → 0 (6.11)

and

f̂ U (η) = 1 −
ρ
η_ _ + η2

2ρ2

(ca
2 + 1 )_ ________ + o(η2 ) as η → 0 . (6.12)

Combining (6.9) and (6.12), we obtain

( 1 − Ee − ηI ) ∼∼
2ρ

η(ca
2 + 1 )_ _________ . (6.13)

Abate, Choudhury and Whitt [2] also develop approximations for the waiting-time parameters η

and α W , e.g., α W ∼∼ ηEW. The first two terms of an asymptotic expansion for η for waiting

times in GI/G/1 are
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η =
ca

2 + cs
2

2 ( 1 − ρ)_ _______ ( 1 − ( 1 − ρ) η∗ + O( ( 1 − ρ)2 ) as ρ → 1 , (6.14)

where

η∗ =
3 (ca

2 + cs
2 )2

( 2v 3 − 3cs
2 (cs

2 + 2 ) ) − ( 2u 3 − 3ca
2 (ca

2 + 2 ) )_ ______________________________________ (6.15)

with v 3 = E[V 3 ] and u 3 = E[ (ρU)3 ]; see Theorem 3 of Abate, Choudhury and Whitt [2] and

Choudhury and Whitt [19].

In summary, the exact GI/G/1 formulas for the waiting time and workload are (1.10) with

(6.3) and (6.4), where the two asymptotic constants are related by (6.1). We then approximate

P(W = 0 ) by (6.9) and ( 1 − Ee − ηI ) by (6.8) and (6.13). This produces an approximation for θ

that depends only on the parameters η ,ρ ,ca
2 and cs

2 . We give an approximation for η in (6.14) as

well that depends on ρ ,ca
2 ,cs

2 and the third-moment parameters u 3 and v 3 .

Finally, we indicate how we can apply the GI/G/1 approximation in this section to non-

GI/G/1 queues. We assume that (1.10) still applies. We start with the asymptotics in (1.8),

assuming that the asymptotic decay rate η and the asymptotic constant α are available. For

example, these asymptotic parameters are available for BMAP/G/1 queues [4] and other models

whenever the transform of the steady-state distribution is available [17]. Then our first

approximation is to act as if (6.3) and (6.4) are valid. A simple approach is to apply (6.9) and

(6.13), either directly or with ca
2 and cs

2 replaced by the asymptotic variability parameters cA
2 and

cS
2 (e.g., cA

2 is the asymptotic variance of the interarrival times divided by the square of the mean).

As an alternative to (6.9), we often can calculate P(W = 0 ). (This is so for BMAP/G/1 models.

For multi-server GI/G/m queues, an approximation is given in Whitt [40].) For the idle time, we

can use (6.8) or (6.13).



- 23 -

7. Simulation Experiments

In this section we describe simulation experiments conducted, first, to determine whether the

linear relations (1.5) and (1.6) tend to be valid for some parameters γ and β and, second, to

evaluate the quality of the proposed approximations. For this purpose, we used a simulation

program written in C and run on a SUN SPARC-2 workstation.

In the basic experiment we consider the workload process in seven different single-server

queueing models (M/M/1, M/D/1, M/H 2/1, H 2/D/1, H 2 / H 2/1, MMPP/D/1 and MMPP/H 2/1)

each for two traffic intensities (ρ = 0. 7 and ρ = 0. 9). In all cases the mean service time is

EV = 1.

The H 2 (hyperexponential) distribution is the mixture of two exponential distributions, i.e.,

with density function

f (x) = pλ 1 e − λ 1 x + ( 1 − p) λ 2 e − λ 2 x , x ≥ 0 , (7.1)

with balanced means (p /λ 1 = ( 1 − p)/λ 2 ) and squared coefficient of variation c 2 = 4. The

third parameter is determined by the mean; e.g., see [6, p. 592].

The Markov modulated Poisson process (MMPP) is an example of a non-renewal arrival

process. The MMPP is a Poisson process in which the rate itself evolves as a continuous-time

Markov chain. The state space of this underlying Markov chain is called the environment.

Extreme-value limit theorems for M , H 2 and MMPP arrival processes with phase-type service

were established by Asmussen and Perry [9]. Our MMPP has two environment states with the

mean holding time in each being 10. The arrival rates in the two states are 1. 6ρ and 0. 4ρ,

respectively. Hence, for the traffic intensities we consider, the instantaneous traffic intensity (the

arrival rate in that environment state) in one state exceeds 1. For traffic intensity ρ = 0. 7, the

squared coefficient of variation of a single stationary interarrival time is ca
2 = 1. 44, while the
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asymptotic variability parameter (the asymptotic variance of the interarrival times, as in (1.13),

divided by the square of the mean) is cA
2 = 3. 52. The fact that cA

2 > ca
2 reflects the non-renewal

property, i.e., cA
2 includes all the autocovariance terms. For ρ = 0. 9, these parameters are

ca
2 = 1. 48 and cA

2 = 4. 24.

For each case, we performed 20 independent replications of a simulation of duration

214 × 103 = 16 , 384 , 000 time units and recorded the maximum workload in the queue at the

15 epochs 2k × 103 for k = 0 , 1 , . . . , 14. (The expected number of arrivals in each run is thus

about 16. 4ρ million.) We then calculated the sample means and sample standard deviations of

the 20 data points for each of the 15 time points. We fit regression lines (i.e., by least squares) to

these sample means and sample standard deviations. We crudely estimate the statistical precision

of slope and intercept estimates by using standard regression formulas, which assume that the

errors are i.i.d. Clearly, the errors at successive times are not independent here, so that our

estimates of 95% confidence intervals for the slopes and intercepts are only rough

approximations, which may significantly underestimate the true variability.

Figures 1 and 2 display simulation results for the sample means and the sample standard

deviations in the M/M/1 queue. The 15 time values are displayed along with 95% confidence

intervals and a regression line in each case. (For the individual time points, the confidence

intervals are approximately valid, because the random variables at single time points are

independent. However, they are likely to have approximately the Gumbel distribution in (1.4)

rather than the assumed t-distribution.) In Figure 1 we also display one of the 20 individual

sample paths. The linear relation in (1.5) is not so evident from a single run, because of the

random fluctuations on individual sample paths. However, the linear relation (1.5) and (1.6) are

clear when we look at the data from 20 independent runs.

Figures 1 and 2 also show approximations. Only one approximation is shown in each case
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because all three approximations coincide with the approximation provided by the extreme value

limit theorem in the M/M/1 special case. The different approximations are summarized in

Table 1.

Figures 3-10 show both the simulations and the approximations for the mean of the maximum

workload as a function of time in 8 of the 14 cases. The six cases omitted in Figures 3-10 are the

ones for which the approximation performs best. The figures in these six cases show strong

agreement, essentially the same as for the H 2 / H 2/1 queue with ρ = 0. 7 shown in Figure 6. In

all 14 cases the linear relation (1.5) is clearly present. For all 14 cases, the simulation estimates

and approximations for the slope and intercept are given in Tables 2 and 3, respectively. As

background, we also give the values of the asymptotic constant α (for the workload analog of

(1.8)) in Table 2.

In this experiment, the associated-i.i.d.-sequence approximation for the mean performs well in

all cases. The GI/G/1 approximation is also excellent for all GI/G/1 queues, but its extension to

non-GI/G/1 queues does not perform so well for the MMPP arrival process. The RBM

approximation is excellent for some models, but not all. In particular, the RBM approximation

for the slope γ degrades dramatically when the service-time distribution is deterministic (M/D/1,

H 2/D/1 and MMPP/D/1). (The deterministic service-time distribution is known to be a difficult

case for heavy-traffic approximations for GI/G/m queues; see [11, 40].) Consistent with intuition,

the RBM approximation for the slope improves as the traffic intensity increases. Hence, with D

service, the RBM approximation for the slope γ is not bad at ρ = 0. 9, but rather poor at ρ = 0. 7.

Nevertheless, the simple RBM approximation for γ may serve as a useful rough approximation,

since it is much easier to calculate than the exact asymptotic decay rate η in (1.8). The

experiments here give a good idea about the accuracy to expect.

Even in cases where RBM’s rough approximation for the slope is not sufficient, the RBM
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approximation for log β may still be useful. In particular, the approximation obtained by

combining the reciprocal of the asymptotic decay rate with the RBM approximation for log β is

very close to the associated i.i.d. sequence approximation with (5.9), as could be anticipated by

comparing (4.11) and (5.9). (Both are based at least in part on RBM.)

Since the GI/G/1 extreme-value formulas do not apply directly to non-GI/G/1 queues, we

investigated the GI/G/1 approximation to the MMPP/G/1 queues more carefully. The specific

GI/G/1 approximation shown in Table 3 and Figures 6-8 is (1.10) with the exact asymptotic

parameters α and η computed using the program described in [4] plus (6.4), (6.9) and (6.13) with

ca
2 replaced by the asymptotic variability parameter cA

2 in both (6.9) and (6.13). Table 4 describes

alternative approximations for the y-intercept using ca
2 instead of cA

2 and/or the exact value

P(W = 0 ). From Table 4, we see that formula (6.9) with ca
2 and cA

2 tend to bound the exact

probability P(W > 0 ) above and below. Overall, we find that all these approximations for the

y-intercept are roughly reasonable, without any one clearly dominating the others. The y-intercept

fits for the MMPP/D/1 queue were not as good as for the associated i.i.d. sequence

approximation.

Table 5 compares the approximations for the standard deviation based on (1.6) with the

simulation estimates. We do not display figures corresponding to Figures 3-10 for the standard

deviations, because the remaining cases are similar to the M/M/1 case displayed in Figure 2.

These approximations also perform well, with the exception that RBM does not predict γ well for

D service times and ρ = 0. 7. Also notice that neither approximation for ρ = 0. 9 in the

H 2 / H 2/1 case is close; we attribute this largely to variability in the simulation. (This is

supported by our experience: A repeat of the simulation with a different set of seeds yielded a

sample mean of 56.8 for the standard deviation of maximum work.

The experiment we have just described shows that the linear relations (1.5) and (1.6) and the
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good approximations are remarkably accurate for the times we consider. It is natural to ask next,

how small the times can be and still have these properties. From Figures 1-10, we see that the

relations hold reasonably well at the initial time points. To examine this question further, we

performed additional experiments with shorter times. We now describe an experiment involving

the M/M/1 model with different traffic intensities. We consider 50 independent replications of

100,000 time units, allowing 100,000 time units warmup to reach steady state before collecting

data. (For such shorter times the initial conditions obviously play a bigger role.)

From this experiment, we find that the local slope of the simulation estimates decreases as the

time t decreases (i.e., the true curve should be convex). To illustrate, we display the estimates of

mean maximum workload for the cases ρ = 0. 7 and ρ = 0. 9 in Figures 11 and 12. For each

time point, we include estimates of the 95% confidence intervals. From such figures, it is

tempting to estimate when the asymptotics do in fact begin to take effect. The experiment shows

that the change is continuous but nevertheless we try to estimate the knee of the curve. Our rough

estimates of the knee of the curve appear in Figures 11 and 12 plus Table 6. For the case ρ = 0. 7

the slope of the regression line through the first 31 points (below the estimated knee) is 1.85,

while the slope of the regression line through the last 69 points (above the estimated knee) is

3.36, where η − 1 = 3. 33. For the case ρ = 0. 9, the slope of the regression line through the first

48 points (below the estimated knee) is 3.69, while the slope of the regression line through the

last 52 points (above the estimated knee) is 8.97, where η − 1 = 10. 00. Hence, we conclude that

indeed estimated knee is approximately where the extreme value limits begin to take effect.

The RBM approximation in (4.11) suggests that the knee should be proportional to

b /2 ( 1 − ρ)2 a 2 , because that is how the knee for RBM would be transformed to the queueing

processes. This estimate is supported by the fact that, for the estimates, the knee×( 1 − ρ)2 is

approximately constant, whereas knee×( 1 − ρ) is not. As a tentative general rough
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approximation for the time where the approximation begins to take effect, drawing on (4.3), we

suggest the associated RBM approximation

knee of curve ∼∼
a 2 ( 1 − ρ)2

4b_ _________ , (7.2)

which is 8/( 1 − ρ)2 for M/M/1. This rough approximation is supported by Table 6.

Qualitatively, this approximation formula for the knee implies that the knee is increasing in

both ρ and the model variability (through the parameter b). The first property is evident from

Figures 11 and 12. The second property is evident from similar figures for the other models we

have considered, such as H 2 / H 2 /1. The case of H 2 / H 2 /1 with ρ = 0. 7 and ρ = 0. 9 is shown

in Figures 13 and 14.

We conclude this empirical section by considering a case for which extreme-value limits

support a different approximation than (1.3). In particular, we consider an M/G/1 queue with a

Pareto service-time density

f r (x) = r


 r

r − 1_ ____




r

x − (r + 1 ) , x ≥ (r − 1 )/ r , (7.3)

which has a mean of 1 and cs
2 = 1/ r(r − 2 ); see [26, Ch. 22] and [5, Section 2].

Paralleling Figure 1, Figure 15 plots the sample means of the maximum workloads for 20

independent replications in the case r = 3. 5 (cs
2 = 0. 19 ) and ρ = 0. 9. In contrast to the

previous examples, Figure 15 clearly shows that the linear relation (1.5) does not hold for this

example: In this case, the mean of the maximum workload is not linear in log t for large t.

However, consistent with the discussion in Section 4 following (4.6), the linear relation may

hold for a range of times neither too small nor too large. For example, there is a pretty good

linear fit to the first 9 points in Figure 15. A regression analysis yields an estimated slope of 6.2,

while the RBM approximation based on (4.11) indicates a slope of 6.0.
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For this example, the extreme value theory [29] indicates that the maximum workload should

in fact be linear in t 1/2. 5 instead of log t. Hence, in Figure 16 we replot Figure 15 in this scale.

Again we see that there is not linearity for all times, but there seems to be a linear relation for the

last 6 points. Consistent with experience with steady-state tail probabilities [5], a comparison of

Figures 1 and 16 indicates that the extreme value asymptotics does not take effect as quickly with

long-tail service-time distributions such as the Pareto distribution as it does for the ‘‘standard’’

service-time distributions in the domain of approximation (1.3). We have not attempted to

thoroughly discuss the Pareto example in this paper. This example does motivate further

investigation of long tail distributions.

8. Conclusions

We have developed three approximation methods for the distribution of the maximum of a

queueing process: the RBM approximation in Section 4, the associated i.i.d. sequence

approximation in Section 5 and the GI/G/1 approximation in Section 6. All three are based on

extreme-value limits, as in [29], but extra approximations are involved. The first two rely at least

in part on being able to approximate the queueing process by RBM. Since RBM approximations

are often roughly appropriate, the methods have wide applicability.

The asymptotic behavior of the maximum of a stationary process depends critically on the tail

behavior of the marginal distribution. The approximations proposed here are primarily for the

case in which the steady-state distribution has an exponential tail, as in (1.8). Steady-state

distributions of queueing processes often do have exponential tails, but the conditions are not as

general as for RBM to be the heavy-traffic limit. Developing approximations based on

exponential tails seems very reasonable, but this property is not universal, as was illustrated here

by the final example in Section 7 involving an M/G/1 queue with a Pareto service-time

distribution.
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Having made appropriate qualifications, we conclude that for ‘‘standard’’ examples (e.g., as

in Table 2 here) the extreme value limits provide excellent approximations and that our

approximations here for the parameters also perform well. Moreover, our approximation for the

knee developed in Section 7 seems to give a good idea when the extreme value limits start to

become good approximations for the mean.

Finally, the more elementary RBM approximation is appealing as a rough approximation,

because it applies very generally and because it can readily be used for back-of-the-envelope

calculations. Through the examples with deterministic service times, we have given an indication

of its limitations. As in previous studies (e.g., [11, 40]), we found that the RBM approximation

does not perform as well when the service times are deterministic.
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_ _____________________________________________________________________
method slope γ β_ _____________________________________________________________________
crude EL − 0. 577
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RBM
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2a 2 ρ( 1 − ρ)2
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Associated α θ for α in (1.8)

i.i.d. 1/η for decay rate η in (1.8) θ ∼∼ 4 Var L /σL
2

sequence ∼∼ 2a 2 ( 1 − ρ)2 / b
with (5.9)_ _____________________________________________________________________

GI/G/1 α θ L for α in (1.8)
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GI/G/1 above plus
approx. P(W = 0 ) from (6.9)
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Table 1. Summary of the parameter approximations for the expected maximum workload in
(1.5).
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γ = 1/η mean asymptotic

traffic simulation exact RBM steady-state constant
model intensity estimate asymptotic approx. workload α_ ______________________________________________________________________________

0.7 3.33 3.33 3.33 2.33 0.7000
±0.065

M/M/1
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0.7 1.43 1.48 1.67 1.17 0.7990
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M/D/1
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±0.37

M/H 2/1
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0.7 4.31 4.35 6.67 3.16 0.7269

±0.10
H 2/D/1
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Table 2. A comparison of approximations with the exact asymptotic value and simulation
estimates of the slope γ in (1.3) for the workload process in several G/GI/1 models.
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RBM

traffic simulation GI/G/1 Assoc. i.i.d. _ _____________________

model intensity estimate approx. with (5.9) full with asymp. γ_ _________________________________________________________________________________
0.7 −7.82 −7.29 −7.29 −7.29 −7.29

±0.79 (−2.77) (−2.77) (−2.77)
M/M/1

0.9 −41.9 −41.3 −41.3 −41.3 −41.3
±4.4 (−4.71) (−4.71) (−4.71)_ _________________________________________________________________________________

0.7 −0.92 −1.84 −2.02 −2.49 −2.21
±0.77 (−1.82) (−1.94) (−2.07)
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0.9 −13.5 −16.3 −16.4 −17.2 −16.6
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0.7 −31.1 −34.9 −33.0 −25.9 −31.0
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±22. (−5.95) (−6.13) (−6.10)_ _________________________________________________________________________________

0.7 −13.8 −8.97 −12.1 −16.2 −11.7
±3.2 (−2.69) (−3.41) (−3.33)
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0.7 −36.1 −43.7 −48.3 −44.0 −46.1

±5.6 (−3.91) (−4.26) (−4.09)
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±23. (−5.88) (−6.18) (−6.13)_ _________________________________________________________________________________ 
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Table 3. A comparisons of approximations with simulation estimates of the y-intercept in the
linear relation for the maximum workload in several G/GI/1 models. (The
approximation for log β appears below the intercept in the approximations.)



_ _______________________________________________________
model MMPP/D/1 MMPP/H 2/1_ _______________________________________________________
traffic

intensity ρ = 0. 7 ρ = 0. 9 ρ = 0. 7 ρ = 0. 9_ _______________________________________________________
P(W > 0 )

exact 0.812 0.945 0.775 0.933

(6.9) and ca
2 0.760 0.925 0.741 0.916

(6.9) and cA
2 0.842 0.958 0.820 0.949_ _______________________________________________________

y intercept: − 13. 81 − 79. 3 − 36. 1 − 222
simulation
estimate ±3. 2 ±6. 4 ±5. 6 ±23_ _______________________________________________________

y intercept:
exact P(W = 0 )

plus ca
2 in (6.13) − 10. 87 − 101. 7 − 48. 9 − 239

plus cA
2 in (6.9) − 8. 24 − 87. 0 − 40. 8 − 208_ _______________________________________________________

y intercept:
(6.9) and (6.13)

with ca
2 − 9. 82 − 95. 5 − 47. 1 − 230

with cA
2 − 8. 97 − 92. 4 − 43. 7 − 220_ _______________________________________________________ 
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Table 4. A comparison of approximations with the exact values of P(W > 0 )
and with the simulation estimates of the y-intercept in the MMPP/G/1 models.



_ _____________________________________________________
1. 28/η_ ________________

traffic simulation exact
model intensity estimate asymptotic RBM_ _____________________________________________________

0.7 3.72 4.26 4.26
M/M/1

0.9 11.40 12.80 12.80_ _____________________________________________________
0.7 1.88 1.89 2.14

M/D/1
0.9 6.23 6.18 6.40_ _____________________________________________________
0.7 12.31 12.80 10.66

M/H 2/1
0.9 31.88 34.00 32.00_ _____________________________________________________
0.7 4.73 5.57 8.54

H 2/D/1
0.9 22.36 22.96 25.60_ _____________________________________________________
0.7 18.37 17.19 17.06

H 2 / H 2/1
0.9 38.48 51.24 51.20_ _____________________________________________________
0.7 5.50 5.45 7.51

MMPP/D/1
0.9 22.10 25.13 27.14_ _____________________________________________________
0.7 16.82 16.80 16.04

MMPP/H 2/1
0.9 53.44 53.04 52.74_ _____________________________________________________ 
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Table 5. A comparison of the mean of the 15 sample standard deviations with the
approximations based on (1.6).



_ __________________________________________________________________________________________
location of knee_ ______________________

traffic number of points

model intensity from left time knee×( 1 − ρ) knee×( 1 − ρ)2 knee×
4 (ca

2 + cs
2 )

( 1 − ρ)2
_ ________

_ __________________________________________________________________________________________
0.5 14 33.5 16.7 8.4 1.05

M/M/1 0.7 31 163 48.9 14.7 1.84

0.9 48 793 79.3 7.9 0.99

H 2 / H 2 /1 0.7 43 498 149 44.8 1.40

0.9 60 2420 242 24.2 0.76_ __________________________________________________________________________________________ 
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Table 6. Estimated location of the knee of the maximum mean workload curves for the M/M/1 and
H 2 / H 2 /1 models as a function of the traffic intensity ρ.


